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ABSTRACT

The long-tailed image classification problem has been very challenging for a long
time. Suffered from the unbalanced distribution of categories, many deep vision
classification methods perform well in the head classes while poor in the tail
ones. This paper proposes an effective sampling theory, attempting to provide a
theoretical explanation for the decoupling representation and classifier for long-
tailed image classification. To apply the above sampling theory in practice, a
general jitter sampling strategy is proposed. Experiments show that variety of long-
tailed distribution algorithms exhibit better performance based on the effective
sampling theory. The code will be released soon later.

1 INTRODUCTION

The image classification problems are fundamental tasks in computer vision, and many methods
based on deep learning have achieved gratifying results on artificially constructed datasets so far.
However, due to the large discrepancy between distributions for different classes, the classification
model performs very well for head categories, but usually gives an inaccurate prediction for the tail
ones at the same time. This phenomena dose not only occurs in image classification, but also in other
common vision tasks such as semantic segmentation He et al. (2021); Wang et al. (2020a), object
detection Ouyang et al. (2016); Li et al. (2020) and so on.

Researches on long-tail classification problems mainly focus on the following research perspectives
including loss function re-weighting Cao et al. (2019), training data re-sampling Mahajan et al.
(2018), and transfer learning strategies in embedding level Liu et al. (2020). The main idea solving
the imbalanced classification problem is to enhance the training proportion for the tail categories so
as to alleviate the overfitting for the head ones. Kang et al. (2019) points out the strong dependence
between the representation learning for backbone network and classifier learning for the the last
fully connected layer, and concludes that the optimal gradient for training the backbone network
and classifier are obtained from the original sampling distribution and re-sampling distribution such
as class-balanced sampling respectively, from which the mainstream of two-stage optimization
strategy is gradually accepted by more researchers. Xiang et al. (2020) further alleviates the strong
dependence of the single-expert model with a specific training distribution, leading to an improvement
of classification accuracy both for head and tail categories.

Kang et al. (2019); Zhou et al. (2020) mentions that the mainstream methods for long-tailed distribu-
tion requires two stages learning. Sampling process need be conducted within the original distribution
to learn in the first step stage for representation, without an ample theoretical explanation for this
phenomena however. Inspired by Cui et al. (2019), we realised that the growth between the actual
effective samples and the actual number of samples does not change synchronously in the first training
stage, where the effective sample growth formula is given by Cui et al. (2019). Based on the concept
of effective sample, our expanded effective sampling theory is proposed. Here we give two important
findings. The total number of effective samples is the primary factor affecting the training for
long-tailed distribution, and the second one is the effective sample utilization.The improvement of
accuracy on the long-tailed distribution can be achieved through the process of maximizing the total
number of effective samples and balancing the effective samples utilization among categories.

The main contributions of this paper are as follows:
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1. We build a complete theory on effective sampling, which could be used for studying the
properties of sampling with/without replacement, through which the optimal sampling
methods are proposed.

2. A general jitter sampling strategy is proposed for the piratical application, and experiments on
various public datasets have been carried out. The experimental results reach the competitive
performance which further verify the core factor of our theory, that is, the total number
of effective samples is the core factor affecting the first learning stage and the process of
effective samples equalization among classes is beneficial for model training.

2 RELATED WORK

Re-sampling Redesigned sampling frequencies for different classes are used in re-sampling based
strategies. Early ideas mainly focus on under-sampling the head classes and over-sampling the tail
classes. Drummond et al. (2003) argues that over-sampling is better than under-sampling because
the latter process may loss important samples, while over-sampling the tail classes may lead to the
over-fitting problem at the same time. Chawla et al. (2002); Han et al. (2005); He et al. (2008) By
introducing the generated new data for tail through interpolation, the above problem could be solved.
However, the imprecise interpolation may also introduce new noises. The process of representation
learning and classifier learning should be decoupled with their suitable distributionKang et al. (2019);
Zhou et al. (2020).

Re-weighting Re-weighting refers to assigning different weights to loss computation denoted by
the corresponding classes . The reciprocal of sample frequency is adopted to correlate with weight
in early studiesHuang et al. (2016); Wang et al. (2017).Re-weighting by the number of effective
samples of each class is utilized in Mahajan et al. (2018); Mikolov et al. (2013). LDAM Cao et al.
(2019) adopted the loss determined by the classification decision boundary distance, where categories
with larger magnitude are closer to the decision boundary. Meta-learning based methodJamal et al.
(2020) also is used for a better weights estimating Zhang et al. (2021a). considers the difficulty
and total number of the data to determine loss weights.In addition, some methods based on difficult
samplesZhang et al. (2021a) and logits adjustmentsMenon et al. (2020) also belongs to re-weighting.

Transfer learning Transfer learning attempts to transfer knowledge from source domain to enhance
performance on the target domain Zhang et al. (2021b). BBN Zhou et al. (2020) is trained on
the origin distribution in the early steps, which transfer to classes-balanced distribution later for
the optimization of classifier. LEAP Liu et al. (2020) constructs a "feature cloud" of tail classes
transferred from head ones features to better support the classification boundaries. LFME Xiang
et al. (2020) trains multi-expert models separately on multiple sub-datasets, and produce a student
model through knowledge distillation. RIDE Wang et al. (2020b) uses dynamic routing to control the
number of experts involved.

Research for long-tailed classification mainly focuses on the above aspects. In addition, there are
some theoretical studies on training strategies for long-tailed distribution. Kang et al. (2019) and
Zhou et al. (2020) show an empirical law of long-tail classification research, that is, the process of
representation learning and classifier learning is uncoupled. Menon et al. (2020) points out using
Adam-type optimizers may not be conducive to the training for long-tailed datasets. Cui et al. (2019)
introduces the concept of the effective number of samples because of the finding that the total number
of non repeated samples actually participating in the training may not be as large as expected.

3 EFFECTIVE SAMPLING THEORY

Inspired by the concept of the effective samples Cui et al. (2019), this paper proposes a hypothesis
to explain the effective sampling in training processes. We believe that the total number effective
samples is the primary core factor in the representation learning, and then the next one is the utilization
of effective samples between categories. The performance of the representation learning can be
improved by the increasing the total number of effective samples and equalizing the effective sample
utilization.

2



Under review as a conference paper at ICLR 2023

3.1 CONCEPT DESCRIPTION

The image information redundancy occurs during model training when objects have similar features.
As the number of instances of a certain category increases, the probability of redundant samples
usually increases, which is due to the inconsistent difficulty of data collection from source. For
example of the data collection on the cat category, the total samples of hairless cats Probably much
smaller than any hairy type.In addition, multiple repeated sampling from the same source for different
angles suffers lower generalization performance than the separate sampling from different source
in the same category. Redundancy causes the asynchronous growth of category frequency and
information content.

For the sample x1, x2 and the encoder fencoder, if the image substructure s1 ∈ x1 and s2 ∈ x2

and ∥fencoder(s1) − fencoder(s2)∥ = ||z1 − z2|| < δ, then these samples are redundant. Then the
updated conception of effective sampling is proposed, which refers to those sampling processes that
do not generate new redundancy in the existing data sets. Specifically, for the specific structure ai
and category k, if one sampling is performed, and the category of this sample belongs to k, which
producing no redundancy with a, then an effective sampling processes happens, during which the
total number of effective samples of the k category +1. The above sampling process is called
effective sample sampling. The ratio of the number of valid samples to the total number of this
category is defined as the effective sample proportion.

Based on the concept of effective sampling and effective sample proportion, the effective sample
theory is established. The effective sample theory studies how the category sampling distribution
affects the actual training efficiency. In this process, we define the two concepts of the total number
of effective samples and the utilization rate of effective samples, and then give the quantitative
analyze for those two concepts in different sampling methods.
Suppose there are N samples in dataset with m class labels. The number of each category is
(n1, n2, ..., nm). The effective sample proportion of each category is (a1, a2, ..., am), and the
actual sampling frequency is set to (u1, u2, ..., um).

3.1.1 SAMPLING WITH REPLACEMENT

Sampling with replacement means that the data of each category once sampled still has a certain
probability to be sampled in next iteration.

Total number of effective samples

Let Ei,n be the expected number of effective samples of the category i sampled by n times,which
satisfies the following equation:

Ei,n = ui ·
max(aini − Ei,n−1, 0)

ni
· (Ei,n−1 + 1) +

(
1− ui ·

max(aini − Ei,n−1, 0)

ni

)
· Ei,n−1

Simplify the above formula (see Appendix Effective Sampling Theory), and Ein = ni ∗ ai ∗ (1−
(1− ui

ni
)n). We note that total number of effective samples of the overall dataset after sampling n

times is Sn, and we have: Sn =
∑m

j=1 ajnj(1− wn
j ) where wj = 1− uj

nj
. When n is large enough,

the analytical solution of ui satisfies the following equation:

ui =
1−

∑
i ̸=j (1−Aijn) ∗ nj

1 +
∑

i ̸=j
Aijn∗nj

ni

;Aijn = (
ai
aj

)
1
n

This formula shows that the optimal sampling frequency is approximately equal to the class frequency
ratio of the original distribution when the sampling times is large enough, that is ui ∝ ni.

Effective sample utilization

The effective sample proportion is defined as Ri,n =
Ei,n

uin
, It describes the proportional of the total

number of effective samples in the total number of samples of category i after sampling n times. On
the condition of sampling with replacement, this proportional expression is simplified as follows:

Rin =
aini(1− wn

i )

uin
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Consider the ratio of the effective sampling proportions Qi,j for any two classes i and j:

Qi,j,n =
Rin

Rjn
=

ai ∗ ni ∗ (1− wn
i ) ∗ uj

aj ∗ nj ∗ (1− wn
j ) ∗ ui

when n is large enough,Qi,j,n = Rin

Rjn
=

ai∗ni∗uj

aj∗nj∗ui
. For sampling with replacement, the optimal

sampling frequency needs to be approximately proportional to the product of the number of class i
and its effective sample proportion, which is: ui ∝ ni ∗ ai

3.1.2 SAMPLING WITHOUT REPLACEMENT

Sampling without replacement means that the data of each category is sampled completely according
to the preset sampling frequency, which once sampled will not return to their original category set
until the next epoch comes.

Total number of effective samples

On the condition of sampling without replacement, Ei,n satisfies the following equation:

Ein = ui(min(Ei,n−1 + ai, aini)) + (1− ui)Ei,n−1

After Simplifying the above formula (see Appendix Effective Sampling Theory), Ein = n ∗ ui ∗ ai,
and Sn =

∑m
j=1 min(ajujn, ajnj).

Sort the tuple (ai, ni, ui) with descending order by ai and we obtain the following sequence:

(ax1
, nx1

, ux1
), (ax2

, nx2
, ux2

), . . . , (axm
, nxm

, uxm
)

When n satisfies
∑s

j=1 nxj ≤ n <
∑s+1

j=1 nxj , Sn to reach its maximum value,on which condition
the sampling frequency satisfies the following equation

ux1
=

nx1

n
, . . . , uxs

=
nxs

n
, uxs+1

=
n−

∑s
j=1 nxj

n
, uxs+2

= 0, . . . , uxm
= 0

Obviously, Sn just obtains the maximum value when and only when
∑m

j=1 ni = n = N , where
ui =

ni

N . On the condition of sampling without replacement, the growth rate of the total number
of effective samples is much greater than that on the condition of sampling with replacement.
Theoretically, it is the optimal sampling strategy for increasing the total number of effective samples.

Effective sample utilization

The effective sample utilization Ri,n and the ratio of the effective sampling proportions Qi,j,n can be
expressed as follows:

Rin =
min(aiuin, aini)

uin

=

{
ai, if n < ni

ui
aini

uin
, otherwise

Qi,j,n =
Rin

Rjn
=

ni ∗ ai ∗ uj

nj ∗ aj ∗ ui
= 1;ui ∝ ni ∗ ai

On the condition of sampling without replacement, a balanced utilization of effective samples among
classes needs the sampling frequency ui to be proportional to he product of the number of class i and
its effective sample proportion.

3.1.3 SOLUTION

Firstly, we found that the primary core factor affecting the training under the long-tailed distributions
is the total number of effective samples. By maximizing the total number of effective samples, the
encoder can obtain those gradient generated from samples with fewer redundancy information, which
benefits for increasing training efficiency for the first stage of representation learning. Secondly,
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as the training progresses, the actual utilization rate of a single effective sample becomes different,
which lead to efficiency discrepancy of learning for different structures. The difference of those two
key factors between Sampling methods will further affect the final classification accuracy.

In the previous studies, it was found that using the original sampling distribution for the first stage
of training is more effective than class-balanced sampling distributions Kang et al. (2019), partly
because the total number of effective samples reaches near maximum by simply setting the sampling
frequency to be proportional to the sample frequency, which is well supported by our theory. However,
according to the formula of maximizing the total number of effective samples and the effective sample
utilization between classes, the maximization of the total number of effective samples and the total
balance of effective sample utilization between categories can never be achieved theoretically the
same time, due to the existence of sample redundancy. A reasonable trade-off is to ensure the total
number of effective samples close to the maximization primarily and balancing the effective samples
utilization between categories.

3.2 JITTER SAMPLING STRATEGY

The effective sampling theory reveals the contradiction between optimizing the total number of effec-
tive samples and optimizing the utilization of effective samples between categories,and Estimating
the accurate redundancy of real-world category samples directly can be also difficult. Fortunately, the
effective sample theory suggests that the optimal sampling frequency is actually close to the original
sampling distribution, which implies that the total number effective sample can be approached as long
as the distance between sampling frequency and originally distribution is in a controlled range,and
the deviation from the original distribution gives a possibility to balance the utilization of effective
samples. Another reasonable assumption is that, for a certain category, more sample frequency
usually brings less effective sample proportion, which will be well explained in appendix (4).

Based on the above analysis, the jitter sampling strategy is proposed. We design a sampling schedule
in which the sampling frequency fluctuates around the original sampling distribution, exploring
to maximizing the total number of effective samples and balancing the sample utilization through
random walks. For the case of sampling with replacement, we build a meta-dataloader, which contains
multiple sub-dataloaders. During each iteration, it randomly selects one from meta-dataloader with a
preset probability, and samples a data-batch at a sampling frequency that approximates the original
distribution. For sampling without replacement, a single dataloader is used to sample a data-batch
with a preset sample frequency close to the original distribution. In this process, we dynamically
adjust the actual sampling distribution by introducing a control factor related to training time.

uit ∝ f(ni, r); r = g(t); t : 0 → 1

In the early stage of training, our strategy is relatively conservative,which adopts a sampling strategy
almost same as the original distribution, and gradually explore from multiple sub-distributions as the
training progresses. In the appendix, we prove that if the hyperparameters are properly chosen, jitter
sampling strategy can perform better than the original strategy by trading off optimizing the above
two key points.

3.2.1 SAMPLING WITH REPLACEMENT

On the condition of sampling with replacement, two different strategies are proposed. The first
method mainly controls the change range of sampling frequency through temperature (jitter factor),
where the selection probability for each sub-dataloaders are fixed. In the second method, we select
the fixed original sampling distribution and the reverse sampling distribution for each sub-dataloaders,
and complete the actual sampling process by dynamically adjusting the selection probabilities of the
two.

(see appendix 1 for more details for the effectiveness proof process)

Method 1
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Three sub-dataloaders are initialized with varying sampling frequencies as follows:

dataloader1 : (u1, u2, . . . , um)

dataloader2 : (u1+δt
1 , u1+δt

2 , . . . , u1+δt
m )

dataloader3 : (u1−δt
1 , u1−δt

2 , . . . , u1−δt
m )

where ui ∝ ni

where δt is jitter factor, which is updated at each epoch. The rule to update δt is:

δt = random(0, 1) · α ·max

{(
epoch

epochtotal

)β

, γ

}
Each sampling selects one of the sub-dataloaders for sampling with a preset probability [p1, p2, p3].
(see appendix 2 for more details for the effectiveness proof process) Method 2

Two sub-dataloaders are initialized accordance with:

dataloader1 : (u1, u2, . . . , um)

dataloader2 : (u−1
1 , u−1

2 , . . . , u−1
m )

where ui ∝ ni

where δt is the jitter factor, which is updated at the arrival of each epoch with the following rule:

δt = α ·max

{(
epoch

epochtotal

)β

, γ

}
Each sampling selects one of the dataloaders for sampling with a preset probability [1− δt, δt].

The first jitter sampling method is more general, and we will demonstrate its effectiveness in detail
in the appendix. The second dithering method cannot theoretically guarantee to maximize the total
number of valid samples, but if it is assumed that in the real data set, the category with more sample
instances has greater redundancy, then the second jittering method can be considered. For sampling
without replacement, we only use a dataloader like:

dataloader0 : (u1+δt
1 , u1+δt

2 , · · · , u1+δt
m ), ui ∝ ni

where δt varies as follows:

δt = random(−0.5, 0.5) · α ·max

{(
epoch

epochtotal

)β

, γ

}
For the actual sampling, a queue is maintained separately for each category of samples, and the
samples of that category are initially filled in a random order. u0 ∗N samples are drawn from class i
for each epoch, and when the classes sample queue is emptied, a new round of filling is performed
again in random order. When a new epoch arrives, the dataloader prioritizes the samples still in the
queue from the previous round until all samples have been drawn. The purpose of doing this is to
avoid the situation where there is a put-back sampling between each epoch.

In theory, sampling without replacement by dithering will lose valid samples, but since the probability
of equalizing the utilization of valid samples will be increased at the same time, we will prove it in
detail in the appendix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset The long-tailed benchmark datasets commonly used are selected: CIFAR10-LT, CIFAR100-
LT Cao et al. (2019) and ImageNet-LT Liu et al. (2019) which sampled from CIFAR10 Krizhevsky
et al. (2009), CIFAR100 Krizhevsky et al. (2009) and ImageNetDeng et al. (2009), respectively. The
imbalance ratio of CIFAR10-LT, CIFAR100-LT and ImageNet-LT are 100,100,256,respectively.
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Methods top1-acc(%)

†Focal loss [Lin et al. (2017)]† 42.3
†OLTR [Deng et al. (2009)] 43.4

†LDAM-DRW [Cao et al. (2019)] 44.4
†BBN [Zhou et al. (2020)] 42.6
†τ -norm [Cao et al. (2019)] 45.4

†cRT [Cao et al. (2019)] 42.6
†LFME [Xiang et al. (2020)] 43.8

†Logit adjustment [Menon et al. (2020)] 43.9
†De-confound [Tang et al. (2020)] 47.3

†De-confound-TDE [Tang et al. (2020)] 48.3
# * RIDE(4experts+reduce) [Wang et al. (2020b)] 49.5

# * RIDE(4experts) [Wang et al. (2020b)] 50
# TLC(4experts) [Li et al. (2022)] 49.8

# J + group_norm+longtrain(ours) 47.1
# J + RIDE(4experts + reduce)(ours) 49.5

# J + RIDE (4experts)(ours) 50.6

Table 1: evaluation results on cifar100-lt1

Methods top1-acc(%)

†Focal loss 68.6
†OLTR 78.7

†LDAM-DRW 78.4
†BBN 42.6

†τ -norm 79.6
†cRT 79.2

†Logit adjustment 81
†De-confound 72.5

†De-confound-TDE 80.4
# * RIDE(4experts) 81.7
# †TLC(4experts) 80.4

# J + RIDE(3experts + reduce)(ours) 81.2
# J + RIDE(4experts)(ours) 82

Table 2: evaluation results on cifar10-lt

Evaluation Metrics In long-tailed learning, the overall performance on all classes and the per-
formance for head, middle and tail are usually reported. The overall performance on all classes is
reported in this paper, and we average the class-specific accuracy and use the averaged accuracy as
the metric.

The experiments are mainly conducted on two aspects. First, we experiment on major long-tailed
classification benchmarks in the evaluation results, which mainly verifies the actual effectiveness of
the proposed jitter sampling strategy. Taking the fairness of experiment, we follow the RIDE Wang
et al. (2020b) ensemble learning framework. Second, we experiment the ablation studies on the
effectiveness of each component.

4.2 EVALUATION RESULTS

Experiments for single-experts model

cirfa100-lt and cirfa10-lt are used as the experimental datasets, where ResNet-32 He et al. (2016)
is selected as the backbone. In order to improve the classification accuracy without increasing the
amount of calculation greatly, we use the a special designed module,which is called group L2norm,
to expanse features before the original full connection layer of classifier through L2 normlization
module by pre-designed groups. Batchsize is set to 256, and SGD is used as our optimizer. The total
training epochs are 500, and the learning rate is initialized to 0.5, with a learning rate decays of 0.01
at 350 epoch and 450 epoch, respectively. The warmup epoch is set as 5. The jitter strategy setting
adopts the second method on the condition of sampling with replacement. In the first stage (0-350),
we set α = 1 and β = 1.5, and in the second stage(350-500), we directly set δt = 0.5. The cross
entropy loss is used as our loss function.

The module design motivation of group L2norm is to increase the richness of features, and ensure a
output features with a certain controllable norm in different groups, so as to avoid the phenomenon
that neural network reduces the loss by simply increasing the data norm, while the classification
boundaries may not be well optimized. The disadvantage is that longer training is required when
adding the norm module to the existing network module.

Table 2 shows that our proposed method (J-sampling+group L2norm+longtrain) surpasses most
current methods (slightly lower than De-confound-TDE) with single backbone Resnet32, with an
acceptable computational complexity increase.

Experiments for multi-experts model

Using the jitter sampling strategy combined with RIDE, the current sota ensemble learning methods
are compared in cifar100-lt and cifar10-lt. In this group of experiments, the jitter sampling strategy on
the condition of sampling replacement is adopted. The experimental settings are as follows: batchsize

0† denotes results copied from their paper, respectively.
1* denotes the results reported by their public code of sampling with replacement.
2# denotes the results reported by multi-experts
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is set to 128, training epochs is set to 200, the learning rate is initially set to 0.1 with the decay rate of
0.01 at 160 epoch and 180 epoch, respectively. The warmup epoch is set to 5. The jitter setting adopts
the sampling with replacement one. In the first stage (0-160), we set α = 0.05 , β = 2 , γ = 0.01,
and select cross entropy as the loss function. In the second stage, LDAM loss is adopted. Here we
delete the feature enhancement method of group L2norm, because the L2norm operation plays a role
of repetition with NormFC module of the classifier in the original RIDE.

It can be seen from Table 1 that on the cifar00-lt dataset, the single-model results are better than most
of the experimental results (slightly lower than De-confound-TDE), and the multi-model results are
better than the existing results (among which, J-sampling (ours)+RIDE(4experts) is 0.6 points higher
than RIDE(4experts)). It can be seen from Table 2 that on the cifa10-lt dataset, J-sampling (ours) +
RIDE (4experts) outperforms all existing algorithms.

4.3 ABLATION STUDIES

In this subsection, we experiment the ablation studies on the effectiveness of each component, which
including replacement strategy, Jitter strategy and the training time. We further discuss two key factors
that affecting the representation learning: the total number of effective samples and the effective
sample utilization.The basic experimental setting keeps the same as experiments for multi-experts
model.

Dataset Expert Reduce with(%) without(%)

CIFAR100 3 1 47.8 49
CIFAR100 4 1 48.4 49.5

Table 3: with / without replacement

Comparison of the replacement strategy 3.1.1When the sampling rate is proportional to the
number of class samples, the total number of effective samples without replacement is theoretically
greater than the total number of effective samples with replacement. As shown in Table 3, it can be
seen that the actual accuracy of sampling without replacement is significantly higher than sampling
with replacement.

Dataset Expert Reduce with(%) without(%)

cifa10 4 0 81.7 82
cifa100 3 1 47.8 48.7
cifa100 3 0 49.7 49.8
cifa100 4 1 48.4 49.5
cifa100 4 0 50 50.6

ImageNet 3 1 54 54.1
ImageNet 3 0 54.6 54.5
ImageNet 4 1 54.6 54.9
ImageNet 4 0 55 55.2

Table 4: with / without jitter

Comparison of the Jitter strategy We compare the jitter with and without replacement sampling
on cirfa100 and imagent-lt, respectively. We have proved the effect of jitter in appendix in theory,
which is also validated from the experimental, that adding jitter within sampling frequency can
actually improve the accuracy with a certain probability. For non-replacement sampling, although the
total number of effective samples theoretically decreases slightly, at the same time, the utilization of
effective samples is also balanced. One of a possible reason for why there is no obvious accuracy
improvement on imagenet-lt,compared to cirfa100-lt,is that the image size of imagenet-lt is larger
than the cifar series dataset, so the redundancy between images is not high (the foreground only
occupies part of the image, while the background difference between instances is obvious).
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Dataset Expert Reduce with replacement + jitter without replacement + no jitter
short train long train short train long train

cifa100 3 1 48.7 50 49 -
cifa100 4 1 49.5 50.4 49.5 -
cifa100 4 0 50.6 51.5 - -

ImageNet 3 1 - 55.2 54 55.2
ImageNet 3 0 - 55.2 - 55
ImageNet 4 1 - 55.8 54.6 56

Table 5: short train

Comparison of the training time The training epochs is positively correlated with the total number
of effective samples. When training epochs is normal, it is obvious that the total number of effective
samples on the condition of sampling with replacement is lower than the without one. Jitter strategy
helps increasing the total number of effective samples and balance the effective sample utilization
between categories. For longer training, the effective sample has been saturated, leading to a limited
accuracy improvement.

5 CONCLUSION

We have established an effective sampling theory to explain the sampling efficiency gap in differ-
ent sampling methods and a jitter sampling strategy is developed to improve the actual training
effect,based on which our proposed methods perform well on many long-tailed datasets.If we can
find a way to eliminate information redundancy precisely, our theory may be further optimized. We
will explore it in the next experiment.
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A APPENDIX

A.1 APPENDIX 1

Jittering method in Sampling with replacement is effective.

Proof 1: In sampling with replacement, the total number of effective samples obtained using jittering
method 1 is greater than the that of the original sampling with replacement, and the effective sample
utilization is equalized between classes.

Let the expectation of the total number of effective samples sampled by the jittering method one be
Jn, whose values are:

Jn = E(Sn)

=

3∑
i=1

pi

m∑
j=1

ajnj

(
1−

(
1−

u
(i)
j

nj

)n)
= p1G(1) + p2G(1 + δt) + p3G(1− δt)

Where u
(i)
j is the sampling rate of the i-th dataloader for the j-th class. Let uj(x) is a function

that calculates the sampling rate of the j-th class in dataloaders. The sampling rate of dataloader
1 is u(1)

j = uj(1). The sampling rate of dataloader 2 is u(2)
j = uj(1 + δt). The sampling rate of

dataloader 1 is u(3)
j = uj(1− δt).

uj(x) =
nx
j∑m

k=1 n
x
j

And G(x) is a function with:

G(x) =

m∑
j=1

ajnj

(
1−

(
1− uj(x)

nj

)n)

= Const −
m∑
j=1

ajnj

(
1− uj(x)

nj

)n
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Consider the derivative of G with respect to x:

∂G

∂x
= −

m∑
j=1

ajnj · n
(
1− uj(x)

nj

)n−1

·
(
− 1

nj

)
· ∂uj(x)

∂x

=

m∑
j=1

aj
n

(
1− uj(x)

nj

)n−1

·
nx
j lnnj

∑m
k=1 n

x
k − nx

j

∑m
k=1 (n

x
k lnnk)

(
∑m

k=1 n
x
k)

2

When x = 1:

∂G

∂x

∣∣∣∣
x=1

= n

(
1− 1

N

)n−1

·
m∑
j=1

aj ·
nj lnnj

∑m
k=1 nk − nj

∑m
k=1 (nk lnnk)

(
∑m

k=1 nk)
2

If ∂G
∂x

∣∣
x=1

= 0, there is:

m∑
j=1

{
ajnj lnnj

m∑
k=1

nk

}
=

m∑
j=1

{
ajnj

m∑
k=1

(nk lnnk)

}

This usually doesn’t hold. It is worth mentioning that when a1 = a2 = · · · = am, that is, when the
redundancy of each class of the dataset is the same, the above equation holds.

Therefor, normally:
∂G

∂x

∣∣∣∣
x=1

> 0 or
∂G

∂x

∣∣∣∣
x=1

< 0

Then there must exist δt such that G(1 + δt) > G(1) or G(1 − δt) > G(1). So, a probability
combination (p1, p2, p3) must exist that let p1G(1) + p2G(1 + δt) + p3G(1− δt) > G(1).

In summary, we prove that there must exist parameters δt and (p1, p2, p3) that allow the the total
number of effective samples obtained using jittering method one of sampling with replacement is
greater than the total number of effective samples.

When n is sufficiently large, the effective sample utilization between classes is the same as the formula
when there is sampling without replacement. The sample utilization between classes is balanced at
this time, as we will prove in Appendix 2.

Proof 2: In sampling with replacement, the utilization of the effective samples between classes
obtained by jittering method 2 is more balanced than that of the original sampling with replacement.

The effective sample utilization for the ith category is Ri,n. In method 2 of sampling with replacement,
when n is large enough, it is:

Ri,n = x · aini(1− wn
i )

uin
+ (1− x) · aini(1− wi

n)

uin

≈ x · aini

uin
+ (1− x) · aini

uin

Where wi = 1− ui

ni
, wi = 1− ui

ni
, ui =

u−1
i∑m

j=1 u−1
j

.

The derivative of Ri,n is:
∂Ri,n

∂x
=

aini

uin
− aini

uin

A more balanced effective sample utilization corresponds to a distribution of category effective

sample utilization P = { R1,n∑
k Rk,n

, . . . ,
Rm,n∑
k Rk,n

} and a uniform distribution Q = { 1

m
, . . . ,

1

m︸ ︷︷ ︸
m

} with
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less KL divergence.

KL(Q∥P ) =

m∑
i=1

Qi log
Qi

Pi

= − logm− 1

m

m∑
i=1

logRi,n + log

(
n∑

i=1

Ri,n

)

Consider the derivative of the KL divergence.

∂KL
∂x

= − 1

m

m∑
i=1

∂Ri,n

∂x

Ri,n
+

∑m
i=1

∂Ri,n

∂x∑m
i=1 Ri,n

When x = 1, Ri,n = aini

uin
.

∂KL
∂x

∣∣∣∣
x=1

= − 1

m

m∑
i=1

aini

uin
− aini

uin
aini

uin

+

∑m
i=1

aini

uin
− aini

uin∑m
i=1

aini

uin

=
1

m
·

m∑
i=1

ui

ui
−
∑m

j=1 aj ·
uj

uj∑m
j=1

a−jnj

ujn

=

(
m∑

k=1

u−1
k

)
·

(
1

m

m∑
i=1

u2
i −

∑m
i=1 aiu

2
i∑m

j=1 ai

)

From Appendix 4, the proportion of effective samples is low for categories with large sample size,
which means that the lager ui is, the smaller ai is. Therefore,

1

m

m∑
i=1

u2
i −

∑m
i=1 aiu

2
i∑m

j=1 ai
> 0

That means
∂KL
∂x

∣∣∣∣
x=1

> 0

Therefore, there exists δt ∈ (0, 1) such that KL(1 − δt) < KL(1). In other words, the dithering
method 2 can make the effective sample utilization more balanced.

A.2 APPENDIX 2

Jittering method in Sampling without replacement is effective.

Proof: In sampling without replacement, the effective sample utilization of a jittering method would
be more balanced than without jittering.

The effective sample utilization for the ith class is:

Ri,n =
aini

ui(x) n

A more balanced effective sample utilization corresponds to a distribution of category effective

sample utilization P = { R1,n∑
k Rk,n

, . . . ,
Rm,n∑
k Rk,n

} and a uniform distribution Q = { 1

m
, . . . ,

1

m︸ ︷︷ ︸
m

} with
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less KL divergence.

KL(Q∥P ) =

m∑
i=1

Qi log
Qi

Pi

=
1

m

m∑
i=1

log
1

mPi

= − logm − 1

m

m∑
i=1

logPi

Consider the sampling rate function ui(x).

ui(x) =
nx
i∑m

k=1 n
x
k

For x = 1 + δt and δt > 0, the sampling rate increases for the head classes and decreases for the tail
classes. We have n < ni

ui(x)
in tail classes. So, effective sample utilization of tail classes is Ri,n = ai,

and effective sample utilization of tail classes is Ri,n = aini

ui(x)n
.

Might as well let m-th class has the largest number of samples. There exists δt quite small such that
Rm,n = amnm

um(x)n . Ant the utilization of the others is ai. So the KL divergence is:

KL(Q∥P ) = − logm− 1

m

(
m−1∑
i=1

log
ai∑m−1

k=1 ak + amnm

um(x)n

+ log

amnm

um(x)n∑m−1
k=1 ak + amnm

um(x)n

)

= − logm− 1

m

(
m−1∑
i=1

log ai + log
amnm

um(x)n
−m log

(
m−1∑
k=1

ak +
amnm

um(x)n

))

The derivative of KL divergence with respect to x is:

∂KL
∂x

= − 1

m
·

(
−um(x)n

amnm
· amnm

u2
m(x)n

· ∂um(x)

∂x
+m · 1∑m−1

k=1 ak + amnm

um(x)n

· amnm

u2
m(x)n

· ∂um(x)

∂x

)

=
1

m
·

(
um(x)n

amnm
− m∑m−1

k=1 ak + amnm

um(x)n

)
· amnm

u2
m(x)n

· ∂um(x)

∂x

Where ∂um(x)
∂x is:

∂um(x)

∂x
=

nx
i lnni ·

∑m
k=1 n

x
k − nx

i

∑m
k=1(n

x
k lnnk)

(
∑m

k=1 n
x
k)

2

When x = 1, we have:

∂KL
∂x

∣∣∣∣
x=1

=
1

m
·
(

1

am
− m∑m

k=1 ak

)
· amN

nm
·
nm lnnm ·

∑m
k=1 nk − nm ·

∑m
k=1(nk lnnk)

(
∑m

k=1 nk)
2

Since nm is the largest and am is the smallest from Appendix 4, we have

∂KL
∂x

∣∣∣∣
x=1

< 0

So when δt > 0 and closer to 0, the jittering of ui(1 + δt) causes KL(Q∥P ) to drop, that is, the
effective sample utilization between classes is more balanced.

Similarly, it can be shown that when δt > 0 and closer to 0, the jittering of ui(1 − δt) causes the
effective sample utilization between classes be more balanced.
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A.3 APPENDIX 3

A.3.1 SAMPLING WITH REPLACEMENT

Total number of efficient samples

Define the effective number of samples obtained for the i-th class after n sampling as Ei,n, whose
recursive formula is

Ein = ui ·
max(aini − Ei,n−1, 0)

ni
· (Ei,n−1 + 1) +

(
1− ui ·

max(aini − Ei,n−1, 0)

ni

)
· Ei,n−1

When the total number of effective samples reaches aini, no new effective samples are added.
Therefore, to simplify the discussion, we consider the case where the upper bound has not yet been
reached. Simplifying the above equation yields:

Ein = aiui +

(
1− ui

ni

)
Ei,n−1

Let wi = 1− ui

ni
, it’s easy to know:

Ein

wn
i

=
aiui

wn
i

+
Ei,n−1

wn−1
i

Ein

wn
i

=

n∑
j=1

aiui

wj
i

+ E0

Ein = aiui ·
wn

i − 1

wi − 1

= aini(1− wn
i )

We note that total number of effective samples of the overall dataset after sampling n times is Sn,
and we have:

Sn =

m∑
j=1

ajnj(1− wn
j )

Maximize Sn:

max Sn

s.t.
m∑
i=1

ui = 1

ui > 0

We introduce Lagrange multipliers and try to solve for the conditions satisfied when Sn reaches its
extreme value:

L(u1, . . . , um, λ) = Sn + λ

(
1−

m∑
i=1

ui

)

Calculate its derivative:
∂L

∂ui
= −ain

(
1− ui

ni

)n−1

− λ

Let ∂L
∂ui

= 0, get:

∂L

∂ui
=

∂L

∂uj(
ai
aj

)1/n

=
1− uj

nj

1− ui

ni

15



Under review as a conference paper at ICLR 2023

When n is large enough, the analytic solution of ui satisfies the following equation.

ui =
1−

∑
i̸=j nj(1−Ai,j,n)

1 +
∑

i ̸=j njAi,j,n/ni

Ai,j,n =

(
ai
aj

) 1
n

This equation shows that in sampling with replacement the optimal sampling frequency is approxi-
mately equal to the category frequency ratio of the original distribution when the number of samples
is large enough, which also implies that we can theoretically obtain close to the upper limit of the
total number of valid samples by using a sampling ratio that approximates the original distribution.
The optimal sampling rate ui satisfies:

ui ∝ ni

Effective sample utilization

The effective sample proportion is defined as follows.

Ri,n =
Ei,n

uin

In sampling with replacement, this expression is simplified as follows:

Ri,n =
aini(1− wn

i )

uin
, where wi = 1− ui

ni

Consider the ratio of the effective sampling proportions of any two classes Qi,j .

Qi,j =
Rin

Rjn

=
ainiuj(1− wn

i )

ajnjui(1− wn
j )

It is not difficult to find that when n is sufficiently large, Qi,j satisfies:

Qi,j =
aini · uj

ajnj · ui

Therefore, in sampling with replacement, when the sampling frequency approximates the effective
number of the class is proportional, the effective sample utilization is balanced. That is:

ui ∝ aini

A.3.2 SAMPLING WITHOUT REPLACEMENT

Total number of effective samples

In sampling without replacement, Ein satisfies the following relation.

Ei,n = ui(min(Ei,n−1 + ai · 1, aini)) + (1− ui)Ei,n−1

Simplify to get:
Ei,n = aiuin

Therefore Sn satisfies:

Sn =

m∑
j=1

min(ajujn, ajnj)
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May wish to consider that a1 ≤ a2 ≤ · · · ≤ am. For any k ∈ [1,m], when n satisfies:

k∑
i=1

ni ≤ n <

k+1∑
i=1

ni

The condition for Sn to reach its extreme value is

u1 =
n1

n
, . . . , uk =

nk

n
, uk+1 =

n−
∑k

j=1 nj

n
, uk+2 = 0, . . . , um = 0

It is easy to know that Sn just obtains the maximum value of the above equation when and only when∑m
j=1 ni = n = N , when it only needs to satisfy:

ui =
ni

N

Effective sample utilization

Define after n samples the effective sample utilization Rin as follows.

Rin =
min(aiuin, aini)

uin

=

{
ai, if n < ni

ui
aini

uin
, otherwise

When n is large enough, for any i, j, considering the condition of 1, there are:

Qi,j,n =
Rin

Rjn

=
aini · uj

ajnj · ui
= 1

For sampling without replacement, the condition for achieving a balanced utilization of effective
samples among classes is that the sampling frequency must be proportional to the number of effective
samples in a class.

ui ∝ aini

A.4 APPENDIX 4:

Proof: When the number of classes is sufficiently large, the classes redundancy and the number of
classes are negatively correlated.

We assume that class i obeys a priori Gaussian distribution, and the actual data of class i is actually
obtained from that Gaussian distribution.

Each point on the numerical axis represents the sample we actually sampled, and the probability
density of the location it was actually sampled is

f(t) =
1

σ
√
2π

exp

(
− (t− µi)

2

σ2

)
We define two samples ti, tj as redundant if their sample positions |ti − tj | < δ. Let the sampling
position t0, then the probability that the sampling position is greater than position t0 is P = P (t >
t0).

P (t > t0) = 1−
∫ t0

−∞
f(t)dt

The expectation of the number the sample location is greater than t0 is NP for N independent
acquisitions times.
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Consider the case when N ∗ P = 1, whose physical meaning is that after collecting N times expects
only once its sampling position is larger than t0. t0 can be considered as the average upper bound of
the sample position of N times sampling. Considering symmetry, the lower bound of the sampling
position is 2µi − t0. Then the upper level of the effective sample proportion ai satisfies:

ai =
2t0 − 2µi

σN

It’s easy to know:

lim
t0→+∞

ai =
2f(t0)(t0 − ui)

2

δ
= 0

Although a rigorous derivation of ai cannot be given, we show that the upper bound ai, ai, decreases
monotonically after sampling a certain range and ai tends to 0 when the number of samples tends
to infinity. Since then, we have completed the derivation of the negative correlation between the
category redundancy and the number of class samples.
The above is based on the assumption that the dimension sample is 1, while the actual datatype we
deal with is much more complicated like image-type. In the real case, we think that the an image
sample Ii can be represented as its potential variable Xi which can be generated by a self encoding
network,that is:

fencoder(Ii) = [Xi1, Xi2, Xi3, ....Xis] = Xi; fdecoder(Xi) = Ii

In the study of VAE, Xiis defined as the potential variable obeying a specific Gaussian distribution:

Xi ∼ N(ui, σ
2)

and then the ai of Ii can be expressed as follows:

ai ≤ a1i ∗ a2i ∗ a3i... ∗ asi
asi donates the effctive sample proposition of Xi,and when Xi maintains statistical independence
with each other(Xj), equality can be established.
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