

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CHUNKLLM: A LIGHTWEIGHT PLUGGABLE FRAME- WORK FOR ACCELERATING LLMs INFERENCE

Anonymous authors

Paper under double-blind review

ABSTRACT

Transformer-based large models excel in natural language processing and computer vision, but face severe computational inefficiencies due to the self-attention’s quadratic complexity with input tokens. Recently, researchers have proposed a series of methods based on block selection and compression to alleviate this problem, but they either have issues with semantic incompleteness or poor training-inference efficiency. To comprehensively address these challenges, we propose ChunkLLM, a lightweight and pluggable training framework. Specifically, we introduce two components: QK Adapter (Q-Adapter and K-Adapter) and Chunk Adapter. The former is attached to each Transformer layer, serving dual purposes of feature compression and chunk attention acquisition. The latter operates at the bottommost layer of the model, functioning to detect chunk boundaries by leveraging contextual semantic information. During the training phase, the parameters of the backbone remain frozen, with only the QK Adapter and Chunk Adapter undergoing training. Notably, we design an attention distillation method for training the QK Adapter, which enhances the recall rate of key chunks. During the inference phase, chunk selection is triggered exclusively when the current token is detected as a chunk boundary, thereby accelerating model inference. Experimental evaluations are conducted on a diverse set of long-text and short-text benchmark datasets spanning multiple tasks. ChunkLLM not only attains comparable performance on short-text benchmarks but also maintains 98.64% of the performance on long-context benchmarks while preserving a 48.58% key-value cache retention rate. Particularly, ChunkLLM attains a maximum speedup of 4.48 \times in comparison to the vanilla Transformer in the processing of 120K long texts.

1 INTRODUCTION

Transformer-based large models (Vaswani et al., 2017) have demonstrated exceptional performance across a diverse range of tasks, including natural language processing (Srivastava et al., 2025; Zhang et al., 2024) and computer vision (Jiang et al., 2025). However, they have also faced significant challenges in terms of computational efficiency, particularly when scaling to larger structures and large context inputs. A core issue of efficiency limitations lies in the self-attention module, whose computational complexity is a quadratic relationship with the number of input tokens. Such deficiencies in computational efficiency exert a profound impact on both the training complexity and inference latency of large models.

Efficiency optimization of Transformer has emerged as a pivotal research domain, with efforts predominantly converging into three methodological paradigms. **Linear attention**, such as Mamba (Dao & Gu, 2024), RWKV (Peng et al., 2023b; 2024), and RetNet (Sun et al., 2023), seek to approximate and substitute the traditional softmax-based self-attention mechanism. However, the fundamental architectural disparities between linear attention and conventional attention mechanisms introduce non-trivial challenges: adapting pre-existing Transformer models to integrate linear attention often incurs prohibitive conversion costs (Mercat et al., 2024; Wang et al., 2024; Bick et al., 2024), while alternative strategies necessitate end-to-end training of entirely new model from scratch (Li et al., 2025). Another optimization paradigm is **Sparse attention**, which leverages pre-defined structural constraints, such as sink-based attention mechanisms (Xiao et al., 2024) or sliding window attention mechanisms (Beltagy et al., 2020b), to exploit this sparsity. While these methods may yield certain effects, they often rely heavily on specific tasks, which can limit the overall

generalization ability of the model. Dynamic sparse attention mechanisms (Tang et al., 2024; Jiang et al., 2024; Liu et al., 2024) filter out subsets of tokens during the inference phase. Although such methods can reduce the computational load of long sequences, they fail to significantly lower the high training costs of long-context models, making it difficult for large language models to efficiently scale to context-processing tasks with million-level token sizes. **Chunk Selective attention**, a special type of sparse attention, can be primarily categorized into two paradigms: fixed chunk (Lu et al., 2025; Yuan et al., 2025; Wang et al., 2025) and separators-based dynamic chunk (Chen et al., 2024). Both approaches partition the input into discrete chunks: the former conducts partitioning with a fixed length, which gives rise to semantic incompleteness; the latter utilizes separators for partitioning, yet ambiguities often emerge. For example, periods frequently occur in numerical values or abbreviations. Furthermore, during the inference phase, these methods necessitate chunk selection for each generated token, incurring additional computational overhead. It is thus evident that existing efficient approaches still exhibit inherent limitations.

To address the aforementioned challenges, We propose ChunkLLM, which can be directly constructed by integrating two lightweight and trainable modules into existing LLMs: **QK Adapter** and **Chunk Adapter**. The Chunk Adapter connects to the output of the bottommost Transformer layer and used for identify if a token is the last token of a chunk. The QK Adapter is in parallel with Q and K matrix at each Transformer layer. It maps full attention scores to chunk attention scores, and trained by a distillation approach.

The QK Adapter fulfills feature compression and the generation of chunk attention scores. To train the QK Adapter, we propose an attention distillation approach designed to enhance the recall rate of key chunks. During training, LLM parameters are kept frozen, with the Kullback–Leibler (KL) divergence between chunk attention scores and full attention scores serving as a guidance signal for optimization. The Chunk Adapter determines whether a token corresponds to a chunk boundary by leveraging contextual semantic information. During the inference phase, we exploit the Intra-Chunk Attention Consistency (ICAC) pattern such that chunk selection is only updated when the current token is identified as a chunk boundary, which substantially enhances inference efficiency. Furthermore, ChunkLLM can achieve inference performance comparable to that of models optimized for 120K context lengths, despite being trained solely on 4K context lengths, thereby substantially reducing the training overhead associated with 120K context scaling. Experimental results validate that ChunkLLM yields a 4.48 \times speedup relative to the vanilla Transformer when processing 120K long texts.

Our contributions are summarized as follows:

- We introduce ChunkLLM that integrates two lightweight and pluggable components into existing LLMs: the QK Adapter and the Chunk Adapter. The newly developed ChunkLLM only necessitates fine-tuning these lightweight components on the basis of the original model architecture. This design enables ChunkLLM to attain performance comparable to vanilla Transformer while utilizing a smaller KV cache, alongside achieving effective control over computational scale.
- We propose an attention distillation-based training approach for the QK Adapter, which leverages KL divergence to drive chunk attention toward approximating full attention, effectively enhancing the recall rate of key chunks. Furthermore, we introduce a novel ICAC pattern, which yields notable improvements in inference efficiency for long-context scenarios.
- Experimental evaluations show that ChunkLLM not only attains comparable performance on short-text benchmarks but also maintains 98.64% of the performance on long-context benchmarks while preserving a 48.58% key-value cache (kvcache) retention rate, relative to the vanilla Transformer. Particularly, ChunkLLM attains a maximum speedup of 4.48 \times in comparison to the vanilla Transformer in the processing of 120K long texts.

2 METHOD

The framework of ChunkLLM is shown in Figure 1. ChunkLLM can be built on any existing transformer-based LLMs. Two extra lightweight and pluggable modules are designed to support chunk-related capability. One is Chunk Adapter, which is used to identify chunk boundaries. The

108 other is the Q Adapter and K Adapter, which is tailored for efficient feature compression and chunk
 109 selection. This section elaborates on the details of the two modules.
 110

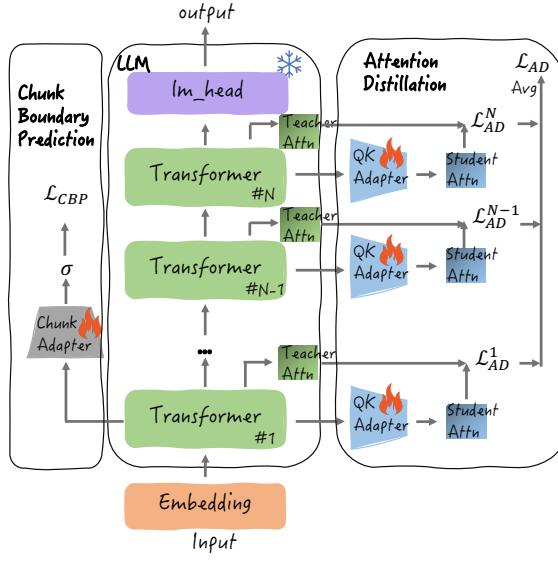
111 2.1 CHUNK ADAPTER

114 The Chunk Adapter is a one-layer forward
 115 neural network (FNN) classifier for chunk
 116 boundary prediction. Its input is the output
 117 of the first layer of the LLM, and the out-
 118 put is if or not the token is a chunk bound-
 119 ary, as depicted in the Figure 1.

120 For an input $X = \{x_1, x_2, \dots, x_{n-1}, x_n\}$
 121 with n tokens and their corresponding la-
 122 bels $Y = \{y_1, y_2, \dots, y_{n-1}, y_n\}$, $y_i \in$
 123 $\{0, 1\}$, where 1 indicates that the token
 124 x_i is a chunk boundary, 0 indicates that it
 125 does not, $\mathbf{H}_i^{l_1}$ be the output of x_i at first
 126 layer. The FNN based Chunk Adapter is
 127 given as in equation 1

$$129 \hat{y}_i = \begin{cases} 1, & \text{Sigmoid}(\text{FFN}(\mathbf{H}_i^{l_1})) > \alpha, \\ 130 0, & \text{otherwise} \end{cases} \quad (1)$$

133 For training the chunk adapter, we employ
 134 the binary cross-entropy loss (BCE) (equa-
 135 tion 2) as the objective function. Detailed
 136 information on the training dataset will be given in the experiment part.



137 Figure 1: The framework of ChunkLLM.

$$139 \mathcal{L}_{CBP} = -\frac{1}{n} \sum_{i=1}^n [y_i \cdot \log(\hat{y}_i) + (1 - y_i) \cdot \log(1 - \hat{y}_i)] \quad (2)$$

142 2.2 QK ADAPTER

144 At each layer of the LLM, we incorporate a Q-Adapter and a K-Adapter which used to compress the
 145 attention and select the chunks.
 146

147 For each layer, let \mathbf{Q} and \mathbf{K} be the attention matrix respectively, c be the chunk number of the input,
 148 $Index_c = \{i_1, i_2, \dots, i_c\}$ is the index set of chunk boundary tokens. Let $\hat{\mathbf{K}}$ be the K matrix of these
 149 tokens. We then calculate chunk attention scores as follows:

$$152 \mathbf{A}^s = \text{Softmax}\left(\frac{\text{Mul}(\bar{\mathbf{Q}}, \bar{\mathbf{K}}^T)}{\sqrt{d_k}}\right) \quad (3)$$

$$153 \bar{\mathbf{Q}} = \text{FFN}_Q(\mathbf{Q}), \bar{\mathbf{K}} = \text{FFN}_K(\hat{\mathbf{K}})$$

156 where FFN_Q and FFN_K is proposed Q-Adapter and K-Adapter, respectively, $\bar{\mathbf{Q}} \in \mathbb{R}^{n \times d_k}$, $\bar{\mathbf{K}} \in$
 157 $\mathbb{R}^{c \times d_k}$, d is the dimension of the model, and d_k is the dimension of head. $d_k \ll d$.

159 **Attention Distillation** We propose an attention distillation strategy to train the Q-Adapter and K-
 160 Adapter. Where, we treat \mathbf{A}^s as student attention, and a type of aggregation of original attention \mathbf{A}^t
 161 which is given in follow as teacher attention. The objective is to align the student's chunk attention
 with that of the teacher, improving the recall performance for key chunks. As shown in Figure 1.

162 For the sake of descriptive simplicity, we use a single head as an illustrative example to show how
 163 to aggregate original attention. The calculation procedure is detailed as follows:
 164

$$\mathbf{A}^t = \text{Aggregate}(\mathbf{A})$$

$$\mathbf{A} = \text{Softmax}\left(\frac{\text{Mul}(\mathbf{Q}, \mathbf{K}^T)}{\sqrt{d_k}}\right) \quad \mathbf{A} \in \mathbb{R}^{n \times n} \quad (4)$$

169 where $\mathbf{Q} \in \mathbb{R}^{n \times d_k}$ and $\mathbf{K} \in \mathbb{R}^{n \times d_k}$ are the matrices of query and key for one attention layer. For
 170 brevity, the mask operation is omitted from the description.

171 *Aggregate* denotes the operation of summing the token scores within a single chunk. Assuming
 172 that an input comprises c chunks with n tokens. Under this setting, A_{ij}^t denotes the attention score
 173 of the current token x_i relative to j -th chunk. For multi-head attention, we compute the average
 174 along the head dimension, yielding matrix \mathbf{A}^t .

175 We employ the Kullback-Leibler (KL) diver-
 176 gence as the loss function for attention dis-
 177 tillation to guide the student model \mathbf{A}^s in
 178 approximating the teacher model’s attention
 179 scores \mathbf{A}^t :

$$\mathcal{L}_{AD}^N = KL(\mathbf{A}^t || \mathbf{A}^s) \quad (5)$$

180 We average the KL divergence losses across
 181 the N layers to obtain the final attention dis-
 182 tillation loss:

$$\mathcal{L}_{AD} = \frac{1}{N} \sum_i^N \mathcal{L}_{AD}^i \quad (6)$$

183 During the training phase, the parameters of
 184 the backbone network are frozen, with only
 185 the Chunk Adapter and QK Adapter under-
 186 going training, thereby achieving efficient training.

187 2.3 INFERENCE

188 The inference phase of ChunkLLM is depicted
 189 in Figure 2, encompassing two primary steps:
 190 top-k chunk selection and ICAC. In line with
 191 the ICAC paradigm, chunk updates are trig-
 192 gered exclusively when the current token func-
 193 tions as a chunk boundary.

194 **Top-k Chunk Selection** This stage is primar-
 195 ily dedicated to selecting top-k chunks for each
 196 layer. To elaborate, we use the first layer as an
 197 illustrative example and define e as the end po-
 198 sition of the input sequence. We then derive the
 199 attention scores $A_e^s = \mathbf{A}^s[e, :] \in \mathbb{R}^{1 \times c}$ that cor-
 200 respond to the c chunks associated with the end token. $[,]$ denotes the slicing operation. We select
 201 the indices of the top-k chunks with the highest scores from A_e^s , where $k \ll c$, and retrieve the
 202 corresponding k chunks from \mathbf{K} and \mathbf{V} , which facilitates the selection of the top-k key chunks. \mathbf{V} are
 203 the value matrices for one attention layer. We propose a chunk voting mechanism that performs vot-
 204 ing on the top-k chunks from each layer, thereby deriving the global top-k chunks. These retrieved
 205 chunks are subsequently stored in the KV-cache.

206 **ICAC** We find a phenomenon during the model inference, as illustrated in Figure 3. The chunks at-
 207 tended to by tokens within a generated chunk exhibit substantial consistency, whereas chunk updates
 208 predominantly occur at chunk boundaries. We name this phenomenon the "Intra-Chunk Attention
 209 Consistency (ICAC)".

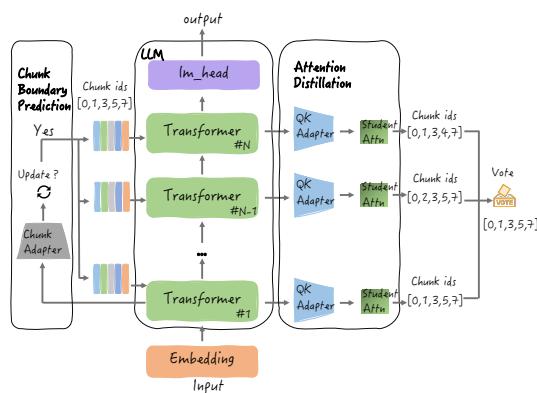


Figure 2: The inference process of ChunkLLM.

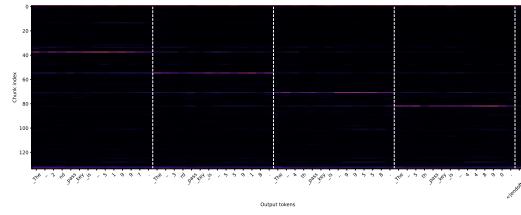


Figure 3: Attention visualization of chunk selection during the inference phase. The sample is de-
 rived from the passkey retrieval task.

216 ICAC makes it possible to save computational cost in chunk selection. We incorporate the chunk
 217 boundary prediction task into the inference phase. Only when the currently decoded token is a chunk
 218 boundary, do we update the chunk selection and integrate the complete chunk from the prediction
 219 phase into \mathbf{K} and \mathbf{V} ; otherwise, no update is executed.
 220

221 3 EXPERIMENTS AND RESULTS

223 3.1 EXPERIMENTAL SETTINGS

225 3.1.1 MODEL AND BASELINES

227 Two representative open-source models, Qwen2.5-7B (Team, 2024) and Llama3.1-8B (Dubey et al.,
 228 2024), are chosen as the target models for evaluation. We select StreamingLLM (Xiao et al., 2024)
 229 and SepLLM (Chen et al., 2024) as the baselines to benchmark the proposed method. In detail,
 230 StreamingLLM retains both initial tokens and window tokens, whereas SepLLM, developed based
 231 on StreamingLLM, treats separator features as chunk features and incorporates a specialized sep-
 232 arator cache management mechanism in the inference stage. Detailed settings of the experimental
 233 parameters are provided in Appendix 6.1.

234 3.1.2 TRAINING DATASETS

236 The FineWeb-Edu dataset (Lozhkov et al., 2024) is employed as the training corpus in this study.
 237 Developed by the HuggingFaceFW team, this dataset undergoes filtering via an educational quality
 238 classifier, which constructed based on annotations generated by Llama3-70B-Instruct (Meta, 2024).

239 For preprocessing the training data, the pySBD tool (Sadvilkar & Neumann, 2020), a rule-based sen-
 240 tence boundary detection module that works out-of-the-box, is utilized to annotate the end positions
 241 of chunks in sequences, serving as foundational input for training the chunk boundary prediction
 242 module.

243 3.1.3 BENCHMARKS

245 **Long Context Benchmarks** We select two long-context evaluation datasets, LongBench (Bai et al.,
 246 2024) and Needle In A Haystack (NIAH) (Kamradt, 2023), to assess the model’s long-context ability.
 247 The average text length for most tasks ranges from 5k to 15k tokens in LongBench. We select 10 of
 248 its subtasks for evaluation. Comprehensive information regarding the characterization of subtasks,
 249 evaluation methodologies, and additional relevant details is available in Appendix 6.2. For NIAH,
 250 the benchmark constructs prompts for LLMs by randomly inserting key information into long texts.
 251 The primary objective of this test is to verify whether large models can successfully extract such
 252 embedded key information from long context, thereby gauging the models’ proficiency in long-
 253 context information extraction.

254 **Short Context Benchmarks** The selection of the evaluation datasets is primarily centered on the
 255 model’s performance in three key dimensions: **General Knowledge**, which evaluates the model’s
 256 breadth of knowledge coverage and the accuracy of its knowledge, MMLU (Hendrycks et al., 2021)
 257 (5-shot), SciQ (Welbl et al., 2017) (5-shot), OpenBookQA (Mihaylov et al., 2018) (25-shot); **Ques-**
 258 **tion Answering**, which evaluates the model’s capabilities in question understanding and information
 259 matching, CommonsenseQA (Talmor et al., 2019) (5-shot), Social IQA (Sap et al., 2019) (15-shot),
 260 PIQA (Bisk et al., 2020) (25-shot); and **Reasoning** which evaluates the model’s capabilities in log-
 261 ical abstraction and complex decision-making, HellaSwag (Zellers et al., 2019) (10-shot), Wino-
 262 Grande (Sakaguchi et al., 2020) (25-shot), ARC-c/ARC-e (Clark et al., 2018) (25-shot).

263 3.2 MAIN RESULTS

265 3.2.1 RESULTS ON LONGBENCH

267 We set the top-k ratio to 45% and the number of local chunks to 15 for ChunkLLM. The experimental
 268 results on the LongBench using Qwen2.5-7B and Llama3.1-8B are presented in Table 1. Here,
 269 “StrmLLM” represents StreamingLLM (Xiao et al., 2024). We take Qwen2.5-7B as an example for
 analysis, and the same conclusion holds for Llama3.1-8B. The following observations can be made:

Methods	SDQA			MDQA			Summary		Few-shot		Avg	KV
	NQA	Qasper	MFQA	HQA	Musi	2WQA	GR	QMS	SAM	TREC		
Qwen2.5-7B	33.76	51.40	57.17	56.76	29.40	38.09	31.57	24.40	46.73	72.00	44.13	100.00
ChunkLLM	31.09	50.52	56.95	55.61	29.41	38.27	31.25	23.16	46.53	72.50	43.53	48.58
SepLLM	26.43	50.18	50.29	47.25	22.83	36.34	28.31	21.14	46.71	71.50	40.10	53.17
StrmLLM	28.88	50.37	50.47	51.60	24.55	37.76	30.36	22.27	46.84	72.00	41.51	68.50
Llama3.1-8B	40.88	51.72	58.47	52.68	35.80	42.52	30.64	24.44	47.10	73.00	45.73	100.00
ChunkLLM	39.14	49.93	53.45	52.29	34.40	42.98	31.05	23.89	47.20	72.50	44.68	50.18
SepLLM	36.23	51.16	51.81	47.70	27.83	40.85	27.12	21.84	46.89	72.00	42.34	54.56
StrmLLM	35.94	50.96	54.13	50.54	30.95	41.83	27.50	23.06	46.23	73.00	43.42	69.25

Table 1: Experimental results on LongBench. Avg denotes average score. SDQA: single-document question answering, MDQA: multi-document question answering. The full names of the subtasks are shown in Appendix 6.2.

(1) In terms of overall average performance, ChunkLLM attains the optimal performance when compared to SepLLM and StreamingLLM, with respective improvements of 3.43 and 2.02 (43.53 v.s. 40.10 v.s. 41.51). In contrast to the short-text benchmark in Subsection 3.2.4, ChunkLLM demonstrates a remarkable improvement in long-context evaluation, which validates the advantage of ChunkLLM in retrieving key chunk information during long-context reasoning. (2) Notably, in the MDQA task, ChunkLLM yields a substantial improvement over SepLLM. We argue that the core challenge of MDQA lies in the dispersion of critical information across distinct positions within the context, which places high demands on the model’s context comprehension capability. SepLLM leverages separators as chunk features, which is plagued by constrained representational capacity and the problem of chunk semantic incompleteness. By contrast, ChunkLLM enriches the representational capacity of chunks via attention distillation, which enhances the recall rates of critical chunks. This, in turn, effectively boosts the model’s long-context understanding capability. (3) ChunkLLM attains 98.64% of the vanilla model’s performance while employing the minimum KV cache. Notably, relative to SepLLM and StreamingLLM, ChunkLLM reduces the KV cache usage rate by 4.59% and 19.92% (48.58% v.s. 53.17% v.s. 68.50%), respectively, findings that further substantiate the superiority of ChunkLLM in long-context scenarios.

3.2.2 RESULTS ON NIAH

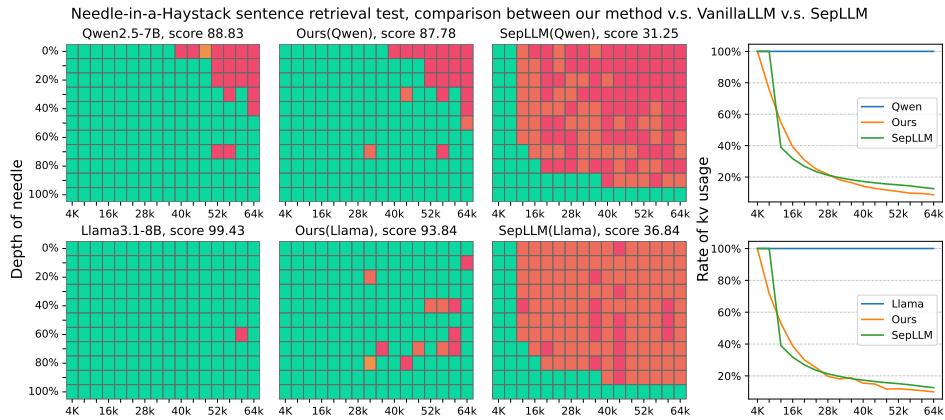
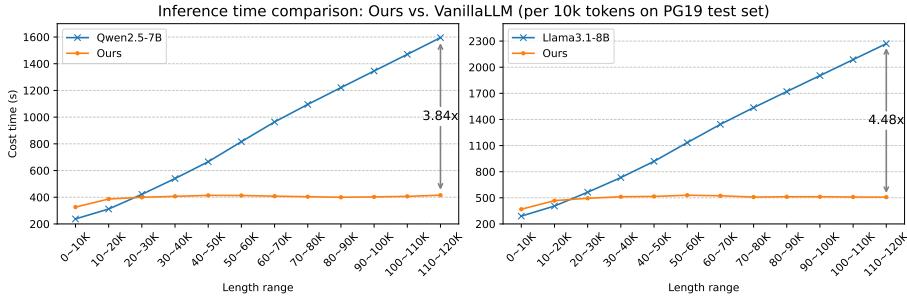


Figure 4: Needle-in-a-Haystack retrieval accuracy across context positions with 64k context length. The last column represents the KV-cache utilization rate.

We set the top-k to 256 and the number of local chunks to 16 for ChunkLLM. As depicted in Figure 4, ChunkLLM outperforms SepLLM across all scenarios in the 64K-context NIAH evaluation conducted on Qwen2.5-7B and Llama3.1-8B, achieving superior performance. Notably, in scenarios where the context length exceeds 12K, SepLLM exhibits near-total loss of retrieval capability (visualized in red), whereas ChunkLLM retains performance comparable to the vanilla model. This discrepancy is primarily attributed to ChunkLLM’s attention distillation mechanism, which strengthens the feature representational capacity of chunks. Consequently, during chunk selection,

324 the model effectively identifies critical chunks with higher query relevance, leading to improved inference performance. Additionally, ChunkLLM exhibits a reduced KV-Cache utilization rate relative to SepLLM, which further corroborates the effectiveness of key chunk retrieval. We also conduct experiments with StreamingLLM, as shown in Appendix 6.3.

329 3.2.3 INFERENCE EFFICIENCY



341 Figure 5: Comparison of inference time per 10k tokens in the generation process on PG19 test set.

344 We conduct runtime evaluations of Vanilla and ChunkLLM for 120K-token generation tasks on
 345 the PG19(Rae et al., 2019) test set, with metrics recorded every 10K tokens. We set the top-k to
 346 256 and the number of local chunks to 16 for ChunkLLM. As shown in Figure 5, as the number
 347 of generated tokens increases, Vanilla’s inference time rises linearly, while ChunkLLM maintains
 348 persistent stability in time consumption. In the 110K–120K token generation phase, ChunkLLM
 349 outperforms Vanilla by speedups of 3.84x and 4.48x, which corroborates the efficacy of the proposed
 350 ICAC mechanism. During ChunkLLM’s inference phase, chunk updates occur exclusively at chunk
 351 boundaries, minimizing the updates frequency and thereby boosting inference efficiency. We also
 352 conduct supplementary experiments using the FineWeb-Edu dataset, from which 1000 test corpora
 353 of 4k length are sampled. For the task of chunk boundary prediction, we evaluate its performance
 354 using three key metrics: precision, recall, and F1-score. The calculated results are 98.31, 95.54,
 355 and 96.91, respectively. Such promising performance indicators serve to verify the reliability and
 356 effectiveness of our chunk boundary prediction task.

356 We conduct experiments where these models
 357 generated 120K tokens, evaluating both total
 358 inference time and average perplexity (ppl) on
 359 the PG19 test set, and results are summarized
 360 in Table 2. Compared to the vanilla model,
 361 ChunkLLM yields a slight enhancement in ppl
 362 alongside a significant decrease in total infer-
 363 ence time. The underlying reason is that while
 364 the vanilla model maintains semantic integrity,
 365 it incurs linearly increasing inference time as
 366 generated token count rises. Conversely, ChunkLLM
 367 reduces computational burden and speeds up
 368 inference by leveraging its chunk selection and ICAC
 369 mechanisms.

370 3.2.4 RESULTS ON SHORT TEXT

Length	Methods	PPL	Total Time(s)
120K	Qwen2.5-7B	14.41	10,684.31
	ChunkLLM	16.23	4,782.62
	Llama3.1-8B	11.93	14,906.19
	ChunkLLM	12.89	5,963.83

370 Table 2: The perplexity and running time compar-
 371 ison on the PG19 test set.

Methods	General Knowledge			Question Answering			Reasoning			Avg	KV	
	MMLU	SciQ	OQA	CQA	SIQA	PIQA	Heag	WG	ARC-c	ARC-e		
Owen2.5-7B	74.25	97.00	52.80	84.52	58.44	81.72	80.24	77.27	63.82	87.21	75.73	100.00
ChunkLLM	72.51	96.60	52.40	84.68	58.34	81.77	80.08	76.87	63.65	87.21	75.41	45.47
SepLLM	73.07	96.70	52.20	84.19	58.25	81.41	80.10	76.48	62.94	86.11	75.15	50.20
StrmLLM	73.31	96.60	52.00	84.28	58.19	81.39	79.76	76.64	62.79	86.36	75.13	45.14
Llama3.1-8B	65.30	97.60	48.00	74.28	54.04	83.19	81.76	80.03	57.85	84.55	72.66	100.00
ChunkLLM	64.78	97.30	48.40	74.45	54.76	82.75	81.84	79.01	57.68	84.55	72.55	45.04
SepLLM	64.32	97.40	47.40	74.10	54.25	83.03	81.68	79.01	57.93	84.09	72.32	50.32
StrmLLM	61.19	97.20	48.00	73.79	53.94	81.56	80.14	78.22	56.91	83.59	72.45	45.30

371 Table 3: Experimental results on short context benchmarks.

The experimental results for short texts are presented in Table 3. The following conclusions can be drawn: (1) The overall average metrics of ChunkLLM on Qwen2.5-7B and Llama3.1-8B both outperform those of StreamingLLM and SepLLM, achieving 99.57% and 99.84% of the Vanilla model’s performance, respectively. Notably, ChunkLLM attains optimal performance across 8 out of the 10 evaluation tasks, validating its efficacy in short-text task scenarios. (2) We perform statistical analyses on the average utilization rate of the KV cache. In comparison with SepLLM, ChunkLLM achieves superior performance while consuming a lower volume of KV cache (45.47% v.s. 50.20%). Specifically, on the Llama3.1-8B model, ChunkLLM not only exhibits the minimal KV cache usage but also outperforms both SepLLM and StreamingLLM in terms of performance metrics. This finding further validates the precision of ChunkLLM in chunk recall, achieving a balanced trade-off between performance and memory consumption.

3.3 ABLATION STUDY

3.3.1 EFFECTIVENESS OF VOTE AND ICAC

Methods	SDQA			MDQA			Summary		Few-shot		Avg
	NQA	Qasper	MFQA	HQA	Musi	2WQA	GR	QMS	SAM	TREC	
Qwen2.5-7B	33.76	51.40	57.17	56.76	29.40	38.09	31.57	24.40	46.73	72.00	44.13
ChunkLLM	31.09	50.52	56.95	55.61	29.41	38.27	31.25	23.16	46.53	72.50	43.53
w/o vote	30.78	45.00	51.53	54.96	28.00	38.17	30.82	23.49	46.58	70.00	41.93
w/o ICAC	31.36	50.94	56.84	55.61	28.50	38.59	31.86	23.93	46.66	72.50	43.68

Table 4: Ablation Study on LongBench, w/o vote: remove vote mechanism, w/o ICAC: remove ICAC pattern.

We validate the proposed vote mechanism and ICAC pattern based on the Qwen2.5-7B using the LongBench, with experimental results shown in Table 4. Removal of the vote mechanism leads to a 1.6 drop in overall performance (43.53 v.s. 41.93), which confirms the mechanism’s efficacy, as it integrates inter-layer differences in chunk selection and minimizes interference arising from such discrepancies. We also conduct a visual investigation into the recall performance of top-k chunks across different layers, with comprehensive experimental results provided in Appendix 6.5. Conversely, removing ICAC results in a marginal 0.15 improvement in overall performance. This slight gain is attributed to the increased frequency of chunk selection updates during the inference phase. Frequent chunk selection, however, poses a limitation of low inference efficiency. As shown in Figure 6, after ICAC is removed, the inference latency is 2.12 times higher than that of ChunkLLM in the 110K–120K token generation stage. Conversely, incorporating ICAC enables the model to maintain near-lossless performance alongside improved inference efficiency, which provides additional validation of ICAC’s success. Appendix 6.4 shows a case study of the ICAC.

3.3.2 ANALYSIS OF FIXED CHUNKS AND SEMANTIC CHUNKS

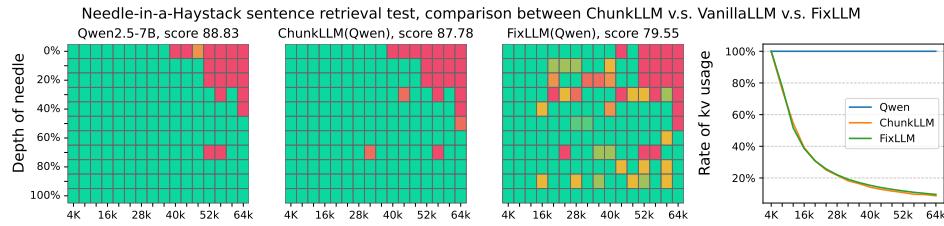


Figure 7: Visualization of fixed chunks and semantic chunks in NIAH test.

We conduct an experimental analysis of the fixed chunk method (FixLLM) on the NIAH task. To ensure consistent KV cache utilization and facilitate a fair comparison, FixLLM is configured with a top-k of 384 and a local chunks of 24, while ChunkLLM is set to a top-k of 256 and a local chunks of 16. The experimental results are illustrated in Figure 7. As observed, under conditions of approximately consistent KV cache utilization, FixLLM exhibits an 8.23 reduction (87.78 v.s. 79.55) in accuracy relative to ChunkLLM on the 64K NIAH task. This discrepancy stems from the semantic incompleteness of fixed chunks, which in turn compromises chunk selection during the inference phase. In contrast, ChunkLLM leverages contextual semantic information to identify chunk boundaries, preserving the semantic integrity of chunks.

4 RELATED WORK

KV Cache Compression Recent research has primarily focused on overcoming the limitations of Large Language Models (LLMs) in processing massive contextual inputs. SnapKV (Li et al., 2024) improves efficiency through KV cache compression, using attention scores to select and cluster important positional information; H2O (Zhang et al., 2023) implements a dynamic token retention policy that balances recent information and historically important information to optimize memory occupancy; StreamingLLM (Xiao et al., 2024) enables LLMs to handle sequences of infinite length without fine-tuning by retaining attention sinks and local tokens; PyramidInfer (Yang et al., 2024) and PyramidKV (Cai et al., 2024) optimize performance by adjusting the KV cache capacity across different layers. However, most methods in this category cannot be applied to the training phase.

Sparse Attention The sparse attention mechanism constructs sparse attention matrices by confining attention to predefined patterns, such as local windows or fixed-stride block patterns. Beltagy et al. (2020a) combined dilated local window attention with task-specific global attention. MoBA (Lu et al., 2025) proposes an innovative mixed block attention mechanism. ESA (Wang et al., 2025) reduces computational costs by selecting tokens most critical to the current generation for attention calculation. NSA (Yuan et al., 2025) combines coarse-grained token compression and fine-grained token selection. SepLLM (Chen et al., 2024) finds that the segment information between separators can be effectively compressed into the separators themselves without causing significant information loss.

Knowledge Distillation Knowledge Distillation (Hinton et al., 2015), as a widely used model compression technique, aims to train a student model under the guidance of a teacher model (Rusu et al., 2016; Sanh et al., 2019; Gou et al., 2020). For text generation tasks, the standard KD method approximates the minimization of the forward Kullback-Leibler Divergence (forward KLD) between the generation distributions of the student and teacher models (Kim & Rush, 2016; Taori et al., 2023; Chiang et al., 2023; Peng et al., 2023a; Sanh et al., 2019).

5 CONCLUSION

We introduce ChunkLLM, a lightweight and pluggable framework, only necessitates fine-tuning lightweight components, QK Adapter and Chunk Adapter, on the basis of the original model architecture. And then we propose an attention distillation-based training approach for the QK Adapter, which leverages KL divergence to drive chunk attention toward approximating full attention, effectively enhancing the recall rate of key chunks. Furthermore, we introduce a novel "Intra-chunk Attention Consistency Pattern," which yields notable improvements in inference efficiency for long-context scenarios. Experimental results show that ChunkLLM attains a maximum speedup of 4.48 \times in comparison to the vanilla Transformer in the processing of 120K long texts.

REFERENCES

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, ACL 2024, Bangkok, Thailand, August 11-16,

486 2024, pp. 3119–3137. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.
 487 ACL-LONG.172. URL <https://doi.org/10.18653/v1/2024.acl-long.172>.
 488

489 Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
 490 *CoRR*, abs/2004.05150, 2020a. URL <https://arxiv.org/abs/2004.05150>.
 491

492 Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
 493 *arXiv preprint arXiv:2004.05150*, 2020b.
 494

495 Aviv Bick, Kevin Li, Eric Xing, J Zico Kolter, and Albert Gu. Transformers to ssms: Distilling
 496 quadratic knowledge to subquadratic models. *Advances in Neural Information Processing Sys-
 497 tems*, 37:31788–31812, 2024.
 498

499 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
 500 monsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
 501 volume 34, pp. 7432–7439, 2020.
 502

503 Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
 504 Baobao Chang, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic KV cache compression based
 505 on pyramidal information funneling. *CoRR*, abs/2406.02069, 2024. doi: 10.48550/ARXIV.2406.
 506 02069. URL <https://doi.org/10.48550/arXiv.2406.02069>.
 507

508 Guoxuan Chen, Han Shi, Jiawei Li, Yihang Gao, Xiaozhe Ren, Yimeng Chen, Xin Jiang, Zhenguo
 509 Li, Weiyang Liu, and Chao Huang. Sepllm: Accelerate large language models by compressing
 510 one segment into one separator. *CoRR*, abs/2412.12094, 2024. doi: 10.48550/ARXIV.2412.
 511 12094. URL <https://doi.org/10.48550/arXiv.2412.12094>.
 512

513 Wei-Lin Chiang, Zhuohan Li, Ziqing Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
 514 Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
 515 impressing gpt-4 with 90%* chatgpt quality. See <https://vicuna.lmsys.org> (accessed 14 April
 516 2023), 2(3):6, 2023.
 517

518 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 519 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
 520 *arXiv preprint arXiv:1803.05457*, 2018.
 521

522 Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
 523 structured state space duality. *arXiv preprint arXiv:2405.21060*, 2024.
 524

525 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 526 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 527 *arXiv e-prints*, pp. arXiv–2407, 2024.
 528

529 Jianping Gou, Baosheng Yu, Stephen John Maybank, and Dacheng Tao. Knowledge distillation: A
 530 survey. *CoRR*, abs/2006.05525, 2020. URL <https://arxiv.org/abs/2006.05525>.
 531

532 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 533 Steinhardt. Measuring massive multitask language understanding. In *9th International Confer-
 534 ence on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenRe-
 535 view.net, 2021. URL <https://openreview.net/forum?id=d7KBjmI3GmQ>.
 536

537 Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
 538 *CoRR*, abs/1503.02531, 2015. URL <http://arxiv.org/abs/1503.02531>.
 539

540 Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
 541 Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
 542 for long-context llms via dynamic sparse attention. *Advances in Neural Information Processing
 543 Systems*, 37:52481–52515, 2024.
 544

545 Yiwen Jiang, Deval Mehta, Siyuan Yan, Yaling Shen, Zimu Wang, and Zongyuan Ge. Wise: Weak-
 546 supervision-guided step-by-step explanations for multimodal llms in image classification. *arXiv
 547 preprint arXiv:2509.17740*, 2025.
 548

540 G. Kamradt. Llmtest needleinahaystack. 2023. URL https://github.com/gkamradt/LLMTest_NeedleInAHaystack.

541

542

543 Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. In *Proceedings of the*
 544 *2016 conference on empirical methods in natural language processing*, pp. 1317–1327, 2016.

545

546 Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao
 547 Guo, Da Chen, Dong Li, et al. Minimax-01: Scaling foundation models with lightning attention.
 548 *arXiv preprint arXiv:2501.08313*, 2025.

549

550 Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye,
 551 Tianle Cai, Patrick Lewis, and Deming Chen. Snapkv: LLM knows what you are
 552 looking for before generation. In Amir Globersons, Lester Mackey, Danielle Belgrave,
 553 Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in*
 554 *Neural Information Processing Systems 38: Annual Conference on Neural Information*
 555 *Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,*
 556 *2024*. URL http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html.

557

558 Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
 559 gruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating long-context llm
 560 inference via vector retrieval. *arXiv preprint arXiv:2409.10516*, 2024.

561

562 Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the finest
 563 collection of educational content, 2024. URL <https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu>.

564

565 Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He,
 566 Enming Yuan, Yuzhi Wang, Zhiqi Huang, Huan Yuan, Suting Xu, Xinran Xu, Guokun Lai, Yanru
 567 Chen, Huabin Zheng, Junjie Yan, Jianlin Su, Yuxin Wu, Neo Y. Zhang, Zhilin Yang, Xinyu Zhou,
 568 Mingxing Zhang, and Jiezhong Qiu. Moba: Mixture of block attention for long-context llms.
 569 *CoRR*, abs/2502.13189, 2025. doi: 10.48550/ARXIV.2502.13189. URL <https://doi.org/10.48550/arXiv.2502.13189>.

570

571 Jean Mercat, Igor Vasiljevic, Sedrick Keh, Kushal Arora, Achal Dave, Adrien Gaidon, and Thomas
 572 Kollar. Linearizing large language models. *arXiv preprint arXiv:2405.06640*, 2024.

573

574 Meta. Llama 3 model card. 2024. URL [https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md].

575

576 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 577 electricity? A new dataset for open book question answering. In Ellen Riloff, David Chiang,
 578 Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings of the 2018 Conference on Empirical*
 579 *Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018*,
 580 pp. 2381–2391. Association for Computational Linguistics, 2018. doi: 10.18653/V1/D18-1260.
 581 URL <https://doi.org/10.18653/v1/d18-1260>.

582

583 Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
 584 with gpt-4. *arXiv preprint arXiv:2304.03277*, 2023a.

585

586 Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
 587 Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
 588 the transformer era. *arXiv preprint arXiv:2305.13048*, 2023b.

589

590 Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
 591 Cheah, Xingjian Du, Teddy Ferdinand, Haowen Hou, et al. Eagle and finch: Rwkv with matrix-
 592 valued states and dynamic recurrence. *arXiv preprint arXiv:2404.05892*, 2024.

593

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
 transformers for long-range sequence modelling. *arXiv preprint arXiv:1911.05507*, 2019.

594 Andrei A. Rusu, Sergio Gomez Colmenarejo, Çağlar Gülcöhre, Guillaume Desjardins, James Kirk-
 595 patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy dis-
 596 tillation. In Yoshua Bengio and Yann LeCun (eds.), *4th International Conference on Learning
 597 Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceed-
 598 ings*, 2016. URL <http://arxiv.org/abs/1511.06295>.

599 Nipun Sadvilkar and Mark Neumann. PySBD: Pragmatic sentence boundary disambiguation. In
 600 *Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS)*, pp. 110–114,
 601 Online, November 2020. Association for Computational Linguistics. URL <https://www.aclweb.org/anthology/2020.nlposs-1.15>.

602 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An ad-
 603 versarial winograd schema challenge at scale. In *The Thirty-Fourth AAAI Conference on Artifi-
 604 cial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
 605 Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelli-
 606 gence, EAAI 2020, New York, NY, USA, February 7-12, 2020*, pp. 8732–8740. AAAI Press, 2020.
 607 doi: 10.1609/AAAI.V34I05.6399. URL [https://doi.org/10.1609/aaai.v34i05.
 608 6399](https://doi.org/10.1609/aaai.v34i05.6399).

609 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
 610 of BERT: smaller, faster, cheaper and lighter. *CoRR*, abs/1910.01108, 2019. URL <http://arxiv.org/abs/1910.01108>.

611 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social iqa: Com-
 612 monsense reasoning about social interactions. In Kentaro Inui, Jing Jiang, Vincent Ng, and
 613 Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural
 614 Language Processing and the 9th International Joint Conference on Natural Language Pro-
 615 cessing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019*, pp. 4462–4472. As-
 616 sociation for Computational Linguistics, 2019. doi: 10.18653/V1/D19-1454. URL <https://doi.org/10.18653/v1/D19-1454>.

617 Saurabh Srivastava, Sweta Pati, and Ziyu Yao. Instruction-tuning llms for event extraction with
 618 annotation guidelines. *arXiv preprint arXiv:2502.16377*, 2025.

619 Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
 620 Furu Wei. Retentive network: A successor to transformer for large language models. *arXiv
 621 preprint arXiv:2307.08621*, 2023.

622 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
 623 answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
 624 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of
 625 the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
 626 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers)*, pp. 4149–
 627 4158. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1421. URL
 628 <https://doi.org/10.18653/v1/n19-1421>.

629 Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
 630 Query-aware sparsity for efficient long-context llm inference. *arXiv preprint arXiv:2406.10774*,
 631 2024.

632 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 633 Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

634 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

635 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 636 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 637 tion processing systems*, 30, 2017.

638 Haoyu Wang, Tong Teng, Tianyu Guo, An Xiao, Duyu Tang, Hanting Chen, and Yunhe Wang.
 639 Unshackling context length: An efficient selective attention approach through query-key com-
 640 pression. *CoRR*, abs/2502.14477, 2025. doi: 10.48550/ARXIV.2502.14477. URL <https://doi.org/10.48550/arXiv.2502.14477>.

648 Junxiong Wang, Daniele Paliotta, Avner May, Alexander Rush, and Tri Dao. The mamba in the
 649 llama: Distilling and accelerating hybrid models. *Advances in Neural Information Processing*
 650 *Systems*, 37:62432–62457, 2024.

651

652 Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science ques-
 653 tions. In Leon Derczynski, Wei Xu, Alan Ritter, and Tim Baldwin (eds.), *Proceedings of*
 654 *the 3rd Workshop on Noisy User-generated Text, NUT@EMNLP 2017, Copenhagen, Den-
 655 mark, September 7, 2017*, pp. 94–106. Association for Computational Linguistics, 2017. doi:
 656 10.18653/V1/W17-4413. URL <https://doi.org/10.18653/v1/w17-4413>.

657

658 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 659 language models with attention sinks. In *The Twelfth International Conference on Learning*
 660 *Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL
<https://openreview.net/forum?id=NG7ssS51zVF>.

661

662 Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyra-
 663 mid KV cache compression for high-throughput LLM inference. In Lun-Wei Ku, Andre Mart-
 664 ins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics, ACL*
 665 *2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024*, pp. 3258–3270. Associa-
 666 tion for Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.195. URL
<https://doi.org/10.18653/v1/2024.findings-acl.195>.

667

668 Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda
 669 Xie, Yuxing Wei, Lean Wang, Zhiping Xiao, Yuqing Wang, Chong Ruan, Ming Zhang, Wen-
 670 feng Liang, and Wangding Zeng. Native sparse attention: Hardware-aligned and natively
 671 trainable sparse attention. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mo-
 672 hammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association*
 673 *for Computational Linguistics (Volume 1: Long Papers), ACL 2025, Vienna, Austria, July 27*
 674 *- August 1, 2025*, pp. 23078–23097. Association for Computational Linguistics, 2025. URL
<https://aclanthology.org/2025.acl-long.1126/>.

675

676 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 677 chine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluís Márquez
 678 (eds.), *Proceedings of the 57th Conference of the Association for Computational Linguistics,*
 679 *ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers*, pp. 4791–
 680 4800. Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1472. URL
<https://doi.org/10.18653/v1/p19-1472>.

681

682 Xiaobin Zhang, Liangjun Zang, Qianwen Liu, Shuchong Wei, and Songlin Hu. Event temporal
 683 relation extraction based on retrieval-augmented on llms. In *2024 International Joint Conference*
 684 *on Neural Networks (IJCNN)*, pp. 1–8. IEEE, 2024.

685

686 Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
 687 Yuandong Tian, Christopher Ré, Clark W. Barrett, Zhangyang Wang, and Beidi Chen. H2O:
 688 heavy-hitter oracle for efficient generative inference of large language models. In Alice Oh,
 689 Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
 690 *Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-*
 691 *formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -*
 692 *16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/6ceefab15572587b78ecfcbb2827f8-Abstract-Conference.html.

693

694

695

696

697

698

699

700

701

702

6 APPENDIX

703

6.1 PARAMETER SETTING

704 The Qwen2.5-7B and Llama3.1-8B models are trained with identical configurations. A cosine annealing strategy is adopted, with a maximum learning rate of 3e-5 and a warm-up period of 500 705 steps. Additionally, we use Adam optimizer with parameters $\text{beta1} = 0.9$ and $\text{beta2} = 0.99$. For 706 the Qwen2.5-7B and Llama3.1-8B, the dimensions of the QK Adapter and Chunk Adapter are set 707 to 3584 and 4096, respectively. The total number of additional parameters is 14.7M and 21M, 708 respectively. α is set to 0.5 for chunk boundary prediction task. The training dataset comprised ap- 709 proximately 6B tokens, and the training process are conducted on 32 H200 GPUs for around 11,300 710 steps. We set training epoch is 1, and the attention distillation stage consum 11 hours, while the 711 chunk boundary training stage took 1.5 hours. 712

713 For a fair comparison on long-context benchmarks, we set the initial cache capacity to 4, the local 714 cache capacity to 4000, separator cache capacity to 4000 and the maximum cache capacity to 8192 715 for SepLLM (Chen et al., 2024). For StreamingLLM (Xiao et al., 2024), we configure the initial 716 cache capacity as 4 and the local cache capacity as 8188. 717

718 For short context benchmarks, we set the initial cache capacity to 4, the local cache capacity to 256, 719 and the maximum cache capacity to infinity for SepLLM (Chen et al., 2024). For StreamingLLM 720 (Xiao et al., 2024), we configure the initial cache capacity as 4 and the local cache capacity as 256. 721

722

6.2 SUBTASK DESCRIPTION ON LONGBENCH

723 Table 5 presents the task name, abbreviations, evaluation methodologies, average lengths, and de- 724 scriptive details of each subtask on LongBench. 725

728 Task	Subtask	Abbreviation	Evaluation	Avg Len	Description
729 SDQA	NarrativeQA	NQA	Recall	18,409	Answer questions based on stories or scripts, in- 730 cluding understanding of important elements such as characters, plots, themes, etc.
	Qasper	Qasper	Recall	3,619	Answer questions based on a NLP research paper, 731 questions proposed and answered by NLP practi- 732 tioners.
	MultiFieldQA-en	MFQA	Recall	4,559	Answer English questions based on a long article, 733 which comes from a relatively diverse field.
734 MDQA	HotpotQA	HQA	Recall	9,151	Answer related questions based on multiple given 735 documents.
	Musique	Musi	Recall	11,214	Answer related questions based on multiple given 736 documents.
	2WikiMultihopQA	2WQA	Recall	4,887	Answer related questions based on multiple given 737 documents.
738 Summary	GovReport	GR	Rouge-L	8,734	A summarization task that requires summarizing 739 government work reports.
	QMSum	QMS	Rouge-L	10,614	A summarization task that requires summarizing 740 meeting records based on user queries.
741 Few-shot	SAMSum	SAM	Rouge-L	6,258	A dialogue summarization task, providing several 742 few-shot examples.
	TREC	TREC	Accuracy	5,177	A classification task that requires categorizing 743 questions, includes 50 categories in total.

744 Table 5: Task description on LongBench. SDQA: single-document question answering, MDQA: 745 multi-document question answering. 746

747

6.3 COMPARE WITH STREAMINGLLM ON NIAH

748 As depicted in Figure 8, ChunkLLM outperforms StreamingLLM across all scenarios in the 64K- 749 context NIAH evaluation conducted on Qwen2.5-7B and Llama3.1-8B with lower KV-cache usage, 750 achieving superior performance. StreamingLLM leverages initial tokens and local tokens as its core 751 token selection strategy. However, this design inherently limits its ability to effectively capture 752 critical information situated in the middle segment of the input sequence, thereby resulting in a 753 notable deficiency in long-context retrieval performance. 754

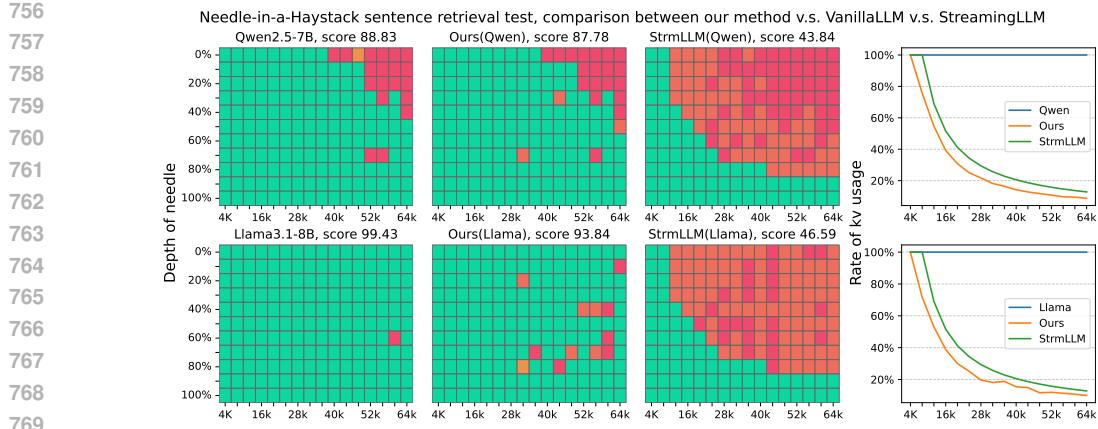


Figure 8: Compare with StreamingLLM on Needle-in-a-Haystack. The last column represents the KV-cache utilization rate.

6.4 CASE STUDY

To illustrate the reasoning process, we randomly sample one example from the LongBench summarization task, with its visualization results presented in Figure 9. As observed in the figure, during the generation phase, the chunks attended to by tokens within the same chunk demonstrate remarkably high consistency, corresponding to the highlighted bands in the visualization, whereas shifts in attention occur exclusively at chunk boundaries. This empirical observation validates the effectiveness of the proposed ICAC pattern.

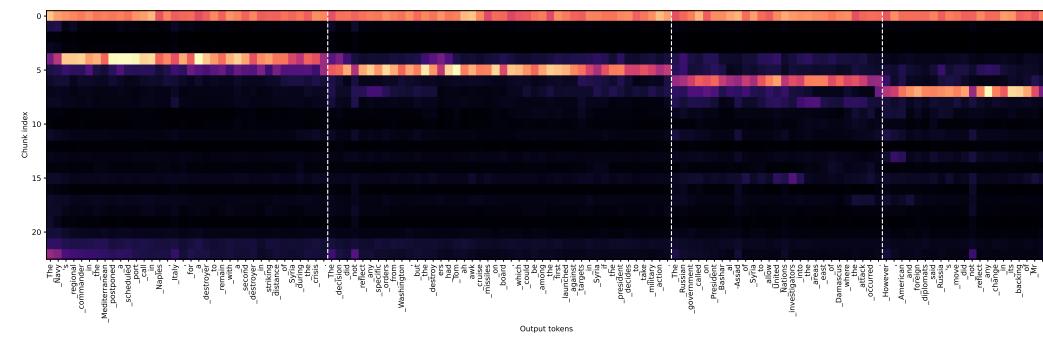


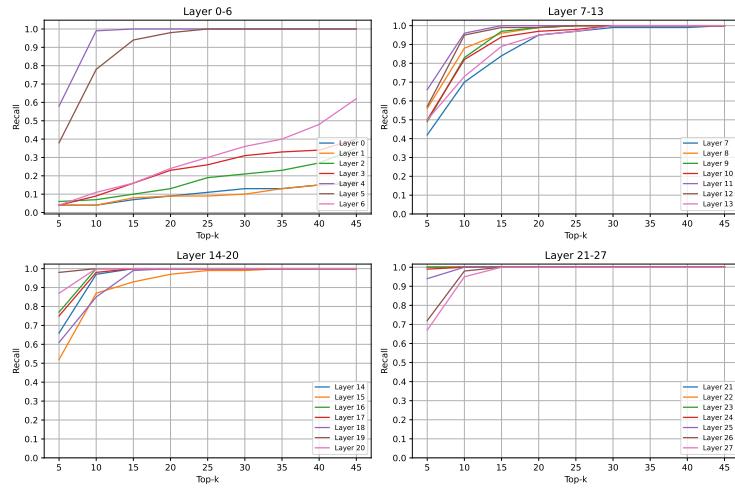
Figure 9: Case study of ICAC. The test case is from the LongBench summarization task.

6.5 TOP-K CHUNKS CROSS ALL LAYERS

Figure 10 presents the recall performance of top-k chunks across all layers based on Qwen2.5-7B. A consistent pattern emerges: the chunk recall rate in the lower layers (Layers 0–6) is relatively low, which we attribute to insufficient semantic representation. In contrast, the middle layers (Layers 7–20) demonstrate a notably higher chunk recall rate. Specifically, when top-k is set to 15, the recall rate of these middle layers exceeds 80%. This phenomenon, we contend, stems from the richer semantic representations inherent in the middle layers, coupled with the fact that our proposed attention distillation strategy effectively enhances the model’s chunk selection capability. Conversely, the chunk recall rate in the highest layers (Layers 21–27) exhibits a downward trend; we attribute this to the functional role of the highest layers, which are primarily dedicated to facilitating the model’s output generation. Notably, the chunk voting mechanism can effectively mitigate discrepancies between cross-layer chunks, and thereby enables the achievement of optimal performance.

810

811



(a) Qwen2.5-7B with 4K input length.

819

820

821

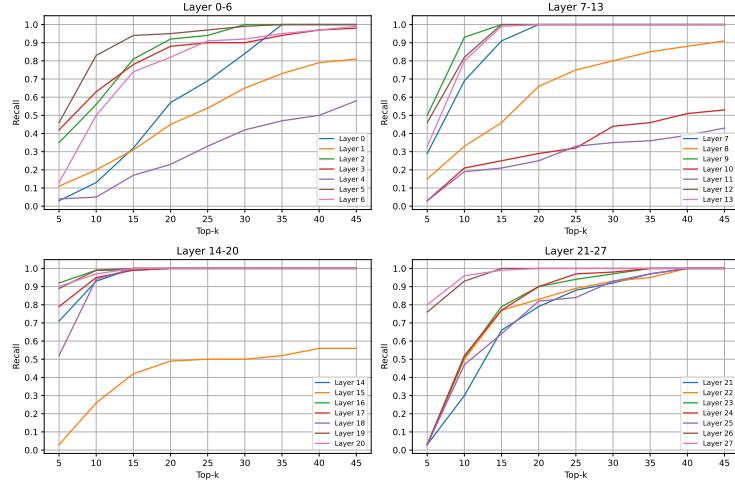
822

823

824

825

826



(b) ChunkLLM with 4K input length.

836

837

838

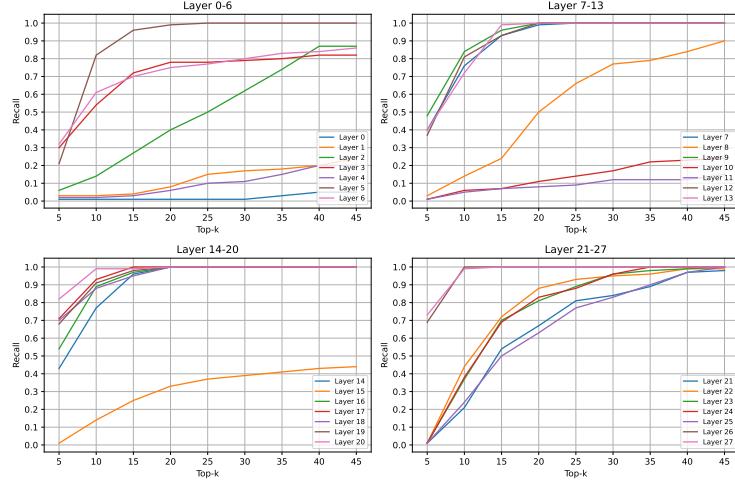
839

840

841

842

843



(c) ChunkLLM with 32K input length.

860

861

862

863