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ABSTRACT

The rapid progress of generative artificial intelligence has made AI-generated
image (AIGI) detection increasingly critical for digital forensics and trustwor-
thy media. Existing AIGI detectors are effective on raw images but lack robust-
ness against post-processing operations. Meanwhile, multimodal large language
models (MLLMs) have demonstrated strong general capabilities, but their direct
application to AIGI detection remains limited. To address these challenges, we
propose AIGID-RFT, a novel MLLM-based AI-generated image detector. Un-
like prior methods that rely on supervised fine-tuning, we adopt reinforcement
learning as the post-training paradigm and design verifiable rewards tailored for
the AIGI detection task, thereby unlocking the intrinsic potential of MLLMs. Fur-
thermore, we carefully design a Cross Layer Forensic Adapter, which is integrated
in parallel with the vision encoder to effectively exploit multi-level visual features
for enhanced detection performance. Our method requires only binary labels for
training, eliminating the need for costly text annotations. Extensive experiments
demonstrate that our method significantly outperforms existing AIGI detectors
under diverse post-processing operations that simulate real-world scenarios.

1 INTRODUCTION

In recent years, the rapid development of generative AI (Podell et al., 2023; Esser et al., 2024) has
enabled the generation of high-quality images, which have substantially enriched the content on
social media. However, these realistic AI-generated images can also facilitate misinformation and
opinion manipulation (Xu et al., 2023), which has raised widespread concerns about the authenticity
of visual content. Therefore, developing effective and robust detectors for AI-generated images is
critical to mitigating their potential misuse.

When images spread on social platforms, they often undergo varying degrees of compression and
resizing. Consequently, robustness to post-processing operations is critical for ensuring the reli-
ability of AI-generated image detectors in real-world scenarios. Some previous methods achieve
near-perfect performance on original images but are insufficiently evaluated under image degrada-
tion. We adopt the latest AIGIBench (Li et al., 2025c) as the primary evaluation benchmark. It
covers 25 sources of AI-generated images and provides comprehensive evaluation under various
post-processing operations. We evaluate the robustness of our proposed method and 11 state-of-the-
art detectors on AIGIBench, with a detailed analysis provided in Section 2. Experiments show that
under JPEG compression with a quality factor of 50, which simulates real-world scenarios, existing
detectors suffer a sharp performance drop, particularly in recall for AI-generated images. These re-
sults highlight a major limitation of existing methods: insufficient robustness to JPEG compression.

Multimodal large language models (MLLMs) demonstrate strong capabilities across various do-
mains and hold the potential for providing language-based explanations in image forensics
tasks (Zou et al., 2025). The LOKI benchmark (Ye et al., 2025) evaluates the performance of dif-
ferent MLLMs on AIGC detection, but results show that directly applying MLLMs for detection
performs poorly, as they lack effective recognition of AI-generated images. Reinforcement learning
(RL) as a post-training paradigm for LLMs has shown considerable potential. In particular, Group
Relative Policy Optimization (GRPO) (Shao et al., 2024), a reinforcement learning with verifiable

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

rewards (RLVR) method, computes rewards directly from model outputs, eliminating the need for
costly text annotations. Subsequent works (Chen et al., 2025; Liu et al., 2025) have extended GRPO
to multimodal LLMs (MLLMs), showing generalization capabilities on tasks such as image classi-
fication and object detection. However, RLVR-based MLLM post-training remains unexplored for
AI-generated image detection.

To address the robustness limitations of prior AIGI detectors and unlock the intrinsic potential of
MLLMs for AIGI detection, we propose AIGID-RFT, a novel MLLM-based AI-generated image
detector. Unlike previous methods that rely on supervised fine-tuning to provide MLLMs with
forensic capabilities (Li et al., 2025b; Wen et al., 2025; Zhou et al., 2025), we adopt reinforcement
learning as the post-training paradigm and design verifiable rewards tailored for the AIGI detection
task, thereby eliminating the dependence on costly text annotations. Furthermore, inspired by prior
works that enhance MLLMs using intermediate visual features (Cao et al., 2024; Yao et al., 2024),
we design a Cross Layer Forensic Adapter (CLFA), which is integrated in parallel with multiple
intermediate layers of the MLLM vision encoder. Multiple CLFAs share the same parameters and
process visual features from different intermediate layers separately. Their outputs are then added
back to the final visual feature of the encoder. This design enables the MLLM to fully leverage
multi-level visual features, thereby improving its performance in detecting AI-generated images.

Our main contributions are summarized as follows:

• We propose a novel method, AIGID-RFT, which utilizes reinforcement learning with verifi-
able rewards to guide MLLMs to effectively detect AI-generated images. Our method relies
only on “real/fake” labels for training, without requiring extensive textual annotations.

• We design the Cross Layer Forensic Adapter (CLFA) and integrate it in parallel into multi-
ple intermediate layers of the visual encoder, utilizing multi-level visual features to improve
detection performance.

• Extensive experiments demonstrate the effectiveness of our method for AIGI detection and
show that it significantly outperforms existing detectors under diverse post-processing condi-
tions simulating real-world scenarios.

2 RETHINKING THE ROBUSTNESS OF AI-GENERATED IMAGE DETECTORS

In this section, we systematically analyze existing AI-generated image detectors and identify a
key limitation: insufficient robustness to JPEG compression. We adopt the recently released AI-
GIBench (Li et al., 2025c) as the evaluation benchmark and evaluate the robustness of our proposed
AIGID-RFT along with 11 state-of-the-art detection methods. Further details on the dataset and
baselines are provided in Section 4.1.

These existing AIGI detectors typically train a binary classifier to distinguish between natural and
AI-generated images, which can be broadly categorized into two types: (1) CLIP-based detec-
tors (Ojha et al., 2023; Yan et al., 2025c) train a linear classifier on image embeddings extracted
by the CLIP visual encoder. (2) Artifact-based detectors focus on identifying characteristic artifacts
left by generators in images. For example, NPR (Tan et al., 2024b) captures artifacts caused by
upsampling operations in generators, while DFFreq (Yan et al., 2025a) and SAFE (Li et al., 2025a)
extract synthetic artifacts through frequency-domain analysis. Although these methods focu on dif-
ferent types of artifacts, their core idea is to utilize low-level image signals for detection.

Figure 1 shows the average fake accuracy on AIGIBench, illustrating the impact of JPEG compres-
sion on the performance of different AI-generated image detectors. The underlined methods rely on
low-level artifacts or texture features, making them highly sensitive to JPEG compression. Under
JPEG compression with a quality factor of 50, the fake accuracy of these artifact-based detectors
drops sharply, nearly to 0%, because compression significantly weakens the low-level artifacts left
by generative models. In contrast, CLIP-based detectors, such as CLIPD (Ojha et al., 2023) and
Effort (Yan et al., 2025c), utilize CLIP image embeddings and maintain reasonable detection per-
formance under JPEG compression. Notably, our proposed AIGID-RFT achieves better robustness
than previous methods under the same conditions.
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Figure 1: Robustness of AI-Generated Image Detectors under JPEG Compression.We report the
mean fake accuracy (i.e., the recall on AI-generated images) across all subsets on AIGIBench. Gray
bars represent original images, while pink bars represent JPEG-compressed images (quality = 50).
An underline indicates that the method involves low-level artifact or texture analysis.

3 METHOD

In this section, we propose AIGID-RFT, a novel method for detecting AI-generated images. As
shown in Figure 2, our model utilizes Qwen2.5-VL-7B-Instruct (Team, 2025) as the base model. We
further design the Cross Layer Forensic Adapter (CLFA) and integrate it in parallel into different
intermediate layers of the visual encoder, enabling the LLM to utilize multi-level visual features and
fully exploit the potential of MLLMs for AIGI detection. In the following subsections, we provide
a detailed description of each component of the model, as well as its reinforcement training and
inference phases.

3.1 OVERALL ARCHITECTURE OF AIGID-RFT

Our model follows the standard paradigm of multimodal large language models (MLLMs), “ViT-
MLP-LLM”, and consists of a visual encoder, an MLP projector, and a large language model. The
visual encoder adopts a Vision Transformer (ViT) (Dosovitskiy et al., 2020) architecture. The height
and width of the input image x are first resized to multiples of 28, then divided into 14× 14 patches
and processed by the visual encoder to obtain the image features:

Fimg = Ev(x), (1)

where Ev denotes the ViT visual encoder. The visual features extracted by the ViT are mapped
through the projector to align with the LLM text embedding dimensions, while the question text q
is encoded by a tokenizer:

Timg = Ep(Fimg), Ttext = Et(q), (2)

where Ep denotes the projector and Et denotes the tokenizer. The visual tokens and text tokens are
then fed into the LLM to generate the final textual output:

o = LLM(Timg,Ttext), (3)

where LLM denotes the large language model, and o is its output, which contains both the reasoning
process for the input image and the final authenticity classification “real/fake”.

3.2 CROSS LAYER FORENSIC ADAPTER

We design the Cross Layer Forensic Adapter (CLFA) and integrate it in parallel into the intermediate
layers of the visual encoder, enabling the model to leverage multi-level visual features and improve
its performance in AI-generated image detection tasks. Specifically, the visual encoder of Qwen2.5-
VL can be divided into four blocks, each containing several window attention layers and one full
attention layer.We denote the output of each block as Fi

img, i = 1, . . . , 4, where F4
img corresponds to

the original final output features of visual encoder. We integrate the CLFA in parallel across different
blocks of the visual encoder. Concretely, the output features of the intermediate blocks are fed into
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Figure 2: Overall architecture of AIGID-RFT. We adopt Qwen2.5-VL-7B as the base model, and
we introduce a Cross Layer Forensic Adapters (CLFA) which is integrated in parallel with the ViT
backbone to fully leverage multi-level visual features. The entire model is trained end-to-end with
GRPO, aiming to fully exploit its potential for AIGI detection. During inference, we compute the
probabilities of real and fake based on the logits of the corresponding tokens.

these shared-parameter CLFAs, and their outputs are added to the final visual encoder features to
obtain the enhanced image features:

Fimg = F4
img +

3∑
i=1

CLFA(Fi
img), (4)

where CLFA denotes our proposed Cross Layer Forensic Adapter, implemented as an MLP network
containing a LayerNorm (Zhang & Sennrich, 2019) followed by two linear layers. The obtained
Fimg contains multi-level features from the visual encoder, enabling more comprehensive capture of
patterns specific to AI-generated images.

Previous works that utilize intermediate features from visual encoders (Cao et al., 2024; Yao et al.,
2024) require modifications to the model architecture and additional pretraining, whereas our CLFA
is integrated as an adapter on the original model, enabling direct end-to-end reinforcement learning.

3.3 TRAINING PHASE

We adopt Group Relative Policy Optimization (GRPO) (Shao et al., 2024) as our reinforcement
learning strategy and design verifiable rewards for the AI-generated image detection task to train
our model end-to-end.

Group Relative Policy Optimization For each question q, GRPO samples G outputs
{o1, o2, . . . , oG} from the old policy πθold , and optimizes the policy model by maximizing the fol-
lowing objective:

J(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
wi,t(θ)Âi,t, clip (wi,t(θ), 1− ϵ, 1 + ϵ) Âi,t

]
− βDKL [πθ||πref ]

}
,

(5)

where ϵ controls the clipping range, β is the coefficient of the KL-divergence penalty, wi,t(θ) is the
importance sampling ratio, and Âi,t is the relative advantage computed from the reward function.
wi,t(θ) and Âi,t are defined as:

wi,t(θ) =
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, Âi,t =

r(q, oi)−mean
(
{r(q, oi)}Gi=1

)
std

(
{r(q, oi)}Gi=1

) , (6)
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where r(q, oi) denotes the reward function, which includes a format reward and an accuracy reward.

Format Reward The format reward encourages the model to follow a structured reasoning pro-
cess. It guides the model to output its reasoning process within <think> and </think> tags, and
to include the final authenticity judgment “real/fake” within <answer> and </answer> tags. If
the model outputs the correct format, the format reward rformat is set to 1; otherwise, it is 0.

Accuracy Reward To support AI-generated image detection, we adopt a detection reward based
on consistency between the predicted and ground truth classes. Specifically, if the class predicted
by the model between <answer> and </answer> matches the ground truth, the accuracy reward
raccuracy is set to 1; otherwise, it is 0.

The final reward function is defined as:

r(q, o) = rformat + raccuracy. (7)

Our method uses verifiable rewards, requiring only images and labels as training data, thereby elim-
inating the need for extensive textual annotations required by SFT.

3.4 INFERENCE PHASE

During inference, we take the class predicted by the model between <answer> and </answer>
as the final prediction and use it to compute accuracy. To further obtain the model’s classification
confidence, we extract the output logits for the “real” and “fake” label tokens at this position, denoted
as zreal and zfake. We then apply the softmax function to these two logits to obtain normalized
classification probabilities, where the predicted probability for the “fake” label is defined as:

pfake =
exp(zfake)

exp(zreal) + exp(zfake)
, (8)

where exp(·) denotes the exponential function ex. The probability pfake serves as the confidence
score for computing the Average Precision (A.P.) in subsequent evaluations.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Benchmark and Baselines. We compare our method with 11 state-of-the-art AI-generated image
detection methods on the recently proposed AIGIBench (Li et al., 2025c). AIGIBench contains 25
subsets, covering AI-generated images from different generators as well as images generated on
social media platforms. This benchmark provides a comprehensive evaluation of our method’s gen-
eralization to unseen generators and robustness under various image post-processing conditions. The
compared detectors include: CNND (Wang et al., 2020), Gram-Net (Liu et al., 2020), LGrad (Tan
et al., 2023), CLIPD (Ojha et al., 2023), FreqNet (Tan et al., 2024a), NPR (Tan et al., 2024b),
LaDeDa (Cavia et al., 2024), DFFreq (Yan et al., 2025a), AIDE (Yan et al., 2025b), SAFE (Li et al.,
2025a), and Effort (Yan et al., 2025c). We retrain Effort (Yan et al., 2025c) on the AIGIBench train-
ing set using the official code, while results for the other methods are cited from the AIGIBench
paper. In addition, we evaluate on the image judgement task of the LOKI Benchmark (Ye et al.,
2025) and compare with 20 multimodal large language models (MLLMs). We additionally test
Qwen2.5-VL-7B, while results for other models are cited from the original LOKI paper.

Metrics. Following prior work and AIGIBench (Li et al., 2025c), we use classification accuracy
(Acc.) and average precision (A.P.) as our primary evaluation metrics. In addition, we decompose
accuracy into two complementary components: R.Acc and F.Acc, which correspond to the detec-
tor’s accuracy on real images and AI-generated images, respectively. These metrics provide a more
detailed and informative assessment of the detector’s effectiveness.

Implementation Details. We use Qwen2.5-VL-7B-Instruct (Team, 2025) as the base model. To
construct the GRPO training set, we randomly sample 2,000 images from the official training set
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Table 1: Comparison with state-of-the-art AI-generated image detectors on AIGIbench. The table
reports the Average Precision (A.P.) for each of the 25 subsets, and the mean A.P. across all subsets.
All methods are trained on the same dataset containing images from SD-v1.4 and ProGAN. The best
and the second-best mean performance are indicated by bold and underline, respectively.

Method CNND Gram-net LGrad CLIPD FreqNet NPR DFFreq LaDeDa AIDE SAFE Effort Ours
Year 2020 2020 2023 2023 2024 2024 2024 2025 2025 2025 2025 2025

Diffusion for Text-to-Image Generation
FLUX1-dev 72.3 75.1 88.1 79.5 87.3 99.0 86.3 98.7 93.4 99.7 81.2 96.6
Midjourney-V6 59.8 41.6 64.5 61.5 55.9 76.9 68.1 86.9 83.0 98.4 77.4 94.6
GLIDE 60.0 84.3 91.0 80.3 77.4 94.3 96.3 95.0 97.7 97.9 93.5 83.9
DALLE-3 68.6 61.1 62.7 76.3 61.0 70.0 58.6 59.8 63.1 45.8 82.7 99.6
Imagen3 57.4 54.7 69.7 79.3 80.7 94.4 87.3 97.2 95.2 98.8 74.7 98.4
SD3 73.1 60.0 72.1 87.2 82.6 97.2 90.8 98.7 98.3 98.8 91.9 98.3
SDXL 64.2 76.9 82.8 88.0 95.2 94.4 95.8 98.5 95.7 99.7 91.9 99.9
BLIP 92.9 99.9 97.4 95.8 100.0 100.0 99.6 99.9 95.5 100.0 99.9 98.1
Diffusion for Personalized Generation

Infinite-ID 49.5 60.1 54.6 89.6 74.5 80.4 82.7 76.9 94.7 99.2 98.7 99.8
InstantID 80.2 85.7 81.5 93.5 86.3 79.2 97.2 90.4 96.3 99.6 99.0 99.2
IP-Adapter 65.8 64.2 78.3 87.3 79.9 91.7 91.3 94.3 95.4 98.1 91.0 95.9
PhotoMaker 58.2 58.6 67.2 72.3 74.9 43.6 94.0 90.7 95.6 99.3 82.3 90.8
GAN-based Noise-to-Image Generation
ProGAN 99.9 100.0 99.8 99.9 100.0 100.0 100.0 100.0 99.6 100.0 100.0 97.3
R3GAN 52.7 52.5 58.7 91.2 56.8 61.1 74.0 72.6 97.1 98.2 95.8 73.6
StyleGAN3 73.1 77.9 80.5 84.5 92.4 91.7 96.4 96.9 91.4 97.6 94.9 98.7
StyleGAN-XL 64.2 83.7 74.6 93.3 84.1 75.3 83.4 98.5 93.2 97.6 93.7 81.4
StyleSwim 76.5 86.0 90.0 95.2 91.8 94.9 92.9 98.5 89.3 99.6 99.7 91.8
WFIR 50.0 43.9 49.4 82.0 48.9 65.5 82.2 86.9 90.8 81.8 93.8 90.2
GANs for Deepfake
BlendFace 73.4 33.3 34.9 35.3 34.1 34.7 35.2 42.1 54.2 45.6 40.4 44.4
E4S 68.9 32.5 32.8 57.1 34.7 34.4 34.8 49.3 44.3 46.0 56.7 64.1
FaceSwap 58.7 34.6 37.5 52.4 43.4 43.6 45.6 40.9 56.3 45.7 59.9 58.2
InSwap 77.9 38.0 35.0 40.2 42.1 40.7 41.2 47.4 54.6 49.9 51.3 50.0
SimSwap 70.0 36.4 37.6 40.4 41.9 42.7 43.8 42.3 62.7 49.5 58.4 57.5
Open-source Platforms
SocialRF 50.6 53.0 54.9 55.2 58.1 68.4 63.3 68.3 65.0 64.2 57.1 98.9
CommunityAI 59.1 66.1 69.4 73.2 69.7 62.9 52.1 56.3 61.0 55.2 60.1 87.0

Mean A.P. (%) 67.1 62.4 66.6 75.6 70.1 73.9 75.7 79.3 82.7 82.6 81.0 85.9

of AIGIBench, which consists of images generated by SDv1.4 (Rombach et al., 2022) and Pro-
GAN (Karras et al., 2018). Our proposed CLFA contains an RMSNorm (Zhang & Sennrich, 2019)
and two linear layers of dimensions (1280, 80) and (80, 1280), and it is integrated into layers in-
dexed by {7,15,23} of the visual encoder. We train the model end-to-end, fully training the CLFA
parameters while fine-tuning all linear layers of the MLLM using LoRA (Hu et al., 2022) (rank =
16, α = 32). In total, 96.6M parameters are involved in training. The model is trained for 1 epoch
with a learning rate of 2e-4, batch size of 8, G = 4, ε = 0.2, β = 0.04, and temperature 0.9. Exper-
iments use a fixed random seed of 42, and training on two A100 GPUs takes approximately 3 hours.
These hyperparameters are set empirically; although we do not conduct hyperparameter ablation,
the model trained with this configuration already achieves state-of-the-art performance. Notably, we
do not apply any data augmentation to the training data to ensure fair comparison.

4.2 GENERALIZATION TO UNSEEN GENERATIVE MODELS

We compare our method with 11 state-of-the-art AI-generated image detectors on AIGIBench (Li
et al., 2025c). All detectors are trained on the same AIGIBench training set, which contains images
generated by SD-v1.4 (Rombach et al., 2022) and ProGAN (Karras et al., 2018). Testing is con-
ducted on 25 subsets covering a variety of generator types, focusing on the detectors’ generalization
to image sources unseen during training. Table 1 reports the Average Precision (A.P.) for each sub-
set. Our method achieves a mean A.P. of 85.9%, surpassing the previous SOTA method AIDE (Yan
et al., 2025b) by 3.2%. For images generated by different diffusion models, our method consistently
maintains high performance. Notably, on DALLE-3 generated images, our method achieves 99.6%
A.P., significantly outperforming previous methods and demonstrating strong generalization to un-
seen generation sources. For GAN-based deepfake images, our method shows relatively limited per-
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Table 2: Comparison with state-of-the-art MLLM on image modality of LOKI benchmark. We
report the accuracy (%) on each subset and the overall accuracy. * denotes the closed-source models.

Method Overall Scene Animal Person Object Medicine Doc Satellite

Claude-3.5-Sonnet* 53.6 51.6 51.6 55.2 51.4 51.9 59.1 50.9
Gemini-1.5-Pro* 43.5 53.7 35.7 51.5 30.3 50.0 47.2 38.1
GPT-4o* 63.4 70.1 69.7 84.4 70.3 54.3 60.1 45.0

MiniCPM-V-2.6 44.8 52.0 34.4 53.1 31.5 53.8 51.5 38.3
Phi-3.5-Vision 52.5 50.8 41.7 71.5 34.1 57.3 54.3 60.5
LLaVA-OneVision-7B 49.8 59.2 41.9 58.1 37.3 52.3 53.0 50.1
InternLM-XComposer2.5 46.4 52.7 40.0 56.7 32.5 56.1 49.8 38.2
mPLUG-Owl3-7B 45.9 52.1 37.3 52.9 31.4 55.3 53.8 38.1
Qwen2-VL-7B 47.8 54.7 38.9 57.9 30.3 56.0 59.6 36.9
LongVA-7B 46.2 57.6 37.4 52.5 34.1 54.4 49.8 39.7
Mantis-8B 54.6 54.9 52.2 54.8 53.5 53.1 51.9 63.3
Idefics2-8B 45.0 51.8 35.3 52.3 29.2 52.3 53.9 40.6
InternVL2-8B 49.7 58.8 39.4 54.4 37.8 53.9 60.2 44.2
Llama-3-LongVILA-8B 49.8 49.8 50.5 50.6 47.2 50.0 49.9 50.0
VILA1.5-13B 49.3 52.0 38.6 54.2 31.0 50.1 56.6 62.4
InternVL2-26B 44.3 51.6 35.4 50.8 28.2 51.3 54.4 37.6
VILA1.5-40B 48.8 53.7 39.3 50.0 33.4 52.5 59.9 50.6
InternVL2-40B 49.6 55.7 37.3 59.2 34.8 55.5 64.8 40.8
Qwen2-VL-72B 53.2 55.9 43.4 66.9 38.0 55.9 73.7 38.2
LLaVA-OneVision-72b 46.3 54.7 31.6 53.1 27.8 52.1 67.9 36.6
Qwen2.5-VL-7B 53.8 53.7 53.2 55.6 51.9 54.3 58.5 50.9
Ours 69.1 71.3 84.1 66.3 85.5 53.3 52.6 62.9

formance, which is expected due to the significant differences between such face-swap images and
fully generated images in the training set. Importantly, the SocialRF and CommunityAI subsets con-
tain synthetic images from social platforms and art communities, respectively. Our method achieves
98.9% and 87.0% A.P. on these subsets, further validating its effectiveness in real-world scenarios.
Additionally, we report accuracy metrics on AIGIBench in Appendix B, where our method achieves
mean accuracy comparable to previous SOTA methods.

Table 2 presents the performance comparison of our method with existing multimodal large language
models (MLLMs) on the image judgement task of the LOKI Benchmark (Ye et al., 2025). Overall
accuracy is calculated as a weighted average, where the weights correspond to the number of images
in each subset. Our method uses Qwen2.5-VL-7B as the base model and undergoes reinforcement
fine-tuning on the AIGIBench training set, while results for other MLLMs reflect their zero-shot
performance. Our method achieves an overall accuracy of 69.1%, surpassing the current state-of-
the-art MLLM GPT-4o by 5.7% and improving 15.3% over the base model. On the Scene, Animal,
and Object subsets, our method achieves the highest accuracy. This comparison demonstrates that
our method effectively elicit the intrinsic potential of MLLMs, enabling more effective AI-generated
image detection for unseen generative models.

4.3 ROBUSTNESS UNDER VARIOUS IMAGE DEGRADATIONS

Table 3 presents the robustness evaluation results on AIGIBench, including JPEG compression,
Gaussian noise, and up/down-sampling. Specifically, we apply JPEG compression with a quality
factor of 50 to simulate compression artifacts; add Gaussian noise with standard deviation σ = 4;
and downsample the images to half of their original size using nearest-neighbor interpolation, then
upsample back to the original resolution to simulate practical sampling processes. Overall, our
method maintains the best detection performance under various image post-processing conditions.
Notably, the performance of all AI-generated image detectors drops significantly under JPEG com-
pression. Only the CLIP-based detectors CLIPD (Ojha et al., 2023) and Effort (Yan et al., 2025c)
retain a certain level of F.Acc. Artifact-based detectors see their detection accuracy on AI-generated
images (F.Acc.) fall close to 0%. These detectors rely on unique textures left by generators in im-
ages to detect AI content, but JPEG compression substantially weakens these artifacts. Our method
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Table 3: The overall robust performance of AI-generated image detectors in real- world scenarios.
We report the average performance, averaged across all subsets of AIGIBench. R.Acc and F.Acc
denote real accuracy (on natural images) and fake accuracy (on AI-generated images), respectively.

Method Origin JPEG Compression Gaussian Noise Up-down Sampling

R.Acc F.Acc Acc A.P. R.Acc F.Acc Acc A.P. R.Acc F.Acc Acc A.P. R.Acc F.Acc Acc A.P.

CNND 98.2 11.6 55.1 67.0 94.3 17.2 55.8 63.7 97.7 2.6 50.2 47.0 99.8 1.8 50.8 56.7
Gram-net 90.5 26.6 58.6 62.4 99.6 1.2 50.4 55.8 95.4 10.6 53.0 60.5 91.2 25.1 58.2 63.9
LGrad 85.8 39.6 62.9 66.6 95.9 7.3 51.6 54.6 91.9 17.5 54.7 60.0 86.5 57.2 71.9 80.3
CLIPD 73.3 71.5 72.5 75.6 91.1 33.0 62.1 71.6 78.3 58.7 68.5 72.2 77.0 66.6 71.8 75.0
FreqNet 65.9 66.4 66.2 70.1 99.5 1.4 50.5 53.0 73.7 48.5 61.1 66.2 74.7 63.1 68.9 73.2
NPR 93.8 41.9 67.9 73.9 100.0 0.2 50.1 59.2 98.5 6.2 52.4 68.5 94.8 34.3 64.6 81.0
DFFreq 89.6 51.9 71.1 75.7 100.0 0.1 50.1 58.8 86.3 32.2 59.3 69.0 91.8 41.9 66.9 75.3
LaDeDa 91.7 54.9 73.4 79.3 100.0 0.0 50.0 61.6 98.8 2.6 50.7 68.5 92.2 46.6 69.4 84.5
AIDE 88.1 67.0 77.6 82.7 98.9 1.5 50.2 50.3 93.0 22.4 57.7 72.5 74.8 27.4 51.1 55.1
SAFE 96.8 63.0 79.9 82.6 100.0 0.0 50.0 48.7 100.0 1.2 50.6 46.9 100.0 16.2 58.1 73.5
Effort 84.6 65.7 75.2 81.0 98.3 31.2 64.7 75.1 91.0 49.3 70.2 80.2 75.4 72.0 73.7 80.0
Ours 91.9 67.7 79.8 85.9 98.9 39.7 69.3 81.7 93.0 58.7 75.8 84.0 84.8 65.4 75.1 82.1

Table 4: Ablation study of key components. Experiments are conducted on AIGIBench, and we
report the mean performance across all subsets. LoRA F.T. denotes LoRA fine-tuning, while an em
dash (——) indicates that the module is frozen. All other training settings are kept the same.

Method CLFA ViT Projector LLM R.Acc. F.Acc. Acc. A.P.
1 Zero-Shot —— —— —— —— 93.1 35.2 64.2 77.4
2 +SFT —— —— LoRA F.T. LoRA F.T. 62.5 76.4 69.5 75.8
3 +GRPO —— —— LoRA F.T. LoRA F.T. 91.2 59.2 75.2 82.1
4 +GRPO —— LoRA F.T. LoRA F.T. LoRA F.T. 91.5 65.4 78.5 84.7
5 +GRPO ✓ LoRA F.T. LoRA F.T. LoRA F.T. 91.9 67.7 79.8 85.9

utilizes the visual encoder of the MLLM, allowing it to better resist JPEG compression, highlighting
its robustness and reliability in real-world scenarios.

4.4 ABLATION STUDIES

In this section, we conduct an ablation study on the key components of our method. Table 4 presents
the ablation results on AIGIBench. The first row corresponds to the zero-shot performance of the
base model Qwen2.5-VL-7B, which shows relatively low accuracy (35.2%) on AI-generated image
detection. In the second and third rows, we apply supervised fine-tuning (SFT) and GRPO, respec-
tively, with LoRA applied to the projector and LLM. Both methods only access input images and
their ground-truth labels “real/fake” during training. We observe that SFT tends to overfit to im-
ages in the training set, whereas GRPO promotes better generalization. In the fourth and fifth rows,
we successively incorporate LoRA fine-tuning on the ViT and our designed Cross-Layer Forensic
Adapter (CLFA). Parallel integration of CLFA in the visual encoder allows the model to fully lever-
age multi-level visual features for image authenticity judgment, achieving the best performance with
79.8% Acc. and 85.9% A.P. In Appendix C, we further compare our CLFA with a direct additive
fusion of ViT intermediate features. In Appendix D, we conduct ablation experiments on the base
model, showing that our method is effective across different model sizes.

4.5 CASE STUDIES

We conduct a case study to gain deeper insights into our model’s behavior. In Figure 3a, the model
successfully captures subtle reasoning cues that indicate an image is AI-generated, allowing it to
correctly classify the image as fake. In contrast, Figure 3b shows a failure case, where the model
incorrectly classifies an AI-generated image as real. This error highlights the challenges faced by
current AIGI detectors, particularly when synthetic images exhibit highly realistic textures and lacks
obvious visual flaws. This analysis clarifies the strengths and limitations of our method and offers
directions for developing more robust detectors in real-world scenarios.
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Ground Truth: fake

<think> The image appears to be of a real person based on the natural skin 
texture, facial features, and overall composition. There are no obvious signs 
of digital manipulation or artificial elements that would suggest it is 
AI-generated. The lighting and shadows also seem consistent with a 
real photograph.</think>
<answer> real </answer> fake_prob: 0.0025

Ground Truth: fake

<think> The image depicts a sea slug with vibrant colors and intricate details, 
which are characteristic of many real sea slugs found in nature. However, 
the level of detail and the way the light interacts with the slug's surface 
suggest a high level of realism that could be achieved through advanced 
digital rendering techniques. The background also appears to be a natural 
underwater environment, but the clarity and sharpness of the image give it 
a slightly artificial look.</think>  
<answer> fake </answer> fake_prob: 0.9922

(a) Success case: The model detects AI-generated clues and classifies the image as AI-generated.

Ground Truth: fake

<think> The image appears to be of a real person based on the natural skin 
texture, facial features, and overall composition. There are no obvious signs 
of digital manipulation or artificial elements that would suggest it is 
AI-generated. The lighting and shadows also seem consistent with a 
real photograph.</think>
<answer> real </answer> fake_prob: 0.0025

Ground Truth: fake

<think> The image depicts a sea slug with vibrant colors and intricate details, 
which are characteristic of many real sea slugs found in nature. However, 
the level of detail and the way the light interacts with the slug's surface 
suggest a high level of realism that could be achieved through advanced 
digital rendering techniques. The background also appears to be a natural 
underwater environment, but the clarity and sharpness of the image give it 
a slightly artificial look.</think>  
<answer> fake </answer> fake_prob: 0.9922

(b) Failure case: The model misses AI-generated clues and mistakenly classifies the image as real.

Figure 3: Case studies of our method on success and failure cases.

5 RELATED WORK

5.1 AI-GENERATED IMAGE DETECTION

Previous non-MLLM AI-generated image detection methods (Wang et al., 2020; Liu et al., 2020;
Tan et al., 2023) mostly train a binary classifier to distinguish between natural and AI-generated
images. CLIP-based detectors (Ojha et al., 2023; Yan et al., 2025c) train a linear classifier on image
embeddings extracted by a CLIP visual encoder. Artifact-based detectors (Tan et al., 2024b; Yan
et al., 2025a; Li et al., 2025a) first extract artifact representations from low-level image signals and
then train a binary classifier on these representations. AIDE (Yan et al., 2025b) combine a CLIP
branch with an artifact extraction branch to integrate the two types of detectors. Recently, Li et al.
(2025b); Wen et al. (2025); Zhou et al. (2025) enhance MLLMs’ AIGI detection ability through
supervised fine-tuning, but these methods require costly and time-consuming textual annotations.

5.2 POST-TRAINING OF MULTIMODAL LARGE LANGUAGE MODELS

In recent years, Multimodal Large Language Models (MLLMs) have demonstrated strong capa-
bilities across various domains, and post-training methods such as supervised fine-tuning (SFT)
and reinforcement learning (RL) have rapidly developed. DeepSeekMath (Shao et al., 2024) in-
troduces Group Relative Policy Optimization (GRPO), a variant of Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017), which effectively enhances LLM reasoning abilities. Recent
works (Chen et al., 2025; Liu et al., 2025) extend GRPO to MLLMs, showing generalization po-
tential on tasks such as image classification and object detection; however, visual reinforcement
learning for AIGI tasks remains underexplored.

6 CONCLUSION

We propose AIGID-RFT, a novel MLLM-based method for AI-generated image detection. By intro-
ducing CLFA and GRPO, our method fully utilizes multi-level features from the visual encoder and
unlocks the intrinsic AIGI detection potential of MLLMs. Extensive experiments on AIGIBench
demonstrate that existing detectors possess some generalization ability but lack robustness, whereas
our method maintains optimal performance under various image degradation conditions. Although
AI-generated image detection remains far from solved, our method lays the foundation for building
more reliable detectors.
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A PROMPT USED IN OUR METHOD

In our method, we use the following prompt during training and testing on AIGIBench. For evalua-
tion on the LOKI benchmark, we strictly follow its official code and prompts.

Prompt

This is an image. Please identify whether the image is real or AI-generated. Output the
thinking process in <think> </think> and final answer in <answer> </answer> tags.
The output answer format should be as follows:
<think> ... </think> <answer>real|fake</answer> Please strictly follow the format.

B ACCURACY RESULTS ON AIGIBENCH

Table 5: Comparison with state-of-the-art AI-generated image detectors on AIGIbench. The table
reports the accuracy (Acc.) for each of the 25 subsets, and the mean accuracy across all subsets. All
methods are trained on the same dataset containing images from SD-v1.4 and ProGAN. The best
and the second-best performance are indicated by bold and underline, respectively.

Method CNND Gram-net LGrad CLIPD FreqNet NPR DFFreq LaDeDa AIDE SAFE Effort Ours
Year 2020 2020 2023 2023 2024 2024 2024 2025 2025 2025 2025 2025

Diffusion for Text-to-Image Generation
FLUX1-dev 57.4 64.5 80.4 80.0 78.5 95.2 76.6 94.6 88.0 98.1 75.4 93.6
Midjourney-V6 52.3 43.9 60.4 65.3 53.9 68.8 64.6 80.3 76.4 94.1 73.8 88.1
GLIDE 51.1 71.6 82.4 76.7 75.8 82.5 88.5 87.1 93.4 92.5 83.6 70.3
DALLE-3 53.9 53.5 57.2 75.1 66.2 57.1 51.8 50.1 55.1 49.0 77.0 95.0
Imagen3 51.2 50.6 62.2 78.9 73.6 85.9 75.7 91.6 89.8 96.7 65.6 96.0
SD3 55.8 52.5 63.4 84.5 77.3 91.9 81.3 95.1 94.3 94.1 82.4 96.5
SDXL 52.8 63.8 73.6 84.7 82.7 86.6 88.9 94.7 93.5 98.3 79.3 96.5
BLIP 77.2 98.6 93.0 88.6 93.8 99.2 97.9 99.0 96.4 99.7 98.0 99.0
Diffusion for Personalized Generation

Infinite-ID 49.7 50.6 50.9 84.5 79.0 63.9 70.4 61.5 92.2 96.9 92.2 95.0
InstantID 53.2 75.1 72.6 85.4 79.8 63.8 91.9 86.5 91.8 98.2 92.2 93.6
IP-Adapter 52.0 54.5 70.3 82.6 78.8 82.4 83.2 90.8 90.0 92.8 87.5 91.6
PhotoMaker 50.1 50.1 59.9 69.3 77.0 48.1 88.0 78.4 91.7 97.0 76.6 86.1
GAN-based Noise-to-Image Generation
ProGAN 97.6 98.5 96.6 98.4 99.3 99.4 98.1 99.8 97.2 100.0 100.0 90.1
R3GAN 50.4 47.9 54.4 83.5 62.3 50.8 61.7 54.8 92.9 93.9 90.2 57.9
StyleGAN3 55.8 65.6 70.5 79.6 83.0 78.4 90.1 92.4 88.1 89.7 87.9 92.6
StyleGAN-XL 52.8 72.9 65.7 84.6 79.8 60.3 73.7 94.7 88.7 93.1 92.6 68.8
StyleSwim 52.6 75.5 81.3 86.4 80.8 85.7 84.5 94.0 83.7 97.8 94.5 88.2
WFIR 49.8 44.5 51.7 70.0 58.5 51.6 74.6 58.5 71.4 60.4 85.5 83.7
GANs for Deepfake
BlendFace 52.4 42.3 41.8 35.0 23.3 44.5 41.5 42.4 51.5 47.3 41.4 44.1
E4S 51.1 42.5 41.5 57.0 25.8 45.0 42.1 42.9 44.3 47.6 49.6 59.4
FaceSwap 50.3 47.0 45.3 53.1 40.4 48.1 47.6 47.1 52.1 50.7 48.8 50.0
InSwap 54.5 47.1 44.6 43.7 37.5 47.8 47.0 47.0 50.9 49.7 48.0 49.5
SimSwap 52.1 46.7 44.2 43.7 36.5 47.4 45.6 46.3 54.9 49.0 52.3 49.5
Open-source Platforms
SocialRF 51.1 52.1 53.5 54.4 54.2 59.1 57.6 58.6 57.8 58.0 53.1 94.6
CommunityAI 51.3 52.6 55.5 67.0 55.9 54.0 54.5 54.5 54.1 54.2 51.6 67.8

Mean Acc. 55.1 58.6 62.9 72.5 66.2 67.9 71.1 73.4 77.6 79.9 75.2 79.8

Table 5 reports the accuracy on each subset of AIGIBench. Our method achieves a mean accuracy
of 79.8%, which is comparable to the previous method SAFE (Li et al., 2025a). Note that this
performance is on the original images; under various post-processing operations, our method clearly
surpasses previous methods.
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C COMPARISON BETWEEN CLFA AND DIRECT ADDITIVE FUSION

We further conduct an ablation study on CLFA by comparing it with direct addition fusion, as shown
in Table 6. Specifically, “direct addition fusion” directly adds the intermediate features to the final
image features:

Fimg = F4
img +

3∑
i=1

Fi
img. (9)

In contrast, our proposed CLFA adapts the intermediate features before integration, thereby achiev-
ing better detection performance.

Table 6: Comparison between CLFA and direct additive fusion on AIGIBench

Method R.Acc. F.Acc. Acc. A.P.
direct addition fusion 91.3 65.1 78.2 84.8

CLFA (Ours) 91.9 67.7 79.8 85.9

D ABLATION STUDY OF DIFFERENT MODEL SIZES

Ablation experiments on different base models are presented in Table 7, showing that our method is
effective across models of various sizes.

Table 7: Ablation study of different model sizes on AIGIBench

Method R.Acc. F.Acc. Acc. A.P.
Qwen2.5-VL-3B (zero-shot) 78.5 44.6 61.5 67.3

Qwen2.5-VL-3B+Ours 82.5 69.1 75.8 83.9
+14.3 +16.6

Qwen2.5-VL-7B (zero-shot) 93.1 35.2 64.2 77.4
Qwen2.5-VL-7B+Ours 91.9 67.7 79.8 85.9

+15.6 +8.5

E COMPARISON BETWEEN THINK AND NO-THINK

In Table 8, we conduct an ablation study on the inference process. Using the prompt below, we
instruct the model to output only the answer without generating the content between the <think>
tag. This experiment demonstrates that including the reasoning process can improve the accuracy of
AI-generated image detection.

Prompt no think

This is an image. Determine if it is real or AI-generated.
Output the final decision only inside <answer>... </answer> tags.
The valid outputs are exactly one of the following:
<answer>real</answer> <answer>fake</answer>
Do not output any reasoning or explanations.

Table 8: Comparison between think and no-think

Method R.Acc. F.Acc. Acc. A.P.
no-think 94.8 62.8 78.8 85.3

think (Ours) 91.9 67.7 79.8 85.9
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F ETHICS STATEMENT

Ethics Statement This work uses only publicly available datasets and does not involve human sub-
jects or sensitive personal data. The goal is to improve AI-generated image detection for digital
forensics and trustworthy media, thereby mitigating risks of misinformation and malicious synthetic
content.

G REPRODUCIBILITY STATEMENT

We fix the random seed to 42 in all experiments, and all datasets used in this work are publicly
available. Implementation details and hyperparameters are provided in Section 4.1. If the paper is
accepted, we will release the complete code and models to further support reproducibility.

H LIMITATION

Due to computational constraints, we experiment with models up to 7B parameters and apply LoRA
fine-tuning to reduce memory usage. Additionally, since our method is based on MLLMs, inference
is slower compared to previous non-MLLM methods. This work mainly focuses on detection per-
formance and robustness, while a deeper analysis of the model’s reasoning process is left for future
work.

I LLM USAGE STATEMENT

In this paper, we use LLMs solely to improve grammar and wording.
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