
Block-Biased Mamba for
Long-Range Sequence Processing

Annan Yu
Center for Applied Mathematics

Cornell University
Ithaca, NY 14853

ay262@cornell.edu

N. Benjamin Erichson
Lawrence Berkeley National Laboratory
International Computer Science Institute

Berkeley, CA 94720
erichson@icsi.berkeley.edu

Abstract

Mamba extends earlier state space models (SSMs) by introducing input-dependent
dynamics, and has demonstrated strong empirical performance across a range of
domains, including language modeling, computer vision, and foundation models.
However, a surprising weakness remains: despite being built on architectures
designed for long-range dependencies, Mamba performs poorly on long-range
sequential tasks. Understanding and addressing this gap is important for improving
Mamba’s universality and versatility. In this work, we analyze Mamba’s limitations
through three perspectives: expressiveness, inductive bias, and training stability.
Our theoretical results show how Mamba falls short in each of these aspects
compared to earlier SSMs such as S4D. To address these issues, we propose
B2S6, a simple extension of Mamba’s S6 unit that combines block-wise selective
dynamics with a channel-specific bias. We prove that these changes equip the
model with a better-suited inductive bias and improve its expressiveness and
stability. Empirically, B2S6 outperforms S4 and S4D on Long-Range Arena (LRA)
tasks while maintaining Mamba’s performance on language modeling benchmarks.

1 Introduction

Mamba [25] has recently emerged as an exciting alternative to Transformers, demonstrating strong
empirical performance not only in language tasks [84, 45], but also in a variety of domains, including
vision [107, 103], audio [43], time series forecasting [43], and operator learning [33]. Based on the
state-space model (SSM) framework of S4 and S4D, Mamba replaces attention with a selective state
space mechanism. Unlike attention, which computes pairwise interactions across the sequence, this
approach uses data-dependent weights in a recurrent structure, aligning with the temporal nature
of sequential data. Despite its success as a general-purpose sequence modeling tool [51], Mamba
consistently underperforms on benchmarks such as the Long-Range Arena (LRA) [3]. This limitation
is surprising, given that Mamba is derived from architectures specifically designed for modeling
long-range dependencies. This behavior raises an important question:

Why does Mamba struggle with long-range sequence modeling?

To address this question, we conduct a theoretical analysis of the S6 state-space unit that underlies the
Mamba architecture. Our goal is twofold: first, to explain why Mamba underperforms on long-range
sequence tasks, and second, to provide a principled remedy. Through a rigorous mathematical
analysis, we identify three key factors that limit Mamba’s ability to model long-range dependencies:

• Expressiveness. Unlike S4D, which allows each internal channel to learn an independent recurrent
unit, Mamba shares parameters across all channels. Therefore, one should not interpret Mamba as

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

S4D S6 (Mamba) B2S6

Figure 1: Comparison of S4D, S6, and B2S6 units. S4D uses independent linear SSM units for
each channel, giving it high capacity (or width) but no input-dependent selectivity. S6 introduces a
selective mechanism that modulates its internal dynamics based on the input, but shares parameters
across channels, limiting its effective width and expressiveness. Our proposed B2S6 unit partitions
the input into smaller blocks, enabling selective behavior across multiple subspaces (see also [20]).
Additionally, it includes a channel-specific, input-independent bias term that further increases model
capacity. These design choices improve the performance on long-range sequence tasks.

a straightforward extension of S4D that gains time-variant benefits at no cost. Rather, Theorem 1
shows that while Mamba introduces input-dependent dynamics, it also sacrifices certain degrees of
freedom. Most notably, it has a weaker ability to learn independent behavior in each channel.

• Inductive Bias. Unlike S4D, which uses a position-based bias that helps preserve long-range
memory, Mamba adaptively decides what information to remember or forget based on the input.
This input-dependent mechanism is too extreme and can cause the model to discard useful long-term
information too quickly, leading to poor retention in long-range tasks (see Theorem 2).

• Training Stability. Unlike S4D, which tends to train reliably on long sequences, Mamba empiri-
cally exhibits unstable training behavior on the LRA benchmark tasks. We theoretically show that
this instability comes from the input-dependent selection mechanism, which becomes increasingly
difficult to optimize as the length of the sequence increases (see Theorem 3).

Motivated by these findings, we propose the Block-Biased-S6 unit (B2S6), a simple yet principled
extension of the S6 architecture that addresses its limitations in modeling long-range dependencies
(see Figure 1). Like S6, B2S6 retains the selective mechanism that modulates internal dynamics
based on the input. However, instead of computing the selection weights from the full input uk, we
divide the model into smaller blocks, with each block operating on a subset of uk. This multihead
structure was already suggested in [20], but in addition to that, we introduce an input-independent,
channel-specific bias term to the recurrent unit (see Table 1). We prove that these modifications
enhance B2S6’s expressiveness and assign it a more appropriate inductive bias for handling long-range
dependencies. We also apply a reduced learning rate to the parameters governing the input-dependent
sampling intervals, which improves training stability. Together, these modifications enable B2S6 to
model long-range dependencies more effectively. On the LRA benchmark, B2S6 resurrects Mamba
from failure and even outperforms S4 and S4D. Furthermore, we show that B2S6 achieves comparable
perplexity to Mamba when trained on language tasks, demonstrating its versatility across domains.

Contributions. Our main contributions are as follows:

1. We analyze the limitations of Mamba in modeling long-range dependencies and provide the-
oretical results that characterize the failure modes from three key aspects: (i) expressiveness
(see Theorem 1), (ii) inductive bias (see Theorem 2), and (iii) training stability (see Theorem 3).

2. We introduce the B2S6 unit, a principled extension of the S6 architecture. We show that B2S6

has universal approximation capabilities (see Theorem 4) and is thus more expressive, while also
equipped with a more suitable inductive bias for long-range sequence processing (see Theorem 5).

2

Table 1: A comparison of different classes of selective or non-selective state space models.
S4D S5 Mamba Mamba2 B2S6

∆t Dependency input-independent input-independent input-dependent input-dependent input-dependent
B/C Dependency input-independent input-independent input-dependent input-dependent both
Number of Heads ≥ 1 ≥ 1 = 1 ≥ 1 ≥ 1
Parameters complex complex real real complex
Parameterization of A diagonal diagonal diagonal scalar diagonal

3. We evaluate B2S6 on the Long-Range Arena benchmark, where it achieves state-of-the-art perfor-
mance. In addition, a preliminary examination on the SlimPajama dataset [78] shows that B2S6

matches Mamba’s performance on language modeling tasks, demonstrating its versatility.

2 The S4D and S6 recurrent units

Introduced in [28] and [27], the S4 and S4D recurrent units process sequences of d-dimensional inputs
u = (u1, . . . ,uL) to produce corresponding d-dimensional outputs ΓS4/S4D(u) = y = (y1, . . . ,yL).
Throughout this paper, we use subscripts to index positions in a sequence and superscripts to index
channels. For example, u(i)

k denotes the ith entry of the kth input vector uk. Each channel of the
S4/S4D model is computed independently with a linear system. For the ith channel, the update rule is

x
(i)
k = A

(i)
x
(i)
k−1 +B

(i)
u
(i)
k , y

(i)
k = C

(i)
x
(i)
k , 1 ≤ i ≤ d, (1)

where x
(i)
k ∈ Cn×1 is the hidden state with initial condition x

(i)
0 = 0, and u

(i)
k ∈ R. The matrices

A
(i) ∈ Cn×n, B

(i) ∈ Cn×1, and C
(i)

= C1×n are derived from a continuous-time system. While
there are many different discretization rules, we focus on the Zero-Order Hold (ZOH) discretization:

A
(i)

= exp(∆(i)A), ∆(i) = exp(b(i)), B
(i)

= A−1(A
(i) − I)B(i), C

(i)
= C(i). (2)

Here, A ∈ Cn×n, B(i) ∈ Cn×1, C(i) ∈ C1×n, and b(i) ∈ R are trainable parameters, specific to
each channel 1 ≤ i ≤ d.1 S4 and S4D are particularly well-suited for modeling sequences with
long-range dependencies and achieve state-of-the-art results on the Long-Range Arena benchmark.
This strength is largely due to the reparameterized ∆(i) values, which, when chosen small, give the
model long-term memory by slowing the system dynamics. S4 and S4D differ only in how the matrix
A is represented; we henceforth focus on S4D, which uses a diagonal A consistent with Mamba.

One limitation of the S4D units is that their dynamics are linear and time-invariant. The S6 units [25]
used in the Mamba models improve upon this by making the dynamics input-dependent. More
specifically, given a d-dimensional input sequence u = (u1, . . . ,uL), an S6 unit computes the ith
channel of the output ΓS6(u) = y = (y1, . . . ,yL) as follows:

x
(i)
k = A

(i)

k x
(i)
k−1 +B

(i)

k u
(i)
k , y

(i)
k = Ckx

(i)
k , 1 ≤ i ≤ d, (3)

where x
(i)
k ∈ Rn and u

(i)
k ,y

(i)
k ∈ R. The matrices A

(i)

k , B
(i)

k , and Ck are computed at each step as

A
(i)

k =exp(∆
(i)
k A), ∆

(i)
k =softplus(w⊤uk+ b(i)), B

(i)

k =A−1(A
(i)

k − I)Buk, Ck=u⊤k C. (4)

The trainable parameters of the model are A ∈ Rn×n, B ∈ Rn×d, C ∈ Rd×n, w ∈ Rd, and b(i) ∈ R
for all 1 ≤ i ≤ d.2 The key innovation in the S6 architecture lies in the input-dependent dynamics.
Both Bk and Ck change with each input step, introducing nonlinearity into the system. In addition,
the sampling interval ∆(i) is also input-dependent, allowing the model to vary the rate at which it
memorizes or forgets information. Comparing eq. (4) to eq. (2), we note that Buk and u⊤k C in an
S6 are shared across all channels, while B(i) and C(i) in an S4D are channel-specific. In the next
section, we show how this distinction limits the “effective width” and expressiveness of an S6 unit.

1Note that we tie the matrix A across all channels, which is consistent with the LRA training setup. This
choice can be loosened without affecting the essence of the paper.

2In many implementations of Mamba, the selection of ∆(i)
k is more complex, and Bk may be computed using

a forward Euler method instead. We follow the formulation in Algorithm 2 of the original Mamba paper [25].

3

3 A single-layer Mamba is not a universal approximator

A universal approximation theorem (UAT) characterizes the expressive power of neural networks by
showing that, under certain conditions, they can approximate any target function to arbitrary accuracy,
provided they are sufficiently wide or deep [60, 39]. While UATs do not directly address training
dynamics, they serve as a useful sanity check for a model’s theoretical capacity. For deep S4D models,
some universal approximation results have been established in [87]. In this section, we prove a new
UAT of S4D and a new non-UAT of S6 that highlight how the shared state matrices in S6 significantly
constrain its expressiveness. We investigate the task of learning a univariate sequential task defined
by a ground-truth function G, using a single-layer model that takes in an input (u1, . . . , uL), linearly
embeds the input into a d-dimensional space, passes it through an S4D or S6 unit, and then decodes
the output. More precisely, we consider the class of models (see Figure 5) defined by

G̃(u) = G̃((u1, . . . , uL)) = Nσ(Γ((Mu1, . . . ,MuL))L + θ), (5)

where M ∈ Rd×1 is an encoder, N ∈ Rd×1 is a decoder, θ ∈ Rd×1 is a bias term, and σ : R → R
is a nonlinear activation function applied entrywise to the last output of an S4D or S6 unit Γ.
There is only one remaining issue: in the definition of S6, we have Ck = u⊤k C. That means
ΓS6((Mu1, . . . ,MuL))L is zero as long as uL = 0, which makes G̃ with ΓS6 clearly not universal
approximators on the domain [0, 1]L. To avoid “cheating” in this way, we assume that uL = 1 and
only focus on approximating functions on [0, 1]L−1 × {1}, which makes our non-UAT stronger.

Theorem 1. The single-layer S4D models are universal approximators of continuous functions, but
the single-layer S6 models are not. More precisely, fixing a constant for ∆(i) for all 1 ≤ i ≤ d

in eq. (2) and ∆
(i)
k for all 1 ≤ i ≤ d and 1 ≤ k ≤ L in eq. (4), the following two statements hold:

1. Let σ : R → R be any Lipschitz continuous, non-polynomial activation function. Given any
continuous function G : [0, 1]L → R and any ϵ > 0. There exist some d ≥ 1, n ≥ 1, and a choice
of parameters M,N,θ,A,B(i), and C(i), where 1 ≤ i ≤ d, such that the map G̃ in eq. (5) with
Γ = ΓS4D in eq. (1) satisfies that |G̃(u)−G(u)| ≤ ϵ for any u ∈ [0, 1]L.

2. Let σ : R → R be any function and let L ≥ 3 be given. There exists a continuous function
G : [0, 1]L−1 × {1} → R and some ϵ > 0 such that for any d ≥ 1, any n ≥ 1, and any choice
of parameters M,N,θ,A,B, and C, the map G̃ in eq. (5) with Γ = ΓS6 in eq. (3) satisfies that
|G̃(u)−G(u)| > ϵ for some u ∈ [0, 1]L−1 × {1}.

You should not interpret Theorem 1 as a pessimistic claim that Mamba models are incapable of
solving complex tasks. In practice, Mamba architectures typically use multiple stacked layers and do
not fix ∆

(i)
k , both of which enhance the expressiveness. Rather, it highlights that an S6 unit is not a

simple extension of S4D that inherits all of its structural principles, and the sharing of the B and C
matrices across all channels can reduce its capacity, making it potentially less effective than S4D for
certain tasks. Beyond its impact on approximation capacity, this also leads to issues in larger models,
such as training instability [23, 16, 67], reduced generalization [5, 92, 11, 100, 40], and challenges in
interpretability [104, 94].

While Theorem 1 assumes that ∆ is fixed, we use a synthetic experiment to demonstrate that even
when ∆ is trainable, the channel-independent design of B and C in S6 limits its ability to solve certain
problems than S4D. Consider the input function u(t; g) =

∑10
i=1 gi cos(pit), where p1, . . . , p10 are

the 10 smallest prime numbers and g ∈ R10 is a coefficient vector. The learning task is to recover
g from the function u(t; g), i.e., to learn the mapping G : u(t; g) 7→ g. Intuitively, if the model is
sufficiently wide, each channel can specialize in capturing one of the cosine components, making the
problem easy. We train both a single-layer S6 model and a single-layer S4D model to approximate this
mapping, also allowing the ∆-related parameters to be learned in both cases. As shown in Figure 2,
the performance of the S6 model remains nearly constant as the width d increases, reflecting the fact
that its effective width does not scale with d. In contrast, the S4D model benefits significantly from
increased width.

4

0 2 4 6 8 10
10

-4

10
-2

10
0

d=2

d=8

d=32

∥g̃
−

g
∥ 2

Epoch

S4D

0 2 4 6 8 10
10

-4

10
-2

10
0

d=2

d=8

d=32

∥g̃
−

g
∥ 2

Epoch

S6

0 2 4 6 8 10
10

-4

10
-2

10
0

d=2 (p=1,b=2)

d=8 (p=2,b=4)

d=32 (p=4,b=8)

∥g̃
−

g
∥ 2

Epoch

B2S6

Figure 2: The mean loss ∥g̃ − g∥2 between the true coefficient g and the model prediction g̃. Every
model has a single layer and is trained for 10 epochs. Here, d is the number of channels in a model.
For the B2S6 model, h is the number of blocks and p is the number of channels in each block.

4 Mambas exhibit strong inductive bias

A necessary condition for a model to obtain the capability of handling long-range dependency is
that it possesses long-term memory. In S4D models, this is achieved by learning small values of
∆(i), which slow down the evolution of the continuous-time LTI systems and allow information to
persist over longer time horizons [74]. In contrast, S6 models introduce an input-dependent sampling
interval ∆(i)

k , where certain inputs lead to larger values of ∆(i)
k , causing faster memory decay, while

others result in smaller values and slower decay.

This input-adaptive memory control serves as a useful inductive bias in language modeling, where
only a limited number of words in a sentence typically carry semantic significance. However, this
same mechanism is less suitable for many LRA tasks involving non-linguistic sequences, such as
Image, Pathfinder, and PathX, where inputs are derived from flattened pixel arrays. In these
settings, while some positional bias may exist (e.g., central pixels may be more informative than
peripheral ones), it is difficult to justify that pixels of certain colors in a CIFAR image should receive
dramatically more attention than others. As a result, the input-dependent memory dynamics of S6
may act as an overly aggressive or misaligned inductive bias in such contexts.

To formalize the notion of input-dependent bias, let Γ denote either an S4D or S6 unit as defined
in eq. (1) and eq. (3), respectively. Given a d-dimensional input sequence u = (u1, . . . ,uL), we ask:
how does the output of Γ depend on each individual input vector uk? To study this, we examine the
relative gradient of the output with respect to each uk. Specifically, we define:

Sk =
∥Jk∥F∑L

k′=1 ∥Jk′∥F
, Jk′ =

∂

∂uk′
Γ(u1, . . . ,uL)L ∈ Rd×d, (6)

where ∥ · ∥F denotes the Frobenius norm, and Jk′ is the Jacobian of the final output vector with
respect to the k′-th input vector. Intuitively, the quantity Sk measures the relative influence of uk on
the final output. In other words, it tells us how much of the output’s sensitivity to perturbations is
attributed to the k-th input. For a linear system such as S4D, the Jacobians Jk′ are independent of the
input u, so the relative gradients Sk remain constant across different inputs. This indicates that the
model treats all inputs uniformly and does not introduce bias toward a particular input as u changes.
In contrast, we now show that S6 units introduce a bias when input vectors vary in magnitude.

Theorem 2. An S6 unit imposes an exponentially large bias as the input magnitude increases. That
is, fix a k0 ≤ L and let A ∈ Rn×n be a diagonal matrix with negative diagonal entries and w ̸= 0.
For almost every (a.e.) input sequence u = (u1, . . . ,uL) ∈ RL and a.e. parameters B ∈ Rn×d,
C ∈ Rd×n, and b ∈ Rd, let SS6,k be defined in eq. (6), where Γ = ΓS6 is defined in eq. (3). As
c → ∞, the following statements hold for any p > 0:

1. If w⊤uk0 > 0, we have

SS6, k((u1, . . . ,uk0−1, cuk0 ,uk0+1, . . . ,uL)) =


O(c−p) , k < k0,

Θ(c−1) , k = k0,

Θ(1) , k > k0.

5

10
-1

10
0

10
1

10
-1

10
0

10
1

0

0.5

1

1.5

2

σ
2

σ1

|G
(u

)
−

G̃
(u

)|/
σ
1

S4D

10
-1

10
0

10
1

10
-1

10
0

10
1

0

0.5

1

1.5

2

σ
2

σ1

|G
(u

)
−

G̃
(u

)|/
σ
1

S6

10
-1

10
0

10
1

10
-1

10
0

10
1

0

0.5

1

1.5

2

σ
2

σ1

|G
(u

)
−

G̃
(u

)|/
σ
1

B2S6

Figure 3: The mean relative loss |G(u)− G̃(u)|/σ1 for different choices of σ1 and σ2. The S6 model
cannot make useful predictions when σ1 is small and σ2 is large; B2S6 fixes this. In all experiments,
we fix d = 32. For B2S6, we set h = 8 and p = 4.

2. If w⊤uk0 < 0, we have

SS6, k((u1, . . . ,uk0−1, cuk0
,uk0+1, . . . ,uL)) =

{
Θ(1) , k ̸= k0,

O(c−p) , k = k0.

Moreover, let SS4D,k be defined in eq. (6), where Γ = ΓS4D is defined in eq. (1). We have that SS4D,k

is constant and does not depend on the input u.

The theorem shows that as the magnitude of a single input vector uk0
grows, one of two extreme

behaviors can emerge: either the current input (Case 2) or all previous inputs (Case 1) exert an
exponentially diminishing influence on the final output. Neither outcome is desirable when modeling
sequences with long-range dependencies. In practice, many implementations of Mamba mitigate this
issue through normalization layers that constrain the magnitudes of input vectors. Additionally, unlike
the original formulation in [25], more sophisticated parameterizations are often used to compute
the sampling intervals ∆

(i)
k . These modifications can be interpreted as efforts to counteract the

exponential input bias introduced by large-magnitude vectors.

From Theorem 2, we see another perspective of the limitation of S6: in the computation of ∆(i)
k =

softplus(w⊤uk + b(i)), the vector w defines two half-spaces in Rd. Inputs uk that lie in the positive
half-space produce larger values of ∆, leading to slower dynamics and better memorization, whereas
those in the negative half-space yield smaller ∆, resulting in faster forgetting. This setup restricts
the model’s ability to assign distinct memorization biases to different nonlinear regions of the input
space. In section 6, we will see how B2S6 improves upon this.

To illustrate the inductive bias of S6, we consider a synthetic task with inputs sampled from

u = (u1,0, . . . ,0,uL), u1 = [u1, . . . , u1]
⊤ ∈ Rd, u1 ∼ N (0, σ1), uL ∼ N (0, σ2Id),

where σ1, σ2 > 0 are fixed. The task is to learn the mapping G(u) = |u1|. Since the target size scales
with σ1, we report the relative error |G(u) − G̃(u)|/σ1 to make comparisons fair across different
settings. Figure 3 shows the relative errors of different models under different values of σ1 and σ2.
While the S4D model remains robust across all cases, the S6 model fails significantly when σ1 is small
and σ2 is large. This corroborates Theorem 2: a large input uL in the half-space {u | w⊤u > 0}
triggers fast forgetting, erasing the memory of u1 and making the prediction unreliable.

5 Mambas are not stable to train

Our discussion so far has focused on the expressiveness and generalization of S6 models. In general,
a model lacking expressiveness cannot achieve low training error on complex tasks, while poor
generalization refers to models that fit the training data well but perform poorly on test data. If you
have trained S6 models on LRA tasks, then you might observe another issue: the training loss curve
does not decrease smoothly. Occasionally, a single optimization step causes the model to collapse,
turning a high-accuracy model into one that performs no better than random guessing. This reflects a
training stability issue rather than one of expressiveness or generalization.

This phenomenon has been empirically studied in the context of general neural networks [21, 19],
where instability is often linked to sharp curvature in the loss landscape. In this section, we provide

6

a theoretical explanation for the training instability observed in S6 models. Since we are not tied
to a specific task or loss function, we instead study how the output Γ(u;Θ) depends on the model
parameters Θ. While curvature involves second-order derivatives, we focus on first-order gradients.
If (∂/∂Θ)Γ(u;Θ) is large in magnitude, large curvatures in the loss landscape might appear when
we compose Γ(u;Θ) with other functions to form a loss function.

We find that instability in S6 models is closely tied to how the sampling interval ∆ is computed.
To formalize this, we prove a theorem comparing the gradients of S6 and S4D models with respect
to their ∆-related parameters. For simplicity, we restrict our analysis to a single-input setting, i.e.,
d = 1, and drop all superscripts. Hence, the ∆(1) for S4D in eq. (2) only depends on a parameter
b = b(1) ∈ R and the ∆(1)

k for S6 in eq. (4) only depends on two parameters w ∈ R and b = b(1) ∈ R.
Since the specific input distribution is unknown, we make a generic assumption that the inputs are
random variables with mild regularity conditions, ensuring that the analysis is broadly applicable.
Theorem 3. Assume that d = 1 and n ≥ 1. Let ΓS4D(u;Θ) and ΓS6(u;Θ) be given in eq. (1)
and (3), respectively, where Θ is the collection of all model parameters. Given a diagonal matrix
A ∈ Rn×n whose diagonal entries are negative, and B ∈ Rn×1, the following statements hold:
1. An S6 model is less stable to train than an S4D model as the input magnitude increases. That is,

fix some L ≥ 1, b ∈ R, and w = 0. Let u = (u1, . . . , uL) be sampled from a distribution D. For
every C ∈ R1×n, if Eu∼DL

|(∂/∂w)ΓS6|, Eu∼DL
|(∂/∂b)ΓS6|, Eu∼DL

|(∂/∂b)ΓS4D| ≠ 0, then

Eu∼cDL
|(∂/∂w)ΓS6(u)L|

Eu∼cDL
|(∂/∂b)ΓS4D(u)L|

= Ω(c3),
Eu∼cDL

|(∂/∂b)ΓS6(u)L|
Eu∼cDL

|(∂/∂b)ΓS4D(u)L|
= Ω(c2), c → ∞.

2. An S6 model is less stable to train than an S4D model as the input length increases. That is, fix w =
0. There exists a sequence b(L) → −∞ as L → ∞, such that given any sequence of distributions
DL on [0, 1]L−1 × {1} with Eu∼DL

[ΓS4D(u)L] = 0, c1≤Varu∼DL
[uj]≤c2 for all 1≤j≤L− 1,

where c1, c2 > 0 are universal constants, and
∣∣∣∑1≤i<j≤L Cov(A

L−i
ui,A

L−j
uj)
∣∣∣ = O(L),

where A = exp(exp(b(L))A), we have for a.e. C ∈ R1×n that

lim sup
L→∞

(
Eu∼DL

|(∂/∂b(L))ΓS6(u)L|
Eu∼DL

|(∂/∂b(L))ΓS4D(u)L|

)/√
L > 0.

The first part of our result shows that an S6 model becomes increasingly unstable relative to an
S4D model as the input size grows. This is expected, as the matrices B

(i)

k and Ck in eq. (3) depend
linearly on the input uk. However, this effect is typically mitigated in practice by input normalization
and is therefore of less practical concern. The more significant insight lies in the second part of the
theorem: as the sequence length L increases, the S6 model also becomes less stable to train. This
is particularly relevant in the context of LRA tasks, where sequences can be extremely long; for
example, the PathX task involves sequences of length 16384. In such cases, the training stability of
S6 and S4D are dramatically different. Note that we have made some technical assumptions. First, to
preserve long-range dependencies as L → ∞, the sampling interval ∆ must shrink. This justifies
why we assumed b(L) → −∞ so that ∆ → 0+ as L → ∞. Second, since the pairwise covariances
between A

L−i
ui and A

L−j
uj can be both positive and negative, cancellation occurs and assuming

their total sum scales as O(L) is mild and reflects the natural behavior of aggregated dependencies in
long sequences. We also fixed w = 0, leaving the case when w ̸= 0 for future work. More numerical
and empirical experiments that illustrate Theorem 3 can be found in Appendix E.

6 B2S6: an expressive, gently biased, and stable selective model

We introduce B2S6 (Block-Biased-S6) to address the shortcomings of S6. Given an input sequence
u = (u1, . . . ,uL), where uk ∈ Rd×1 for 1 ≤ k ≤ L, we assume that d = h × p for two
hyperparameters h, p ≥ 1. We then partition each input vector into h sub-vectors of size p: uk =[
1u⊤k · · · hu⊤k

]⊤
. Note that we use a left-superscript for the block index. Then, the output of

a B2S6 unit is a sequence ΓB2S6
(u) = y = (y1, . . . ,yL), where each output vector can also be

partitioned into h sub-vectors of size p, i.e., yk =
[
1y⊤k · · · hy⊤k

]⊤
, defined by

jx
(i)
k = jA

(i)

k
jx

(i)
k−1 +

jB
(i)

k
ju

(i)
k , jy

(i)
k = jCk

jx
(i)
k , 1 ≤ i ≤ p, 1 ≤ j ≤ h, (7)

7

where jx
(i)
k ∈ Rn, ju

(i)
k ∈ R, jy(i)

k ∈ R, and the matrices jA
(i)

k ∈ Rn×n, jB
(i)

k ∈ Rn×1, and
jCk ∈ R1×n are input-dependent and computed at each step k as

jA
(i)

k =exp(j∆
(i)
k A), j∆

(i)
k =softplus(jw⊤ juk + jb(i)),

jB
(i)

k =A−1(jA
(i)

k − I)(jBweight
juk + jB

(i)
bias), Ck=

ju⊤k
jC,

1 ≤ k ≤ L. (8)

The trainable parameters are A ∈ Rn×n, jBweight ∈ Rn×p, jB
(i)
bias ∈ Rn×1, jC ∈ Rp×n, jw ∈

Rp×1, and jb(i) ∈ R, for every 1 ≤ i ≤ p and 1 ≤ j ≤ h. The pseudocode for B2S6 is given
in Algorithm 2, which compares to Algorithm 1 for S6 found in the Mamba paper [25], where
s∆(·) = Broadcastd(Linear1(·)) and js∆(·) = Broadcastp(Linear1(·)) for every 1 ≤ j ≤ h.

Algorithm 1 S6 Forward Pass
Input: x : (B L d)
Output: y : (B L d)

1: BS6 : (B L n), BS6(i, j, :)← Bx(i, j, :)

2: CS6 : (B L n), CS6(i, j, :)← x(i, j, :)⊤C

3: ∆ : (B L d)← softplus(s∆(x) + b)

4: A,B : (B L d n)← discretize(∆,A,BS6)

5: y ← SSM(A,B,CS6)(x)

Algorithm 2 B2S6 Forward Pass
Input: x : (B L d)
Output: y : (B L d)

1: parfor j = 1 : h do ▷ independent for every block

2: jI ← (jp− p + 1) : jp ▷ block index

3: jB : (B L n), jB(i, j, :)← jBweightx(i, j,
jI)

4: jB : (B L p n)← Broadcastp(jB) + BroadcastL(jBbias)

5: jC : (B L n), jC(i, j, :)← x(i, j, jI)⊤jC

6: j∆ : (B L p)← softplus(js∆(x(:, :, jI)) + jb)

7: jA, jB : (B L p n)← discretize(j∆,A, jB)

8: y(:, :, jI)← SSM(jA, jB, jC)(x(:, :, jI))

9: end parfor

Comparing the B2S6 unit in eq. (7) to the S6 unit in eq. (3), we highlight two key differences
(see Figure 1). First, B2S6 partitions the d-dimensional input into h blocks of p-dimensional sub-
vectors and applies an independent recurrent unit to each block. Second, we introduce a bias term
jB

(i)
bias in the computation of the input matrix jBk. While this term is input-independent, it varies

across channels, increasing the model’s effective width. We do not claim that we invented the
block unit design, which was previously suggested in the Mamba2 paper [20], but in this work, we
rigorously demonstrate how the combination of block structure and channel-specific bias enhances
the expressiveness and generalization of the model on long-range sequence modeling tasks.

First, we show that unlike an S6 model, a B2S6 model regains the universal approximation property
studied in Theorem 1 by introducing either the block unit or the bias unit.

Theorem 4. Fix a constant for j∆
(i)
k for all i, j, and k in eq. (7). The following two statements hold:

1. The block unit alone makes B2S6 a universal approximator. More precisely, set jB
(i)
bias = 0 for

all i and j, and let σ : R → R be any Lipschitz continuous, non-polynomial activation function.
Given any continuous function G : [0, 1]L−1 × {1} → R and any ϵ > 0. There exist some h and
p with h× p = d ≥ 1, n ≥ 1, and a choice of parameters M,N,θ,A, jBweight, and jC, where
1 ≤ j ≤ h, such that the map G̃ in eq. (5) with Γ = ΓB2S6

in eq. (7) satisfies that

|G̃(u)−G(u)| ≤ ϵ, for any u ∈ [0, 1]L−1 × {1}.

2. The bias unit alone makes B2S6 a universal approximator. More precisely, set h = 1 and p = d,
and let σ : R → R be any Lipschitz continuous, non-polynomial activation function. Given any
continuous function G : [0, 1]L−1 × {1} → R and any ϵ > 0. There exist some d ≥ 1, n ≥ 1,
and a choice of parameters M,N,θ,A, 1Bweight, 1B

(i)
bias , and 1C, where 1 ≤ i ≤ d, such that the

map G̃ in eq. (5) with Γ = ΓB2S6
in eq. (7) satisfies that

|G̃(u)−G(u)| ≤ ϵ, for any u ∈ [0, 1]L−1 × {1}.

The block design and channel-specific bias in the B2S6 model significantly enhance its expressiveness,
enabling it to handle more complex sequential tasks that benefit from wider neural networks. To
illustrate this, we revisit the experiment from section 3, this time using only the block structure

8

(without the bias term), noting that the addition of the bias would only further improve performance.
As shown in Figure 2, unlike an S6 model, the performance of the B2S6 model improves substantially
as d increases, holding the ratio h/p constant.

In contrast to the S6 model, the B2S6 architecture introduces a gentler inductive bias that is better
suited for long-range tasks. Instead of Theorem 2, we now establish the following result.

Theorem 5. Fix a k0 < L and let A ∈ Rn×n be a diagonal matrix with negative diagonal entries.
For a.e. input sequence u = (u1, . . . ,uL) ∈ RL such that there exist j1 and j2 with j1w⊤ j1uk0

> 0

and j2w⊤ j2uk0 < 0, and a.e. parameters jBweight, jB
(i)
bias,

jC, and jb(i), where 1 ≤ j ≤ h and
1 ≤ i ≤ p, let SB2S6,k be defined in eq. (6), where Γ = ΓB2S6 is defined in eq. (7). We have

SB2S6,k((u1, . . . ,uk0−1, cuk0
,uk0+1, . . . ,uL)) =


O(|c|−2) , k < k0,

O(|c|−1) , k = k0,

Θ(1) , k > k0,

c → ±∞.

If each jw is randomly initialized for 1 ≤ j ≤ h, then the probabilities that a given input satisfies
jw⊤ juk0

< 0 and jw⊤ juk0
> 0 are equal. As a result, the probability that the assumptions in The-

orem 5 are violated vanishes exponentially with the number of blocks h. Compared to Theorem 2,
this means that B2S6 exhibits a significantly milder inductive bias in the presence of large inputs,
avoiding exponentially decaying effects as the input magnitude increases. This behavior is confirmed
by the experiment in section 4, where B2S6 maintains strong performance even when σ1 is very
small and σ2 is very large. Lastly, while the block and bias components improve expressiveness and
inductive bias, they do not directly resolve the training instability that arises with long sequences.
Therefore, for LRA tasks, we reduce the learning rates of jw and jb(i) to improve training stability.3

7 Experiments

Ablation. In this paper, we show that the B2S6 model achieves strong performance on the LRA
benchmark. Compared to the standard Mamba model, our B2S6 variant incorporates a multihead
structure and a bias term Bbias, and uses complex-valued parameters for diag(A), Bweight, and Bbias
(see [64, 97, 47]). Before presenting full LRA results, we demonstrate the utility of each modification
in Table 2. The second column shows model accuracy without bias terms, the third without complex
parameterization, and all rows below the first use the multihead structure. As seen in Table 2, all
three components contribute positively to the performance on the sCIFAR-10 task. An interesting
observation is that, when d = h× p is fixed, model accuracy increases monotonically with h only in
the absence of Bbias. This should not be surprising: if Bbias = 0, the model’s effective width is h, so
larger h improves expressiveness and generalization. However, once Bbias is introduced, the model
already attains high effective (though non-selective) width even when h = 1 because jB

(i)
bias varies

with i. Thus, increasing h trades off between more selective blocks, which improves the quantity of
selectivity, and reduced receptive field juk per block, which impairs the quality of each selection.

Long-Range Arena. In Table 3, we see that our B2S6 model outperforms many selective and
non-selective models on LRA. In particular, it is the first selective SSM we are aware of that achieves
state-of-the-art performance on this benchmark. A more comprehensive table is found in Appendix F.

Language Tasks. While our primary goal is not to train a large language model (LLM), we conduct
a preliminary evaluation of B2S6’s language modeling capability using a sampled version of the
SlimPajama-627B dataset [78]. For each model family, we train a model with approximately 30
layers, corresponding to approximately 250M parameters. The precise number of layers varies
slightly with models to make the number of parameters roughly the same. We train four models for
one epoch and report the perplexity statistics. We only vary the recurrent unit without changing the
rest of the model architecture. That is, all models are based on the Mamba architecture proposed
in [25, Fig. 3]:

y = Γ(σ(Conv(Linear(x)))) ◦ σ(Linear(x)),

3In general, freezing some of the other parameters indeed helps stabilize the training, but it also puts us at risk
of converging to bad minima. For example, we observed that it never works to freeze B and C, and that freezing
the matrix A and D usually does not have a big impact, given that they are initialized properly (see [26, 97]).

9

Table 2: Ablation study of our B2S6 model. We train a model to learn the sCIFAR-10 task, where we
fix d = 128 and change the number of blocks h and the size of each block p (see eq. (7)). For each
pair of h and p, we train a full B2S6 model with complex parameters, a B2S6 model with complex
parameters but no bias term, and a full B2S6 model with real parameters. A more greenish color
indicates a better accuracy, while a more reddish color labels a worse accuracy.

With Bbias (Complex) Without Bbias (Complex) With Bbias (Real)

h p Accuracy ± Std Accuracy ± Std Accuracy ± Std

1 128 81.56 ± 1.22 71.77 ± 1.88 47.82 ± 5.42
2 64 84.83 ± 0.73 79.44 ± 1.10 54.40 ± 0.35
4 32 83.86 ± 1.38 80.93 ± 0.94 54.77 ± 0.54
8 16 87.19 ± 0.26 81.54 ± 1.14 53.81 ± 0.87

16 8 87.04 ± 0.33 83.78 ± 0.79 51.79 ± 3.61
32 4 85.83 ± 0.80 84.11 ± 0.39 56.18 ± 0.18
64 2 86.30 ± 0.60 84.27 ± 0.76 52.03 ± 2.04
128 1 85.32 ± 0.55 84.79 ± 0.43 56.45 ± 0.71

Table 3: Test accuracies in the Long-Range Arena of different variants of SSMs. A bold number
indicates the best accuracy on a task while an underlined number corresponds to the second best.

Model ListOps Text Retrieval Image Pathfinder Path-X Avg.
S4 [28] 59.60 86.82 90.90 88.65 94.20 96.35 86.09

S4D [27] 60.47 86.18 89.46 88.19 93.06 91.95 84.89
S5 [77] 62.15 89.31 91.40 88.00 95.33 98.58 87.46

S6 (Mamba) [25] 38.02 82.98 72.14 69.82 69.26 67.32 66.59
S7 [79] 63.77 87.22 91.80 61.14 65.62 61.50 71.82

Mamba2 [20] 41.45 86.09 79.23 71.96 75.45 69.07 70.54
B2S6 (ours) 63.85 88.32 91.44 88.81 95.93 97.90 87.71

±0.45 ±0.50 ±0.36 ±0.22 ±0.38 ±0.17

where ◦ stands for the Hadamard product and we only change Γ in three models to be ΓS4D,ΓS6,
ΓMamba2, and ΓB2S6 , respectively. We find that introducing the bias term Bbias only makes the training
of a B2S6 model 2.7% slower than an S6 model of comparable size. Yet, the perplexity of B2S6

closely matches that of S6, showing the versatility of our model.

Figure 4: Perplexity over training steps for an S6, Mamba2, B2S6, and S4D model. The dataset is
SlimPajama-6B, a sampled version of the SlimPajama-627B dataset.

0 10k 20k 30k

20

30

40

50

60

70

S6

B
2
S

6

S4D

Steps

Pe
rp

le
xi

ty

Steps S6 Mamba2 B2S6 S4D
2620 61.5441 59.6233 62.6133 64.1203
5241 42.7838 39.8305 44.3846 46.5118
7862 34.1740 31.9994 35.0440 39.3496

10483 29.7074 27.0987 30.3787 35.3028
13104 27.0171 25.2930 27.3891 32.5946
15725 25.2265 24.0179 25.2668 30.6639
18346 23.9789 23.1224 23.9370 29.2052
20967 23.0044 22.3695 22.8394 28.0314
23588 22.2368 21.7509 22.1322 27.0897
26209 21.6068 21.2480 21.5206 26.3221
28830 21.0785 20.8218 20.9773 25.6661

8 Conclusion

In this work, we provided a theoretical analysis of Mamba’s limitations in modeling long-range
sequences, focusing on expressiveness, inductive bias, and training stability. We proposed a new
model, B2S6, which introduces a block structure and channel-specific bias to improve upon each
of these dimensions. Empirical results demonstrate that B2S6 significantly enhances performance
on long-range sequence tasks while maintaining versatility across domains. Future work includes
a more detailed analysis of training stability across all Mamba parameters, exploring architectural
refinements to further mitigate instability, studying the training dynamics of Mamba and B2S6 to
better characterize their inductive biases, and scaling up B2S6 as a language or foundation model.

10

Acknowledgments

AY was partially supported by the Office of Naval Research under Grant Number N00014-23-1-2729
and NSF DMS-2319621. NBE would like to acknowledge the U.S. Department of Energy, under
Contract Number DE-AC02-05CH11231 and DE-AC02-05CH11231, for providing partial support of
this work.

References
[1] Naman Agarwal, Daniel Suo, Xinyi Chen, and Elad Hazan. Spectral state space models. arXiv

preprint arXiv:2312.06837, 2023.

[2] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparam-
eterized neural networks, going beyond two layers. Advances in neural information processing
systems, 32, 2019.

[3] Carmen Amo Alonso, Jerome Sieber, and Melanie N Zeilinger. State space models as
foundation models: A control theoretic overview. arXiv preprint arXiv:2403.16899, 2024.

[4] Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards better under-
standing of gradient-based attribution methods for deep neural networks. arXiv preprint
arXiv:1711.06104, 2017.

[5] Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension
of data representations in deep neural networks. Advances in Neural Information Processing
Systems, 32, 2019.

[6] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.
In International Conference on Machine Learning, pages 1120–1128. PMLR, 2016.

[7] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis
of optimization and generalization for overparameterized two-layer neural networks. In
International conference on machine learning, pages 322–332. PMLR, 2019.

[8] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, and
Klaus-Robert Müller. How to explain individual classification decisions. The Journal of
Machine Learning Research, 11:1803–1831, 2010.

[9] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convo-
lutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271,
2018.

[10] Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical
viewpoint. Acta numerica, 30:87–201, 2021.

[11] Ronen Basri, David Jacobs, Yoni Kasten, and Shira Kritchman. The convergence rate of neural
networks for learned functions of different frequencies. Adv. Neur. Info. Proc. Syst., 32, 2019.

[12] Gregory Beylkin. Fast convolution algorithm for state space models. arXiv preprint
arXiv:2411.17729, 2024.

[13] Bo Chang, Minmin Chen, Eldad Haber, and Ed H Chi. Antisymmetricrnn: A dynamical
system view on recurrent neural networks. In International Conference on Machine Learning,
2019.

[14] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Chris-
tian Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing
gradient descent into wide valleys. Journal of Statistical Mechanics: Theory and Experiment,
2019(12):124018, 2019.

[15] Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical systems. IEEE
Transactions on Neural Networks, 6(4):911–917, 1995.

11

[16] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun.
The loss surfaces of multilayer networks. In Artificial intelligence and statistics, pages 192–204.
PMLR, 2015.

[17] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. In International Conference on Machine Learning, 2020.

[18] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303–314, 1989.

[19] Alex Damian, Eshaan Nichani, and Jason D Lee. Self-stabilization: The implicit bias of
gradient descent at the edge of stability. International Conference on Learning Representations,
2023.

[20] Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms
through structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

[21] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and
Yoshua Bengio. Identifying and attacking the saddle point problem in high-dimensional
non-convex optimization. Advances in neural information processing systems, 27, 2014.

[22] N Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, and Michael W
Mahoney. Lipschitz recurrent neural networks. In International Conference on Learning
Representations, 2021.

[23] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings,
2010.

[24] Riccardo Grazzi, Julien Siems, Arber Zela, Jörg KH Franke, Frank Hutter, and Massimiliano
Pontil. Unlocking state-tracking in linear rnns through negative eigenvalues. International
Conference on Learning Representations, 2025.

[25] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[26] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent
memory with optimal polynomial projections. Advances in neural information processing
systems, 33:1474–1487, 2020.

[27] Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and
initialization of diagonal state space models. Advances in Neural Information Processing
Systems, 35:35971–35983, 2022.

[28] Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with
structured state spaces. In International Conference on Learning Representations, 2022.

[29] Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as
structured state spaces. Advances in Neural Information Processing Systems, 35:22982–22994,
2022.

[30] Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid structural state-space models. International Conference on Learning
Representations, 2023.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[32] Arya Honarpisheh, Mustafa Bozdag, Mario Sznaier, and Octavia Camps. Generalization
error analysis for selective state-space models through the lens of attention. arXiv preprint
arXiv:2502.01473, 2025.

12

[33] Zheyuan Hu, Nazanin Ahmadi Daryakenari, Qianli Shen, Kenji Kawaguchi, and George Em
Karniadakis. State-space models are accurate and efficient neural operators for dynamical
systems. arXiv preprint arXiv:2409.03231, 2024.

[34] Sukjun Hwang, Aakash Sunil Lahoti, Ratish Puduppully, Tri Dao, and Albert Gu. Hydra:
Bidirectional state space models through generalized matrix mixers. Advances in Neural
Information Processing Systems, 37:110876–110908, 2024.

[35] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. Adv. Neur. Info. Proc. Syst., 31, 2018.

[36] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. J. Basic
Eng, 82(1):35–45, 1960.

[37] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. In International conference on
machine learning, pages 5156–5165. PMLR, 2020.

[38] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp
minima. International Conference on Learning Representations, 2017.

[39] Patrick Kidger and Terry J. Lyons. Universal approximation with deep narrow networks.
CoRR, abs/1905.08539, 2019.

[40] Sungyoon Kim, Aaron Mishkin, and Mert Pilanci. Exploring the loss landscape of regularized
neural networks via convex duality. International Conference on Learning Representations,
2025.

[41] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Machine Learning, 2020.

[42] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. Advances in neural information processing systems, 31, 2018.

[43] Kai Li, Guo Chen, Runxuan Yang, and Xiaolin Hu. Spmamba: State-space model is all you
need in speech separation. arXiv preprint arXiv:2404.02063, 2024.

[44] Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang, and Yu Qiao. Video-
mamba: State space model for efficient video understanding. In European Conference on
Computer Vision, pages 237–255. Springer, 2024.

[45] Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez
Safahi, Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid
transformer-mamba language model. International Conference on Learning Representations,
2025.

[46] Fusheng Liu and Qianxiao Li. From generalization analysis to optimization designs for state
space models. arXiv preprint arXiv:2405.02670, 2024.

[47] Fusheng Liu and Qianxiao Li. Autocorrelation matters: Understanding the role of initialization
schemes for state space models. International Conference on Learning Representations, 2025.

[48] Ziwei Liu, Qidong Liu, Yejing Wang, Wanyu Wang, Pengyue Jia, Maolin Wang, Zitao Liu,
Yi Chang, and Xiangyu Zhao. Sigma: Selective gated mamba for sequential recommendation.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages 12264–
12272, 2025.

[49] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts.
International Conference on Learning Representations, 2017.

[50] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

13

[51] Haoyu Ma, Yushu Chen, Wenlai Zhao, Jinzhe Yang, Yingsheng Ji, Xinghua Xu, Xiaozhu Liu,
Hao Jing, Shengzhuo Liu, and Guangwen Yang. A mamba foundation model for time series
forecasting. arXiv preprint arXiv:2411.02941, 2024.

[52] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of
two-layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–
E7671, 2018.

[53] Nicola Muca Cirone, Antonio Orvieto, Benjamin Walker, Cristopher Salvi, and Terry Lyons.
Theoretical foundations of deep selective state-space models. Advances in Neural Information
Processing Systems, 37:127226–127272, 2024.

[54] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is
worth 64 words: Long-term forecasting with transformers. In The Eleventh International
Conference on Learning Representations, 2023.

[55] Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan
Pascanu, and Soham De. Resurrecting recurrent neural networks for long sequences. arXiv
preprint arXiv:2303.06349, 2023.

[56] Rom N Parnichkun, Stefano Massaroli, Alessandro Moro, Jimmy TH Smith, Ramin Hasani,
Mathias Lechner, Qi An, Christopher Ré, Hajime Asama, and Stefano Ermon. State-free
inference of state-space models: The transfer function approach. International Conference on
Machine Learning, 2024.

[57] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In International conference on machine learning, pages 1310–1318. Pmlr,
2013.

[58] Badri Narayana Patro and Vijay Srinivas Agneeswaran. Mamba-360: Survey of state space
models as transformer alternative for long sequence modelling: Methods, applications, and
challenges. arXiv preprint arXiv:2404.16112, 2024.

[59] Yan Ru Pei. Let SSMs be ConvNets: State-space modeling with optimal tensor contractions.
International Conference on Learning Representations, 2025.

[60] Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta numerica,
8:143–195, 1999.

[61] Biqing Qi, Junqi Gao, Dong Li, Kaiyan Zhang, Jianxing Liu, Ligang Wu, and Bowen Zhou.
S4++: Elevating long sequence modeling with state memory reply. 2024.

[62] Yanyuan Qiao, Zheng Yu, Longteng Guo, Sihan Chen, Zijia Zhao, Mingzhen Sun, Qi Wu, and
Jing Liu. Vl-mamba: Exploring state space models for multimodal learning. arXiv preprint
arXiv:2403.13600, 2024.

[63] Gokul Raju Govinda Raju, Nikola Zubić, Marco Cannici, and Davide Scaramuzza. Per-
turbed state space feature encoders for optical flow with event cameras. arXiv preprint
arXiv:2504.10669, 2025.

[64] Yuval Ran-Milo, Eden Lumbroso, Edo Cohen-Karlik, Raja Giryes, Amir Globerson, and
Nadav Cohen. Provable benefits of complex parameterizations for structured state space
models. Advances in Neural Information Processing Systems, 37:115906–115939, 2024.

[65] Stefano Rando, Luca Romani, Matteo Migliarini, Luca Franco, Denis Gudovskiy, and Fabio
Galasso. Serpent: Selective resampling for expressive state space models. arXiv preprint
arXiv:2501.11729, 2025.

[66] David W Romero, Anna Kuzina, Erik J Bekkers, Jakub M Tomczak, and Mark Hoogendoorn.
Ckconv: Continuous kernel convolution for sequential data. In International Conference on
Machine Learning, 2022.

[67] Grant Rotskoff and Eric Vanden-Eijnden. Trainability and accuracy of artificial neural net-
works: An interacting particle system approach. Communications on Pure and Applied
Mathematics, 75(9):1889–1935, 2022.

14

[68] T Konstantin Rusch and Siddhartha Mishra. Unicornn: A recurrent model for learning very
long time dependencies. In International Conference on Machine Learning, pages 9168–9178.
PMLR, 2021.

[69] T Konstantin Rusch and Daniela Rus. Oscillatory state-space models. International Conference
on Learning Representations, 2025.

[70] Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis
of the hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

[71] Anton Maximilian Schäfer and Hans Georg Zimmermann. Recurrent neural networks are
universal approximators. In Artificial Neural Networks–ICANN 2006: 16th International
Conference, Athens, Greece, September 10-14, 2006. Proceedings, Part I 16, pages 632–640.
Springer, 2006.

[72] Shuaijie Shen, Chao Wang, Renzhuo Huang, Yan Zhong, Qinghai Guo, Zhichao Lu, Jianguo
Zhang, and Luziwei Leng. SpikingSSMs: Learning long sequences with sparse and parallel
spiking state space models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pages 20380–20388, 2025.

[73] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features
through propagating activation differences. In International conference on machine learning,
pages 3145–3153. PMlR, 2017.

[74] Jerome Sieber, Carmen Amo Alonso, Alexandre Didier, Melanie Zeilinger, and Antonio
Orvieto. Understanding the differences in foundation models: Attention, state space mod-
els, and recurrent neural networks. Advances in Neural Information Processing Systems,
37:134534–134566, 2024.

[75] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. International Conference on
Learning Representations, 2014.

[76] Jakub Smékal, Jimmy TH Smith, Michael Kleinman, Dan Biderman, and Scott W Linder-
man. Towards a theory of learning dynamics in deep state space models. arXiv preprint
arXiv:2407.07279, 2024.

[77] Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
sequence modeling. In The Eleventh International Conference on Learning Representations,
2023.

[78] Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan
Dey. SlimPajama: A 627B token cleaned and deduplicated version of RedPajama, 2023.

[79] Taylan Soydan, Nikola Zubić, Nico Messikommer, Siddhartha Mishra, and Davide Scara-
muzza. S7: Selective and simplified state space layers for sequence modeling. arXiv preprint
arXiv:2410.03464, 2024.

[80] Namjoon Suh and Guang Cheng. A survey on statistical theory of deep learning: Approxima-
tion, training dynamics, and generative models. Annual Review of Statistics and Its Application,
12, 2024.

[81] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pages 3319–3328. PMLR, 2017.

[82] Matus Telgarsky. Benefits of depth in neural networks. In Conference on learning theory,
pages 1517–1539. PMLR, 2016.

[83] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[84] Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao,
Albert Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of
mamba-based language models. arXiv preprint arXiv:2406.07887, 2024.

15

[85] Maolin Wang, Sheng Zhang, Ruocheng Guo, Wanyu Wang, Xuetao Wei, Zitao Liu, Hongzhi
Yin, Yi Chang, and Xiangyu Zhao. Star-rec: Making peace with length variance and pattern
diversity in sequential recommendation. arXiv preprint arXiv:2505.03484, 2025.

[86] Shida Wang and Qianxiao Li. StableSSM: Alleviating the curse of memory in state-space
models through stable reparameterization. arXiv preprint arXiv:2311.14495, 2023.

[87] Shida Wang and Beichen Xue. State-space models with layer-wise nonlinearity are universal
approximators with exponential decaying memory. Advances in Neural Information Processing
Systems, 36, 2024.

[88] Shida Wang and Beichen Xue. State-space models with layer-wise nonlinearity are universal
approximators with exponential decaying memory. Advances in Neural Information Processing
Systems, 36, 2024.

[89] Xiao Wang, Shiao Wang, Yuhe Ding, Yuehang Li, Wentao Wu, Yao Rong, Weizhe Kong,
Ju Huang, Shihao Li, Haoxiang Yang, et al. State space model for new-generation network
alternative to transformers: A survey. arXiv preprint arXiv:2404.09516, 2024.

[90] Yihan Wang, Lujun Zhang, Annan Yu, N Benjamin Erichson, and Tiantian Yang. A deep state
space model for rainfall-runoff simulations. arXiv preprint arXiv:2501.14980, 2025.

[91] Zihan Wang, Fanheng Kong, Shi Feng, Ming Wang, Xiaocui Yang, Han Zhao, Daling Wang,
and Yifei Zhang. Is mamba effective for time series forecasting? Neurocomputing, 619:129178,
2025.

[92] Lechao Xiao, Jeffrey Pennington, and Samuel Schoenholz. Disentangling trainability and
generalization in deep neural networks. In International Conference on Machine Learning,
pages 10462–10472. PMLR, 2020.

[93] Tiankai Xie, Caleb Geniesse, Jiaqing Chen, Yaoqing Yang, Dmitriy Morozov, Michael W
Mahoney, Ross Maciejewski, and Gunther H Weber. Evaluating loss landscapes from a
topology perspective. arXiv preprint arXiv:2411.09807, 2024.

[94] Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

[95] Zhifan Ye, Kejing Xia, Yonggan Fu, Xin Dong, Jihoon Hong, Xiangchi Yuan, Shizhe Diao,
Jan Kautz, Pavlo Molchanov, and Yingyan Celine Lin. Longmamba: Enhancing mamba’s
long-context capabilities via training-free receptive field enlargement. In The Thirteenth
International Conference on Learning Representations, 2025.

[96] Annan Yu, Chloé Becquey, Diana Halikias, Matthew Esmaili Mallory, and Alex Townsend.
Arbitrary-depth universal approximation theorems for operator neural networks. arXiv preprint
arXiv:2109.11354, 2021.

[97] Annan Yu, Dongwei Lyu, Soon Hoe Lim, Michael W Mahoney, and N Benjamin Erich-
son. Tuning frequency bias of state space models. International Conference on Learning
Representations, 2025.

[98] Annan Yu, Michael W Mahoney, and N Benjamin Erichson. HOPE for a robust parameteriza-
tion of long-memory state space models. Internation Conference on Learning Representations,
2025.

[99] Annan Yu, Arnur Nigmetov, Dmitriy Morozov, Michael W. Mahoney, and N. Benjamin
Erichson. Robustifying state-space models for long sequences via approximate diagonalization.
In The Twelfth International Conference on Learning Representations, 2024.

[100] Annan Yu, Yunan Yang, and Alex Townsend. Tuning frequency bias in neural network training
with nonuniform data. International Conference on Learning Representations, 2023.

[101] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar.
Are transformers universal approximators of sequence-to-sequence functions? Internation
Conference on Learning Representations, 2020.

16

[102] Fengrui Zhang, Jiaoyi Hou, Dayong Ning, Cheng Zhou, Gangda Liang, and Zhilei Liu. Srs4:
A stacked residual deep neural network for heave motion continuous prediction of salvage
barge. Available at SSRN 4938844, 2024.

[103] Hanwei Zhang, Ying Zhu, Dan Wang, Lijun Zhang, Tianxiang Chen, Ziyang Wang, and Zi Ye.
A survey on visual mamba. Applied Sciences, 14(13):5683, 2024.

[104] Guoqiang Zhong, Li-Na Wang, Xiao Ling, and Junyu Dong. An overview on data representa-
tion learning: From traditional feature learning to recent deep learning. The Journal of Finance
and Data Science, 2(4):265–278, 2016.

[105] Ding-Xuan Zhou. Universality of deep convolutional neural networks. Applied and computa-
tional harmonic analysis, 48(2):787–794, 2020.

[106] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer:
Frequency enhanced decomposed transformer for long-term series forecasting. In International
Conference on Machine Learning, pages 27268–27286. PMLR, 2022.

[107] Lianghui Zhu, Liao Bencheng, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang.
Vision mamba: Efficient visual representation learning with bidirectional state space model.
International Conference on Machine Learning, 2024.

17

A Related works

Sequence Models. Sequential data appear across a wide range of domains, including natural language
processing, computer vision, generative modeling, and scientific machine learning. To model such
data, primitive deep learning approaches primarily relied on recurrent neural networks (RNNs) and
their variants [6, 13, 22, 68, 55], as well as convolutional neural networks (CNNs) [9, 66]. The last
decade has witnessed the dominance of the transformer architecture [37, 17, 41, 106, 54], following
the seminal work [83]. Recently, a new class of models known as state-space models (SSMs) has
emerged as a promising competitor [28, 27, 30, 77, 25, 20]. These models represent sequences
through an underlying continuous-time dynamical system and offer a key advantage: they can handle
sequences of varying lengths with a fixed number of parameters [85] and be trained with time and
memory complexity that scales linearly with sequence length [28, 77, 25].

State Space Models. The term “state space models” (SSMs) originates from control theory and
dates back to [36]. The first widely adopted SSM in machine learning was the S4 model proposed
by [28]. Both the original S4 and its successor, Liquid-S4 [30], use a diagonal-plus-rank-one (DPRO)
structure in the state matrix to significantly reduce computational cost compared to traditional
RNNs. Later, [27] showed that a purely diagonal state matrix could achieve comparable performance,
leading to the simplified S4D model. Since then, most SSMs have adopted diagonal state matrices,
including S5 [77], Regularized SSM [46], Stable-SSM [86], S4-PTD, and S5-PTD [99, 63]. While a
diagonal parameterization explores the structural simplicity of SSMs, [59] analyzes the computational
acceleration of LTI systems and [12] investigates its numerical stability. Other works explore implicit
sequence models that do not rely directly on an LTI formulation or rely on a modified LTI formulation,
such as [98, 1, 56, 69]. An extensive list of different SSM architectures has been given in the survey
articles [89, 58]. The expressiveness of SSMs has been studied in [98, 47], their training dynamics
in [76, 97], and generalization properties in [97, 46]. Several studies have also investigated the
representation stability of SSMs, including [86, 98]. Applications of SSMs in different scientific
fields have been studied in several papers [102, 90, 63].

Mamba Models. Mamba [25] extends SSMs by introducing input-dependent dynamics via a
selective mechanism, resulting in a highly efficient sequential architecture. Unlike earlier SSMs
that use fixed, input-independent recurrence, Mamba adapts its dynamics at each step, enabling it to
rival transformer-based models in language tasks. The theoretical benefits of this input-dependent
recurrence was studied in [53] through the lens of controlled differential equations (CDEs). Mamba
has since inspired a number of extensions and studies. Mamba2 [20] incorporates a multihead
structure with softmax gating. Mamba has also been applied beyond language modeling [58],
including computer vision [107, 103, 44], time-series forecasting [91], multimodal learning [62], and
audio processing [43]. In addition, [51] proposed using Mamba as a foundation model backbone
across modalities. Despite its versatility, follow-up studies such as [3] have highlighted the limitations
of Mamba on long-range sequence benchmarks such as LRA. The S7 model [79] has been proposed
as another selective model with slightly improved performances on LRA tasks; though, the accuracies
are still substantially worse than models like S4D and S5. Other efforts to enhance Mamba’s long
memory retention and selectivity mechanism are found in [95] and [65], respectively. The spectral
properties of the state matrix are considered in [24] and related to Mamba’s state-tracking capabilities.
In addition, the recent work [32] proposes a theoretical generalization upper bound based on the
Rademacher complexity of Mamba models. Notably, [74] conducted a thorough comparison of these
different recurrent units, including S4, Mamba, and traditional RNNs. Many works have shown the
advantages of a bidirectional structure in SSMs and Mambas [34, 48], which we also adopt in training
the LRA benchmark tasks.

Universal Approximation Theorems. In this paper, we use the universal approximation theorem
(UAT) as a tool to assess a model’s expressiveness. UATs ask whether a target function can be
approximated to arbitrary accuracy by a sufficiently large neural network. This line of work dates
back to [18], who proved that two-layer neural networks with sigmoid activation are universal
approximators. This result was later extended to networks with any continuous, non-polynomial
activation function. While many classical results focus on shallow but wide networks, recent work
by [39] established that deep, narrow networks can also be universal approximators. Universal
approximation properties have been studied across various architectures. Notable examples include
shallow and wide operator neural networks [50, 15], as well as their deep and narrow counterparts [96].
For sequence models, UATs are known for RNNs [71], CNNs [105], Transformers [101], and

18

SSMs [86]. There are limited works on the universal approximation properties of Mamba models.
One notable exception is [53], where the uniform closure of Mamba (i.e., functions that can be
uniformly approximated by Mamba) is analyzed in a continuous setting (i.e., the inputs are continuous
time series instead of discrete sequences) through linear controlled differential equations. The analysis
there highlights the important role of an input-dependent sampling interval ∆ in the expressiveness
of Mamba, suggesting that Theorem 1 may not hold for a trainable ∆ (see Appendix G).

Width and Depth of Neural Networks. While UATs focus on the density of neural networks in
a given topology, more practically relevant questions involve the rate of approximation, e.g., how
deep or wide a network must be to approximate a target function within a given accuracy. One of the
most celebrated results is by [82], which shows that depth improves expressiveness more efficiently
than width. However, in practice, deep but narrow networks often face optimization challenges
during training [23, 57, 16, 67]. In contrast, networks with greater effective width tend to enjoy
better theoretical guarantees on generalization. This advantage can be understood through both the
neural tangent kernel (NTK) perspective [35, 7, 2, 11, 100] and mean-field theory [52, 80, 10], both
of which highlight the benefits of wide models in training dynamics and generalization performance.

Sensitivity Analysis. Neural networks often operate on high-dimensional inputs, and a large body of
work has studied how to quantify the sensitivity of the output to individual input components — a line
of research typically referred to as attribution. While our paper focuses on relative gradients, many
other gradient-based attribution methods have been developed, including DeepLIFT [73], integrated
gradients [81], sensitivity-n [4], and others [8, 75]. Most of these methods compare a given input to a
baseline or reference input, whereas our analysis focuses specifically on the effect of large-magnitude
inputs in isolation without reference to a benchmark input.

Training Stability and the Loss Landscape. Training stability in deep neural networks has been
extensively studied through the lens of loss landscape geometry. Sharp minima and high-curvature
regions are often associated with poor generalization and unstable optimization [38, 14, 42]. Gradient
explosion or vanishing can lead to optimization failure [23, 57] for recurrent neural networks. More
recent works have linked curvature and gradient dynamics to the trainability of neural networks [16,
67, 70]. These studies emphasize the importance of smooth, well-conditioned landscapes for stable
training, motivating architectural choices [31, 93] and learning rate schedulers [49] that mitigate
instability.

B Proofs of UAT and non-UAT results

In this section, we prove all technical results related to UATs presented in section 3 and 6. Recall that
the univariate neural network architecture that we study in this paper is given by

G̃(u) = G̃((u1, . . . , uL)) = Nσ(Γ((Mu1, . . . ,MuL))L + θ).

A pictorial illustration of this architecture is given in Figure 5.

B.1 Proof of Theorem 1

To prove that such a G̃ is not a universal approximator when Γ = ΓS6, we will see that since an
S6 model ties the matrices Bk and Ck for all channels, the system becomes a quadratic encoder of
the input sequence. We need the following technical lemma to show that a quadratic encoder is not
invertible, and therefore, information will be lost when we apply this encoder to an input sequence.
Lemma 1. Given any L ≥ 3, there exists a continuous function G : [0, 1]L → R such that
given any quadratic polynomial of L variables P : [0, 1]L−1 × {1} → R, there exist two points
x,y ∈ [0, 1]L−1 × {1} such that

P (x) = P (y), |G(x)−G(y)| > 1.

Proof. Since the restriction of a quadratic polynomial of L variables to 3 variables is still a quadratic
polynomial, without loss of generality, we assume that L = 3. Moreover, instead of assuming
that G and P are functions on [0, 1]3−1 × {1}, we can assume that they are functions on [0, 1]2. It
is well-known that there is a number N ≥ 1 such that every bivariate quadratic polynomial has
at most N strict local minima or maxima. We construct G by selecting N + 1 arbitrary distinct
points x1,x2, . . . ,xN+1 in (0, 1)2. Around each point xj , we make a small disk Dj = Dρ(xj).

19

Figure 5: The architecture of the neural network eq. (5) that we study in this paper. In this picture, a
horizontal operator is applied channel-wise to every sequence in a channel, and a vertical operation is
applied element-wise to every position in a sequence. A green color indicates a linear operator while
an orange color indicates a nonlinear one.

By taking ρ small enough, we can also ensure that Dj ⊂ [0, 1]2 for all 1 ≤ j ≤ N + 1 and that
D1, D2, . . . , DN+1 are mutually disjoint. Let G be a continuous function such that G(xj) = 0 for
every 1 ≤ j ≤ N + 1 and G equals 2 on ∂Dj , the boundary of Dj , for every 1 ≤ j ≤ N + 1. Such
a G clearly exists by Urysohn’s lemma. We claim that G satisfies the condition in the our lemma.
To see this, given any arbitrary quadratic polynomial P : [0, 1]2 → R, we let Sj be the connected
component of the set {x|P (x) = P (xj)} that contains xj . There are two possibilities: either Sj

intersects ∂Dj or not. If Sj does not intersect ∂Dj , then that means there is a strict local minimum
or a strict local maximum of P in Dj , but D1, . . . , DN+1 are mutually disjoint and there are at most
N local minima or maxima of P . Hence, there is at least one j such that Sj intersects ∂Dj . Let
y ∈ Sj ∩ ∂Dj . Then, we have that

P (xj) = P (y), |G(xj)−G(y)| = |0− 2| > 1.

The proof is complete.

We are now ready to prove Theorem 1. The proof of the first part is built upon a result from [60]
for UAT of a two-layer wide neural network to approximate any continuous function and a result
from [88] for UAT of LTI systems to approximate any convolutional kernel.

Proof of Theorem 1. We prove the two statements separately.

Proof of Part I. Without loss of generality, assume that σ is 1-Lipschitz.4 Let a continuous function
G : [0, 1]L → R and an error tolerance ϵ > 0 be given. By [60], there exists a function G̃ : [0, 1]L →
R of the form

G̃(u) =

d∑
i=1

f (i)σ((w(i))⊤u+ θ(i)),

where w(i) ∈ RL and bi ∈ R for every 1 ≤ i ≤ d, such that

|G̃(u)−G(u)| ≤ ϵ

2

for every u ∈ [0, 1]L. For any 1 ≤ i ≤ d, by [87], there exist ni ≥ 1, A(i) ∈ Rni×ni , B(i) ∈ Rni×1,

and C(i) ∈ R1×ni , such that the matrices A
(i)

, B
(i)

, and C
(i)

from the discretized LTI system
(see eq. (2)) satisfy that

|(wj)
(i) −C

(i)
(A

(i)
)L−jB

(i)| < ϵ

2
√
dL(∥f∥2 + 1)

4Otherwise, if σ is ℓ-Lipschitz, we can divide σ by ℓ to make it 1-Lipschitz and multiply N by ℓ so that the
value of G̃ does not change.

20

for all 1 ≤ j ≤ L, where f = [f (1) · · · f (d)]⊤. Hence, we have that∣∣∣∣∣∣σ((w(i))⊤u+ θ(i))− σ

 L∑
j=1

C
(i)
(A

(i)
)L−jB

(i)
uj + θ(i)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣(w(i))⊤u−

 L∑
j=1

C
(i)
(Ã(i))L−jB

(i)
uj

∣∣∣∣∣∣
≤

√√√√ L∑
j=1

(
(w(i))j −C

(i)
(A

(i)
)L−jB

(i)
)2

∥u∥2 ≤ L
ϵ

2
√
dL(∥f∥2 + 1)

=
ϵ

2
√
d(∥f∥2 + 1)

,

where the first inequality follows from the Lipschitz continuity of σ and the second inequality follows
from the Hölder’s inequality. Set n =

∑d
i=1 ni and define a block-diagonal matrix A so that

A =


A(1)

A(2)

. . .

A(d)

 .

For every 1 ≤ i ≤ d, define B(i) ∈ Rn×1 to be a sparse column vector so that B(i)((
∑i−1

i′=1 ni′ +1) :

(
∑i

i′=1 ni′)) = B(i) and is zero elsewhere. Similarly, define C(i) ∈ R1×n to be a sparse column
vector so that C(i)((

∑i−1
i′=1 ni′ + 1) : (

∑i
i′=1 ni′)) = C(i) and is zero elsewhere. Now, it is easy to

see that given these definitions, the S4D defined in eq. (1) satisfies that

(ΓS4D((u1, . . . , uL))L)
(i) =

L∑
j=1

C
(i)
(A

(i)
)L−jB

(i)
uj

for every 1 ≤ i ≤ d. Hence, let G̃S4D be such that

G̃S4D : [0, 1]L → R, (u1, . . . , uL) 7→ fσ(ΓS4D((Mu1, . . . ,MuL))L + θ),

where M = [1 · · · 1]⊤. For any u ∈ RL, we have that

|G̃S4D(u)− G̃(u)| ≤ ∥f∥2

√√√√√ d∑
i=1

σ((w(i))⊤u)− σ

 L∑
j=1

C
(i)
(A

(i)
)L−jB

(i)
uj

2

≤ ∥f∥2
√
d

ϵ

2
√
d(∥f∥2 + 1)

<
ϵ

2
.

Now, for any u ∈ RL, we have that

|G̃S4D(u)−G(u)| ≤ |G̃S4D(u)− G̃(u)|+ |G̃(u)−G(u)| ≤ ϵ

2
+

ϵ

2
≤ ϵ.

The statement is proved.

Proof of Part II. Given any sequence u ∈ RL, any encoder M = [m(1) · · · m(L)]⊤, and any
Mamba parameters A ∈ Rn×n, B ∈ Rn×d, and C ∈ Rd×n, we first show how the Mamba system
in eq. (3) can be simplified. For any 1 ≤ i ≤ d, we have that

x
(i)
k+1 = Ax

(i)
k + (Puk)m

(i)uk,

(yk)
(i) = (ukQ)x

(i)
k ,

(9)

where A = exp(A), P = A−1(A− I)BM, and Q = M⊤C are fixed matrices depending only on
A, B, C, and M. Hence, the ith entry of the final output is given by

ΓS6((Mu1, . . . ,MuL))
(i)
L = m(i) uL

 L∑
j=1

QA
L−j

Pu2
j


︸ ︷︷ ︸

F ((u1,...,uL))

.

21

Importantly, note that since uL = 1, F is a quadratic function in u1, . . . , uL that does not depend on
i. The output of G̃S6 can then be expressed as

G̃S6(u) =

d∑
i=1

n(i)σ(m(i)F (u) + θi),

where N = [n(1) · · · n(L)]. Let G be the function defined in Lemma 1. Then, given any choice of
M,N,θ,A,B, and C, we know that there is a pair of inputs u and v such that

F (u) = F (v), |G(u)−G(v)| > 1.

Since F (u) = F (v), we also have that G̃S6(u) = G̃S6(v). By the triangle inequality, we have

|G(u)− G̃S6(u)|+ |G(v)− G̃S6(v)| ≥ |G(u)−G(v)| > 1.

Setting ϵ = 1/2, we are done.

B.2 Proof of Theorem 4

The proof of Theorem 4 can be easily established upon our proof that S4D models are universal
approximators.

Proof of Theorem 4. Note that the construction of a universal approximator in Theorem 1 can be
achieved by using the same C(i) = [1 · · · 1] for all 1 ≤ i ≤ d (see [88, 97]). The second statement
follows immediately from the first statement of Theorem 1 by setting 1Bweight = 0, B(i)

bias to be the
same B(i) used in ΓS4D, and 1C to be the rank-1 matrix whose entries are all d−1 so that uLM

⊤ 1C =
[1 · · · 1]. For the first statement, consider the function H(u) given by H(u) = G(

√
u), where

the square-root is applied elementwise. Clearly, H is continuous since G is continuous. Then, we
know, by the second statement, that there exist M = [1 · · · 1]

⊤
,N,θ, Ã, 1B̃weight = 0, B̃

(i)
bias,

and 1C̃ = [1/d]i,j such that the B2S6 system Γ̃B2S6 defined in eq. (7) with h = 1 and p = d and the
map

H̃B2S6 : [0, 1]L → R, (u1, . . . , uL) 7→ Nσ(Γ̃B2S6((Mu1, . . . ,MuL))L + θ)

satisfy that
|H̃B2S6(u)−H(u)| ≤ ϵ, for any u ∈ [0, 1]L−1 × {1}.

Now, define h = d and p = 1. Let M,N,θ,A = Ã be the same matrices, and let jBweight = B̃
(j)
bias,

B
(i)
bias = 0, and jC = [1 · · · 1] for all i and j. Then, it is clear that the system ΓB2S6

defined by
these matrices satisfies that

(ΓB2S6(u))L = (Γ̃B2S6(u
2))L, for any u ∈ [0, 1]L−1 × {1},

where u2 is the sequence obtained by squaring every entry of u. Hence, the map

G̃B2S6 : [0, 1]L−1 × {1} → R, (u1, . . . , uL) 7→ Nσ(ΓB2S6((Mu1, . . . ,MuL))L + θ)

satisfies that
|G̃B2S6

(u)−G(u)| = |H̃B2S6
(u2)−H(u2)| ≤ ϵ, for any u ∈ [0, 1]L−1 × {1}.

The proof is complete.

C Proofs of inductive bias results

In this section, we prove Theorem 2 and 5. The proof of these results relies on a very simple argument
that helps us avoid the cancellation of terms, which we state below.
Lemma 2. Let p ∈ R be given. Assume f : R → R and g : R → R are two functions such that
f(x) = αxp + o(xp) and g(x) = βxp + o(xp) as x → ∞, for some constants α, β ̸= 0. Then, we
have that for a.e. choice of c1, c2 ∈ R that c1f(x) + c2g(x) = γxp + o(xp) = Θ(xp) as x → ∞ for
some γ ̸= 0.

Proof. The proof is straightforward: as long as we have that αc1 + βc2 ̸= 0, the conclusion is
satisfied. Since α and β are nonzero, the equation αc1 + βc2 = 0 is satisfied only on a Lebesgue null
set of c1 and c2.

22

C.1 Proof of Theorem 2

We now prove the main theorems by explicitly calculating the Jacobians.

Proof of Theorem 2. Given an S6 system in eq. (3) and an input sequence u = (u1, . . . ,uL), let
yL = ΓS6(u) be the last output of the system. For any 1 ≤ s ≤ d, we have that

y
(s)
L = u⊤LCxL = u⊤LC

L∑
j=1

 L∏
i=j+1

A(ui)

B(uj)u
(s)
j ,

where

A(ui) = exp (∆(ui)A) = exp
(
softplus(w⊤ui)A

)
,

B(ui) = A−1
(
exp

(
softplus(w⊤ui)A

)
− I
)
Bui.

Note that we have changed the notations so that A(ui) is exactly the matrix Ai and B(ui) is exactly
the matrix Bi in eq. (3). This helps us better keep track of the dependency of every term on the
input u. In addition, it is easy to see that b(i) does not play a role in the asymptotic behaviors when
c → ±∞. Hence, we set them to zero. For any s, we have

(Jr)s,s =
∂y

(s)
L

∂u
(s)
r

= u⊤LC

L∑
j=1

∂

∂u
(s)
r

 L∏
i=j+1

A(ui)

B(uj)u
(s)
j


︸ ︷︷ ︸

d
(r,s)
j

,

where

d
(r,s)
j =


[

∂

∂u
(s)
r

A(ur)
] (∏L

i=j+1,i̸=r A(ui)
)
B(uj)u

(s)
j , j < r,(∏L

i=r+1 A(ui)
)(

B(ur)+u
(s)
r

∂

∂u
(s)
r

B(ur)
)

, j = r,

0 , j > r.

For any s ̸= t, we have

(Jr)s,t =
∂y

(t)
L

∂u
(s)
r

= uLC

L∑
j=1

∂

∂u
(s)
r

 L∏
i=j+1

A(ui)

B(uj)u
(t)
j


︸ ︷︷ ︸

f
(r,s,t)
j

,

where

f
(r,s,t)
j =


[

∂

∂u
(s)
r

A(ur)
] (∏L

i=j+1,i̸=r A(ui)
)
B(uj)u

(t)
j , j < r,(∏L

i=r+1 A(ui)
)
u
(t)
r

∂

∂u
(s)
r

B(ur) , j = r,

0 , j > r.

We now break the proof into two cases.

Case I: c → ∞. We discuss the cases when r < k, r = k, and r > k separately.

• When r < k, it is easy to check that ∥A(ur)∥ decays exponentially when c → ∞. Hence,
we have ∥d(r,s)

j ∥ and ∥f (r,s,t)j ∥ decay exponentially as c → ∞ for every s, t, and j. That is,
the Jacobian norm ∥Jr∥F decays exponentially as c → ∞.

• When r = k, the norm of the term(
L∏

i=r+1

A(ui)

)
u(t)
r

∂

∂u
(s)
r

B(ur)

grows like αc + o(c) as c → ∞ for all A and a.e. choice of and B, where α ̸= 0 is a
constant. That is, d(k,s)

k and f
(k,s,t)
k grow like a linear factor plus a o(c) term as c → ∞.

Hence, by Lemma 2, for a.e. choice of C, we have that ∥Jk∥F = Θ(c) as c → ∞.

23

• When r > k, it is straightforward to check that ∥d(r,s)
k ∥ = α(s)c2 + o(c2) for some

constants α(s) ̸= 0 and a.e. choice of B and ∥f (r,s,t)k ∥ = β(s, t)c2 + o(c2) for some
constants β(s, t) ̸= 0 and a.e. choice of B. Hence, by Lemma 2, for a.e. choice of C, we
have that ∥Jr∥F = Θ(c2) as c → ∞.

The first part of the theorem is proved by combining the three statements above.

Case II: c → −∞. We discuss the cases when r < k, r = k, and r > k separately.

• When r < k, the only thing that changes in the expression of Jr when c → −∞ is the
matrix A(uk), in which case it converges to I. Hence, we have that ∥Jr∥F = Θ(1).

• When r = k, we have that ∥∥∥∥∥ ∂

∂u
(s)
k

A(uk)

∥∥∥∥∥ = O(|c|−p)

for any p > 0 and s. Moreover, we also have that

∥B(uk)∥ = O(|c|−p),

∥∥∥∥∥ ∂

∂u
(s)
k

B(uk)

∥∥∥∥∥ = O(|c|−p),

for any p > 0 and s. That means we have ∥d(k,s)
j ∥ and ∥f (k,s,t)j ∥ decay exponentially for

any choice of s, t, and j. Hence, we have that ∥Jk∥F = Θ(|c|−p) for any p > 0.

• When r > k, we note that while ∥uk∥ grows linearly, the norm of the vector ∥B(uk)∥
decays exponentially. Therefore, we have that ∥B(uk)u

(s)
k ∥ decays exponentially for every

s. This shows that for a.e. B, the norms ∥d(r,s)
j ∥ and ∥f (r,s,t)j ∥ converge to constants for all

s, t, and j. By Lemma 2, we have ∥Jr∥F = Θ(1) for a.e. choice of C.

The second part of the theorem is proved by combining the three statements above. The claim about
an ΓS4D system is obvious since the system is linear.

Interestingly, from the proof of Theorem 2, we see that when c → ∞, the reason why SS6,k is large
for k > k0 is that uk plays an important role in determining the matrix Bk0 that affects a large input
uk0 . This is analogous to the function f(x, y) = xy. When x is large and y is small, the gradient
(∂/∂x)f is still small but (∂/∂y)f is huge.

C.2 Proof of Theorem 5

Once Theorem 2 is proved, the proof of Theorem 5 can be maintained easily from it.

Proof of Theorem 5. For each 1 ≤ r ≤ L, the Jacobian Jr is a block diagonal matrix Jr =
diag(1Jr, . . . ,

hJr), where every jJr is a p × p matrix. Since the cases when c is negative and
when c is positive are symmetric, without loss of generality, we assume that c → ∞. We study the
Jacobian norms when r < k, r = k, and r > k separately. The following statements hold for a.e.
model parameters.

• When r < k, from the proof of Theorem 2, we know that ∥jJr∥ decays exponentially when
jw⊤ ju > 0 and ∥jJr∥ = Θ(1) when jw⊤ ju < 0. Hence, by our assumption, we know
that ∥Jr∥F = Θ(1).

• When r = k, from the proof of Theorem 2, we know that ∥jJr∥ = Θ(c) as long as
jw⊤ ju > 0. Hence, we have ∥Jr∥F = Θ(c).

• When r > k, from the proof of Theorem 2, we know that ∥jJr∥ = Θ(c2) as long as
jw⊤ ju > 0. Hence, we have ∥Jr∥F = Θ(c2).

Combining the three cases, we proved the result.

24

D Proof of the stability result

We now bring in the last piece of technical details by proving the stability result in Theorem 3. The
proof again relies on a tedious expansion of the gradients, which then gives us expressions that are
intellectually interesting to analyze with basic probability theory.

Proof of Theorem 3. Since we assumed that d = 1, we drop all superscripts for channel indices.
Given an input u = (u1, . . . , uL) be an input and denote by yS4D = ΓS4D(u)L and yS6 = ΓS6(u)L
the outputs of an S4D system and an S6 system, respectively. Then, we have

∂yS4D

∂b
= C

L∑
j=1

∂

∂b

 L∏
i=j+1

A

Buj


︸ ︷︷ ︸

rj

,

where

A = exp(exp(b)A), B = A−1(A− I)B,

and

∂yS6

∂w
= uLC

L∑
j=1

∂

∂w

 L∏
i=j+1

A(ui)

B(uj)uj


︸ ︷︷ ︸

sj

,

∂yS6

∂b
= uLC

L∑
j=1

∂

∂b

 L∏
i=j+1

A(ui)

B(uj)uj


︸ ︷︷ ︸

tj

,

where

A(uj) = Ã = exp(softplus(b)A), B(uj) = A−1(A(uj)− I)Buj .

Note that the matrix A(uj) does not really depend on uj because we assumed that w = 0, but we
keep the notation consistent with the proof of Theorem 2. In particular, we have that

∂

∂b
A = AAexp(b),

∂

∂b
B = A−1AAexp(b)B = ABexp(b).

and

∂

∂w
A(u) =

exp (softplus(b)A)Au

1 + e−b
,

∂

∂w
B(u) =

exp (softplus(b)A)Au

1 + e−b
A−1Bu,

∂

∂b
A(u) =

exp (softplus(b)A)A

1 + e−b
,

∂

∂b
B(u) =

exp (softplus(b)A)A

1 + e−b
A−1Bu.

Using the product rule, we can compute rj , sj , and tj :

rj = uj

A
L−j ∂

∂b
B+

L∑
i=j+1

(
∂

∂b
A

)
A

L−j−1
B


= A

L−j−1
uj

A
∂

∂b
B+

 L∑
i=j+1

∂

∂b
A

B


= A

L−j
uj exp(b)

(
A+ (L− j)(A− I)

)
B,

25

and

sj = uj

ÃL−j ∂

∂w
B(uj) +

L∑
i=j+1

∂

∂w
A(ui)Ã

L−j−1B(uj)


= ÃL−j−1

uj Ã
∂

∂w
B(uj) + uj

 L∑
i=j+1

∂

∂w
A(ui)

B(uj)


= ÃL−j−1 exp (softplus(b)A)

1 + e−b

ÃBu3
j + u2

j (exp (softplus(b)A)− I)B

L∑
i=j+1

ui

 ,

tj = uj

ÃL−j ∂

∂b
B(uj) +

L∑
i=j+1

∂

∂b
A(ui)Ã

L−j−1B(uj)


= ÃL−j−1

uj Ã
∂

∂b
B(uj) + uj

 L∑
i=j+1

∂

∂b
A(ui)

B(uj)


= ÃL−j−1 exp (softplus(b)A)

1 + e−b

(
ÃBu2

j + u2
j (L− j) (exp (softplus(b)A)− I)B

)
.

Increasing input magnitudes. From the formulas of sj , tj , and rj , it is straightforward that they are
homogeneous in u with degrees 3, 2, and 1, respectively. Fixing an L, as long as Eu∼DL

|(∂/∂w)yS6|,
Eu∼DL

|(∂/∂b)yS6|, and Eu∼DL
|(∂/∂b)yS4D| ≠ 0, we have that

Eu∼cDL
|(∂/∂w)yS6|

Eu∼cDL
|(∂/∂b)yS4D|

= O(c3),
Eu∼cDL

|(∂/∂b)yS6|
Eu∼cDL

|(∂/∂b)yS4D|
= O(c2), c → ∞.

This proves the first part of the theorem.

Increasing sequence length. The proof of the theorem when L → ∞ is more involved. For clarity,
we break it into three parts.

• The gradient of yS4D. We first consider the case when n = 1. We will show that
Eu∼DL

|(∂/∂b)yS4D| = exp(b(L))O(
√
L) as L → ∞. Since A is diagonal, when n ≥ 1, yS4D can

be calculated by summing up the outputs from n independent LTI systems, all with a 1-dimensional
state space. This obviously shows that Eu∼DL

|(∂/∂b)yS4D| = exp(b(L))O(
√
L) when n ≥ 1. To

prove the case when n = 1, we use Jensen’s inequality and obtain that

E

∣∣∣∣∣∣
L∑

j=1

A
L−j

Buj

∣∣∣∣∣∣
 ≤

√√√√√√E


∣∣∣∣∣∣

L∑
j=1

A
L−j

Buj

∣∣∣∣∣∣
2


=

√√√√√E

 L∑
j=1

A
L−j

Buj

2

+Var

 L∑
j=1

A
L−j

Buj


=

√√√√0 +

L∑
j=1

Var(vj) +
∑

1≤i<j≤L

Cov(vi, vj) = O(
√
L),

where vj = A
L−j

Buj . This shows that

Eu∼DL

[∣∣∣∣ ∂∂byS4D

∣∣∣∣] = Eu∼DL

∣∣∣∣∣∣C
L∑

j=1

rj

∣∣∣∣∣∣


≤ exp(b(L))

Eu∼DL

∣∣∣∣∣∣C
L∑

j=1

A
L−j+1

Buj

∣∣∣∣∣∣
+Eu∼DL

∣∣∣∣∣∣C
L∑

j=1

A
L−j

(L−j)(A−I)Buj

∣∣∣∣∣∣
 .

26

Note that we just proved that the first expectation is O(
√
L) as L → ∞. By letting b(L) → −∞

fast enough, A− I vanishes exponentially, so we have the second term is also O(
√
L). This proves

that
Eu∼DL

|(∂/∂b)yS4D| = exp(b(L))O(
√
L), L → ∞. (10)

• The gradient of yS6 when n = 1. When n = 1, the matrices Ã,B, and C are all scalars. Without
loss of generality, assume that B,C > 0. Similar to the previous case, if b(L) → −∞ as L → ∞,
the matrix exp(softplus(b(L))A)− I vanishes. That is, since uL = 1, we have

Eu∼DL

[∣∣∣∣ ∂∂byS6

∣∣∣∣] = Eu∼DL

∣∣∣∣∣∣C
L∑

j=1

tj

∣∣∣∣∣∣
 ∼ exp(b(L))Eu∼DL

∣∣∣∣∣∣C
L∑

j=1

ÃL−jBu2
j

∣∣∣∣∣∣


= exp(b(L))
L∑

j=1

CÃL−jB E
[
u2
j

]
≥ exp(b(L))

L∑
j=1

CÃL−jB Var [uj] = exp(b(L))Θ(L),

provided that b(L) decays fast enough so that ÃL = Θ(1) as L → ∞.

• The gradient of yS6 when n > 1. Now, suppose n > 1. The output yS6 can be written as the sum
of n terms: yS6 = y1 + · · ·+ yn, where yj is the output of an LTI system with n = 1 [97]. By the
previous argument, we know that for every 1 ≤ j ≤ n,

Eu∼DL

[
∂

∂b

yj
Cj

]
= ±exp(b(L))Θ(L),

where the expectation can be either positive or negative, depending on the sign of BjCj . That is,
we know that

Eu∼DL

[∣∣∣∣ ∂∂b yj
Cj

∣∣∣∣]/(exp(b(L))L)

is bounded between two positive numbers or between two negative numbers as L is sufficiently
large. We still want to apply Lemma 2 to control cancellation effects, but the main issue is that we do
not have that this term converges to a number. However, since the metric space Rn is complete, i.e.,
boundedness implies subsequent convergence, we know that there exists a subsequence L1, L2, . . .
such that

Eu∼DLk

[
∂

∂b

yj
Cj

]
→ αjexp(b(Lk))Lk as k → ∞, 1 ≤ j ≤ n,

where αj is a nonzero constant for all 1 ≤ j ≤ n. Hence, by Lemma 2, we have for a.e. C that

Eu∼DLk

[
∂yS6

∂b

]
= Eu∼DLk

 n∑
j=1

∂yj
∂b

 = α exp(b(Lk))Lk, α ̸= 0.

Hence, we have

Eu∼DLk

[∣∣∣∣∂yS6

∂b

∣∣∣∣] = α exp(b(Lk))Θ(Lk). (11)

Combining eq. (10) and (11), we prove the theorem.

E Supplementary experiments on the stability

In this section, we present two experiments to corroborate our discussion of training stability in sec-
tion 5. The first experiment numerically verifies Theorem 3 as the input magnitude and the sequence
length grow. The second experiment empirically shows that a reduced learning rate on ∆-related
parameters help stabilize the training of an S6 model.

27

E.1 A numerical experiment that verifies Theorem 3

In this experiment, we set d = 1 and randomly sample diag(A) from the left half of the complex
plane, and randomly sample B and C. We then use these matrices to construct an S4D system and an
S6 system. We sample our length-L input sequences from i.i.d. Gaussian distributions with mean
zero and standard deviation c.5 We fix the ratio L/ exp(b(L))−1 to take into account the fact that
as L increases, we need a longer memory window to capture the long-range dependency. We then
compute the quantities in Theorem 3. For the first two experiments, we fix L = 100 and let c increase.
Then, we fix c = 1 and let L increase. The results are shown in Figure 6. All results are averaged
over 30 different trials.

10
0

10
1

10
2

10
0

10
2

10
4

10
6

10
8

|∂yS6
∂w

/∂yS4D
∂b

|, c → ∞

|∂
y

S6
∂
w

/
∂
y

S4
D

∂
b
|

c
10

0
10

1
10

2
10

0

10
2

10
4

10
6

|∂yS6
∂b

/∂yS4D
∂b

|, c → ∞

|∂
y

S6
∂
b

/
∂
y

S4
D

∂
b
|

c
10

2
10

3

10
1

10
2

|∂yS6
∂b

/∂yS4D
∂b

|, L → ∞

|∂
y

S6
∂
b

/
∂
y

S4
D

∂
b
|

L

Figure 6: Numerical experiments to verify Theorem 3, where we compute the ratio between the
gradients with respect to the S6 parameters and S4D parameters. For the first two figures, we fix
L = 100; for the last figure, we fix c = 1. The gradients are computed using closed algebraic
formulas. The red reference lines in the three log-log plots have slopes of 3, 2, and 1/2, respectively.

In these experiments, we see that the three ratios studied in Theorem 3 follow exactly the pattern of a
cubic, quadratic, and square root growth, respectively. This is what we expect from Theorem 3.

E.2 An empirical experiment on the training stability

We also show a real training example, where we want to learn a ground-truth function that takes
in a univariate sequential input and returns a fixed linear combination of them: G(u1, . . . , uL) =∑L

j=1 θjuj , where θ1, . . . , θL are fixed parameters. We show the loss curves in Figure 7, with
different models (i.e., S4D versus S6) and different learning rate assignments (i.e., whether or not
∆ is learned). We see that the S4D model is very stable during training, with its loss going down
smoothly. This is not the case for the S6 model, where the loss goes up and down and even restarts.
We find that by freezing the ∆t parameters w and b, the model trains much more robustly.

2000 4000 6000 8000 10000

0

5

10

15

lo
ss

Step

S4D

2000 4000 6000 8000 10000

0

5

10

15

lo
ss

Step

S6

2000 4000 6000 8000 10000

0

5

10

15

lo
ss

Step

S6 (fixed ∆)

Figure 7: The root-mean-squared loss ∥G(u)− G̃(u)∥2 between the true output G(u) and the model
prediction ˜G(u). The first two models are trained with a learning rate of 0.001 on the ∆ parameters,
whereas the last model is trained with no training of the ∆ parameters.

5Note, in particular, that this sequence has no long-range dependency. We made this choice because it is a
natural one without any prior information. It does not affect the training stability a lot. One can try different
input functions with long-range dependencies, e.g., we have tried sinusoidal waves, and the results are similar.

28

F Details of experiments

In this section, we show the details of the experiments in section 7. Before we provide the detailed
configurations, we provide an extended table for LRA results of more variants of state-space models
(see Table 4). While many of these models focus on improving certain aspects of the recurrent unit,
we do not incorporate and test them in our B2S6 model.

Table 4: An extended list of SSM accuracies on the Long-Range Arena benchmark. An entry is left
blank if no result is found. All but the last three models are not input-selective.

Model ListOps Text Retrieval Image Pathfinder Path-X Avg.
S4 [28] 59.60 86.82 90.90 88.65 94.20 96.35 86.09

S4D [27] 60.47 86.18 89.46 88.19 93.06 91.95 84.89
DSS [29] 57.60 76.60 87.60 85.80 84.10 85.00 79.45
LRU [55] 89.00 60.20 89.40 89.90 95.10 94.20 86.30
S4++ [61] 57.30 86.28 84.82 82.91 80.24 - -

HOPE-SSM [98] 62.60 89.83 91.80 88.68 95.73 98.45 87.85
S4D-FT [97] 62.75 89.76 92.45 90.89 95.89 97.84 88.26

Reg. S4D [46] 61.48 88.19 91.25 88.12 94.93 95.63 86.60
Liquid S4 [30] 62.75 89.02 91.20 89.50 94.80 96.66 87.32
RTF SSM [56] 61.59 89.72 92.04 90.51 96.11 96.32 87.71

Spectral SSM [1] 60.33 89.60 90.00 - 95.60 90.10 -
Spiking SSM [72] 60.23 80.41 88.77 88.21 93.51 94.82 84.33

S5 [77] 62.15 89.31 91.40 88.00 95.33 98.58 87.46
S6 (Mamba) [25] 38.02 82.98 72.14 69.82 69.26 67.32 66.59

S7 [79] 63.77 87.22 91.80 61.14 65.62 61.50 71.82
B2S6 (ours) 63.85 88.32 91.44 88.81 95.93 97.90 87.71

In this paper, all models are trained with one or more NVIDIA L40 GPUs with 48GB of memory.
For the ablation study, we use a 4-layer model and we increase the number of layers for the full
experiments on the LRA benchmark. We provide the details of the model and training hyperparameters
used for training each LRA task in Table 5. For all experiments, we set h = 8 so that p = #Features/8.
Notably, this hyperparameter h is not carefully fine-tuned but rather picked randomly. Note that our
model for training the Path-X tasks is smaller than the corresponding S4D model.

Table 5: Configurations of our B2S6 model on the LRA benchmark, where LR, BS, and WD stand
for learning rate, batch size, and weight decay, respectively.

Task Depth #Features Norm Prenorm LR BS Epochs WD
ListOps 8 128 BN False 0.008 32 120 0.03

Text 6 256 BN True 0.01 16 40 0.05
Retrieval 6 128 BN True 0.004 60 200 0.03

Image 6 512 LN False 0.01 48 500 0.05
Pathfinder 6 256 BN True 0.004 48 250 0.03

Path-X 6 128 BN True 0.001 24 120 0.03

G Limitations and Future Work

We acknowledge (and justify) several limitations of this work, which also suggest promising directions
for future research:

• The universal approximation theorems (UATs) in this paper are derived under a few simplifying
assumptions — most notably, the assumption that the sampling interval ∆ is fixed. This setup
diverges from practical implementations, where ∆ is input-dependent. However, our goal is not
to prove UATs for all realistic settings, but to expose fundamental expressiveness gaps between
S6 and S4D under clean conditions. Extending these results to settings with dynamic ∆ remains
an interesting theoretical direction. If one can show that a single-layer Mamba is not a universal

29

approximator even when ∆ is not fixed, then that would further stress the benefit of a multi-head
design in selective SSMs. Conversely, if a single-layer Mamba with dynamic ∆ is a universal
approximator, then an important follow-up question is if (and how) a trainable channel-specific ∆
can compensate for the channel-independent B and C matrices in a single-head Mamba.

• Our experiments on language modeling are not designed to compete with large-scale models or
datasets. This choice reflects a deliberate focus: our primary aim is to study and improve the
behavior of Mamba on long-range sequence tasks. Demonstrating that B2S6 retains Mamba’s
performance in language modeling — even at small scale — supports its versatility. Scaling to
larger models and corpora is a natural next step, pending access to greater computational resources.

• Our implementation of B2S6 is based entirely on PyTorch. While this makes the method easily
accessible and reproducible, further speed improvements would require low-level optimization
in CUDA (see [25]). We leave efficient implementation and integration into high-performance
inference/training libraries to future work.

30

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and the introduction clearly state the main claims and contributions
of the paper. It is made clear that the paper focuses on investigating Mamba’s capability of
modeling long-range sequences, and that the paper analyzes the previous limitations from
three aspects (expressiveness, inductive bias, and training stability) and proposes a model
that better captures long-range dependencies. All claims are supported by both theoretical
statements and experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this paper in Appendix G. These limitations are
also discussed in the main paper, though not in a centralized way.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

31

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are clearly stated, with notations previously defined in the
paper clearly cross-referenced. All proofs are provided in the appendices.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details of all experiments in Appendix F. While it is infeasible to
state all details of the training and model configurations, we provide anonymous code to
enhance the reproducibility of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

32

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide anonymous code with our submission. They come along with clear
instructions, allowing for faithful reproducibility. The datasets are external and instructions
are given to download them.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the table of hyperparameters in Appendix F. While we do not
specify all training and test details, including the data splits and optimizers, most of the
experiments come with standard choices, and they can be found in our anonymous code
repository.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: We repeat our ablation study and Long-Range Arena experiments with multiple
random seeds and report the standard deviations in section 7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details of the compute resources are given in Appendix F. We do not measure
the time of execution of the Long-Range Arena experiments as they are not standardly
reported in the state-space models community.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The work complies with the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

34

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is theoretical and methodological. It does not involve large-scale
implementation and experimentation and has very limited societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper releases no data or models that have a high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The existing assets are both acknowledged in Appendix F and the anonymous
code repository.
Guidelines:

35

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The anonymous code repository we provide is well-documented and contains a
README file that explains the organization of the repository and steps needed to reproduce
our experimental results.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

36

paperswithcode.com/datasets

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are only used for word choices and limited polishing of the writing. This
research does not involve LLMs as any important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

37

https://neurips.cc/Conferences/2025/LLM

	Introduction
	The S4D and S6 recurrent units
	A single-layer Mamba is not a universal approximator
	Mambas exhibit strong inductive bias
	Mambas are not stable to train
	Bbold0mu mumu 22section2222Sbold0mu mumu 66section6666: an expressive, gently biased, and stable selective model
	Experiments
	Conclusion
	Related works
	Proofs of UAT and non-UAT results
	Proof of thm.UAT
	Proof of thm.B2S6UAT

	Proofs of inductive bias results
	Proof of thm.inductivebias
	Proof of thm.B2S6inductivebias

	Proof of the stability result
	Supplementary experiments on the stability
	A numerical experiment that verifies thm.stability
	An empirical experiment on the training stability

	Details of experiments
	Limitations and Future Work

