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Abstract

The prevalent noise in the preference data un-
avoidably poses significant challenges to the
preference alignment of large language models
(LLMs). Existing efforts for this problem either
marginally alleviate the impact of noise without
noise reduction, or rely on external LLMs that
incur substantial computational costs. To address
these challenges, we propose RObust Preference
Optimization (ROPO), an iterative alignment ap-
proach that integrates noise-tolerance and noise
filtering without the aid of external models.
Specifically, ROPO first formulates the training
process with adaptive noise reduction as an opti-
mization problem, which can be efficiently solved
in an iterative paradigm. Then, to equip this
solving process with noise-tolerance and noise-
identification capabilities, we derive a robust loss
that suppresses the gradients from samples with
high uncertainty. We demonstrate both empiri-
cally and theoretically that the derived loss is key
to the noise-tolerance and effective filtering of
noisy samples. The derived loss further inspires a
robustness-guided rejection sampling technique
to compensate for the potential important informa-
tion in discarded queries. Extensive experiments
on several widely-used datasets and model archi-
tectures demonstrate that ROPO significantly out-
performs all baselines under four practical noise
settings and the random symmetric noise, with its
advantage increasing as the noise rate increases.
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1. Introduction
Recent research indicates that the significant achievements
of Large Language Models (LLMs) in understanding vari-
ous queries and providing helpful responses (Achiam et al.,
2023) rely on the preference alignment, which aligns LLMs’
responses with human values and expectations (Wang et al.,
2023c; Bubeck et al., 2023; Lin et al., 2023). A typical
preference alignment approach is Reinforcement Learning
from Human Feedback (RLHF) (Casper et al., 2023; Ziegler
et al., 2019), which first trains a reward model to fit human
preferences and subsequently employs an RL algorithm
(Schulman et al., 2017) to guide LLMs to generate high-
reward responses. However, due to the potential risks of
misgeneralized reward modeling (Casper et al., 2023) and
the unstable training (Liu et al., 2023a; Shen et al., 2023) of
RLHF, various ranking-based methods represented by Di-
rect Preference Optimization (DPO) (Rafailov et al., 2023)
bypass the explicit reward modeling stage and eschew RL
techniques via directly optimizing the implicit reward mar-
gins between preferred and dis-preferred responses (Yuan
et al., 2023; Wang et al., 2023a; Song et al., 2023). Owing
to the stable and computationally lightweight supervised
learning paradigm, ranking-based methods have emerged as
competitive alternatives to RLHF, thus drawing increasing
attention recently (Shen et al., 2023; Wang et al., 2023c).

Despite their impressive performance on preference align-
ment, ranking-based methods heavily rely on high-quality
preference data, which is costly and limited in practice (Kim
et al., 2023; Chen et al., 2024). First, the noise (e.g., incor-
rect or ambiguous preferences) in the preference data is
unavoidable (Wang et al., 2024a). Many recent studies have
observed the presence of preference noise at levels of 20%-
40% across various scenarios (Gao et al., 2024; Lee et al.,
2023; Zheng et al., 2024; Touvron et al., 2023; Cui et al.,
2023; Zhao et al., 2023; Munos et al., 2023), whether the
annotators are humans or LLMs. Second, the performance
of LLMs will significantly deteriorate when trained with
noisy preferences (Chowdhury et al., 2024; Gao et al., 2024;
Lee et al., 2023). For instance, a 10% increase in the noise
rate may lead to a 30% decrease in the performance of DPO
in terms of win rate (Gao et al., 2024). Therefore, it is highly
desirable to develop noise-robust preference alignment tech-
niques.
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To address these problems, some recent studies have
explored the label smoothing (Chowdhury et al., 2024;
Mitchell, 2023) and regularization (Gao et al., 2024) tech-
niques to alleviate the impact of preference noise. However,
these methods can only marginally mitigate the side effects
of noise, as the noisy samples are still involved in the train-
ing phase. Besides, (Gao et al., 2024) also attempts to filter
out noisy samples but requires another teacher LLM (i.e.,
a reward model serving as the proxy of the Bradley-Terry
model (Bradley & Terry, 1952)) to assign confidence values
to samples, which introduces additional computational costs.
Moreover, the teacher LLM may not necessarily provide
the correct preference direction (Casper et al., 2023), and
this method is shown to be ineffective at reducing random
symmetric noise (Gao et al., 2024).

In this paper, we propose RObust Preference Optimization
(ROPO), an iterative alignment approach that unifies noise-
tolerance and filtering of noisy samples without the aid of
external models. We first provide a general formulation of
learning from noisy preference data as a constrained opti-
mization problem, where we dynamically assign a quality-
aware weight for each sample (see Section 3.1). Then, we
solve the problem through a provably convergent iterative
paradigm, consisting of two alternating steps: noise-tolerant
model training and noisy sample filtering.

Our Main Contributions. (1) We propose a robust pref-
erence alignment framework that unifies noise-tolerance
and filtering of noisy samples. Without the need for any
external LLM, the model’s robustness and discrimination
ability against noisy samples gradually improve as the al-
ternating iterative training proceeds. (2) We derive a robust
loss function by suppressing the gradients of samples with
high uncertainty. The loss contains a noise-aware term,
which not only prevents the model from over-fitting to noisy
samples but also facilitates identifying noisy samples ver-
sus clean samples1 (see Section 3.2). (3) We propose a
robustness-guided rejection sampling technique to compen-
sate for the potential important information in discarded
queries (see Section 3.3), which improves the data quality
and thus leads to further improvement in alignment per-
formance. (4) We conduct extensive experiments on three
widely-used datasets (i.e., UltraFeedback Binarized, Alpaca
Comparison, and TL;DR) with Mistral-7B, Llama-2-7B,
Llama-3-8B, Llama-2-13B, and Llama-3-70B. Evaluation
results on AlpacaEval, Arena-Hard, and MT-Bench show
that the performance of ROPO remains stable in both practi-
cal and artificial noisy scenarios.

1In Section 3.2, we demonstrate that the cross-entropy loss (i.e.,
DPO loss) cannot distinguish between noisy samples and clean
samples in the context of preference learning, even though it is
widely used for learning from noisy data in other scenarios such
as image classification (Jiang et al., 2018; Liu et al., 2020).

2. Preliminaries and Problem Settings
Given a query x = [x1, . . . , xn], an LLM πθ (with pa-
rameters θ) generates a response y = [y1, . . . , ym], where
the tokens (xi)

n
i=1 and (yj)

m
j=1 come from a predefined

vocabulary, in an autoregressive paradigm. Specifically,
the model samples yj from the conditional probability
distribution πθ(· | x,y1:j−1), where y1:0 is null and
y1:j−1 = [y1, . . . , yj−1] for j = 2, . . . ,m. Finally, we
can decompose the conditional probability πθ(y | x) into
πθ(y | x) =

∏m
j=1 πθ(yj | x,y1:j−1).

2.1. Alignment of Large Language Models

Most of the existing LLM alignment frameworks first fine-
tune a pre-trained model on high-quality datasets of down-
stream tasks (e.g., dialogue and post-summarization) via
maximum likelihood, in order to teach the model to respond
to queries. We denote the supervised fine-tuned model πsft.
Then, we train the model πθ (initialized by πsft) based on
human preference data. Specifically, a preference sample
contains a query x, responses y1 and y2, and a ranking label
c provided by annotators. We use c = 0 to indicate that y1

is preferred to y2 (denoted y1 ≻ y2 | x) and use c = 1 to
indicate the opposite. We assume that the preference data
(x,y1,y2, c) is sampled from a distribution D.

A popular formulation of the generation of preferences is
the Bradley-Terry (BT) model (Bradley & Terry, 1952), i.e.,
P ∗(y1 ≻ y2 | x) = σ(r∗(y1,x) − r∗(y2,x)), where σ
is the sigmoid function, and r∗ is a latent and inaccessible
reward function. The key to existing preference learning
methods is to explicitly or implicitly approximate r∗ or P ∗.
RLHF (Ouyang et al., 2022) approximates r∗ by training
a parameterized reward model rϕ via maximum likelihood
on preference data, then uses the well-trained rϕ to provide
signals for the reinforcement learning of πθ.

Due to the complexity and instability of RLHF, some recent
works (Rafailov et al., 2023; Azar et al., 2023; Wang et al.,
2023a) directly learn preferences from offline collected re-
sponse pairs by optimizing the implicit reward margins be-
tween preferred and dis-preferred responses. For example,
the objectives of DPO (Rafailov et al., 2023) is given by
ℓdpo = − log σ(β log πθ(y1|x)

πref (y1|x) − β log πθ(y2|x)
πref (y2|x) ), where

y1 ≻ y2 | x, β is a hyperparameter, and πref is a fixed refer-
ence model (usually the SFT model). Ranking-based meth-
ods are more computationally lightweight and stable than
RLHF, thus drawing increasing attention recently. Thus, we
mainly focus on ranking-based methods in this paper.

2.2. Preference Learning with Noisy Data

Preferences are unavoidably noisy due to the cognitive
bias among annotators (see Appendix C for detailed dis-
cussion). Thus, we have no access to the clean dataset
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Figure 1. Framework of ROPO and a comparison between the gradient weighting strategies of ROPO and DPO (Rafailov et al., 2023).
Left: ROPO alternates between noise-tolerant model training and noisy sample filtering and integrates the online rejection sampling
paradigm to further improve the data quality. Please see Appendix A for the detailed description and pseudocode of the framework.
Right: Unlike wdpo, which increases with respect to ∆ = r̂(y2,x)− r̂(y1,x), wropo decreases when ∆ is large. Given a noisy sample
(x,y1,y2,y1 ≻ y2 | x), whose preference label contradicts the comparison of implicit rewards, ROPO suppresses its gradient. A larger
α implies a stronger suppressive effect.

D = {(x(i),y
(i)
1 ,y

(i)
2 , c(i))}Ni=1 ∼ D and can only obtain

a noisy dataset Dη = {(x(i),y
(i)
1 ,y

(i)
2 , ĉ(i))}Ni=1 ∼ Dη,

where ĉ(i) = c(i) with probability 1− η and ĉ(i) = 1− c(i)

with probability η.

Remark. (1) We assume the random symmetric noise in our
theoretical analysis because it is the standard assumption
for learning from noisy data (Liu & Guo, 2020; Zhang &
Sabuncu, 2018) and existing research on LLM alignment has
indicated the challenges posed by this kind of noise (Gao
et al., 2024). Besides, in the context of preference alignment,
the symmetric and asymmetric (or class-conditional) noise
is equivalent, as the ground truth label is changed if we swap
the positions of y1 and y2. (2) In addition to this artificially
introduced random noise, our experiments also include four
types of practical noise settings, covering a variety of
unavoidable noises from human and LLM annotations. For
more details, please refer to Section 4 and Appendix E.3.

3. Robust Preference Optimization
We propose ROPO, an iterative preference alignment frame-
work. ROPO alternates between noise-tolerant model train-
ing and noisy sample filtering, as shown in Figure 1, which
is mathematically equivalent to iteratively solving a con-
strained optimization problem (Section 3.1). In the model
training step, we introduce a robust loss function by sup-
pressing the gradients of samples with high uncertainty,
which prevents the model from over-fitting to the noisy
preference. In the sample filtering step, we filter out noisy
samples based on the magnitude of their training losses.
The key to ROPO is that our proposed loss contains a noise-
aware term, which not only features noise-tolerance, but also
facilitates identifying noisy samples versus clean samples

(Section 3.2). Further, we propose a robustness-guided re-
jection sampling technique to compensate for the important
information in discarded queries and thus improve the data
quality (Section 3.3). For detailed proofs of the theorems
in this section, please refer to Appendix F.

3.1. A General Formulation

Given N preference samples {(x(i),y
(i)
1 ,y

(i)
2 , ĉ(i))}Ni=1, we

hope that the weights of noisy samples in the preference op-
timization are smaller than those of others, thereby reducing
the impact of noise on the alignment performance. Without
prior knowledge of which samples are noisy, a natural ap-
proach would be to assign a dynamic quality-aware weight
to each sample and constrain the sum of these weights to a
constant, which can also prevent the weights from tending
toward zero. Therefore, we formulate learning from noisy
preference samples as the following constrained optimiza-
tion problem:

min
θ,w

1

N

N∑
i=1

wiℓ(θ;x
(i),y

(i)
1 ,y

(i)
2 , ĉ(i), πθ), (1)

s.t. θ ∈ Θ, wi ∈ [0, 1], i = 1, . . . , N,

N∑
i=1

wi = Nρ ≜ ⌊(1− ρ)N⌋,

where w1, . . . , wN are dynamic weights, Θ is compact, and
ρ ∈ [0, 1] is the proportion of the samples we aim to filter
out. Please note that we minimize Problem (1) with respect
to both θ and w, resulting in a training process that learns the
weights adaptively. Hence, we expect that Problem (1) will
gradually lead to much smaller weights for noisy samples
than those for others. To achieve this, we first analyze the
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properties of the optimal solution to Problem (1). As shown
in Theorem 3.1, Problem (1) admits an optimal solution and
the elements in its minimizer w∗ are either 0 or 1.

Theorem 3.1. Assume ℓ(θ) is continuous on a compact pa-
rameter space Θ, then Problem (1) admits an optimal solu-
tion (θ∗,w∗). Suppose that ℓ(θ∗;x(i1),y

(i1)
1 ,y

(i1)
2 , πθ∗) <

· · · < ℓ(θ∗;x(iN ),y
(iN )
1 ,y

(iN )
2 , πθ∗), then w∗

ik
= 1 for

1 ≤ k ≤ Nρ and w∗
ik

= 0 for Nρ < k ≤ N .

We solve Problem (1) in an iterative paradigm, which con-
sists of two alternating steps: model training and sample
filtering. In the step of model training, we fix w and learn
model parameters θ. In the step of sample filtering, we fix θ
and assign weights w1, . . . , wN for samples based on their
loss values. Because the objective in Problem (1) is non-
negative and its value does not increase during the iteration,
the iterative solving process is guaranteed to converge.

3.2. A Noise-Tolerant Loss

To guarantee the effectiveness of the iterative solving pro-
cess within the preference alignment framework, we delve
into identifying additional conditions that should be im-
posed on ℓ. Here, we discuss the properties of ℓ in the
context of minimizing its expected risks under distributions
of noisy and clean preference data, i.e., finding the optimal
solutions θ∗ and θ∗η by solving

θ∗ = argmin
θ∈Θ

E(x,y1,y2,c)∼D[ℓ(θ;x,y1,y2, c, πθ)], (2)

θ∗η = argmin
θ∈Θ

E(x,y1,y2,ĉ)∼Dη
[ℓ(θ;x,y1,y2, ĉ, πθ)]. (3)

Requirement 1: Noise-tolerance. It cannot be guaranteed
that the sample filtering stage will eliminate all noise sam-
ples (e.g., when ρ is less than the actual noise proportion
in the preference data). Consequently, it is crucial that the
presence of noisy preferences does not significantly impact
the model training stage, i.e., ℓ is noise-tolerant.

Requirement 2: Distinguishable losses for clean and
noisy samples. As noisy samples generally exhibit larger
loss values (Liu et al., 2020), in the sample filtering step,
we filter out the N − Nρ samples with the largest losses.
It is noteworthy that this step takes place midway through
training, hence ℓ needs to exhibit distinguishable loss values
for clean and noisy samples prior to the convergence of the
model.

As DPO is one of the most popular alignment methods, it
is natural for us to explore the effectiveness of the DPO
loss ℓdpo within our iterative solving process. However, our
findings show that ℓdpo does not satisfy the aforementioned
requirements. In this section, we assume that η < 1/2.

Finding 1: DPO is not noise-tolerant.

Theorem 3.2. Consider ℓdpo and the corresponding min-
imizer θ∗η to Problem (3). Given a query x and responses
(y1,y2), the relationship between the preference probability
given by the optimal model, i.e., Pθ∗

η
(y1 ≻ y2 | x), and that

given by the BT model, i.e., P ∗(y1 ≻ y2 | x) is Pθ∗
η
(y1 ≻

y2 | x) = P ∗(y1 ≻ y2 | x) + (1− 2P ∗(y1 ≻ y2 | x)) · η,
hence we have

∣∣Pθ∗
η
(y1 ≻ y2 | x)− Pθ∗(y1 ≻ y2 | x)

∣∣ =
2η
∣∣P ∗(y1 ≻ y2 | x)− 1/2

∣∣.
As shown in Theorem 3.2, the impact of noise on the opti-
mal solution corresponding to ℓdpo increases as the noise
rate increases. Specifically, the difference between the op-
timal probabilities under noisy and clean distributions, i.e.,∣∣Pθ∗

η
(y1 ≻ y2 | x)− Pθ∗(y1 ≻ y2 | x)

∣∣, is proportional to
the label flipping probability η.

Finding 2: DPO faces challenges in distinguishing be-
tween noisy and clean samples.

Theorem 3.3. For samples (x(1),y
(1)
1 ,y

(1)
2 , ĉ(1) = c(1))

and (x(2),y
(2)
1 ,y

(2)
2 , ĉ(2) = 1 − c(2)), suppose that θ

is not θ∗η but satisfies max
i=1,2

|Pθ(y
(i)
1 ≻ y

(i)
2 | x(i)) −

Pθ∗
η
(y

(i)
1 ≻ y

(i)
2 | x(i))| < δ, then if we want to ensure that

ℓdpo(x
(1),y

(1)
1 ,y

(1)
2 , ĉ(1)) < ℓdpo(x

(2),y
(2)
1 ,y

(2)
2 , ĉ(2)), δ

must satisfy δ < 1−2η
2

(
P ∗(c(1)) + P ∗(c(2))− 1

)
.

As shown in Theorem 3.3, the distance between πθ and
πθ∗

η
we need for ℓdpo to differentiate between clean and

noisy samples decreases as the BT probability approaches
50% and the noise rate increases. Specifically, Theorem
3.3 shows that the upper bound of δ is proportional to
(1− 2η)/2 and

(
P ∗(c(1))− 1/2 + P ∗(c(2))− 1/2

)
2. Due

to the intrinsic diversity and stochastic nature of human
preferences, the BT distribution is usually not a “hard” dis-
tribution with probabilities close to 0 or 1, but rather a “soft”
one (Swamy et al., 2024; Strobl et al., 2011). This brings
difficulties to unconverged DPO-trained model in identi-
fying noisy samples. For example, when η = 30% and
P ∗ (c(1)) = P ∗ (c(2)) = 60%, we need δ < 4%, which
is a challenging requirement for a model that has not yet
converged.

The gradient weighting strategy of DPO may amplify
the impact of noise. Given a sample (x,y1,y2, ĉ = 0),
according to (Rafailov et al., 2023), the gradient of ℓdpo is
given by

∇θℓdpo = −β σ (r̂(y2,x)− r̂(y1,x))︸ ︷︷ ︸
wdpo(x,y1,y2)

·∇ log
πθ(y1 | x)
πθ(y2 | x)

,

(4)

where r̂(y,x) = β log πθ(y|x)
πref (y|x) is the implicit reward func-

2As c(1) and c(2) are clean labels, we have P ∗(c(1)) > 1/2

and P ∗(c(2)) > 1/2.
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tion of DPO. Intuitively, the greater the discrepancy between
the reward function’s comparison of y1 and y2 and the label
y1 ≻ y2 | x, the greater the weight wdpo(x,y1,y2) of the
DPO gradient becomes. This aggressive weighting strategy
can be risky if the label is incorrect, as the model may imply
a high uncertainty about the sample by giving a higher re-
ward to y2 than to y1, increasing wdpo and thus amplifying
the impact of the noise.

Conservative gradient weighting strategy. A simple and
straightforward idea is that when the implicit reward margin
∆(y2,y1,x) ≜ r̂(y2,x) − r̂(y1,x) is excessively posi-
tive, we should assign a conservative weight to the gradient.
Based on this idea, we propose the conservative gradient
weight

wropo

=
4α

(1 + α)2
· σ(∆(y2,y1,x)) · (1 + ασ(−∆(y2,y1,x))),

(5)

where α > 2 controls the conservatism of weighting and
4α/(1 + α)2 is used to normalize the maximum value of
wropo (see Appendix F.9). As illustrated in Figure 1, unlike
the monotonous increase of wdpo, wropo decreases when
∆(y2,y1,x) is large. Then, the corresponding loss function
can be decomposed as

ℓropo =

∫
∇θℓropo dθ =

4α2

(1 + α)2
· ℓna +

4α

(1 + α)2
· ℓdpo,

(6)

where ℓna = σ(β log πθ(y2|x)
πref (y2|x) − β log πθ(y1|x)

πref (y1|x) ) and we
omit the constant term of the primitive function (see Ap-
pendix F.4 for details). The introduced loss consists of ℓdpo
and a noise-aware term ℓna whose weight is α times that of
ℓdpo. We claim that ℓna has the following advantages.

Advantage 1: ℓna is noise-tolerant.
Theorem 3.4. Consider ℓna and the corresponding mini-
mizer θ∗η to Problem (3). Given a query x and responses
(y1,y2), the relationship between the preference probabil-
ity given by the optimal model, i.e., Pθ∗

η
(y1 ≻ y2 | x),

and that given by the BT model, i.e., P ∗(y1 ≻ y2 | x) is
Pθ∗

η
(y1 ≻ y2 | x) = I(P ∗(y1 ≻ y2 | x) > 1

2 ), hence we
have Pθ∗

η
(y1 ≻ y2 | x) = Pθ∗(y1 ≻ y2 | x).

As shown in Theorem 3.4, contrary to the conclusion in
Theorem 3.2 that the optimal solution corresponding to ℓdpo
is affected by the noise, the optimal preference probabil-
ity corresponding to ℓna, i.e., Pθ∗

η
(y1 ≻ y2 | x), remains

unchanged when the label flipping probability η < 1/2.
Specifically, 3.4 shows that Pθ∗

η
(y1 ≻ y2 | x) is an indica-

tor function of P ∗(y1 ≻ y2 | x) > 1/2.

Advantage 2: ℓna can distinguish noisy samples from
clean ones.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.00
0.01
0.02
0.03
0.04
0.05
0.06 clean

noisy

(a) DPO (ep1). γ = 0.48.

0.0 0.5 1.0 1.5 2.0 2.5
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(b) DPO (ep2). γ = 0.34.
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(c) ROPO (ep1). γ = 0.58.
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(d) ROPO (ep2). γ = 0.60.

Figure 2. Loss distributions of Llama-2-7B trained with DPO and
ROPO at different training epochs (ep1 and ep2) on TL;DR. We
denote γ as the proportion of noisy samples in the 20% of samples
that are filtered out. Larger γ indicates better discrimination be-
tween clean and noisy samples.

Theorem 3.5. For samples (x(1),y
(1)
1 ,y

(1)
2 , ĉ(1) = c(1))

and (x(2),y
(2)
1 ,y

(2)
2 , ĉ(2) = 1 − c(2)), suppose that θ

is not θ∗η but satisfies max
i=1,2

|Pθ(y
(i)
1 ≻ y

(i)
2 | x(i)) −

Pθ∗
η
(y

(i)
1 ≻ y

(i)
2 | x(i))| < δ, then if we want to ensure

that ℓna(x(1),y
(1)
1 ,y

(1)
2 , ĉ(1)) < ℓna(x

(2),y
(2)
1 ,y

(2)
2 , ĉ(2)),

we must have δ < 1
2 .

As shown in Theorem 3.5, contrary to the challenging re-
quirement ℓdpo places on an unconverged model in Theorem
3.3, we can expect that ℓna yields a larger value for noisy
samples than for others as long as the difference between
the preference probability given by an unconverged model
and that of the optimal model is less than 50%. We verify
our theoretical analysis in experiments, as shown in Figure
2. For more details, please refer to Section 4.1.

Discussion. ℓna is capable of improving noise-tolerance
and separating noisy samples from clean samples. However,
compared with ℓna, ℓdpo leads to a “softer” optimal pref-
erence probability, which could potentially avoid discrim-
ination against minorities by LLMs. Besides, the aggres-
sive weighting strategy may be useful for clean preference
datasets (although they are rare). Thus, it is considered
necessary to incorporate a minor component of ℓdpo into
the final loss. From this perspective, the hyperparameter α
plays an important role in trading-off between aggressive
(ℓdpo) and conservative (ℓna) gradient weighting strategy.
Given that the weight of ℓna is α > 2 times greater than that
of ℓdpo (in our experiments and ablations, α ≥ 6), ℓna dom-
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Figure 3. The iterative process of ROPO.

inates the optimization process. Thus, the incorporation
of ℓdpo does not hurt the noise-tolerance and noise filtering
too much.

3.3. Robustness-guided Rejection Sampling

The sample filtering step effectively reduces the proportion
of noise but may also discard some important queries. For
example, a query designed to eliminate the occupational dis-
crimination in LLMs may be filtered out because the ranking
label of its associated responses is incorrect. Thus, inspired
by the sample distinguishing ability of our proposed ℓropo,
we propose a rejection sampling technique to compensate
for the essential but discarded information and thus im-
prove the robustness of our ROPO framework. Specifically,
we sample K responses ỹ1, . . . , ỹK to x for each sample
(x,y1,y2) that is filtered out and generate 2K candidate
samples {(x,y1, ỹk,y1 ≻ ỹk | x)}Kk=1∪{(x,y2, ỹk,y2 ≻
ỹk | x)}Kk=1. Then, we compute their loss values and add
the sample with the minimum loss to the dataset. Note
that we treat the model’s responses as dis-preferred ones
compared to the original responses, which suppresses the
potential unsatisfactory or even harmful information in the
model’s outputs.

3.4. ROPO Framework and Complexity Analysis

As shown in Figure 3, ROPO iteratively carries out three
stages: noise-tolerant training, noisy sample filtering, and
robustness-guided rejection sampling. In the last epoch, we
only perform the noise-tolerant training stage and then get
the final model. For the detailed pseudocode and complexity
analysis of ROPO, please refer to Appendix A.

4. Experiments
Tasks and Datasets. We focus on two dialogue datasets (i.e.,
UltraFeedback Binarized3 (UFB) and Alpaca Comparison
(Peng et al., 2023)) and one post-summarization dataset (i.e.,

3https://huggingface.co/datasets/
HuggingFaceH4/ultrafeedback_binarized

Reddit TL;DR (Völske et al., 2017; Stiennon et al., 2020)).
For details about the datasets, please refer to D.1.

Noise Settings. Our experiments include four types of
practical noise settings. As stated in Section 1, original
datasets unavoidably contain noise introduced by annotators
(see Appendix E.3 for details about the two related practi-
cal noise settings). To further explore the performance of
ROPO and baselines under noise, we randomly alter prefer-
ence labels at different proportions (20% and 40%) within
the datasets to produce more challenging symmetric noise
(Gao et al., 2024). Besides, in Appendices E.3.1 and E.3.2,
we supplement experiments in another two practical settings,
where the noise comes from annotators’ trust in larger mod-
els over smaller models and LLM preference comparisons.
Please refer to the supplementary material for more details.

Baselines, Models, and Hyperparameters. Our baselines
are DPO (Rafailov et al., 2023), IPO (Azar et al., 2023), and
two approaches that use the label smoothing technique to
alleviate the impact of noise, i.e., rDPO (Chowdhury et al.,
2024) and cDPO (Mitchell, 2023). Besides, we supplement
experiments on reward modeling in Appendix E.2.

We use Mistral-7B (Jiang et al., 2023) and Llama-2-7B
(Touvron et al., 2023) as base models for all baselines and
datasets in the main text. For experiments on Llama-2-13B
and Llama-3-70B, please refer to Appendix E.1. On UFB,
we use Zephyr-7B-SFT-β (Tunstall et al., 2023) as the SFT
model for experiments with Mistral-7B, and adopt the re-
sult of Zephyr-7B-β (Tunstall et al., 2023) on AlpacaEval
(90.60) as the performance of DPO under no artificial noise.
In other cases, we fine-tune base models on the preferred
responses (SFT targets) to form the SFT models. For details
about our baselines, models, and hyperparamters, please re-
fer to Appendix D.2. We run all experiments on 16 NVIDIA
A100 GPUs (80 GB).

Evaluation. For models trained on UFB and Alpaca Com-
parison, we evaluate them on the AlpacaEval benchmark
(Li et al., 2023a) by comparing their outputs with those
of text-davinci-003 (recommended by the benchmark for
comparison). For models trained on TL;DR, we evalu-
ate them by comparing their outputs with the SFT targets
(chosen responses) on the test split of TL;DR. Following
(Rafailov et al., 2023; Tunstall et al., 2023), we employ
GPT-4 as the referee for head-to-head comparisons, using
the win rate as the metric. The win rate can be computed
by Ω = #(Win)+#(Tie)/2

#(Comparisons) , where #(Win), #(Tie), and
#(Comparisons) are the numbers of wins, ties, and com-
parisons, respectively. For evaluation details, experiments
on more benchmarks, and human evaluation, please refer to
Appendices D.3, E.4, and E.6, respectively.
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Table 1. Win rates (%) of different methods vs SFT targets under different proportions (i.e., 0, 20%, and 40%) of artificial noise,
evaluated by GPT-4. The bold font indicates the best result and an underline indicates the second-best result. Please note that 0%
represents no artificial noise, which does not mean that the dataset is clean.

Dataset UFB Alpaca Comparison TL;DR

Model Method 0% 20% 40% 0% 20% 40% 0% 20% 40%

Mistral-7B

DPO 90.60 86.21 82.67 73.66 70.19 65.84 63.00 56.80 49.60
IPO 88.45 87.32 82.86 72.92 70.81 67.33 62.00 57.00 48.80
rDPO 88.07 87.45 84.72 72.55 72.05 70.31 62.40 58.20 52.60
cDPO 88.82 86.96 83.35 73.04 71.30 69.94 59.40 57.40 53.00
ROPO 91.06 88.63 87.70 75.40 76.27 74.04 79.00 77.80 75.80

Llama-2-7B

DPO 68.57 66.71 62.36 53.42 50.68 48.20 56.80 42.40 35.20
IPO 67.70 66.09 64.35 53.54 50.56 49.19 54.20 50.80 51.60
rDPO 68.07 67.83 65.59 52.80 51.18 50.31 54.80 54.00 50.40
cDPO 68.20 67.33 65.09 53.79 50.81 49.81 52.20 52.00 49.80
ROPO 68.94 69.44 66.71 55.90 54.41 54.53 78.80 78.00 79.20

Table 2. Win rates (%) of ROPO and DPO vs SFT targets under different proportions (i.e., 0, 20%, and 40%) of artificial noise at
different training epochs on TL;DR, evaluated by GPT-4.

Model Method 0% 20% 40%
ep1 ep2 ep3 ep1 ep2 ep3 ep1 ep2 ep3

Mistral-7B DPO 62.60 60.20 63.00 56.80 51.00 48.60 49.60 44.40 44.60
ROPO 75.40 75.60 79.00 68.80 76.40 77.80 61.60 70.80 75.80

Llama-2-7B DPO 49.00 53.60 56.80 42.40 38.40 39.20 32.00 35.20 33.60
ROPO 74.00 82.00 78.80 58.40 76.40 78.00 46.00 70.80 79.20

4.1. Main Results

ROPO is robust to noisy preferences. We present the win
rates of different methods vs SFT targets under different
proportions of artificial noise in Table 1. From the table,
we have several interesting observations: (1) For all prefer-
ence alignment methods, their win rates show a decreasing
trend as the noise rate increases. (2) Compared to the com-
petitors, our proposed ROPO demonstrates a more stable
performance under noisy preference data. (3) ROPO consis-
tently outperforms the baselines under different proportions
of artificial noise in all the three datasets. Even without
artificial noise, ROPO still outperforms DPO by 16.0% on
TL;DR and 2.5% on Alpaca Comparison, which indicates
that the datasets inherently contain noise. (4) Baselines that
use the label smoothing technique (i.e., rDPO and cDPO)
mostly outperform other baselines under 20% and 40% arti-
ficial noise, but underperform ROPO. We speculate that the
reasons for their limited effectiveness are as follows. First,
rDPO and cDPO are noise-tolerant only when the hyperpa-
rameter ε exactly equals the proportion of noise and when
ε = 0.5, respectively (see Appendix F.7), which is difficult
to achieve in practice, as we have no prior knowledge of the
exact noise proportion. Second, they do not reduce the pres-
ence of noise and thus can only marginally mitigate the side
effects of noise. In contrast, ROPO exhibits noise-tolerance

without the priors on the noise proportion and iteratively
reduces the noise proportion as the training proceeds, thus
leading to superior performance to rDPO and cDPO.

ROPO distinguishes noisy samples from clean samples.
In Section 3.2, we have theoretically shown that ℓna can
distinguish noisy samples from clean ones, while ℓdpo can-
not. Besides, we also claim that the minor incorporation
of ℓdpo in ℓropo does not hurt the noise filtering ability. To
support our analysis, we report the loss distributions for
Llama-2-7B trained with ROPO and DPO on TL;DR in Fig-
ure 2. Specifically, for models trained for one (two) epoch,
we use the SFT model (the model trained for one epoch)
as the reference model and compute the losses for all noisy
and clean samples. The results in Figure 2 demonstrate
three important observations: (1) ℓropo can distinguish be-
tween noisy and clean samples by yielding larger values
for noisy samples than for others. (2) The distributions of
ℓdpo on noisy and clean samples are similar and the gap be-
tween them narrows as training progresses. (3) ROPO has a
stronger capability for filtering out noisy samples compared
to DPO. Specifically, in the top 20% of samples with the
largest ℓropo, noisy samples make up 60%; whereas in the
top 20% of samples with the largest ℓdpo, noisy samples
account for about 34%.

ROPO gradually improves the performance. In Table 2,

7



ROPO: Robust Preference Optimization for Large Language Models

Table 3. Ablations on different components of ROPO for Mistral-
7B on UFB. NSF and RS stand for the noisy sample filtering and
rejection sampling stages, respectively.

Method 0% 20% 40%

DPO 90.60 86.21 82.67
ROPO (ℓna) 89.19 87.58 86.34
ROPO (ℓna + NSF) 89.44 88.20 88.07
ROPO (ℓna + NSF + RS) 91.06 88.63 87.70

0% 20% 40%70
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95
= 0.1
= 0.2
= 0.3

(a) Mistral-7B

0% 20% 40%55
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(b) Llama-2-7B
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(c) UFB
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(d) TL;DR

Figure 4. Ablations on ρ and α. (a) and (b) respectively show
the performance of ROPO-trained Mistral-7B and Llama-2-7B
on UFB with different proportions of artificial noise and sample
filtering ratio ρ. (c) and (d) respectively show the performance
of ROPO-trained Mistral-7B on UFB and TL;DR with different
proportions of artificial noise and α.

we report the win rates of ROPO and DPO vs SFT targets
under different proportions of artificial noise at different
training epochs on TL;DR. From the results, we find that
the performance of ROPO gradually improves as training
progresses in most cases, while DPO does not exhibit the
same trend. Specifically, the performance of DPO at the
second and third epochs is generally lower than that at the
first epoch under 20% and 40% artificial noise. As a compar-
ison, the second epoch training of ROPO brings an 8%-24%
increase in the win rate, and the third epoch also leads to
a 5%-9% improvement under 40% artificial noise. These
results demonstrate that the iterative training of ROPO ef-
fectively reduces the impact of noise and thus consistently
improves the alignment performance.

4.2. Ablations

Effectiveness of components in ROPO. To evaluate the
effectiveness of different components of our ROPO frame-

work, we compare the performance of our proposal with
and without: (a) noise-aware term ℓna, (b) noisy sample
filtering stage, and (c) rejection sampling stage. As shown
in Table 3, all components improve ROPO’s performance,
validating the rationale of our robust framework. Compared
to the aggressive DPO loss, our proposed noise-aware term
ℓna consistently improves the performance, which indicates
that a proper trade-off between aggressive and conservative
gradient weighting strategy effectively prevents the model
from over-fitting to noise. Besides, the results also show
that the noisy sample filtering is the most effective part of
our method, which also makes ROPO significantly superior
to other label smoothing-based methods (Chowdhury et al.,
2024; Mitchell, 2023).

How many noisy samples should we filter out? The sam-
ple filtering ratio ρ is a key factor to the data filtering stage.
In the main experiments, we only report the results with
ρ = 0.2. Here, we also present the results of filtering 10%
and 30% samples with larger loss values. The results in
Figures 4(a) and 4(b) show that better performance could
be achieved when filtering 20% or 30% samples. We at-
tribute the reason for this result to the noise ratio in the
preference data, which is generally between 20%-30% (Gao
et al., 2024). There’s a substantial risk of eliminating a
considerable amount of high-quality data if we set a larger
ratio ρ. Thus, we recommend using ρ = 0.2 in practice.

Sensitivity to hyperparameters α. The trade-off hyper-
parameter α controls the importance of the conservative
noise-aware term. A larger α indicates a more conservative
gradient weighting strategy. As C ≜ lim∆→∞ wropo(∆) =
4α/(α+1)2, we search the best α in the range of {6, 14, 30},
which corresponds to C ∈ {1/2, 1/4, 1/8}. Then, we use
α = 14 in our main experiments (see Appendix D.2 for
the settings of hyperparameters). To explore the effect of
α, we provide ablations on α in Figures 4(d) and 4(c). As
observed, the model’s performance remains largely unaf-
fected for α within an appropriate range, as the loss scale
does not change significantly (note that αC ∈ [2.94, 3.75]
for α ∈ [6, 30]). Besides, for the dialogue task, a smaller
α results in better performance, as a smaller α will lead to
more diverse answers. In contrast, a larger α results in better
performance in the summarization task. As the summariza-
tion task is more objective than the dialogue task, the results
are more sensitive to noise, and hence we need a model that
is more robust to the noise.

5. Related Work
Preference Alignment of LLMs. The most representative
paradigm of preference alignment is RLHF (Ziegler et al.,
2019; Ouyang et al., 2022), which involves training a re-
ward model to capture human preferences and then steering
LLMs towards producing high-reward responses through
RL algorithms (Schulman et al., 2017). However, in real
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applications, RL-based methods are complex and prone to
instability during training (Rafailov et al., 2023; Wu et al.,
2023; Yuan et al., 2023). Therefore, many recent studies
have explored more straightforward and stable alternatives
for RLHF (Yuan et al., 2023; Rafailov et al., 2023; Song
et al., 2023; Wang et al., 2023b; Lin et al., 2023; Li et al.,
2023b; Wang et al., 2023c; Zhao et al., 2022). Among these
studies, the most promising direction is to use a contrastive
or ranking loss to calibrate the likelihood of the output se-
quence. Specifically, DPO (Rafailov et al., 2023) implicitly
optimizes the same objective as existing RLHF-based meth-
ods and enables human preference alignment directly with a
simple cross-entropy loss. In addition to the aforementioned
methods using data in the form of (x,y1,y2, c), where c is
the preference label, some recent studies (Duan et al., 2024;
Ethayarajh et al., 2024; Chen et al., 2024) have also used
data in the form of (x,y, c), where c is an annotation of the
response y, for preference alignment.

Learning from Noisy Data. Studies in learning from noisy
data primarily fall into three categories. The first category is
sample-selection based methods (Swayamdipta et al., 2020;
Pleiss et al., 2020; Paul et al., 2021; Sorscher et al., 2022),
which identify high-quality samples before training and filter
out noisy samples. For example, (Swayamdipta et al., 2020)
uses the training dynamics to identify valuable samples. The
second category is weighting-based methods, which assign
greater weights for important samples and lesser weights
for noisy samples (Ren et al., 2018; Han et al., 2022; Shu
et al., 2019). Besides, another important area of research
is dedicated to the design of loss functions that are robust
to noise (Ghosh et al., 2017; Wang et al., 2019; Zhang
& Sabuncu, 2018). The findings in (Ghosh et al., 2017)
indicate that the traditional cross-entropy loss is sensitive to
the label noise, while symmetric loss functions are robust
to such noise. Furthermore, recent advances in LLMs have
also underscored the essential role of data quality in both
pre-training and supervised fine-tuning (SFT) phases of
LLMs (Marion et al., 2023; Zhou et al., 2023; Korbak et al.,
2023).

Rejection Sampling. The rejection sampling is a popular
approach of data augmentation to improve the data quality
and performance in existing preference alignment meth-
ods. Specifically, (Dong et al., 2023) ranks newly-collected
responses based on their rewards and selects the highest
ranked one to add to the dataset. To address the issue of
the excessively high rejection rate and thus improve the
effectiveness of rejection sampling, (Xiong et al., 2023)
proposes a multi-step sampling technique, which also re-
quires an external reward model. Besides, (Wang et al.,
2024b) and (Yang et al., 2024b) consider rejection sam-
pling for the multi-objective preference alignment, where
(Wang et al., 2024b) projects multi-objective reward vec-
tors onto one dimension and then selects samples based

on the scalar rewards, while (Yang et al., 2024b) augments
samples near the Pareto front of multi-dimensional rewards,
leading to a strong multi-objective alignment performance.
Compared to the aforementioned methods, which all rely
on rewards provided by external models, our robustness-
guided rejection sampling technique selects new samples
based on loss values that reflect the quality of the samples.
Moreover, our technique benefits from being independent of
external LLMs, thus leading to computational and memory
efficiency.

Robust Alignment of LLMs. Many efforts have been made
from various perspectives to achieve robust preference align-
ment (Chowdhury et al., 2024; Mitchell, 2023; Choi et al.,
2024; Bukharin et al.; Yan et al., 2024; Wu et al., 2024;
Ramesh et al., 2024; Yang et al., 2022; Yang et al.; Xu
et al., 2025). Specifically, (Choi et al., 2024) improves the
model’s adaptability to different preference distributions and
enables iterative output refinement by jointly optimizing a
self-improvement policy and a generative policy. (Bukharin
et al.) models potentially corrupted preference labels as
sparse outliers and solves an ℓ1-regularized maximum like-
lihood estimation problem, thereby consistently learning
the true underlying reward. (Yan et al., 2024) introduces
a multi-head reward model (RM) that reflects each head’s
confidence in the output reward using the standard deviation
of a Gaussian distribution, effectively addresses the chal-
lenge of RM imperfections in RM-based RLHF. (Wu et al.,
2024) focuses on different forms of noise and enhances
DPO’s resilience to both pointwise and pairwise noise in
LLM alignment by leveraging Distributionally Robust Op-
timization (DRO). (Ramesh et al., 2024) robustly aligns
LLMs to the preferences of diverse individual groups by
incorporating group information into the LLM context and
optimizing against the worst-case alignment performance
across all groups. Compared to them, our method integrates
noise-tolerance and noise-identification capabilities with-
out external models, offering a novel paradigm for robust
preference alignment.

6. Conclusion
Robust preference optimization is critical for the LLM align-
ment, as noisy preferences are inevitable in practical scenar-
ios. Unlike existing methods, which rely on label smoothing
or external LLMs for the sample selection, we propose a
robust preference alignment framework that unifies noise-
tolerant model training and effective filtering of noisy sam-
ples. Specifically, we incorporate a noise-aware loss term
to prevent the model from over-fitting to noise. Further, we
propose a robustness-guided rejection sampling technique to
compensate for the potential information reduction caused
by the filtering stage. We provide extensive theoretical and
empirical evidence to demonstrate the effectiveness of our
proposed ROPO framework.
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A. ROPO Framework
In this section, we describe the overall iterative framework, provide the pseudocode, and analyze the computational cost for
ROPO.

Algorithm 1 ROPO
Input: dataset D, β, α, ρ, K, number of epochs M , SFT model πsft,
Initialization:
D(0) ← D
π
(0)
θ ← πsft

for m = 1, . . . ,M − 1 do
π
(m)
ref ← π

(m−1)
θ with frozen parameters θ

▶Noise-tolerant Training:
Obtain π

(m)
θ by training π

(m−1)
θ on D(m−1) with π

(m)
ref and ℓropo in Eq. (6) for one epoch

▶Noisy Sample Filtering:
Compute ℓropo with π

(m)
θ and π

(m)
ref for D

D
(m)
top−ρ ← samples with top-ρ ROPO loss value in D

D
(m)
bot−(1−ρ) ← samples with bottom-(1− ρ) ROPO loss value in D

▶Robustness-guided Rejection Sampling:
Dnew ← ∅
for (x,y1,y2) in D

(m)
top−ρ do

Sample responses ỹ1, . . . , ỹK to x using π
(m)
θ

Dcand ← {(x,y1, ỹk,y1 ≻ ỹk | x)}Kk=1 ∪ {(x,y2, ỹk,y2 ≻ ỹk | x)}Kk=1

Dnew ← Dnew ∪ {argminz∈Dcand
ℓropo(z, π

(m)
θ )}

end for
D(m) ← D

(m)
bot−(1−ρ) ∪Dnew

end for
π
(M)
ref ← π

(M−1)
θ with frozen parameters θ

Obtain π
(M)
θ by training π

(M−1)
θ on D(M−1) with π

(M)
ref and ℓropo in Eq. (6) for one epoch

Output: π(M)
θ

As shown in Figure 3 and Algorithm 1, ROPO iteratively carries out three stages: noise-tolerant training, noisy sample
filtering, and robustness-guided rejection sampling. Specifically, in the 1st to (M − 1)th epochs, we first train the model
using the ROPO loss ℓropo. After training for one epoch, we compute the value of ROPO loss for all samples in the
original dataset and divide them into two subsets (i.e., Dtop−ρ and Dbot−(1−ρ)) according to their loss values. Then, the
robustness-guided rejection sampling stage generates new samples Dnew based on Dtop−ρ. The new samples are used
together with Dbot−(1−ρ) as training samples for the next epoch. In the last epoch, we only perform the noise-tolerant
training stage and then get the final model.

Computational Cost Analysis. ROPO introduces additional costs for the noisy sample filtering and robustness-guided
rejection sampling stages compared with non-iterative methods. However, these additional costs are acceptable compared
to the training cost and almost negligible in the entire chain of real-world large-scale LLM training. The notations in the
computational cost analysis is shown in Table 4. We have

CROPO

Cnon−it
=

MCtr + (M − 1)(Cfil + Crs)

MCtr
. (7)

Since the main cost of the noisy sample filtering stage per epoch is to compute the loss of N samples, we have
Cfil ≈ NCloss ≈ 4NCforward. As for the rejection sampling stage, the main costs per epoch come from ρNK response
generation and 2ρNK loss computations, hence Crs ≈ ρNKCgen + 2ρNKCloss ≈ ρNKCforward + 8ρNKCforward =
9ρNKCforward. Because the training process mainly involves loss computation for two models (i.e., the reference model
and the model being trained) and gradient propagation, we have Ctr ≈ N(Closs+Cbackward) ≈ N(4Cforward+Cbackward).
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Table 4. Notations in the computational cost analysis.

Notation Description

N,M, ρ,K Please see Algorithm 1

CROPO Cost of ROPO
Cnon−it Cost of non-iterative methods

Ctr Cost of (noise-tolerant) training per epoch
Cfil Cost of noisy sample filtering per epoch
Crs Cost of robustness-guided rejection sampling per epoch

Closs Cost of computing the loss for a sample (x,y1,y2) without gradient propagation
Cgen Cost of generating a response y for a query x

Cforward Cost of computing the log-likelihood for a query-response pair (x,y)
Cbackward Cost of computing the gradient and updating parameters for a sample (x,y1,y2)

Table 5. The estimated noise rate in commonly-seen datasets. This table is from (Gao et al., 2024).

Dataset Noise rate (%) Reference

MT-Bench 15.0-37.0 (Zheng et al., 2023)
TL;DR 21.3-27.0 (Lee et al., 2023)
CBArena 22.0-36.0 (Zheng et al., 2023)
AntHH 27.9-30.9 (Lee et al., 2023)
SHP 35.5-41.9 (Cui et al., 2023)
WebGPT 34.8 (Cui et al., 2023)

Therefore, Eq. (7) leads to

CROPO

Cnon−it
≈ M(4Cforward + Cbackward) + (M − 1)(4 + 9ρK)Cforward

M(4Cforward + Cbackward)

= 1 +
(4 + 9ρK)(M − 1)

M
· Cforward

4Cforward + Cbackward

= 1 +
(4 + 9ρK)(M − 1)

M
· 1

4 + Cbackward/Cforward
, (8)

where the ratio Cbackward/Cforward is approximately 2 − 3 for LLMs. Take ρ = 0.2,K = 2,M = 3 as an example,
without considering inference acceleration, we can estimate that CROPO ≈ 1.6Cnon−it. In practice, we can use inference
acceleration methods to increase Cbackward/Cforward, thereby further reducing the additional cost of ROPO. Compared
with the computational cost of the entire chain of real-world LLM training (including continual pre-training and SFT), the
additional cost is almost negligible.

B. Related Work
Preference Alignment of LLMs. The most representative paradigm of preference alignment is RLHF (Ziegler et al., 2019;
Ouyang et al., 2022), which involves training a reward model to capture human preferences and then steering LLMs towards
producing high-reward responses through RL algorithms (Schulman et al., 2017). However, in real applications, RL-based
methods are complex and prone to instability during training (Rafailov et al., 2023; Wu et al., 2023; Yuan et al., 2023).
Therefore, many recent studies have explored more straightforward and stable alternatives for RLHF (Yuan et al., 2023;
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Figure 5. The inter-annotator agreement heap map on the TL;DR dataset. The “Label”, “Llama”, and “Qwen” refer to the original labels
in the dataset, Llama-2-70B, and Qwen-Max, respectively. We assess the preferences of human annotators across 200 randomly selected
samples and extend the evaluation to 1,000 samples for LLMs, which include the initial 200 samples.

Rafailov et al., 2023; Song et al., 2023; Wang et al., 2023b; Lin et al., 2023; Li et al., 2023b; Wang et al., 2023c; Zhao et al.,
2022). Among these studies, the most promising direction is to use a contrastive or ranking loss to calibrate the likelihood
of the output sequence. Specifically, RRHF (Yuan et al., 2023) introduces a ranking loss to encourage larger likelihoods
for better responses and smaller likelihoods for worse responses. Besides, another important work is DPO (Rafailov et al.,
2023), which implicitly optimizes the same objective as existing RLHF-based methods and enables human preference
alignment directly with a simple cross-entropy loss. In addition to the aforementioned methods using data in the form of
(x,y1,y2, c), where c is the preference label, some recent studies (Duan et al., 2024; Ethayarajh et al., 2024; Chen et al.,
2024) have also used data in the form of (x,y, c), where c is an annotation of the response y, for preference alignment.

Learning from Noisy Data. In the era of deep learning, there is an urgent demand for large-scale training samples, and the
cost of manually annotating or filtering data is prohibitively expensive in most circumstances (Song et al., 2022). Therefore,
learning from noisy data has become increasingly important, which primarily falls into three categories. The first category
is sample-selection based methods (Swayamdipta et al., 2020; Pleiss et al., 2020; Paul et al., 2021; Sorscher et al., 2022),
which identify high-quality samples before training and filter out noisy samples. For example, (Swayamdipta et al., 2020)
uses the training dynamics to identify valuable samples. The second category is weighting-based methods, which assign
greater weights for important samples and lesser weights for noisy samples (Ren et al., 2018; Han et al., 2022; Shu et al.,
2019). Besides, another important area of research is dedicated to the design of loss functions that are robust to noise (Ghosh
et al., 2017; Wang et al., 2019; Zhang & Sabuncu, 2018). The findings in (Ghosh et al., 2017) indicate that the traditional
cross-entropy loss is sensitive to the label noise, while symmetric loss functions are robust to such noise. Furthermore, recent
advances in LLMs have also underscored the essential role of data quality in both pre-training and supervised fine-tuning
(SFT) phases of LLMs (Marion et al., 2023; Zhou et al., 2023; Korbak et al., 2023).

Rejection Sampling. The rejection sampling is a popular approach of data augmentation to improve the data quality and
performance in existing preference alignment methods (Dong et al., 2023; Liu et al., 2023b; Xiong et al., 2023; Yang et al.,
2024b; Wang et al., 2024b). Specifically, (Dong et al., 2023) ranks newly-collected responses based on their rewards and
selects the highest ranked one to add to the dataset. To address the issue of the excessively high rejection rate and thus
improve the effectiveness of rejection sampling, (Xiong et al., 2023) proposes a multi-step sampling technique, which also
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requires an external reward model. Besides, (Wang et al., 2024b) and (Yang et al., 2024b) consider rejection sampling
for the multi-objective preference alignment, where (Wang et al., 2024b) projects multi-objective reward vectors onto one
dimension and then selects samples based on the scalar rewards, while (Yang et al., 2024b) augments samples near the
Pareto front of multi-dimensional rewards, leading to a strong multi-objective alignment performance. Compared to the
aforementioned methods, which all rely on rewards provided by external models, our robustness-guided rejection sampling
technique selects new samples based on loss values that reflect the quality of the samples. Moreover, our technique benefits
from being independent of external LLMs, thus leading to computational and memory efficiency.

C. Discussion on Preference Noise
Due to the inherent differences in annotators’ preferences, the preference noise is usually unavoidable. In this section, we
discuss the definition and identification of preference noise.

Before giving the definition of preference noise, we invite our readers to pay attention to the following two points.

1. This paper focuses on noisy preferences rather than the more general noisy preference data. The former refers specifically
to the noise in preference labels, while the noise corresponding to the latter may come from multiple factors such as
preference labels, text quality, and the matching degree between queries and responses. It is interesting and meaningful to
study a wider range of noisy data, but it is beyond the scope of our paper and related work (Mitchell, 2023; Chowdhury
et al., 2024; Gao et al., 2024).

2. Like related work (Mitchell, 2023; Chowdhury et al., 2024; Gao et al., 2024), this paper is based on the Bradley-Terry
(BT) model. The BT model assumes the existence of a “gold”, latent, and inaccessible reward model r∗. Then, we
can express the BT preference probability P ∗(y1 ≻ y2 | x) for a sample (x,y1,y2) using the reward model r∗.
Intuitively, the BT model assumes that there are mainstream preferences in human society that reflect values such as
peace, friendliness, honesty, etc. Differently, there are also studies on multifaceted or multidimensional preferences (Lou
et al., 2024; Lee et al., 2024), but defining noise for them is challenging because it is difficult to have a “ground truth”
label. Therefore, our following discussion is based on the assumption of the BT model.

Definition of preference noise. For a sample (x,y1,y2, ĉ), if P ∗(ĉ) > 0.5, then the sample is clean; otherwise, the sample
is noisy. Because the BT model usually represents preferences that are consistent with mainstream values of human society,
so the formation of such noise is usually caused by the personal preferences or cognitive biases of annotators. Please note
that the annotators can be humans or LLMs.

Identification and detection of preference noise. As mentioned above, the definition of preference noise is based on the
inaccessible reward model, so we can never identify preference noise accurately. However, we can estimate the noise rate by
using advanced LLMs as the proxy for the BT model or computing the inter-annotator agreement.

• Using advanced LLMs as the proxy for the BT model (Gao et al., 2024). Given a dataset, we can prompt advanced LLMs
(e.g., GPT-4, Llama-3-70B-Instruct (Dubey et al., 2024), and Qwen-2-72B-Instruct (Yang et al., 2024a)) to identify the
noise. For example, we can provide them with rules and ask them to rate or rank the responses in the dataset. If a sample’s
new label is different from its original label, it is identified as noisy. The stronger the proxy LLM, the more reliable the
noise identification.

• Computing the inter-annotator agreement (Ouyang et al., 2022; Wang et al., 2024a; Bai et al., 2022). We can employ
different annotators (humans or LLMs) to relabel the dataset and calculate the agreement between them. For this approach,
we should try to ensure that all annotators have the same criteria, and similar cognition and ability. Suppose that we
have n annotators and the agreement between annotators i and j is 0 ≤ aij ≤ 1, then the estimated noise rate is

1
n(n−1)

∑n
i,j=1,i̸=j(1− aij). Take the TL;DR dataset as an example. We employ GPT-4, Llama-2-70B (Touvron et al.,

2023), Qwen-Max (Bai et al., 2023), and three human annotators to relabel the TL;DR dataset. The human annotators are
three of the four volunteers mentioned in Appendix E.6. The inter-annotator agreement heat map is shown in Figure 5,
which indicates an estimated noise rate of 17.6%.

Besides, Table 5 from (Gao et al., 2024) summarizes the estimated noise rate in some commonly-seen datasets. As can be
seen, the existence of preference noise is ubiquitous and cannot be ignored, which highlights the importance of studying
robust preference optimization approaches.
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D. More Details about Experiments
D.1. Tasks and Datasets

We run experiments on two dialogue datasets (i.e., UltraFeedback Binarized and Alpaca Comparison) and one post
summarization dataset (i.e., TL;DR).

• The UltraFeedback Binarized dataset4 is a pre-processed version of the UltraFeedback dataset (Cui et al., 2023), which
contains 64,000 prompts and each prompt has four model responses from various LLMs. Based on the score assigned
by GPT-4, (Tunstall et al., 2023) selects two responses for each prompt and construct UltraFeedback Binarized for the
preference alignment.

• The Alpaca Comparison dataset contains 52,000 queries from the widely-used Stanford Alpaca dataset (Taori et al.,
2023). (Peng et al., 2023) generates several responses using GPT-4 and other LLMs including text-davinci-003 to each
query and employs GPT-4 to assign a score for each response.

• In the TL;DR dataset, each prompt is a forum from Reddit, and the model is required to summarize the given forum.
Following (Rafailov et al., 2023), we use the Reddit TL;DR summarization dataset (Völske et al., 2017) along with
human preferences collected by (Stiennon et al., 2020).

D.2. Baselines, Models, and Hyperparameters

Baselines. Our baselines are DPO (Rafailov et al., 2023), IPO (Azar et al., 2023), and two approaches that use the label
smoothing technique to alleviate the impact of noise, i.e., rDPO (Chowdhury et al., 2024) and cDPO (Mitchell, 2023).

Specifically, given a preference data (x,y1,y2) with the ranking label y1 ≻ y2 | x, the objectives of our baselines are

ℓdpo = − log σ

(
β log

πθ(y1 | x)
πref(y1 | x)

− β log
πθ(y2 | x)
πref(y2 | x)

)
, (9)

ℓipo =

(
log

πθ(y1 | x)
πref(y1 | x)

− log
πθ(y2 | x)
πref(y2 | x)

− 1

2β

)2

, (10)

ℓrdpo = − 1− ε

1− 2ε
log σ

(
β log

πθ(y1 | x)
πref(y1 | x)

− β log
πθ(y2 | x)
πref(y2 | x)

)
+

ε

1− 2ε
log σ

(
β log

πθ(y2 | x)
πref(y2 | x)

− β log
πθ(y1 | x)
πref(y1 | x)

)
, (11)

ℓcdpo = −(1− ε) log σ

(
β log

πθ(y1 | x)
πref(y1 | x)

− β log
πθ(y2 | x)
πref(y2 | x)

)
− ε log σ

(
β log

πθ(y2 | x)
πref(y2 | x)

− β log
πθ(y1 | x)
πref(y1 | x)

)
, (12)

where ε ∈ (0, 1
2 ) and β ∈ (0, 1) are hyperparameters.

Models. We use Mistral-7B (Jiang et al., 2023) and Llama-2-7B (Touvron et al., 2023) as base models for all baselines and
datasets. On UFB, we use Zephyr-7B-SFT-β (Tunstall et al., 2023) as the SFT model for experiments with Mistral-7B, and
adopt the result of Zephyr-7B-β (Tunstall et al., 2023) on AlpacaEval (90.60) as the performance of DPO under no artificial
noise. In other cases, we fine-tune base models on the preferred responses (SFT targets) to form the SFT models.

Hyperparameters. We run all experiments on 16 NVIDIA A100 GPUs (80 GB). Unless otherwise noted, we use a global
batch size of 512 to train all models. For all hyperparameters except for ε of label smoothing, we search for the best one
on each dataset without artificial noise and use the same setting for 20% and 40% artificial noise.

For all methods, we search the best learning rate in {1e-5, 5e-6, 1e-6, 5e-7, 1e-7} and the best β in {0.1, 0.5}. We find that
the best performing learning rate is 1e-6, and the best β for dialogue and post summarization are 0.1 and 0.5, respectively.
This conclusion is consistent with that in (Rafailov et al., 2023).

4https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
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For ROPO, we use α = 14 and ρ = 0.2 in the main experiments. In ablations (Section 4.2), we tune α in {6, 14, 30},
which makes 4α

(1+α)2 be around 1
2 ,

1
4 ,

1
8 , respectively, and tune ρ in {0.1, 0.2, 0.3}. We set K = 3 for the rejection sampling.

For rDPO and cDPO, we search the best ε in {0,05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45} for each dataset and each
proportion of artificial noise.

D.3. Evaluation

For models trained on UFB and Alpaca Comparison, we evaluate them on the AlpacaEval benchmark (Li et al., 2023a)—
a widely used dialogue benchmark—by comparing their outputs with those of text-davinci-003 (recommended by the
benchmark for comparison). AlpacaEval contains 805 queries in various domains and exhibit a strong concordance with
ground truth human annotators. For TL;DR, we randomly select 500 queries from the test split of it and evaluate ROPO and
baselines by comparing their outputs with the chosen responses (SFT targets) for the queries.

Following existing studies (Rafailov et al., 2023; Tunstall et al., 2023), we employ GPT-4 as the referee to conduct head-
to-head comparisons, using the win rate as the metric. On AlpacaEval, we conduct evaluations using the API provided
by AlpacaEval. On TL;DR, we use the following prompt, which is similar to that used by AlpacaEval, to conduct GPT-4
evaluation.

You are a helpful assistant that ranks models by the quality of their
summaries of given forum posts.

I want you to create a leaderboard of different of large-language models.
To do so, I will give you the instructions (forum posts) given to the
models, and the responses of two models. Please rank the models based on
which responses would be preferred by humans.

Here is the post:
<Forum Post>

Here are the outputs of the models:
Model 1: <Summary 1>
Model 2: <Summary 2>

Now please rank the models by the quality of their answers, so that the
model with rank 1 has the best output. Please provide the ranking that
the majority of humans would give. Your response should use the format:
Better: <Model 1 or Model 2>

E. More Experiments
E.1. Experiments on Llama-2-13B-Base and Llama-3-70B-Base

To evaluate ROPO and baselines on models larger than 7B, we supplement experiments on Llama-2-13B-Base and Llama-3-
70B-Base.

Experiments on Llama-2-13B-Base. We run SFT on UltraChat-200k for one epoch with the learning rate of 1e-5, the
global batch size of 128, the weight decay of 0.1, and a cosine-type learning rate scheduler. Then, we fine-tune the SFT
model with ROPO and baselines for two epochs on UFB (under artificial noise ratio of 0 and 20%) with the learning rate of
1e-6 and the global batch size of 512. In the experiments, we fix α = 14 and ρ = 0.2 for ROPO without tuning them, and
tune β in [0.1, 0.5, 1.0] for IPO and tune ε in [0.1, 0.2, 0.3, 0.4] for cDPO and rDPO. The results are shown in Table 6.

Experiments on Llama-3-70B-Base. We run SFT on UltraChat-200k for one epoch with the learning rate of 1e-5, the
global batch size of 128, the weight decay of 0.1, and a cosine-type learning rate scheduler. Then, we fine-tune the SFT
model with ROPO and DPO for two epochs on UFB (under artificial noise ratio of 0 and 20%) with the learning rate of 5e-7
and the global batch size of 512. We fix α = 14 and ρ = 0.2 for ROPO without tuning them. The results are shown in Table
7. From the results we can conclude that: (1) 70B models outperform 7B/13B models in terms of win rate. However, the
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Table 6. Win rates (%) of different methods vs SFT targets under different proportions (i.e., 0 and 20%) of artificial noise, evaluated by
GPT-4 on AlpacaEval.

Dataset UFB

Model Method 0% 20%

Llama-2-13B

DPO 82.98 80.50
IPO 81.99 79.75
rDPO 81.37 80.87
cDPO 82.36 80.50
ROPO 83.23 82.98

Table 7. Win rates (%) of ROPO/DPO vs SFT targets under different proportions (i.e., 0 and 20%) of artificial noise, evaluated by
GPT-4 on AlpacaEval.

Dataset UFB

Model Method 0% 20%

Llama-2-70B DPO 94.29 88.70
ROPO 95.53 94.04

Table 8. Win rates (%) of different methods vs SFT targets under different proportions (i.e., 0 and 20%) of artificial noise, evaluated by
GPT-4 on AlpacaEval.

Dataset UFB

Model Method 0% 20%

Mistral-7B

DPO-RM 69.69 68.32
cPPO-RM 68.45 67.95
rPPO-RM 68.70 67.33
ROPO-RM 69.94 70.43

performance of the models trained with DPO still has a non-negligible drop under 20% artificial noise. (2) Our ROPO still
significantly exceeds DPO on the scale of 70B.

E.2. Experiments on reward modeling

In the main text of our paper, the baselines are reward-free. Considering the reward modeling (RM) still plays an important
role in many real-world LLM applications, although RM is not our focus, we supplement experiments on RM with Mistral-
7B-Base to test the potential of ROPO in scenarios including reward modeling. Given a sample (x,y1,y2, c = 0), if we
denote P = σ(r(x,y1)− r(x,y2)), then the RM-training losses of ROPO and our baselines are as follows.

• DPO-RM: − logP

• cPPO-RM: −(1− ε) logP − ε log(1− P )

• rPPO-RM: − 1−ε
1−2ε logP + ε

1−2ε log(1− P )

• ROPO-RM (Ours): −(4α/(1 + α)2) · P + (4α2/(1 + α)2) · (1− P )

We train Mistral-7B-v0.1 on UFB for two epochs with the aforementioned losses to obtain reward models. Then, we use
Best of N Sampling (N = 16) to generate responses based on RMs and Mistral-7B-SFT-Beta (SFT model). We use the
learning rate of 5e-6, the batch size of 512, and a cosine-type learning rate scheduler. The results are shown in Table 8
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Table 9. Win rates (%) of different methods vs SFT targets under noise coming from the annotators’ trust in larger models over smaller
ones, evaluated by GPT-4 on AlpacaEval.

Dataset UFB

Model Method

Mistral-7B

DPO 75.16
IPO 72.55
cDPO 76.27
rDPO 78.26
ROPO 80.50

Table 10. Win rates (%) of different methods vs SFT targets under noise coming from LLM preference comparisons, evaluated by
GPT-4 on AlpacaEval.

Dataset UFB

Model Method

Mistral-7B

DPO 84.22
IPO 84.84
cDPO 85.22
rDPO 86.21
ROPO 88.07

E.3. More practical noise settings

The experiments in the main text cover two types of practical noise as follows.

1. Practical noise coming from human comparisons. In the original TL;DR dataset, the preferences are labeled by human
annotators who compare the post-summaries generated by different models in pairs. This leads to unavoidable noise due
to the diversity of human preferences.

2. Practical noise coming from LLM (GPT-4) rating. Each query (instruction) in the original UltraFeedback dataset has
four responses coming from different models. GPT-4 scores them based on criteria such as instruction-following, honesty,
helpfulness, etc. Then, for each query, the highest ranked response is selected as “preferred”, and one of the remaining
responses is randomly selected as “dis-preferred”. This leads to unavoidable noise due to the bias of GPT-4.

In this section, we explore another two practical noise settings in Appendices E.3.1 and E.3.2.

E.3.1. EXPERIMENTS UNDER NOISE COMING FROM ANNOTATORS’ TRUST IN LARGER MODELS OVER SMALLER ONES

It is common practice to treat the response from a larger model as the chosen (preferred) one and the response from a smaller
model as the rejected (dis-preferred) one. Therefore, we obtain new noisy preferences from UFB (each of query has four
LLM responses) based on the sizes of models that generate the responses. As shown in Table 9, under this practical noise
setting, ROPO still significantly outperforms DPO and other baselines.

E.3.2. EXPERIMENTS UNDER NOISE COMING FROM LLM PREFERENCE COMPARISONS

We use Llama-3-70B-Instruct (Dubey et al., 2024), which is one of the most advanced open source LLM, to relabel the
preferences in UFB. To make the labels as reliable as possible, we instruct the model to list the advantages of each response.
The prompt we use is as follows.
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For the given instruction and two responses (A and B), please answer:
(1) which response is better overall, (2) the aspects in which A is
superior to B, and (3) the aspects in which B is superior to A.

Strictly adhere to the following rules:
1. Answer in bullet points, with each point starting with a gerund or
adjective, excluding the words ‘‘response A’’ and ‘‘response B’’.
2. If a response has no superior aspects over another, output NONE.

Instruction:
{instruction}

Response A
{responseA}

Response B
{responseB}

Your answer MUST STRICTLY follow the format as follows: **Better**
<Choose A or B>

**Why A is better than B**

- <First aspect for which A is superior to B>
- <Continue with other points if any>

**Why B is better than A**
- <First aspect for which B is superior to A>
- <Continue with other points if any>

However, we observe that about 30% of the labels are different from those in the original UFB dataset. This shows that
noise are unavoidable due to the diversity in LLM preferences. Then, we train Mistral-7B with different methods on the new
noisy dataset. As shown in Table 10, under this practical noise setting, ROPO still significantly outperforms DPO and other
baselines.

Table 11. Performance of difference methods on Arena-Hard and MT-Bench. The bold font indicates the best result and an underline
indicates the second-best result.

Benchmark Arena-Hard MT-Bench

Model Method 0% 20% 40% 0% 20% 40%

Mistral-7B

DPO 10.7 8.5 6.3 7.3 5.7 4.3
IPO 9.2 7.9 7.3 7.2 5.9 4.9
rDPO 9.8 9.2 8.9 7.1 6.4 5.8
cDPO 10.3 9.0 8.4 7.2 6.2 5.2
ROPO 13.1 12.6 11.8 7.3 6.9 6.5

Llama-3-8B

DPO 17.9 15.3 14.1 7.8 6.1 4.6
IPO 18.6 16.8 16.0 7.4 6.3 5.0
rDPO 18.3 17.5 17.1 7.5 6.9 6.1
cDPO 17.5 16.4 15.3 7.7 6.7 5.8
ROPO 20.5 19.6 18.5 7.7 7.0 6.7
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Table 12. Win rates (%) of different variants of DPO vs SFT targets under 0% and 20% artificial noise, evaluated by GPT-4 on
AlpacaEval. The base model is Mistral-7B and the training dataset is UFB.

0% 20%

DPO 90.60 86.21
DPO + NSF 90.06 85.09
DPO + NSF + RS 90.31 84.97

E.4. Experiments on more benchmarks

To comprehensively explore the performance of ROPO and baseline methods, we evaluate them on another two widely-used
benchmarks, i.e., Arena-Hard (Li et al., 2024) and MT-Bench (Zheng et al., 2023). The details of the benchmarks are as
follows.

• MT-Bench (Zheng et al., 2023) contains 80 two-turn conversations, each of which has an open-ended instruction and a
corresponding follow-up question. Due to the well-designed questions and the wide coverage of topics, MT-Bench has
become a widely-used benchmark to evaluate the multi-turn conversational and instruction-following abilities of AI
models.

• Arena-Hard (Li et al., 2024) is a challenging benchmark containing 500 single-turn conversations. Compared to
AlpacaEval and MT-Bench, Arena-Hard features better model separability, tighter confidence intervals, and achieves a
correlation of 98.6% with Chatbot Arena rankings (Chiang et al., 2024).

We evaluate ROPO and baseline methods using Mistral-7B and Llama-3-8B (Dubey et al., 2024). For Mistral-7B, we use
the same models as evaluated on AlpacaEval in the main experiments. For Llama-3-8B, we first train a Llama-3-8B-Base5

on UltraChat-200k6 to obtain an SFT model (one epoch with the learning rate of 1e-5, global batch size of 128, weight
decay of 0.1, and a consine-type learning rate scheduler), and then continue training with ROPO and baseline methods. The
results are shown in Table 11. As observed, under various artificial noise levels, ROPO consistently outperforms baseline
methods in most cases and demonstrates superior robustness in noisy scenarios.

E.5. Experiments of combining DPO with noisy samples filtering and rejection sampling

As shown in Figure 2, the distributions of the DPO loss on clean and noisy samples are very similar, and the difference
gradually decreases as the training proceeds. This shows that the DPO loss is prone to overfitting to noise, hence cannot
serve as a reliable measure of model uncertainty in noisy scenarios. In this section, to further support our claim, we conduct
experiments of combining DPO with noisy samples filtering (NSF) and rejection sampling (RS) using Mistral-7B as the
base model and UFB as the training dataset. Please note that our proposed robustness-guided RS only works on the filtered
samples, so we do not conduct experiments combining DPO and RS alone. The results are shown in Table 12. As can be
seen, the incorporation of noisy samples filtering and rejection sampling degrades the performance of DPO, especially at
20% artificial noise.

E.6. Human evaluation

We invite four lab members with no conflicts of interest to this paper to serve as volunteers to conduct human evaluations.
Two of them are PhDs and the other two are doctoral students, so we believe that they have the ability to understand the
evaluation rules and make reliable judgments.

We randomly select 200 queries from the AlpacaEval benchmark. Then, we pair the corresponding responses of ROPO,
DPO, and rDPO under 0% and 20% artificial noise to form four groups: (1) ROPO vs DPO under 0% artificial noise, (2)
ROPO vs rDPO under 0% artificial noise, (3) ROPO vs DPO under 20% artificial noise, and (4) ROPO vs rDPO under 20%
artificial noise.

5https://huggingface.co/meta-llama/Meta-Llama-3-8B
6https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k
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Table 13. Human evaluation of ROPO vs DPO and ROPO vs rDPO on AlpacaEval. The base model is Mistral-7B and the training dataset
is UFB. The #(Win), #(Tie), and #(Lose) are the numbers of ROPO’s wins, ties, and ROPO’s losses.

Artificial Noise Ratio 0% 20%

#(Win) #(Tie) #(Lose) WR (%) #(Win) #(Tie) #(Lose) WR (%)

ROPO vs DPO 77 69 54 55.8 103 59 38 66.5
ROPO vs rDPO 84 63 53 57.8 89 64 47 60.5

Table 14. Win rates (%) of DPO with confidence penalty vs SFT targets under 20% and 40% artificial noise, evaluated by GPT-4 on
AlpacaEval. The base model is Mistral-7B and the training dataset is UFB.

20% 40%

DPO 86.21 82.67
DPO + CP 86.96 81.86

For each group, we randomly shuffle the order of the queries and the order of responses in each pair. Each volunteer is in
charge of one group. None of the volunteers know which method corresponds to each response. They are asked to compare
the responses in 200 pairs and choose the better one. If they are unsure about which response is better, they can choose
“Tie”. During the evaluation process, we allow the volunteers to use translation tools and search engines.

We count the number of ROPO’s wins, ties, and losses, and compute the win rate of ROPO by Ω = #(Win)+#(Tie)/2
200 . The

results are shown in Table 13. We have the following interesting observations from the table: (1) The win rate of ROPO
against DPO and rDPO is consistently over 55%, demonstrating ROPO’s advantages over the baselines. (2) As the artificial
noise rate increases, the win rate of ROPO increases to more than 60%, which shows the superiority of ROPO in noisy
scenarios. (3) All four volunteers give at least 29% tie judgments, indicating the limitations of human evaluation: it is
challenging for most human evaluators to make reliable evaluations on difficult tasks such as long-context reasoning, coding,
mathematics, etc. This highlights the importance of developing automated LLM evaluation tools.

E.7. Experiments of applying regularization strategies to DPO

In experiments in the main text, we have evaluate the performance of label smoothing (i.e., cDPO and rDPO) under
noisy scenarios. The label smoothing techniques can be seen as regularization strategies applied to DPO. As shown in
the experiments, they bring performance improvements over DPO under 20% and 40% artificial noise, but underperform
ROPO. Their limited effectiveness might be attributed to the fact that rDPO and cDPO are noise-tolerant only under specific
conditions: when the hyperparameter ε exactly matches the noise proportion for rDPO, and when ε = 0.5 for cDPO.
Achieving these conditions in practice is challenging due to the lack of prior knowledge about the exact noise proportion.

In this section, we explore another two widely-used types of regularization strategies in noisy scenarios, i.e., the normalized
negative loss and confidence penalty.

• Normalized negative loss (NNL) (Ye et al., 2023), such as normalized negative cross entropy (NNCE) and normalized
negative focal loss (NNFL), are shown to be effective when combined with the cross-entropy loss (i.e., the DPO
loss in preference optimization). However, when the problem is binary classification like preference comparison,
NNCE and NNFL degenerate into constant terms. Specifically, for a sample (x,y1,y2,y1 ≻ y2 | x), if we denote
P = σ(r(x,y1)− r(x,y2)), then we have

ℓnnce = 1− − logmin(P, 1− P ) + logP

−2 logmin(P, 1− P ) + logP + log(1− P )

=

{
1, if P ≤ 0.5,

0, if P > 0.5,
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and

ℓnnfl = 1− −(1−min(P, 1− P ))γ logmin(P, 1− P ) + (1− P )γ logP

−2(1−min(P, 1− P ))γ logmin(P, 1− P ) + (1− P )γ logP + P γ log(1− P )

=

{
1, if P ≤ 0.5,

0, if P > 0.5.

Therefore, NNL does not work for DPO.

• Confidence penalty (CP) (Pereyra et al., 2017) is an entropy-aware regularizer for the cross-entropy loss, which prevents
the model from making overconfident inferences. Specifically, for a sample (x,y1,y2,y1 ≻ y2 | x), if we denote
Pθ = σ(rθ(x,y1)− rθ(x,y2)), CP computes the entropy by

Hθ = −Pθ logPθ − (1− Pθ) log(1− Pθ).

Then, the CP regularizer is

ℓcp = −λmax(0, γ −Hθ).

We combine DPO with CP and tune the hyperparameters λ and γ in the range of λ ∈ {0.01, 0.1} and γ ∈ {0.1, 0.25, 0.5}.
As shown in Table 14, we do not observe a significant improvement over DPO in noisy scenarios. We speculate that the
limited effectiveness of CP is because CP has no guaranteed noise-tolerance.

F. Mathematical Derivations and Theoretical Analysis
F.1. Proof of Theorem 3.1

Proof. As
∑N

i=1 wi = Nρ is a hyperplane and wi ∈ [0, 1] for i = 1, . . . , N , S ≜ {w : wi ∈ [0, 1],
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1 ,y

(ij)
2 , ĉ(ij), πθ∗

)
+ w′

il
ℓ
(
θ∗;x(il),y

(il)
1 ,y

(il)
2 , ĉ(il), πθ∗

)
<

1

N

∑
k ̸=j,l

w∗
ik
ℓ
(
θ∗;x(ik),y

(ik)
1 ,y

(ik)
2 , ĉ(ik), πθ∗

)
+ w∗

ij ℓ
(
θ∗;x(ij),y

(ij)
1 ,y

(ij)
2 , ĉ(ij), πθ∗

)
+ w∗

il
ℓ
(
θ∗;x(il),y

(il)
1 ,y

(il)
2 , ĉ(il), πθ∗

)
=

1

N

N∑
i=1

w∗
i ℓ
(
θ∗;x(i),y

(i)
1 ,y

(i)
2 , ĉ(i), πθ∗

)
, (14)

which leads to a contradiction. Therefore, we must have w∗
ik

= 1 for 1 ≤ k ≤ Nρ and w∗
ik

= 0 for Nρ < k ≤ N .
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F.2. Proof of Theorem 3.2

Proof. For ℓ = ℓdpo, we have

E(x,y1,y2,ĉ)∼Dη
[ℓ(θ;x,y1,y2, ĉ, πθ)]

= E(x,y1,y2)Ec|x,y1,y2
Eĉ|x,y1,y2,c[ℓ(θ;x,y1,y2, ĉ, πθ)]

= E(x,y1,y2)

[
(P ∗(y1 ≻ y2 | x)(1− η) + (1− P ∗(y1 ≻ y2 | x))η) · ℓ(θ;x,y1,y2, 0, πθ)

+ (P ∗(y1 ≻ y2 | x)η + (1− P ∗(y1 ≻ y2 | x))(1− η)) · ℓ(θ;x,y1,y2, 1, πθ)

]
= E(x,y1,y2)

[
− (P ∗(y1 ≻ y2 | x) + η − 2P ∗(y1 ≻ y2 | x)η) logPθ(y1 ≻ y2 | x)

− (2P ∗(y1 ≻ y2 | x)η + 1− P ∗(y1 ≻ y2 | x)− η) log(1− Pθ(y1 ≻ y2 | x))
]
. (15)

Consider

f(p) = −(p∗ + η − 2p∗η) log p− (2p∗η + 1− p∗ − η) log(1− p), (16)

we have

f ′(p) = −p∗ + η − 2p∗η

p
+

2p∗η + 1− p∗ − η

1− p
. (17)

From f ′(p) we know that f decrease when p ≤ p∗ + η − 2p∗η and increases when p ≥ p∗ + η − 2p∗η, which means that f
reaches its minimum at p0 = p∗ + (1− 2p∗)η.

Therefore, Eq. (15) reaches its minimum when

Pθ∗
η
(y1 ≻ y2 | x) = P ∗(y1 ≻ y2 | x) + (1− 2P ∗(y1 ≻ y2 | x))η (18)

for any (x,y1,y2). Specifically, for η = 0, we have Pθ∗(y1 ≻ y2 | x) = P ∗(y1 ≻ y2 | x), which leas to∣∣Pθ∗
η
(y1 ≻ y2 | x)− Pθ∗(y1 ≻ y2 | x)

∣∣ = 2η
∣∣P ∗(y1 ≻ y2 | x)− 1/2

∣∣. (19)

F.3. Proof of Theorem 3.3

Proof. For samples (x(1),y
(1)
1 ,y

(1)
2 , ĉ(1) = c(1)) and (x(2),y

(2)
1 ,y

(2)
2 , ĉ(2) = 1− c(2)), according to Eq. (18), we have

Pθ∗
η

(
x(1),y

(1)
1 ,y

(1)
2 , ĉ(1)

)
= Pθ∗

η

(
x(1),y

(1)
1 ,y

(1)
2 , c(1)

)
= P ∗(c(1)) + (1− 2P ∗(c(1)))η (20)

and

Pθ∗
η

(
x(2),y

(2)
1 ,y

(2)
2 , ĉ(2)

)
= Pθ∗

η

(
x(2),y

(2)
1 ,y

(2)
2 , 1− c(2)

)
(21)

= P ∗(1− c(2)) + (1− 2P ∗(1− c(2)))η

= 1− P ∗(c(2)) + (2P ∗(c(2))− 1)η. (22)

Therefore, to ensure that

ℓdpo

(
x(1),y

(1)
1 ,y

(1)
2 , ĉ(1)

)
− ℓdpo

(
x(2),y

(2)
1 ,y

(2)
2 , ĉ(2)

)
< 0, (23)

we must have

− log
(
P ∗(c(1)) + (1− 2P ∗(c(1)))η − ε

)
< − log

(
1− P ∗(c(2)) + (2P ∗(c(2))− 1)η + ε

)
, (24)
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which is equivalent to

ε <
1− 2η

2

(
P ∗(c(1)) + P ∗(c(2))− 1

)
. (25)

F.4. Detailed Derivation of Eq. (6)

From the definition of wropo we have

wropo =
4α

(1 + α)2
σ(∆(y2,y1,x)) +

4α2

(1 + α)2
σ(∆(y2,y1,x))σ(∆(y1,y2,x)). (26)

According to Eq. (4) we know that

−
∫

β
4α

(1 + α)2
σ(∆(y2,y1,x))∇ log

πθ(y1 | x)
πθ(y2 | x)

dθ =
4α

(1 + α)2
ℓdpo. (27)

Beside, note that for σ(x) = ex

1+ex , we have

σ′(x) =

(
ex

1 + ex

)′

=
ex(1 + ex)− ex · ex

(1 + ex)2
=

ex

(1 + ex)2
=

ex

1 + ex
· 1

1 + ex
= σ(x)σ(−x) (28)

and

σ′(−x) = −σ(x)σ(−x). (29)

Letting

t(θ) = β log
πθ(y1 | x)
πref(y1 | x)

− β log
πθ(y2 | x)
πref(y2 | x)

, (30)

we have

∇θt(θ) = β∇ log
πθ(y1 | x)
πθ(y2 | x)

(31)

Hence,

− 4α2

(1 + α)2

∫
βσ(∆(y2,y1,x))σ(∆(y1,y2,x))∇ log

πθ(y1 | x)
πθ(y2 | x)

dθ

=
4α2

(1 + α)2

∫ (
− σ(t(θ))σ(−t(θ))

)
·
(
β∇ log

πθ(y1 | x)
πθ(y2 | x)

)
dθ

=
4α2

(1 + α)2

∫
∇t(θ)σ(−t(θ)) · ∇θt(θ) dθ

=
4α2

(1 + α)2

∫
∇θσ(−t(θ)) dθ

=
4α2

(1 + α)2
σ(−t(θ))

=
4α2

(1 + α)2
· σ
(
β log

πθ(y2 | x)
πref(y2 | x)

− β log
πθ(y1 | x)
πref(y1 | x)

)
, (32)

where we omit the constant term of the primitive function.
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F.5. Proof of Theorem 3.4

Proof. For ℓ = ℓna, we have

E(x,y1,y2,ĉ)∼Dη
[ℓ(θ;x,y1,y2, ĉ, πθ)]

= E(x,y1,y2)Ec|x,y1,y2
Eĉ|x,y1,y2,c[ℓ(θ;x,y1,y2, ĉ, πθ)]

= E(x,y1,y2)

[
(P ∗(y1 ≻ y2 | x)(1− η) + (1− P ∗(y1 ≻ y2 | x))η) · ℓ(θ;x,y1,y2, 0, πθ)

+ (P ∗(y1 ≻ y2 | x)η + (1− P ∗(y1 ≻ y2 | x))(1− η)) · ℓ(θ;x,y1,y2, 1, πθ)

]
= E(x,y1,y2)

[
(P ∗(y1 ≻ y2 | x) + η − 2P ∗(y1 ≻ y2 | x)η) (1− Pθ(y1 ≻ y2 | x))

+ (2P ∗(y1 ≻ y2 | x)η + 1− P ∗(y1 ≻ y2 | x)− η)Pθ(y1 ≻ y2 | x)
]
. (33)

Consider

f(p) = (p∗ + η − 2p∗η)(1− p) + (2p∗η + 1− p∗ − η)p

= (1− 2η)(1− 2p∗)p+ (p∗ + η − 2p∗η). (34)

Therefore, when p∗ > 1/2, f(p) reaches its minimum at p = 1; when p∗ < 1/2, f(p) reaches its minimum at p = 0. This
means that the optimal point of f(p) is p0 = I(p∗ > 1/2).

Therefore, Eq. (33) reaches its minimum when

Pθ∗
η
(y1 ≻ y2 | x) = I

(
P ∗(y1 ≻ y2 | x) >

1

2

)
(35)

for any (x,y1,y2). Obviously, we have

Pθ∗
η
(y1 ≻ y2 | x) = Pθ∗(y1 ≻ y2 | x). (36)

F.6. Proof of Theorem 3.5

Proof. For samples (x(1),y
(1)
1 ,y

(1)
2 , ĉ(1) = c(1)) and (x(2),y

(2)
1 ,y

(2)
2 , ĉ(2) = 1− c(2)). Without loss of generality, we only

need to consider two cases: (1) c(1) = c(2) = 0 and (2) c(1) = 0, c(2) = 1. For the first case, we have

ℓna

(
x(1),y

(1)
1 ,y

(1)
2 , ĉ(1)

)
= Pθ(y

(1)
2 ≻ y

(1)
1 | x) ∈ [0, ε) (37)

and

ℓna

(
x(2),y

(2)
1 ,y

(2)
2 , ĉ(2)

)
= Pθ(y

(2)
1 ≻ y

(2)
2 | x) ∈ (1− ε, 1]. (38)

For the second case, we have

ℓna

(
x(1),y

(1)
1 ,y

(1)
2 , ĉ(1)

)
= Pθ(y

(1)
2 ≻ y

(1)
1 | x) ∈ [0, ε) (39)

and

ℓna

(
x(2),y

(2)
1 ,y

(2)
2 , ĉ(2)

)
= Pθ(y

(2)
2 ≻ y

(2)
1 | x) ∈ (1− ε, 1]. (40)

Therefore, to ensure that

ℓna

(
x(1),y

(1)
1 ,y

(1)
2 , ĉ(1)

)
< ℓna

(
x(2),y

(2)
1 ,y

(2)
2 , ĉ(2)

)
, (41)

we must have ε < 1
2 .
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F.7. rDPO and cDPO Are Not Noise-Tolerant In Most Cases

Proof. According to Lemma 3.2 in (Chowdhury et al., 2024), the noise-tolerance of rDPO is only guaranteed when the
proportion of noise, i.e., η0, exactly equals the hyperparameter ε.

Next we show that ℓcdpo is not noise-tolerant for ε ∈ (0, 1
2 ). Let

Lcdpo(θ) = E(x,y1,y2,c)∼D[ℓcdpo(θ;x,y1,y2, c, πθ)],

Lη0

cdpo(θ) = E(x,y1,y2,ĉ)∼Dη0
[ℓcdpo(θ;x,y1,y2, ĉ, πθ)],

and assume that θ∗ and θ∗η0
are the minimizers of Lcdpo and Lη0

cdpo, respectively. For any θ in the space of parameters, we
have

Lη0

cdpo(θ)

= E(x,y1,y2,c)∼DEĉ|(x,y1,y2,c)[ℓcdpo(θ;x,y1,y2, ĉ, πθ)]

= E(x,y1,y2,c)∼D[(1− η0)ℓcdpo(θ;x,y1,y2, c, πθ) + η0ℓcdpo(θ;x,y1,y2, 1− c, πθ)]

= (1− η0)Lcdpo(θ) + η0E(x,y1,y2,c)∼D[ℓcdpo(θ;x,y1,y2, 1− c, πθ)]. (42)

Next, we give a counter-example to show that ℓcdpo is not noise-tolerant. Suppose that

P
(
(x,y1,y2) = (x(0),y

(0)
1 ,y

(0)
2 )
)
= 1 and y

(0)
1 ≻ y

(0)
2 | x(0), (43)

where x(0) is a fixed input and (y
(0)
1 ,y

(0)
2 ) is a fixed pair of responses. Hence Eq. (42) becomes

Lη0

cdpo(θ)

= (2εη0 − η0 − ε) log σ

(
β log

πθ(y
(0)
1 | x(0))

πref(y
(0)
1 | x(0))

− β log
πθ(y

(0)
2 | x(0))

πref(y
(0)
2 | x(0))

)

+ (η0 + ε− 2εη0 − 1) log σ

(
β log

πθ(y
(0)
2 | x(0))

πref(y
(0)
2 | x(0))

− β log
πθ(y

(0)
1 | x(0))

πref(y
(0)
1 | x(0))

)
. (44)

Let

∆(θ) = β log
πθ(y

(0)
1 | x(0))

πref(y
(0)
1 | x(0))

− β log
πθ(y

(0)
2 | x(0))

πref(y
(0)
2 | x(0))

, (45)

then Eq. (44) becomes

Lη0

cdpo(θ) = (2εη0 − η0 − ε) log σ(∆(θ)) + (η0 + ε− 2εη0 − 1) log σ(−∆(θ)). (46)

We have

θ∗ = argmin
θ∈Θ

Lcdpo

= argmin
θ∈Θ

−ε log σ(∆(θ))− (1− ε) log σ(∆(−θ))

∈
{
θ ∈ Θ : ∆(θ) = log

ε

1− ε

}
, (47)

and

θ∗η0
= argmin

θ∈Θ
Lη0

cdpo

= argmin
θ∈Θ

(2εη0 − η0 − ε) log σ(∆(θ)) + (η0 + ε− 2εη0 − 1) log σ(−∆(θ))

∈
{
θ ∈ Θ : ∆(θ) = log

η0 + ε− 2εη0
1− η0 − ε+ 2εη0

}
. (48)
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Hence θ∗ = θ∗η0
if and only if

ε

1− ε
=

η0 + ε− 2εη0
1− η0 − ε+ 2εη0

, (49)

which means that ε = 1
2 . However, ε ∈ (0, 1

2 ). Therefore, θ∗ ̸= θ∗η0
and thus ℓcdpo is not noise-tolerant.

F.8. IPO Is Not Noise-Tolerant

Proof. Let

Lipo(θ) = E(x,y1,y2,c)∼D[ℓipo(θ;x,y1,y2, c, πθ)],

Lη0

ipo(θ) = E(x,y1,y2,ĉ)∼Dη0
[ℓipo(θ;x,y1,y2, ĉ, πθ)],

and assume that θ∗ and θ∗η0
are the minimizers of Lipo and Lη0

ipo, respectively. For any θ in the space of parameters, we have

Lη0

ipo(θ)

= E(x,y1,y2,c)∼DEĉ|(x,y1,y2,c)[ℓipo(θ;x,y1,y2, ĉ, πθ)]

= E(x,y1,y2,c)∼D[(1− η0)ℓipo(θ;x,y1,y2, c, πθ) + η0ℓipo(θ;x,y1,y2, 1− c, πθ)]

= (1− η0)Lipo(θ) + η0E(x,y1,y2,c)∼D[ℓipo(θ;x,y1,y2, 1− c, πθ)]. (50)

Next, we give a counter-example to show that ℓipo is not noise-tolerant. Suppose that

P
(
(x,y1,y2) = (x(0),y

(0)
1 ,y

(0)
2 )
)
= 1 and y

(0)
1 ≻ y

(0)
2 | x(0), (51)

where x(0) is a fixed input and (y
(0)
1 ,y

(0)
2 ) is a fixed pair of responses. Hence Eq. (50) becomes

Lη0

ipo(θ)

= (1− η0)

(
log

πθ(y
(0)
1 | x(0))

πref(y
(0)
1 | x(0))

− log
πθ(y

(0)
2 | x(0))

πref(y
(0)
2 | x(0))

− 1

2β

)2

+ η0

(
log

πθ(y
(0)
2 | x(0))

πref(y
(0)
2 | x(0))

− log
πθ(y

(0)
1 | x(0))

πref(y
(0)
1 | x(0))

− 1

2β

)2

. (52)

Let

∆(θ) = log
πθ(y

(0)
1 | x(0))

πref(y
(0)
1 | x(0))

− log
πθ(y

(0)
2 | x(0))

πref(y
(0)
2 | x(0))

, (53)

then Eq. (52) becomes

Lη0

ipo(θ) = (1− η0)

(
∆(θ)− 1

2β

)2

+ η0

(
−∆(θ)− 1

2β

)2

= (∆(θ))2 +
2η0 − 1

β
∆(θ) +

1

4β2
, (54)

which is a quadratic function. Hence

θ∗η0
∈
{
θ ∈ Θ : ∆(θ) =

1

2β
− η0

β

}
. (55)

However,

θ∗ = argmin
θ∈Θ

Lipo

= argmin
θ∈Θ

(
∆(θ)− 1

2β

)2

∈
{
θ ∈ Θ : ∆(θ) =

1

2β

}
, (56)

which means that θ∗ ̸= θ∗η0
. Therefore, ℓipo is not noise-tolerant.
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F.9. The normalization of wropo

In Eq. (5), we use 4α
(1+α)2 to scale the maximum value of wropo to 1. Here, we provide the details about it. Let

g(t) = σ(t)(1 + ασ(−t)) = e2t + (1 + α)et

(1 + et)2
,

where α > 2, then we have

g′(t) =
(2e2t + (α+ 2)et)(e2t + 2et + 1)− (2e2t + 2et)(e2t + (α+ 1)et)

(1 + et)4

=
1

et(1 + et)4
·
(
(2− α)e2t + 4et + (α+ 2)

)
=

1

et(1 + et)4
· (1 + et)((2− α)et + α+ 2)

=
1

et(1 + et)3
· ((2− α)et + α+ 2).

Hence, g(t) increases if and only if (2− α)et + α+ 2 ≥ 0.

Since α > 2, g(t) increases when t < log α+2
α−2 and decreases when t > log α+2

α−2 . Therefore, we have

max
t

g(t) = g

(
log

α+ 2

α− 2

)
=

(1 + α)2

4α
.
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