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ABSTRACT

Existing Weakly-Supervised Referring Expression Comprehension (WREC)
methods, while effective, are fundamentally limited by a one-to-one mapping as-
sumption, hindering their ability to handle expressions corresponding to zero or
multiple targets in realistic scenarios. To bridge this gap, we introduce the Weakly-
Supervised Generalized Referring Expression Comprehension task (WGREC), a
more practical paradigm that handles expressions with variable numbers of ref-
erents. However, extending WREC to WGREC presents two fundamental chal-
lenges: supervisory signal ambiguity, where weak image-level supervision is in-
sufficient for training a model to infer the correct number and identity of refer-
ents, and semantic representation collapse, where standard Euclidean similarity
forces hierarchically-related concepts into non-discriminative clusters, blurring
categorical boundaries. To tackle these challenges, we propose a novel WGREC
framework named Linguistic Instance-Split Hyperbolic-Euclidean (LIHE), which
operates in two stages. The first stage, Referential Decoupling, predicts the num-
ber of target objects and decomposes the complex expression into simpler sub-
expressions. The second stage, Referent Grounding, then localizes these sub-
expressions using HEMix, our innovative hybrid similarity module that synergis-
tically combines the precise alignment capabilities of Euclidean proximity with
the hierarchical modeling strengths of hyperbolic geometry. This hybrid approach
effectively prevents semantic collapse while preserving fine-grained distinctions
between related concepts. Extensive experiments demonstrate LIHE establishes
the first effective weakly supervised WGREC baseline on gRefCOCO and Ref-
Z0M, while HEMix achieves consistent improvements on standard REC bench-
marks, improving IoU@0.5 by up to 2.5%. The code is available at https:
//anonymous.4open.science/r/LIHE.

1 INTRODUCTION

Referring Expresswn Comprehenswn (REC) ( , ; , ), also known as visual
grounding, aims to localize objects in an image based on natural language expressions. REC has
shown broad application potential in fields such as robotic navigation and image edltlng However,
existing REC methods heavily rely on instance-level annotations, which are expensive and labor-
intensive to collect ( s ). To alleviate this bottleneck, Weakly-
Supervised REC (WREC) has emerged as a cost-effective alternative. WREC methods eliminate
the need for boundmg box supervision and instead learn to align vision and language features using
only image—text pairs. Early approaches ( , ; , ) typically employed
two-stage pipelines, while recent single-stage frameworks ( , ;

, ) have become dominant due to their superior efficiency, dlrectly matchlng text with
anchor features from pre-trained detectors through contrastive learning ( , ).

However, real-world scenarios are often more complex: a referring expression might correspond
to multiple objects or no object at all, known as Generalized Referring Expression Comprehension
(GREC) ( , ; , ; R ), which extends REC by allowing ex-
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Figure 1: Limitations of current WREC methods. The ground truth is denoted by red bounding
boxes, whereas green bounding boxes denote the predictions. Current WREC methods always se-
lect only the best anchor as output, failing to handle No-target and Multi-target cases (e.g., no red
bounding box and two red bounding boxes).

pressions to describe no-target and multi-target cases (shown as Fig. 1). Accordingly, in this paper,
we aim to solve a new task, Weakly-Supervised Generalized Referring Expression Comprehension
(WGREC).

Extending WREC to the WGREC setting poses two fundamental challenges that need to be ad-
dressed to develop effective weakly supervised methods. The first is the ambiguity of the supervisory
signal, where the winner-takes-all mechanism of previous WREC methods is structurally incapable
of locating all relevant targets, erroneously returning only a single instance, as shown in Fig. 1.
The second is the semantic representation collapse, which arises because conventional contrastive
learning methods rely on Euclidean similarity. This assumes flat, one-to-one alignments, leading to
suboptimal representations in multi-referent scenarios. For instance, an expression like “left person”
may refer to both “left man” and “left woman” as shown in Fig. 3. Pulling both specific instances
toward the same general anchor (“person”) in Euclidean space unintentionally forces “man” and
“woman” closer together, blurring their categorical boundaries.

To address these challenges, we propose a two-stage Linguistic Instance-Split Hyperbolic-
Euclidean (LIHE) framework designed to effectively localize a variable number of objects from
a single expression. First, in the Referential Decoupling stage, LIHE leverage a vision-language
model (VLM) (Bai et al., 2023; Wang et al., 2024; Team, 2025) to infer the number of referring
objects: if zero, it will skip the second stage; otherwise, it will decompose the expression into
corresponding sub-expressions for each object. Second, the Referent Grounding stage employs
a contrastive learning paradigm to train the model to localize each sub-expression. To prevent the
semantic collapse inherent in this grounding process, LIHE integrates HEMix, a hybrid similarity
module that replaces the standard Euclidean metric. HEMix synergizes the fine-grained alignment of
Euclidean proximity with the structure-preserving properties of hyperbolic geometry (Ganea et al.,
2018; Kim et al., 2023; Bdeir et al., 2024). It leverages the inherent capacity of Lorentzian hyper-
bolic space to model hierarchies by placing general concepts near the origin and specific instances
outward, thereby preserving semantic distinctions. This design, which serves as a plug-and-play
module, effectively prevents concept collapse and enhances generalization in complex referring sce-
narios with negligible computational overhead.

We conduct extensive experiments on the GREC datasets gRefCOCO (He et al., 2023) and Ref-
ZOM (Hu et al., 2023), demonstrating that our method is the first weakly supervised framework to
tackle the WGREC task effectively. Additionally, we validate the broader applicability of HEMix on
REC benchmarks, including RefCOCO (Nagaraja et al., 2016), RefCOCO+ (Nagaraja et al., 2016),
and RefCOCOg (Mao et al., 2016), and achieve the state-of-the-art performance. Our findings
highlight the potential of combining REC with structured geometry to advance vision-language
understanding.

2 TASK DEFINITION

The Weakly-Supervised Generalized Referring Expression Comprehension (WGREC) task aims to
localize all image regions described by a given natural language expression using only weak supervi-
sion. Formally, given an image I and an expression 7', the goal is to predict a set of bounding boxes,
B* = {b; | i € k}, where each box b; corresponds to a region in I that matches the expression 7.
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and the number of targets & is variable (zero, one, or more). Critically, no bounding box annotations
are used during training. Each sample consists only of an image—text pair (I, T), without knowing
which regions match the expression. Unlike WREC, which assumes every expression refers to a
specific object, WGREC allows for expressions that have no matching region. To address this, we
introduce a binary label v € {0, 1} for the training set, where v = 0 means no region in the image
matches the expression, and v = 1 otherwise. This provides weak supervision to guide the model
in learning to predict all matching regions. Our goal is to train a model that, using only these weak
labels, can predict the complete set of referent boxes for inference.

3 METHOD

Extending WREC to WGREC is non-trivial and typically faces two major challenges: (1) Cardinal-
ity Ambiguity: WREC methods such as RefCLIP simplify the task by reducing it to an anchor—text
matching problem. Specifically, they select the most relevant anchor from a predefined set A using:

a* = arggleacﬂT,I,a), (D

where ¢(T',1,a) denotes the similarity between the expression 7', the image I, and anchor a.
However, this max-selection strategy inherently assumes a single referent, making it unsuitable
for WGREC, where the number of targets is unknown. (2) Hierarchical Representation Col-
lapse: When a general expression 7' (e.g., “person”) refers to multiple distinct sub-categories (e.g.,
a “man” and a “woman’) as shown in Fig. 3, conventional contrastive learning in Euclidean space
can conflate their representations. This blurs categorical boundaries and leads to a loss of semantic
distinction.

To address these limitations, we propose Linguistic Instance-Split Hyperbolic-Euclidean (LIHE),
a framework designed for WGREC. As shown in Fig. 2, LIHE consists of a Referential Decou-
pling stage, which decomposes complex expressions into single-instance queries, and a Referent
Grounding stage, which detects all matching regions. In addition, we introduce a HEMix similarity
to explicitly preserve hierarchical relationships.

3.1 REFERENTIAL DECOUPLING

In the context of WGREC, referring expressions often correspond to multiple visual entities. To
address this, we reformulate the task by decomposing a multi-target expression into a set of single-
target sub-expressions, allowing each referent to be localized independently and utilize the capabil-
ities of VLM ( , ) to judge whether the target exists. This strategy simplifies the multi-
instance grounding problem and makes it more tractable under weak supervision.

We leverage the perceptual capabilities of large vision-language models (VLMs) ( , ),
which, although do not have grounding functions, exhibit strong visual understanding and language
reasoning. Given an image I, a referring expression 7', and a carefully designed prompt P, we input
them into a VLM to obtain a set of simplified, instance-level expressions. To exploit the in-context
learning capability of the VLM, we design a four-part prompt paired with the input image to guide
the VLM in decomposing the original referring expression: (1) General instruction P g, describing
the goal of splitting the expression into target-specific phrases; (2) Output constraints P, specify-
ing the format of each phrase; (3) In-context examples Pg, providing annotated demonstrations to
steer the VLM toward the desired behavior; (4) Input query Pq, which contains original referring
expression together with explicit instructions; (5) Raw Image I. Decomposition is formulated as

K,To = VLM(Pg, Pc¢, Pg, Pq, I), )

where K is the number of targets and Tp = {t1, %2, ..., %} is the set of sub-expressions generated
by the model, each describing a distinct visual entity potentially present in the image. The prompts
P guide the model to rewrite the original expression into concise, non-overlapping descriptions of
individual targets, using brief instructions and a few examples. This decomposition mitigates issues
such as irrelevance and ambiguity. Meanwhile, the prompt component P ¢ explicitly instructs the
VLM to first output the number of target phrases K before listing them. This constraint helps
mitigate common hallucination issues in VLMs, such as generating duplicate referring expressions
for the same visual entity. When the VLM returns (X = 0), we interpret it as a no-target case,
which naturally fits the open-ended setting of WGREC. More detailed prompt design, please see
Appendix G.
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Figure 2: The overall framework of LIHE. (a). Referential Decoupling: VLM decomposed the
referring expression into distinct short phrases for each target. (b). Referent Grounding: Each phrase
is processed by a textual encoder, and the image by a visual encoder. Then the model filters anchors
of low value and returns the best-matching one for bounding box prediction. The referent grounding
stage is weakly supervised by the anchor-based contrastive loss.

3.2 REFERENT GROUNDING

After the decoupling stage, each decomposed referring expression ¢ corresponds to a matched visual
entity in the image /. Consequently, the task reduces to a conventional WREC problem, as defined
in Eq. 1. Therefore, the referent grounding stage of our framework follows the structure and training
strategy of previous WREC methods ( , , ), which
have proven effective for WREC. Specifically, glven an input 1mage and a referring expression (the
short phrases generated from the referential decoupling stage), the model uses a one-stage detector
to extract visual feature maps, from which anchor features are obtained. We retain only the an-
chors from the last feature map layer—based on the assumption that most target objects in referring
datasets are of moderate to large size and further filter them by confidence, typically keeping the
top 10% of anchors. Each remaining anchor is projected into a joint semantic space, alongside the
corresponding text embedding. The similarity between each anchor and the phrase is then com-
puted using a hybrid similarity metric, which combines Euclidean and Hyperbolic similarity scores.
Formally, we adopt the contrastive learning objective of RefCLIP ( , ), replacing its
similarity function with our HEMix:

exp (HEMix(f% , f1)/7)

Le= 3)

—log N M

2 2 Tti=innzo) 5P (HEMix(f2,., £{)/7)

where f! , 18 the positive anchor for i-th image, f} is the text embedding, 7 is a temperature scalar,
and HEMix denotes our proposed Euclidean-Hyperbolic hybrid similarity. This contrastive objective
aligns the correct anchor-text pair while using both intra- and inter-image anchors as negatives. More
details of HEMix formulation are provided in Sec. 3.3. Note that we filter the training dataset for the
referent grounding stage by retaining only samples with validity flag v = 1 (i.e., at least one entity
in I matches T').

3.3 HEMIx

In prev10us WREC methods ( , ; ; s ), contrastive
learning is typically driven by Euclidean 51m11ar1ty in a shared embedding space. However, this
approach is limited in its ability to capture hierarchical semantics. For instance, as illustrated in
Fig. 3, a phrase like ‘left person’ may refer to both ‘left man’ and ‘left woman’ two visual entities
in the image, which are semantically related but visually distinct. Euclidean similarity tends to
cluster all such instances together, resulting in ambiguous localization. To better model semantic
structure, we incorporate hyperbolic geometry using the Lorentz (hyperboloid) model. Hyperbolic
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Figure 3: A simple illustration of (a) Euclidean flatten space and (b) hyperbolic Lorentz manifold in
3-dimensional space ( , ). In Euclidean space, all nodes occupy a single, undifferentiated
hierarchy, so parent and child entities share the same geometric scale. In contrast, the negative
curvature of hyperbolic space naturally organizes nodes into concentric hierarchies: parent nodes
reside closer to the manifold’s apex, while their children are pushed farther outward, and different
children at the same level are repelled from one another.

spaces naturally embed hierarchical relationships: pulling a parent concept (e.g., ‘person’) closer to
the time axis increases angular separation among its children (e.g., ‘man’ and ‘woman’), effectively
preserving both generality and specificity. This aligns well with the hierarchical nature of referring
expressions. More introduction and insights are in Appendix D.

For D-Dimension visual feature f,, € R and text feature f; € R, we use two types of similarity:

(1) Euclidean similarity: Same as refclip ( , ), the similarity is calculated by
Simg(fv, fi) = (ftWEv, iWET), 4)

where W gy and W g are learnable linear mapping matrices, and (-, -) denotes the standard inner
product in Euclidean space.

(2) Hyperbolic similarity (Lorentz model): We first map features into hyperbolic space as spatial
components of f,, f; in hyperbolic space:

v=foWpny €RP 7z, = Wy € RP, )

where Wy and W g are learnable linear projection matrices for hyperbolic space. Here, instead
of using exponential maps to embed into hyperbolic space in the paper before, which is prone to
unstable gradients, we adopt a learnable linear projection for both branches. This ensures smooth
training and better compatibility with contrastive objectives. In a hyperbolic space of curvature x,
the calculation of hyperbolic similarity by the Lorentzian inner product is formulated as:

Simy(fo, fr) = (fo. fi)u = —xiah + (20, 2), (6)

where the mapped feature vectors f, = (z3,z,) € RPH!1, f, = (zb,2,) € RP*! and the time
components xo = +/||z[|* + £~!. Due to the time component z¢ being calculated from the spatial

component z, the feature vectors f satisfy ( 1, f) = —x~L. Thus f represents a valid point in
H" ={x € R+ | (x,x)m = —k~1, 2o > 0} and inherits the geometric properties of hyperbolic
space.

(3) HEMix similarity: We define the final similarity as a weighted combination of the two:
HEMix(fy, ft) = (1 — ) Simg(fy, ft) + o Simu(fy, ft), a€(0,1). (7

Euclidean space (x = 0 case) excels at local, flat geometry; it preserves fine-grained angular rela-
tionships that are crucial for pixel-accurate localization. Lorentzian Hyperbolic space (x < 0 case)
naturally embeds hzerarchzcal or long-range semantics because geodesic distance grows exponen-
tially ( s s ), but its metric stretches neighborhoods close to
the light cone, which can blur local details. Each geometry similarity (Simg and Simyy) therefore
introduces a different estimation error with respect to the ideal but unknown similarity Sim*:

Simg, = Sim* + bg + g, Simyg = Sim* + by + €q,
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Table 1: Comparison on the WGREC task. ‘t’ denotes these methods have been modified to generate

multiple boxes following ( ). “*” denotes the model adapted for the WGREC task.

gRefCOCO Ref-ZOM

Methods Supervision val testA testB val
Pr (%) N-acc.(%) | Pr(%) N-acc.(%) | Pr(%) N-acc.(%) | Pr(%) N-acc.(%)

MCNT ( ) Fully 28.0 30.6 323 32.0 26.8 30.3 - -
VLT ( s ) Fully 36.6 352 40.2 34.1 30.2 325
MDETR ( s ) Fully 42.7 36.3 50.0 345 36.5 31.0
UNITEXT' ( s ) Fully 58.2 50.6 46.4 493 429 48.2
Ferret-7B™ ( s ) Fully 54.8 48.9 49.5 45.2 435 43.8
VistaLLM-7B ( s ) Fully 52.7 69.4 - - - -
VistaLLM-13B ( s ) Fully 54.6 70.8 - - - - - -
RECANTFormer(5) ( s ) Fully 57.73 52.70 57.82 53.38 49.49 54.53 56.69 88.24
RECANTFormer(10) ( s ) Fully 55.10 52.73 55.07 53.07 48.01 54.81 59.78 88.24
HieA2Grio1 ( s ) Fully 67.8 60.3 66.0 60.1 56.5 56.0 - -
RefCLIP* ( s ) ‘Weakly 17.85 0.0 18.23 0.0 21.89 0.0 35.78 0.0
LIHE Weakly 39.61 67.49 32.70 79.60 35.84 67.07 50.36 97.70

where b = E[Sim — Sim*] denotes the bias and ¢ the zero-mean random deviation. Specifically, bg,
is large for hierarchical descriptions, while by is large for micro-spatial references. The two errors
are not perfectly correlated, due to the characteristics of each space.

Proposition 1 (Variance reduction). Let 03 = Var|eg], 04 = Var[en| and p = Corr[eg, enl. If
p < 1, the mean-squared error of the hybrid estimator

MSE(HEMix) = E[(HEMix — Sim*)?]
=((1 —a)bg + abuy)? + (1 —a)?cd + a?of + 20(1 — a)pogoy,

z br(bg — b
attains its minimum at o = Q(UE —zpaEaH) + bu(bs — bu) 5, and make MSE(HEMix) satisfies
opt+og— 2pogoy + (bE — bH)

MSE(HEMix; o*) < min{MSE(Simg), MSE(Sim)}. ®)

Please see the supplementary materlal for complete proof. Under the common assumption (

, , ) that the contrastive loss £(o(S)) is Lipschitz-
continuous in 1ts 51m11ar1ty argument S, alower MSE implies a tlghter generalization bound, which
translates into higher retrieval or localization accuracy. Due to p is unknown in practice, we select
o via experiment. Overall, HEMix unifies two complementary geometric inductive biases, local
Euclidean precision and hyperbolic hierarchy, into a single estimator that better approximates Sim”*,
as confirmed empirically in Sec. 4.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

We evaluate our proposed method on two benchmark datasets for the WGREC task: gRef-
COCO ( , ) and Ref-ZOM ( , ), both of which support expressions
that may correspond to multiple or zero referents. Following prior works ( , ), we
adopt Precision@(F1=1, IoU>0.5) and N-acc. as the main evaluation metrics. Precision@(F;=1,
IoU>0.5) computes the percentage of samples that have the F1 score of 1 with the IoU threshold set
to 0.5 and N-acc. assesses the model’s proficiency in no-target identification. Detailed explanations
are provided in the Appendix F. To further validate the effectiveness and generalization ability of
our proposed HEMix module, we also evaluate it on three widely-used WREC datasets: RefCOCO,
RefCOCO+, and RefCOCOg. For these datasets, we follow the standard evaluation protocol using
IoU@0.5, where a prediction is considered correct if the IoU between the predicted and ground-truth
bounding box exceeds 0.5.

4.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

WGREC results. As shown in Tab. 1, LIHE achieves strong performance on the gRefCOCO
dataset under the weakly supervised setting. Compared to other WREC baselines, RefCLIP (
, ), our model significantly outperforms it across all splits. For instance, on the validation
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Table 2: Performance of our methods on RefCOCO, RefCOCO+ and RefCOCOg datasets. “*’
indicates results reproduced under identical settings.

Method Published on RefCOCO RefCOCO+ RefCOCOg
val testA  testB val testA  testB val
VC ( s ) CVPR 18 - 32.68 27.22 - 34.68 28.10 29.65
ARN ( S ) ICCV 19 32.17 3525 30.28 | 32.78 3435 32.13 33.09
IGN ( s ) NeurlPS °20 | 34.78 - - 3691 3691 35.46 34.92
DTWREG ( s ) TPAMI 21 38.35 39.51 37.01 | 38.19 3991 37.09 42.54
RefCLIP* ( s ) CVPR ’23 59.88 58.44 5691 | 40.11 40.01 38.63 47.87
RefCLIP*+HEMix - 60.95 59.84 58.57 | 4148 42.54 39.37 48.67
APL* ( s ) ECCV 24 64.18 61.06 63.08 | 41.03 4146 38.72 49.45
APL*+HEMix - 65.71 62.67 64.04 | 42.13 4298 40.70 50.88
‘WeakMCN ( s ) CVPR ’25 69.20 69.88 62.63 | 51.90 57.33 43.10 54.62
‘WeakMCN*+HEMix - 7044 71.59 63.22 | 52.61 58.14 4443 55.60
Table 3: Performance of different similarity meth- Table 4: Ablation study on the
ods in contrastive loss. prompt design with N-acc. metrics
L RefCOCO (WREC) | gRefCOCO (WGREC
Similarity Method testA :estB ) gVal teslA( testB ) Prompt design gl\ze]fc?ecs&(w?el:gC)
Simis 58.44 56.92 38.88 31.77 34.89 Without Po_ | 49.00 65.60  50.93
SIHIH 58.94 57.72 39.58 31.57 36.88 P* 6810 7666 6826
HEMix 59.84 58.57 39.73 32.19 37.22 P 67.49 79.60 67.07

set, our method achieves 39.61% grounding precision and 67.49% normalized accuracy, while Ref-
CLIP only obtains 17.85% and lacks the capability to handle no-target cases. This performance gap
clearly demonstrates that methods assuming a single target fail to generalize to WGREC, which in-
volves multi-target and no-target scenarios. Although fully supervised methods like HieA2G (

, ) and RECANTFormer ( R ) outperform our model in absolute
metrics, our method remains competitive despite using only image-level supervision, and even sur-
passes earlier fully supervised baselines such as MCN ( , ), VLT ( , ),
and MDETR ( s ). Additionally, it is worth mentioning that our method can even
accomplish unsupervised GREC tasks, as shown in Appendix H.1.

WREC results. We further evaluate the generalization ability of our hybrid similarity learning
scheme on standard WREC benchmarks, including RefCOCO, RefCOCO+, and RefCOCOg. As
shown in Tab. 2, integrating our proposed hybrid similarity module consistently improves existing
baselines. For example, RefCLIP+HEMix surpasses vanilla RefCLIP on all splits (e.g., +1.71%
on RefCOCO testA, +1.15% on RefCOCO+testA). Similarly, APL+HEMix yields consistent gains
over APL ( , ), improving RefCOCOg by 1.43% and RefCOCO+ testB by 1.98%
and WeakMCN+HEMix also improves the performance on three datasets. These results highlight
the compatibility and plug-and-play nature of our hybrid similarity formulation. By combining
Euclidean and Hyperbolic similarity measures, the model benefits from both local discriminative
alignment and global semantic consistency, leading to better grounding performance across varying
datasets and expression types.

4.3 ABLATION STUDY

To validate the effectiveness of individual components in our framework, we conduct comprehensive
ablation studies covering similarity modules, mapping strategies and cross-dataset validation.

Effect of Similarity Design in Contrastive Learning. We conduct an ablation study to assess
the impact of different similarity functions in contrastive learning, as shown in Tab. 3. Overall, our
proposed HEMix consistently outperforms standard Euclidean similarity (Simg, equivalent to Ref-
erent Grounding directly using RefCLIP), with average gains of 1.53% on RefCOCO (WREC) and
0.90% on gRefCOCO (WGREC), demonstrating its effectiveness across both tasks. When compar-
ing SimH and SimE, the improvement is more pronounced on WGREC than on WREC (+0.83% vs.
+0.65%), and notably, Simy achieves performance close to HEMix on WGREC, with only a 0.44%
gap on average. This suggests that hyperbolic similarity better supports the grounding of multiple
semantically related referents, which is common in WGREC. One likely reason is that expressions
in WGREC often correspond to multiple related but distinct instances, requiring a more structured
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Table 5: Cross-Dataset validation from GREC to REC benchmarks. In-Dataset denotes the model
trained on the same dataset as the test.

Ref
Method | Training Set RefCOCO RefCOCO+ efCOCOg
val testA  testB val testA  testB val
RefCLIP In-Dataset 59.88 5844 5691 | 40.11 40.01 38.63 47.87
Ours 60.95 59.84 58.57 | 41.48 42.54 39.37 48.67
RefCLIP RefCOCO 47.62 46.83 4853 | 3825 3891 38.00 43.73
Ours 5434 5579 51.38 | 42.04 43.22 3834 49.14

Table 6: Performance of different hyperbolic mapping methods on RefCOCO and WGREC.

Hyperbolic Mapping Method RefCOCO WGREC
val testA  testB val testA  testB
Exponential Map 55.02 54.16 53.78 | 38.65 31.44 3437
Learnable Linear 60.95 59.84 58.57 | 39.61 32.70 35.84

representation space, an advantage naturally offered by hyperbolic geometry. These findings fur-
ther confirm the suitability of hyperbolic space for modeling hierarchical semantics. Nevertheless,
HEMix consistently outperforms both SimE and SimH across all datasets. Even in cases where
SimE and SimH perform similarly (e.g., RefCOCO testA, gRefCOCO testA), HEMix achieves
great improvements. This highlights the importance of incorporating both fine-grained and hierar-
chical information and demonstrates the overall superiority of our proposed HEMix.

Ablation Study on Prompt design We conduct an ablation study on prompt design and use N-
acc as metrics. The prompt P contains Pg, Pc, Pg, Pg and I. Among them, Pz, Pc, Pg, and I
are indispensable; the absence of any one would lead to unparseable VLM output and consequently
task failure. Therefore, we present two variants: one with Pr removed, and another, P*, where the
textual content is altered while preserving the semantic information of P.Removing P led to some
outputs not following the format well and reduced the model’s understanding of the task, which in
turn led to performance degradation. The performance of P* when changing the text content was
similar to P, indicating the robustness of our method to prompts.

Effect of Different Hyperbolic Mapping Designs. Prior works (

, ) typically adopt the exponential map to project features onto the hyper-
b0101d manifold, preservmg the mathematical correctness of hyperbolic embeddings. However, we
observe that this mapping introduces steep gradients, which negatively affect training stability and
optimization. As shown in Tab. 6, replacing the exponential map with a learnable linear layer yields
a substantial improvement of 5.24% on RefCOCO and 1.23% on gRefCOCO, indicating that a sim-
pler, trainable mapping leads to better empirical performance in practice. To our best knowledge,
only these two hyperbolic mapping schemes exist.

Cross-Dataset Validation. To evaluate the robustness and generalization of our framework, we
train the model on the gRefCOCO and test it on standard WREC benchmarks with single-target
annotations. As shown in Tab. 5, our method consistently outperforms the single-target baseline
RefCLIP across all test sets, despite being trained on the same gRefCOCO data. Compared to
in-domain training, the cross-dataset setting yields even larger gains (e.g., +5.41% vs. +0.80% in
RefCOCOg), further highlighting the superior transferability of our approach. Notably, our model
even surpasses in-domain RefCLIP models on RefCOCO+ and RefCOCOg, demonstrating strong
generalization across both task settings and dataset domains.

Furthermore, our more ablation study in Appendix H.2 reveals several consistent trends across
datasets. First, sweeping the hybrid weight o for HEMix produces a clear U-shaped curve with
a robust sweet spot around « € [0.4,0.7]; for example, RefCOCO testA peaks at 60.01% when
a=0.7, while gRefCOCO testB reaches 36.44% at a=0.9 (Tab. 11). Second, adding an explicit
hierarchical constraint brings little to no average improvement over the implicit structure already
captured by HEMix (Tab. 13). Third, during referent grounding, excluding v=0 samples avoids de-
generate contrastive updates and improves performance, while such cases are handled at inference
by the referential decoupling stage, outputting “0” (Tab. 12).

4.4 QUANTITATIVE ANALYSIS

To further understand the behavior of our model in complex referring scenarios, we visualize repre-
sentative success and failure cases from the gRefCOCO dataset in Fig. 4. These examples highlight
the strengths and current limitations of our framework.
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(a) white shirt woman in front of
group left, man pushing cart, and (b) every zebra

(b) All the tennis balls and
tennis rackets

(c) the leftmost person

wearing black uniform (e ity

man on left with long pants

(e) donut bottom right and
middle right donut

le
elephant, and big elephant
next to baby

(f) Woman in red dress (c) three players (d) all individuals

(A). Successful cases on gRefCOCO dataset

Figure 4: Successful cases(green background) and failure cases(red background). The ground truth
is denoted by red bounding boxes, whereas green bounding boxes denote the predictions.

Success Cases. As shown in Fig. 4(A), our method demonstrates strong grounding ability across
both multi-target and no-target expressions. For instance, in case (a), the expression includes mul-
tiple entities with spatial and appearance constraints, and our model is able to localize each person
correctly despite heavy occlusion and crowd density. In (e), although the objects (donuts) are vi-
sually similar, our model grounds the correct ones by leveraging position cues. Moreover, our
approach can successfully identify no-target cases (c) and (f). In (c), the phrase “the leftmost person
wearing black uniform” does not correspond to any entity in the image, and our model makes a
correct no-target prediction. In (f), while the scene contains many people, none of them match the
detailed attributes described in expression ( “woman in red dress”), and the model again avoids false
positives.

Failure Cases. Fig. 4(B) presents typical failure cases. In (a), the expression implies no valid tar-
get, yet the model incorrectly grounds an entity, reflecting the limited semantic understanding of the
VLM. In (b), the number of targets is predicted correctly, but all decomposed expressions collapse
to the same label (“people”), caused by VLM hallucinations. This occurs despite correctly detecting
four objects (two balls and two rackets); class imbalance biases the decoder toward the frequent
category “people,” consistent with prior findings on distribution-induced hallucination (Zhang et al.,
20245 McKenna et al., 2023; Rohrbach et al., 2018; Liang et al., 2025). In (c), although the decou-
pled phrases are semantically valid and distinct, the grounding stage fails to segment precise regions,
leading to overlaps and missed detections. In (d), the model misses fine-scale visual cues, such as
small hands or blurred individuals, demonstrating difficulty in handling subtle details.

5 CONCLUSION

In this paper, we delve into the critical limitation of Weakly-Supervised Referring Expression Com-
prehension (WREC) task: the inability of existing methods to handle expressions corresponding
to a variable number of targets. To address this, we introduce the Weakly-Supervised General-
ized Referring Expression Comprehension (WGREC) task, a more realistic and challenging setting
where an expression may refer to multiple, single, or no objects. We then propose LIHE, the first
weakly-supervised framework designed for this generalized task. LIHE operates via a two-stage
process: (1) Referential Decoupling, where a vision-language model (VLM) infers the number of
potential referents and parses the expression into target-relevant sub-phrases, followed by (2) Refer-
ent Grounding, where the model enhanced by our novel hybrid similarity localizes each sub-phrase.
This design leverages the semantic understanding of VLMs to resolve ambiguity and synergistically
combines Euclidean and hyperbolic geometries to preserve hierarchical representations. Despite
these strengths, experiments demonstrate that LIHE achieves state-of-the-art performance on both
WGREC and WREC benchmarks, validating its robustness and generalization. One key limitation
of LIHE is its reliance on VLMs, which limits inference speed (=2 FPS). Thus, LIHE is more
suitable as a teacher model for generating pseudo-labels (Jiang et al., 2024) to supervise smaller,
faster student models. In future work, we will explore student model design and lightweight VLM
adaptation, as well as extend our hybrid similarity design to richer geometric formulations.
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A USE OF LARGE LANGUAGE MODELS

We use large language models to aid or polish writing.

B RELATED WORK

Generalized Referring Expression Comprehension GREC ( , ) extends traditional
REC tasks by permitting linguistic expressions to refer simultaneously to multiple target objects.
Baseline methods such as MCN ( , ), VLT ( , ), MDETR (

), and UNINEXT ( s ) have been adopted to evaluate performance under th1s
more complex and realistic scenario. Recent advancements include RECANTFormer (

, ), which employs a recursive transformer decoder with adaptive prediction heads to dy-
namically predict multiple targets, and HieA2G ( , ), which leverages a hierarchical
alignment mechanism to enhance interactions between linguistic phrases and visual objects, thereby
capturing fine-grained semantic correlations. However, these methods uniformly rely on fully su-
pervised bounding box annotations. Weakly supervised approaches for GREC remain unexplored,
motivating the development of our proposed weakly supervised framework.

Weakly Supervised REC Weakly superv1sed approaches ( ; ;ds

, ) have recently shown promlsmg results

in Referrmg Expressron Comprehensron (REC) significantly reducing the dependence on expensive

bounding box annotations. Unlike fully supervised methods ( , ; , ;

s ; ;b; , ), weakly supervrsed REC techmques utlhze

coarser supervision signals, such as image-level or image-text pair annotations, enabling scalable
and cost-effective training. Notable one-stage methods (

s ) include RefCLIP ( , ), which redefines REC as an anchor—text matchmg
task using anchor-based contrastive learning to align visual and textual features without bounding
boxes, and APL ( s ), which enriches anchor features through position, color, and

category prompts, coupled with auxiliary losses to enhance vision-language alignment. Despite their
effectiveness in traditional REC tasks, these methods inherently assume a single-target scenario,
limiting their generalizability to multi-target WGREC settings. This highlights the need to develop
specialized, weakly supervised approaches tailored specifically to GREC.

Hyperbolic Representation learning Hyperbolic representation learning ( , ;

, ; ; ; , ) leverages hyperbohc
geometry’s exponentral volume growth and negatlve curvature making it particularly effective for
modeling hierarchical and relational structures. Early seminal works such as Poincaré Embeddings
( s ) and Hyperbolic Neural Networks ( , ) established founda-
tional techniques for embedding structured data into hyperbolic spaces. Recent developments have
adapted hyperbolic geometry to vision and cross-modal tasks. For instance, hyperbolic embedding

methods introduced by Kwon et al. ( s ) and Kong et al. ( R ) have
improved visual recognition and open-world detection by preserving hierarchical semantics. For
vision-language alignment, Ge et al. ( , ) and Ramasinghe et al. (

) used hyperbolic contrastive learning to enhance semantic coherence. Unlike previous meth-
ods that use only hyperbolic distance or angle, we fuse Euclidean and hyperbolic similarities into
a hybrid metric, which boosts WREC performance and showcases a new way to apply hyperbolic
geometry in representation learning.

C IMPLEMENTATION DETAILS

In the referential decoupling stage, we adopt a pre-trained VLM ( , ) to understand the
visual entity and generate the decomposed referring expression. In the referent grounding stage, fol-
lowing prior work, we resize every image to 416 x 416. The maximum token length of the referring
expression is fixed to 15 for all datasets. For anchor extraction, we adopt the YOLOV3 (
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, ) model pre-trained on MSCOCO ( , ), where images from the validation
and test splits of those datasets are removed to avoid leakage. Detector weights are frozen during all
stages of training. The language encoder produces 512-dimensional sentence embeddings. Visual
anchor features are first fused across scales and then linearly projected to the same 512-dimensional
joint space. In anchor-based contrastive learning, we adopt a 512-dimensional projection head and
sample two negative anchors per image by default. All WREC tasks are trained on NVIDIA GPU
A100 40G and all WGREC tasks on A6000 48G. All models are optimized with AdamW using a
constant learning rate of 1e — 4. We train for 25 epochs with a batch size of 64.

D HYPERBOLIC SPACE PROPERTIES

Hyperbolic spaces are Riemannian manifolds characterized by negative curvature, and they differ
fundamentally depending on the curvature value. As the curvature approaches zero, the hyperbolic
space gradually transitions into a Euclidean space. When the curvature is negative, the space exhibits
hyperbolic geometry, where parallel lines can diverge, and the volume grows exponentially with
distance from a point. These spaces are commonly represented using various models, including
the Poincaré ball, the Lorentz model, and the Klein model, each providing unique advantages for
mathematical formulations.

Lorentz Model The Lorentz Model is also known as the hyperboloid model or the Minkowski
model. In the Lorentz model, a hyperbolic n-dimensional manifold is commonly realized as a
sub-manifold of R"**, corresponding to the upper sheet of a two-sheeted hyperboloid. Each point
x € R™*! of the Lorentz model, can be represented as [Xiime xspace], where zime € R denotes the
temporal component and Xg,.e € R™ denotes the spatial components. The n-dimensional Hyper-
bolic space H™ with curvature « represented by a n + 1-dimensional Lorentz Model as follows:

H! = {X e R*H! | (x,x)g = k7L, zo > O} 9

where the Lorentzian inner product is defined as,

n
(x,y)u = —xoYo + szyl (10
i=1
Here, the 0-th dimension of the vector x, xg is treated as the time component z;,,. and the rest
dimension of the vector x, Xy, is the space component X,p4ce. The 4ime can be calculated from
Xspace as follows:

Ttime = T = ”XspaceH2 + kL. (1])

where the || . . . || is the Euclidean norm.

Distance In the Lorentz model, the geodesic distance between two points x,y € H} (x > 0)
can be expressed solely in terms of their Lorentzian inner product. The distance function d :
H} x H — R>gis

de(x,y) = % arccosh(— K (x, y)H), (12)
where arccosh is the inverse hyperbolic cosine and (-, -) is lorentz inner product in equation 10.
The quantity inside the arccosh is always > 1 for points on the hyperboloid, guaranteeing that the
distance is real-valued. This formula highlights a key feature of hyperbolic geometry: the distance
grows logarithmically with the Lorentzian inner product, reflecting the exponential volume growth
characteristic of negatively curved spaces.

Exponential Map Given a base point p € HJ} and a tangent vector v € T H} (Euclidean space),
the exponential map Expy, : TpH): — HJ; moves p along the unique geodesic in the direction of v.

the map is
K sinh(y/7 || v]|
Bxpj(v) = cosh(v/A |[v])p + ¢(Ev||)v’

where || - - - || for the Lorentz norm o, For small ||v|| this reduces to p + v, mirroring the Euclidean
limit, while for large |v| the hyperbolic cosh/sinh terms dominate, capturing the curvature-
induced stretching of space.

13)
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Logarithm Map Conversely, the logarithm map Logg : H} — TpH} sends a point g back to
the tangent space at p, producing the initial velocity vector of the geodesic from p to q. Using the
distance d, (p, q) from equation 12, we have

d.(p,q)
sinh(v/k d,.(p, q))

which indeed satisfies Expg(Logg(q)) = . The factor in front rescales the component of q or-
thogonal to p so that its norm equals the hyperbolic distance, giving a first-order approximation to
motion on the manifold that is exact along geodesics.

Logy(a) = (a+#(p,qu p), (14)

From these definitions, we highlight two key insights:(1) Any vector that satisfies the hyperboloid
constraint (Eq. equation 9) is a valid point on the Lorentz manifold and inherits the geometric
properties of hyperbolic space.(2) A higher Lorentzian inner product indicates greater seman-
tic similarity between two points in hyperbolic space.

Proposition 2 (Hyperboloid Membership). Let > 0. A vector x € R™! with x¢ > 0 satisfies
the hyperboloid constraint

-1

(x,X)m = —kK = xecH.

Consequently every such x is a valid point of the Lorentz (hyperboloid) model of the hyperbolic
space of constant sectional curvature —r, and inherits all of its geometric properties.

Proof. (=) By definition

K

H? = {z e Rt ’ (z,2)g = —K 1, 29 > 0},

so any x satisfying the stated constraint (with ¢y > 0) belongs to H.

(<) Conversely, if x € H?, then by the same defining condition we have (x,x)y = —x~! and

o > 0. Hence the two sets coincide, establishing the equivalence. O

Proposition 3 (Monotonicity of the Lorentzian Inner Product). For any two points x,y € H} with
Kk > 0, the geodesic distance equation 12

de(x,y) = % arccosh(—r (x, y)u)

is a strictly decreasing function of the Lorentzian inner product (X, y)u. Equivalently, a larger inner
product indicates smaller hyperbolic distance and therefore higher semantic similarity.

Proof. Define
u = —r{xym (u>1)
1
flu) = 7 arccosh(u) = dg(X,y).
Because arccosh is strictly increasing on [1, c0) and
d
oy,
d<X7 Y>]HI

the chain rule gives
dde(x,y) df du
d<X7Y>H du d<X7 Y>H
Hence d,; decreases strictly as (x,y)m increases. Since hyperbolic distance quantifies dissimilarity,

the inverse relationship asserts that a larger (i.e., less negative) Lorentzian inner product encodes
greater semantic similarity between the points. [

<0.

Hence, we adopt the Lorentz inner product as a similarity measure.
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Figure 5: We randomly select 100 samples from the dataset and visualize their similarity scores.
From left to right: (1) the similarity scores of top-scoring anchors (dark blue dots), (2) the similarity
scores of second-best anchors (light blue squares), and (3) an overlaid view combining both. The
dashed vertical segments connect the top and second-best scores for each sample, illustrating that
second-best anchors in many cases have higher similarity than top anchors in other samples.

Proposition 4 (Bias—Variance Reduction). Let 03 = Var[eg)], 0§ = Var[en], and p= Corr[eg, enl.
Denote the Euclidean and Hyperbolic biases by bg, =E|[Simg —Sim*] and by =E|[Simy — Sim*]. For
any mixing weight « € |0, 1] define the hybrid estimator HEMix = (1 — «)Simg + aSimy.

Then the mean—squared error (MSE) of HEMix
MSE(HEMix) = E[(HEMix — Sim*)?]
= ((1 = a)bg + aby)? + (1 — a)?0g + o®0d + 2a(1 — a)pogon (15)
is a strictly convex quadratic in o. Its unique minimizer is

oF = (08 + pogon) + be(be — bu) (16)
O’% + 0’%1 — 2pogoy + (bE — bH)2 ’

which always lies in (0,1) whenever p < 1 or by # bu. Moreover,

MSE (HEMix; o*) < min{ MSE(Simg), MSE(Simy)}. (17)

Proof. Let f(a) =MSE(HEMix) in equation 15. Write it as f(a) = Aa? + 2Ba + C with

A= (bg —bg)?* + 04 + 08 — 2pogoy > 0,

B=— [(bH — bE)bE + 0'12{ — pO’EO'H},

C =bg +op = f(0).
Since A > 0, f is strictly convex; the stationary point a* = —B/A is the global minimum, yielding
f(a*) = C—B?/A.Because B%/A > 0, we have f(a*) < f(0) = MSE(Simg). Convexity further
implies f(a*) < max{f(0), f(1)}. Whenever f(1) # f(0) (i.e., the two single-space estimators

do not have identical MSE) this gives f(a*) < min{f(0), f(1)}, which is exactly the desired
inequality. O

E DETAILED LIMITATIONS OF REFCLIP

As the main text says, weakly supervised methods such as RefCLIP effectively simplify the REC
task by reducing it to an anchor-text matching problem. Specifically, the anchor selection mecha-
nism in methods like RefCLIP can be expressed as:

a =argglea<¢(T,I,a), (18)

where ¢(T, I, a) represents the similarity between the text expression 7', the image I, and anchor
a from the anchor set .A. However, this max-selection strategy implicitly assumes that the number
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of referred objects is known in advance, making it unsuitable for Generalized Referring Expression
Comprehension (GREC), where the number of targets is unknown.

A natural alternative is to apply a threshold to filter anchors based on their similarity scores. Yet, our
experimental analysis reveals the limitations of this approach. As shown in Fig. 5, the second-best
anchor in some samples exhibits higher similarity than the top-scoring anchors in others, rendering a
universal threshold ineffective for consistent selection. This highlights the inadequacy of threshold-
based selection under WGREC conditions.

F EVALUATION METRICS

Precision@(F=1, IoU>0.5) For each sample, let G and P be the ground-truth and predicted
bounding-box sets. A prediction is matched to a ground-truth box if their intersection-over-union
(IoU) is at least 0.5. If several predictions match the same ground-truth box, only the one with the
highest IoU is kept as a true positive (TP); the rest are false positives (FP). Unmatched ground-truth
boxes are false negatives (FN). The sample-level F; score is

2TP
2TP+FP+ FN'

For no-target samples (|G| = 0), we set F; = 1if |P| = 0 and F; = 0 otherwise.

o=

Precision @ (F;=1, IoU>0.5) is the proportion of samples whose F; score equals 1:
jIREAI
Precision@(Fy=1, IoU>0.5) = i ; 1 [Ff = 1} .

It reports the percentage of images perfectly predicted (no missed or spurious detections) under the
0.5 IoU criterion.

N-ace. quantifies the model’s ability to correctly identify no-target samples—images that contain
no ground-truth objects. For such a sample,

* true positive (TP): the model predicts no bounding boxes;
* false negative (FN): the model predicts at least one bounding box.
The metric is
TP
TP +FN’
the proportion of no-target samples for which the model outputs no detections.

N-acc. =

G DETAILED PROMPT DESIGN

P Task Explanation: You need to process an image and a referring expression. The image may
contain zero, one, or multiple target objects corresponding to the referring expression. Analyze the
image to determine whether the target exists. If the target does not exist or the referring expression
is empty, output a single number ’0”. If the target exists, output the number of targets and generate a
unique referring expression for each target. The referring expressions must describe distinct targets
unambiguously using attributes like color, position, size, etc.

P¢: You should provide a number indicating how many targets exist in the image, and then describe
each target with a short, distinct phrase. Prefix each phrase with its ordinal number. The number of
targets is extremely important — please check carefully. The phrases must be accurate and distinct.

Pg: For example, if the referring expression is “3 people”, you should output: “3\nl. person ...\n2.
person ...\n3. person ...”” The word “and” is generally used between two target items.

Pq: The referring expression is: {referring expression}

The specific usage process of prompts are shown in Tab. 7, Tab. 8 and Tab. 9:
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System: Task Explanation: You need to process an image and a referring expression. The
image may contain zero, one, or multiple target objects corresponding to the referring
expression. Analyze the image to determine whether the target exists. If the target does
not exist or the referring expression is empty, output a single number ~’0”. If the target
exists, output the number of targets and generate a unique referring expression for each
target. The referring expressions must describe distinct targets unambiguously using
attributes like color, position, size, etc.

User: The referring expression is: {the right boy in black shirt is playing skateboard}.
You should provide a number indicating how many targets exist in the image, and then
describe each target with a short, distinct phrase. Prefix each phrase with its ordinal
number. The number of targets is extremely important — please check carefully. The
phrases must be accurate and distinct. For example, if the referring expression is “3
people”, you should output: “3\nl. person ...\n2. person ...\n3. person ...””The word
“and” is generally used between two target items.
Referential Decoupling: “0”

No Referent Grounding and directly Return No-target

Table 7: No-target case.

System: Task Explanation: You need to process an image and a referring expression. The
image may contain zero, one, or multiple target objects corresponding to the referring
expression. Analyze the image to determine whether the target exists. If the target does
not exist or the referring expression is empty, output a single number 0. If the target
exists, output the number of targets and generate a unique referring expression for each
target. The referring expressions must describe distinct targets unambiguously using
attributes like color, position, size, etc.

User: The referring expression is: {a guy in green and a rightmost guy}. You should
provide a number indicating how many targets exist in the image, and then describe each
target with a short, distinct phrase. Prefix each phrase with its ordinal number. The
number of targets is extremely important — please check carefully. The phrases must be
accurate and distinct. For example, if the referring expression is “3 people”, you should
output: “3\nl. person ...\n2. person ...\n3. person ..."The word “and” is generally used
between two target items.

Referential Decoupling: “2\nl.a guy in green\n2.a rightmost guy”

Referent Grounding:

Table 8: One-target case.
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System: Task Explanation: You need to process an image and a referring expression. The
image may contain zero, one, or multiple target objects corresponding to the referring
expression. Analyze the image to determine whether the target exists. If the target does
not exist or the referring expression is empty, output a single number 0. If the target
exists, output the number of targets and generate a unique referring expression for each
target. The referring expressions must describe distinct targets unambiguously using
attributes like color, position, size, etc.

User: The referring expression is: {three glasses}. You should provide a number
indicating how many targets exist in the image, and then describe each target with a short,
distinct phrase. Prefix each phrase with its ordinal number. The number of targets is
extremely important — please check carefully. The phrases must be accurate and distinct.
For example, if the referring expression is “3 people”, you should output: “3\nl. person
...\n2. person ...\n3. person ...”The word “and” is generally used between two target
items.

Referential Decoupling: “2\n1.first glass is on the left\n2.second glass is in the
middle\n3. third glass is on the right side”

Referent Grounding:

Table 9: Multi-target case.
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Table 10: Unsupervised Schema. The bottom row is only using the generated data for training.

gRefCOCO
val testA  testB
gRefCOCO 39.61 32.19 36.44
Generated 3229 2585 2791

Training Set

Table 11: Ablation study on .

o RefCOCO RefCOCO+ RefCOCOg gRefCOCO

val testA  testB val testA  testB val val testA  testB
0.1 | 5873 57.54 56.09 | 40.73 40.78 39.27 47.51 38.48 3221 34.47
0.2 | 6127 60.16 59.20 | 41.54 41.84 39.13 47.83 38.97 32.64 34.86
0.3 | 60.88 59.08 58.33 | 41.14 41.18 39.09 47.22 39.07 3222 36.27
04 | 60.25 59.09 57.59 | 4242 42.63 40.03 48.28 39.20 32.01 35.79
0.5 | 6095 59.84 58.57 | 41.48 4254 39.37 48.67 39.14  32.01 35.73
0.6 | 60.05 59.06 59.02 | 42.04 4158 38.17 47.55 39.25 3171 3497
0.7 | 61.04 60.01 5845 | 42.66 4294 39.15 47.81 39.64 3249 3592
0.8 | 60.09 5821 58.80 | 42.20 4342 39.15 45.75 39.57 3225 3577
09 | 6043 5950 57.59 | 41.52 4190 38.84 46.49 39.61 32.19 36.44

H MORE QUANTITATIVE RESULTS

H.1 UNSUPERVISED GENERALIZED REFERRING EXPRESSION COMPREHENSION

To demonstrate the robustness of our framework and explore its potential in a zero-annotation sce-
nario, we extend LIHE to a fully unsupervised setting. In this setting, the model is trained without
using any manually annotated data—neither annotated bounding boxes nor corresponding language
queries. The only input is the image itself.

To achieve this, we first leverage the Vision-Language Model (VLM) to automatically generate
a set of candidate ’pseudo referring expressions” for each image. Subsequently, these machine-
generated texts are used as the training data for the second stage of our model. As shown in the
“Generated” row of Tab. 10, the experimental results demonstrate that despite relying entirely on
machine-generated text, this unsupervised approach still achieves 32.29%/25.85%/27.91% perfor-
mance on the gRefCOCO val/testA/testB splits, respectively. This result is only about 7-9% lower
than its weakly supervised counterpart trained with authentic, human-annotated text, which strongly
demonstrates LIHE’s effectiveness in an annotation-free environment.

H.2 MORE ABLATION STUDIES

Impact of the mixing weight . Due to p being unknown, we conduct extensive experiments
on the hybrid weight @ as shown in Tab. 11 to find the best weight. Two clear trends emerge.
(i) U-shaped curve. Extremely small « (closer to a pure Euclidean view) and extremely large o
(approaching the hyperbolic-only view) both hurt performance; in every split, the scores first rise,
peak in the mid-range, and then drop again. (ii) Robust sweet-spot. The interval o ~ 0.4-0.7
consistently delivers the best or near-best numbers across all four benchmarks. For example, on
RefCOCO testA the top accuracy of 60.01% is achieved at a=0.7, while gRefCOCO testB peaks at
36.44% with aa=0.9, confirming that a balanced mixture captures complementary information from
both geometries. Overall, the ablation validates the bias-variance analysis: an appropriate hybrid
weighting outperforms either single-space similarity.

Explicit vs. Implicit Hierarchical Constraints. Tab. 13 investigates whether explicitly adding
hierarchical losses helps. In the contrastive loss function (Eq. 3), similarity only involves the ex-
pression and the anchor vision feature, but we want to know whether it learns the whole hierarchy
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Table 12: RefCLIP trained with/without v = 0 sample

RefCLIP trained WGREC
val testA  testB
Withv =0 16.77 15.78 20.53

Without v = 0 17.85 18.23 21.89

Table 13: Ablation on explicit hierarchical constraints on gRefCOCO.

Simm | Sim Hierarchica gRefCOCO
2 H | Constraint | val testA testB
v 38.88 31.77 34.89

39.58 31.57 36.88
39.61 32.70 35.84
v 39.08 32.33 35.17
v 39.25 32.06 36.03
v 39.37 3244 36.62

v
v
v

ANENEEENEN

implicitly. To validate this, we add an extra explicit hierarchical constraint loss as follows:

£hier - dn(fcatv fbase,ref) + dﬁ(frefa fbase,ref)

where f..+ denotes the feature of the category text (e.g., “person’ as shown in 3), fygsc_res denotes
the feature of the raw referring expression (e.g., ‘left person’) and f,.s denotes the feature of the
decomposed referring expression. As shown in Tab. 13, adding the explicit hierarchical constraint
basically has the same average performance, implying that through hyperbolic similarity, the model
is able to learn Hierarchical Constraints Implicitly.

Training dataset with/without v=0 The Referent Grounding stage is based on the problem
definition and optimization of RefCIIP which do not support to handle v=0 samples: a* =
arg maxge 4 ¢(T, I, a). RefCLIP is based on the image-ref pair for contrastive loss, which the pro-
cess of performing contrastive loss requires the inclusion of a positive sample; when v=0, there is no
positive sample available for training the model, which will only damage the model performance.
Therefore, in LIHE training stage, we directly remove the v=0 samples from Referent Grounding
and in LIHE inference stage, v=0 samples are effectively addressed in the Referential Decoupling

stage (Stage 1), where the model outputs “0” to indicate no detections.

I MORE VISUALIZATIONS

In this section, we provide additional qualitative visualizations to further evaluate the behavior of the
LIHE framework in various complex scenarios. As shown in Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10, we
demonstrate how the model successfully performs referential decoupling (RD) on the input referring
expressions (RE) to accurately identify multi-target, single-target, or no-target situations. These
diverse cases intuitively demonstrate the effectiveness and generalization capability of our proposed
method.
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RE: the right boy in black
shirt is playing skateboard

RD: 0

RE: three glasses

RD: 1.first glass is on the left

side 2.second glass is in the

middle 3. third glass is on the

right side

RE: both guys

RD: 1.the man brushing teeth

2.the man holding camera

RE: batter

RD: batter: A child wearing a

black helmet and white pants

is swinging a bat at a baseball
. —

RE: left bird

RD: Left bird: A black bird
perched on the left side of the
branch

RE: the guy wearing white
coat on the leftmost with one
hand holding the skateboard

RD: 0

RE: a guy in green and a
rightmost guy

RD: 1.a guy in green
2.a rightmost guy

RE: zebras

RD: 1.the zebra on the left
side of the image 2.the zebra
in the middle of the image
3.the zebra on the right side of
the image

RE: hand reaching in from
left and guy

RD: 1.hand reaching in from
left 2.guy

Figure 6: Qualitative visualizations of LIHE. RE denotes the original Referring Expression, and RD
denotes the result of Referential Decoupling. The image is the result of Referent Grounding.
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RE: sailor on phone on right,
right man, and far left woman

RD: 1.the sailor on phone on
right 2.the right man 3.the far
left woman

RE: lady on the far right
pretending to be interested

RD: Lady on the far right
pretending to be interested

RE: the right boy in black
shirt is playing skateboard

RD: 0

RE: goat on right

RD: 0

RE: whiterear end of horse

RD: A brown and white horse
with a white patch on its ear is
visible in the foreground

RE: long wiener thing and
donut in the upper right corner
of the box

RD: 1.long wiener thing
2.donut in the upper right
corner of the box

RE: back of head on left, man
on right, and middle woman

RD: 1.back of head on left
2.middle woman 3.man on
right

RE: lady on left wearing visor

RD: lady on left wearing visor

RE: two men in black vests

RD: 1.the man on the left
2.the man second from the left

Figure 7: Qualitative visualizations of LIHE. RE denotes the original Referring Expression, and RD
denotes the result of Referential Decoupling. The image is the result of Referent Grounding.
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RE: guy in blue jacket/back to
us

RD: 0

RE: the guy in the right
wearing cap and glass with
one knee on the ground

RD: 0

RE: the blue table holding
four white plates

RD: 0

RE: standing

RD: The large elephant
standing on the dirt ground

RE: two players

RD: 1.left person in red 2.red
on right 3.shorts

RE: chair at the end f table
with purse n it and chair
against table on left

RD: 1.chair at the end of the
table with a purse on it 2.chair
against the table on the left

RE: the girl standing on the
leftmost top row wearing
white dress

RD: 0

G.A.A. TENNIS 3379

(((((

RE: two players

RD: 1.player wearing blue
jersey 2.player wearing white
jersey

RE: man with arms up

RD: man with arms up

Figure 8: Qualitative visualizations of LIHE. RE denotes the original Referring Expression, and RD
denotes the result of Referential Decoupling. The image is the result of Referent Grounding.
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RE: two screens and the cat

RD: 1.the left screen 2.the
right screen 3.the cat

RE: the black laptop on the
left

RD: 0

RE: Smaller child over sink

RD: Smaller child over sink

RE: the guy sitting at the back
wearing glasses

RE: the mouse on the left and
the book on the top

RD: 1.the mouse on the left
2.the book on the top

RE: a refree in black top is
raising his arm out

RD: 0

RE: girl and MAN

RD: 1.the woman wearing
yellow dress
2.the man in black suit

RE: man in blue shirt and tie

RD: Man wearing a light blue
shirt and a patterned tie

RE: right front donut blonde

RD: 0

Figure 9: Qualitative visualizations of LIHE. RE denotes the original Referring Expression, and RD
denotes the result of Referential Decoupling. The image is the result of Referent Grounding.
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RE: a group of three
individuals in the lower right
corner

RD: 1.man in dark suit with
arms crossed 2.woman in gray
dress holding wine glass
3.man in pinstripe suit facing
away

RE: blurry food behindslight

right of dish in forefront, food
front middle, and the glass on
left next to plate

RD: 1.blurry food
behindslight right of dish in
forefront 2.food front middle
3.the glass on left next to plate

RE: white shirt woman in
front of group left, man
pushing cart, and man on left
with long pants

RD: 1.white shirt woman in
front of group left 2.man
pushing cart 3.man on left
with long pants

Figure 10: Qualitative visualizations of LIHE. RE denotes the original Referring Expression, and
RD denotes the result of Referential Decoupling. The image is the result of Referent Grounding.
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