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ABSTRACT

Model calibration aims to align confidence with prediction correctness. The Cross-
Entropy (CE) loss is widely used for calibrator training, which enforces the model
to increase confidence on the ground truth class. However, we find the CE loss
has intrinsic limitations. For example, for a narrow misclassification, a calibrator
trained by the CE loss often produces high confidence on the wrongly predicted
class (e.g., a test sample is wrongly classified and its softmax score on the ground
truth class is around 0.4), which is undesirable. In this paper, we propose a new
post-hoc calibration objective derived from the aim of calibration. Intuitively, the
proposed objective function asks that the calibrator decrease model confidence on
wrongly predicted samples and increase confidence on correctly predicted samples.
Because a sample itself has insufficient ability to indicate correctness, we use its
transformed versions (e.g., rotated, greyscaled, and color-jittered) during calibrator
training. Trained on an in-distribution validation set and tested with isolated,
individual test samples, our method achieves competitive calibration performance
on both in-distribution and out-of-distribution test sets compared with the state of
the art. Further, our analysis points out the difference between our method and
commonly used objectives such as CE loss and Mean Square Error (MSE) loss,
where the latters sometimes deviates from the calibration aim.

1 INTRODUCTION

Model calibration is an important technique to enhance the reliability of machine learning systems.
Generally, it aims to align predictive uncertainty (a.k.a. confidence) with prediction accuracy. We are
interested in post-hoc accuracy preserving calibrators that scale the model output to make it calibrated
( , ; , ; , ; , ; , ).
Existing methods typically use Maximum Likelihood Estimation (MLE) to train a cahbrator for the
classification task, such as the Mean Square Error (MSE) loss ( R

R ) and the Cross-Entropy (CE) loss ( , ; s ). Although these
approaches demonstrate efficacy in reducing calibration errors such as Expected Calibration Error
(ECE) and Brier scores, they lack theoretical guarantee that the calibration error is minimized when
MLE converges. In Fig. 1, for an image which is incorrectly classified and has a relatively high
probability on the ground truth class, calibrators trained by the CE or MSE loss would give high
confidence on the wrongly predicted class. It means a user may trust this prediction to be true. As to
be revealed in Sec. 3.4, the inherent problem of CE and MSE loss functions limits them in calibrating
such test cases.

In this paper, we derive a concrete interpretation of the goal of calibration which is then directly
translated into a novel loss function that aligns with the newly interpreted goal. Specifically, we start
from the general definition of calibration and its error ( s ), and then, under a finite
test set, represent the error in a discretized form. Minimizing this discretized error gives us a very
interesting and intuitive calibration goal: A correct prediction should have possibly high confidence
and a wrong prediction should have possibly low confidence. Theoretically, this optimization goal
can naturally reduce the overlap of confidence values between correct and incorrect predictions.

We translate this goal into a loss functlon that enforces high confidence (i.e., 1) for correctly classified
samples, and low confidence (i.e., C, where C is the number of classes) for wrongly classified
ones, named Correctness-Aware (CA) loss. Nevertheless, it is non-trivial to identify classification
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Figure 1: A failure example for calibrators trained by the Cross-Entropy (CE) or Mean Square
Error (MSE) loss. A classifier makes a wrong prediction of a cat image. Before calibration, the
classifier gives probabilities of 0.412 and 0.455 on the ground-truth and predicted classes, respectively.
The calibrator trained with the CE loss assigns even higher confidence 0.538 to the wrong class,
making things worse, and that trained by MSE maintains a similar confidence 0.456. In comparison,
calibrator trained with the proposed Correctness-Aware (CA) loss effectively decreases confidence of
this wrong prediction to 0.292, improving calibration.

correctness. We propose to use transformed versions of original images as the calibrator input:
consistency between their prediction results suggests prediction correctness of the original sample.

Our method allows a calibrator to be trained on the in-distribution validation set and directly applied
to individual test samples during inference. We demonstrate the effectiveness of the proposed strategy
on various test sets. In both in-distribution (IND) and out-of-distribution (OOD) test sets, our method
is clearly superior to uncalibrated models and competitive compared with state-of-the-art calibrators.
Moreover, our method demonstrates the potential to better separate correct and incorrect test samples
using their calibrated confidence. Below we summarize the main contributions.

* Theoretically, we derive the concrete goal of model calibration that has a clear semantic meaning.
This allows us to design a new calibration loss function: correctly classified samples should have
high confidence, while incorrectly classified ones with low confidence.

* To indicate prediction correctness, we use the softmax prediction scores of transformed versions of
the original image as calibrator inputs.

* Our method achieves competitive calibration performance on various IND and OOD datasets.

* We diagnose commonly used calibration loss functions including the CE and MSE loss: they are
often limited under test samples of certain characteristics.

2 RELATED WORK

Loss functions used in post-hoc calibration. Existing post-hoc calibrators typically use the Maxi-

mum Likelihood Estimation (MLE) for optimization ( s ; s ). For example,
( ) use the CE loss, while ( ) use the MSE loss. Additionally,
( ) uses the focal loss, a variant to CE, which enhances learning on wrong predic-
tions. ( ) directly optimizes the Expected Calibration Error (ECE). This paper identifies

inherent problems with MLE for calibration and derives a new loss function that better aligns with
calibration goal.

OOD calibration deals with distribution shifts in test sets ( s ). A useful practice is
modifying the calibration set to cover OOD scenarios ( ; , )
but these methods are usually designed for specific OOD scenarios Wthh may lead to compromised
IND calibration performance. Another approach adapts to test data distribution, whether OOD or
IND, using domain adaptation ( , ), calibration sets from multiple domains (

, ), or improving calibration sets by estimating test set difficulty ( , ). In
comparison, our calibrator is trained on the IND validation set only, and does not need test batches
for update, but still demonstrates improved and competitive OOD calibration performance.

Predicting classification correctness has not been widely studied. Among the few,
( ) investigate a three-way classification problem: classify a test sample into correct prediction,
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Figure 2: Calibration pipeline. For a given image sample X, we first obtain its logit vector z and
softmax vector v. We then apply M different transformations (e.g., rotation, greyscale, colorjitter,
etc.) on X to get its transformed versions as well as their related softmax vectors as v; (¢ € Zys).
Indices q € R¥ of the top-k largest probabilities (softmax scores) in v are used to acquire top-k
scores from v; to form the concatenated input ®;¢1,, vi[q] to the calibrator. The calibrator outputs a
temperature 7, then being used to update the logit vector z to produce the calibrated softmax vector.
We use our proposed Correctness-Aware (CA) loss (Sec. 3.2).

wrong prediction, or an out-of-distribution sample (its category is outside the training label space).
We find the task of predicting classification correctness closely connected to model calibration.

3 APPROACH

3.1 DEFINING CALIBRATION ERROR FROM ITS GOAL

Notations. We study calibration under the multi-way classification problem. Regular fonts are
scalars, e.g., T; vectors are denoted by lowercase boldface letters, e.g., x; matrices by the uppercase
boldface, e.g., X for an image.! Zo denotes an index set of integers {1, ...,C}, operator ;" and
@ concatenate vectors, e.g., B;c1,,Vi = [V1;...; V). A classifier f takes a d-dimensional input
x € R? and its corresponding label y € Z¢ with C classes which are sampled from the joint
distribution p(x, y) =p(y|x)p(x). We use = to denote the equivalence. The output of f is denoted as
f(X)=(y, ¢), where ¢ and ¢ denote the predicted class and maximum confidence score, respectively.

Calibration goal. According to ( ), the goal of model calibration is to “align confidence
with the accuracy of samples.” Based on this, existing literature define perfect calibration as:
P(g =yl|é=c) =¢ Ve e [0,1]. (1)

Our calibration error formulation. We interpret Eq. (1) as: for any predicted confidence ¢, the
expected classification accuracy E& of model f on the conditional distribution p(x|¢) should equal
¢. Based on this interpretation, we write the calibration error of classifier f as a function of ¢:

17(6) = D(E|EES) = [|é — EZ|| = [l¢ — /H{yx = x tdp(x[e)], @

where D denotes discrepancy measurement and || - || denotes a norm, such as the ¢- distance. The
indicator function I{-} returns 1 if the given condition (the prediction matches the ground truth label
accurately) is true; otherwise, it returns 0.

Denoting the distribution of predicted confidence as p(¢) and its probability density function as dp(é),
the expectation of calibration error’ of f on p(¢) can be expressed as:

B, = [ 15@)dblc) 3

where {;(¢) is defined in Eq. (2). A model f is considered to be perfectly calibrated if Ey = 0.
Model calibration is to optimize a calibrator which reduces E; as much as possible.

3.2 CORRECTNESS-AWARE LOSS

In practice, the distribution p(¢) is unknown, hence, Eq. (3) cannot be directly computed. To solve
this, we approximate the calibration error E ; by replacing p(¢) with an empirical distribution, formed

'For simplicity, we omit three color channels.
>This differs from the expected calibration error (ECE) metric. The ECE metric uses discretized histogram
bins, whereas our calibration goal employs the continuous form.
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by assembling Dirac delta functions ( , ) centered at each predicted sample confidence ¢
computed from a given dataset D = {(x;, y;)}"_,, where n is the number of samples:
D R
== Z 6z (€). “)
i=1
Substituting Eq. (2) and Eq. (4) into Eq. (3), the empirical calibration loss can be written as:
Z 16~ [ T, = i bl )

However, Eq. (5) is still hard to compute because the probability density function dp(x;|¢;) is not
accessible in practice. As such, we further discretize Eq. (5), where we assume a finite number of
samples {x;;}7", in each distribution p(x;|¢;). Consequently, ]E‘}mp is reformulated as:

1 n m A A
E;mp = % Z Z ||Ci - H{yng = yxij}”' (6)

i=1 j=1

Note that in practice, m = 1, because there is only one test sample for each p(x;|¢;), e.g., a dataset
only has one test sample with confidence 0.52893.° Therefore, we define the correctness aware (CA)
loss as the empirical calibration loss of classifier f on a test set with n samples:

emp Z 16 — H{yx, = Ux; }

E N

Lower and upper bounds of CA loss. Let us derive the CA loss range of Eq. (7) for a given test
sample x;: (i) If the sample is correctly classified, the indicator function I {yx, = 9, } = 1. The
maximum confidence range for a correctly classified sample is éj‘ e( %, 1], and the loss range would
be |67 — I {yx, = O, }]| € [0,1 — &). (ii) If the sample is wrongly classified, ™ {yx, = fix, } = 0
and ¢; € (&, 1], the loss range would be (&,1]. Let p € [0, 1] be the ratio of correctly classified
samples in D. For the correctly classified samples, we have:

pxn

0 316 T (o, = e} < p 5 (1-5). ®
and for the wrongly classified samples, we have:
(1—p)xn
(1=p)xnx &< ; IE7 =T {yw, = G} < (1= p) x . ©)

Combining Eq. (8) and (9) with Equation (7), we can derive the lower and upper bounds of CA loss:

m 1 - ~ 7
E; - EZ llei — yx, = U, HI,
i=1

pxn (1—p)xn

n x ES Z 16 = Lge, = G 1l = D MET =Ty, =} + D l1Er =T g = G s
j=1

k=1

1-— 1 1-— —1
nx(Cp>Sanjcmpgnxpx(I—C)+nx(1—p):nx(Cp—&—CO),

1-— 1—p C-1
< EfP < —=+ —— 11
ol o oo (11
where C' is the number of classes. Hence, the CA loss has a lower bound of 2=2 and an upper bound

of 1 =+ CC L We observe that both lower and upper bounds are closely tled to 1=2, representing
the fraction of misclassified samples per class in whole D.

(10)

3We have a mild assumption that a test set has few, if any, duplicated images, where Eq. (6) will also
approximately hold.
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Theoretical insights of CA loss. First, we rewrite Eq. (7) as a sum of two CA loss components,
I{yx, = ¥x, } equals 1 and O for correctly and incorrectly classified samples, respectively, and we use
¢y as discrepancy measurement for simplicity:

1 pXn (1—-p)xn
E;mpzn<2(1—é;“)+ > e,;), (12)
j=1 k=1

where é;r and ¢, denote, respectively, the maximum confidence scores for correctly and incorrectly
classified samples. Suppose p > 50%, we have:

1 (1—p)xn pxn (1—p)xn
em] A~ A~ A—
Efp:n( E (1—c;r)+ E (1—0;-')—&— E ck>

j=1 j=(1=p)n+1 k=1

1 (1—p)xn (1—p)xn 1 pxXn
— A ot At
—1—p+n< e > cj>+n >ooa-éh. (13)

k=1 j=1 j=(1—p)n+1

Now using Ediff = (17;“”( ;L}p)xn e — Zy;lp )xn éj) to denote the expectation of the dif-

ference in maximum confidence values between correct and incorrect predictions, and E* =
@D g (1—pyni1(1 = &) to denote the expectation of the maximum softmax scores for the
rest (2p — 1)n correctly classified samples, Eq. (13) can be written as:

EF™ = (1 — p)E + (2p — DE* + (1 - p) = (1 — p)E + (2p — 1)E". (14)

We notice that minimizing our CA loss is equivalent to minimizing either E4 or E* (omitting the
constant (1 — p)): (i) minimizing E4 aims to maximize the expectation of the difference in maximum
confidence scores between correct and incorrect predictions, and (ii) minimizing E* aims to push the
maximum confidence score of correctly classified samples to 1. These two objectives align well with
the model calibration goal (Sec. 3.1). Below we take a close look at E4fT:

1 (1—-p)xn (1—=p)xn 1 1 pxXN
diff A— A-‘t,- — emp - _A_‘A,_ _
- ‘<1—p>><n< PO DY > = (Ef w2 U=y 1>’

k=1 j=1 p j=(1—p)n+1

1
l—p _ i (5_1)p
IEemp_> EEdlff_>
! C 1—0p

Eq. (15) demonstrates that minimizing our CA loss E‘}mp during training toward the lower bound

1
—p . . . i c—1 . . .
l—c’) is equivalent to pushing E%ff toward (CT[))’) < 0. This means pushing the average maximum

softmax scores of wrongly classified samples away from those of correctly classified samples, thereby
reducing the overlap of confidence values between correct and incorrect predictions.

< 0. (15)

3.3 GAINING CORRECTNESS AWARENESS

From the intuition of the CA loss in Eq. (7), its optimization requires the post-hoc calibrator to be
aware of the correctness of each test sample. Empirically, we find the test sample itself offer limited
help to distinguish correctness, which leads to undesirable calibration performance.

Our approach, inspired by ( , ), leverages the discovery that consistency in model
predictions for transformed images correlates strongly with accuracy. While their insight focuses on
dataset-level consistency, our assumption extends to individual samples: the model’s behavior on
transformed samples informs prediction correctness.

The pipeline of our calibrator is presented in Fig. 2, we aim to calibrate a classification model f. To
do so, we compute the logit vector z, softmax vectors of an original image X and its transformed
versions v and v; (¢ € Iy, assuming M types of transforms), respectively. We determine the
indices q € R¥ of the k largest softmax scores of v, and use these indices q to locate and select the
corresponding values from v;, forming new vector with k dimensions. These k-dim vectors v;[q] of
the transformed images are concatenated as ©;¢1,, vi[q], and used as the calibrator input.
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Figure 3: Comparison of different loss functions w.r.t. temperature and softmax probability of
the ground truth (GT) class. In a four-way classification task, we examine a wrongly predicted
sample with logit vector [a, 2.0,0.1,0.05], where a < 2 is the value on the ground truth class. We use
cgt to donate the softmax score of the GT class. Top: The loss surface plots for varying temperatures
and c,, with red and blue arrows representing positive and negative temperature gradients, respectively.
Bottom: Shows 2D loss curves for varying cy. The lines in the bottom charts correspond to the lines
of the same color in the top charts. Compared with Maximum Likelihood Estimation (MLE) based
functions (e.g., Cross-Entropy, Mean Squared Error), our Correctness-Aware loss minimization does
not favor temperatures below 1 for incorrect predictions, while sometimes MLE does.

Calibrator, g parameterized by 6, which is trained by the proposed CA loss. Here, the calibrator
consists of two fully connected layers with a ReLU activation function in between. Each hidden
layer comprises 5 nodes. The calibrator is optimized on the calibration (a.k.a., validation) set, and
the calibration output is temperature 7 to be used to scale the model logit vector z of original image.
Below we show these steps in equations:

q = argmaxv € Rk, (16)
q

T = go(Diez,, Vild]), (17)

¢ = maxo(z/7)(9, (18)

where o (+) denotes the softmax function. Eq. (18) retrieves the maximum softmax prediction score
¢. Based on the CA loss in Eq. (7), the optimization goal now becomes:

arg H%in Eefmp(é7 yXa gx)’ (19)

where yx and g5 denote respectively the ground truth and predicted labels.

In practice, transformations can be grayscale, rotation, color jitter, adding Gaussian noise, random
erasing, etc. They are applied to the original image during training and inference. We do not assume
access to test batches, which are used in some previous works ( , ; ).
Nevertheless, if we assume such access, we can retrieve from test batches i 1mages that are s1m11ar
to the original one and use softmax vectors of the retrieved images as calibrator inputs. As to be
shown in Sec. 5, we find that grayscale, rotation, and colorjitter are effective ones, and that using four
transformations give a good trade-off between calibration performance and computational cost.

During inference, using the k-dim vectors from the transformed images, we obtain an adjusted
temperature from the calibrator. This temperature is used to scale the logits of the original image, the
softmax vector of which is then updated. Alg. | in Appendix A summarises this calibration process.
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3.4 COMPARISON BETWEEN CA LOSS AND MLE

Maximum Likelihood Estimate (MLE) is widely used for calibration training ( ),
under concrete formats such as the Cross-Entropy (CE) or Mean Square Error (MSE) losses This
section goes through their connections and differences with the CA loss. Appendix B shows more
discussions.

For correct predictions, MLE (e.g., CE or MSE loss) has similar effect with the CA loss. MLE
enforces the softmax probability of the ground-truth class to be close to 1. For correct predictions,
the softmax probability of the ground-truth class equals the sample confidence (maximum probability
in the softmax vector). Under this scenario, MLE aligns with both the calibration objective and the
CA loss: the confidence of correct predictions should be possibly high.

For wrong predictions, MLE sometimes deviates from the calibration goal while CA is the-
oretically consistent. In Fig. 3, we visualize the loss surface of the CE, MSE, and CA loss w.r.t.
temperature and softmax probability on the ground truth class (first row), from which we use examples
of two typical calibration training samples for more intuitive illustration (both first and second rows).
Particularly, optimal temperature (x-axis) is achieved when the respective loss (y axis) is minimum
(the second row is easier to read).

For an absolutely wrong sample (green curves in both rows), whose probability of the wrongly
predicted class is far greater than that on the ground-truth class, the optimization direction of MLE is
similar to CA: the loss curve keeps decreasing and finally a large temperature or a low confidence is
obtained. In fact, under this scenario, calibration objective requires the probability of the ground-truth
class to increase and probability of the wrongly predicted class to decrease. This is consistent with
the objective of MLE: to increase probability on the ground-truth class.

For a narrowly wrong sample (yellow curves in both rows), whose probability on the wrongly pre-
dicted class is much closer to that on the ground-truth class, the optimization direction of MLE is
very different from or even opposite to CA. Take the yellow curves in the second row of Fig. 3 as
example. The CE loss, to become smaller, leads to a small temperature, meaning a large confidence,
which is undesirable for this wrongly predicted sample. For MSE, its minimum is achieved when
temperature is around 1.0, which does not change the temperature and confidence much. This again
is undesirable. In comparison, the CA loss keep decreasing when temperature increases so will
eventually give a large temperature or a small confidence for this type of samples. This is consistent
with the calibration objective.

Empirically, we find that such narrowly wrong predictions take up 2%-8% of the calibration set
(ImageNet validation).* This would negatively impact training efficacy of MLE. Moreover, during
inference, if a test set has many such narrowly wrong predictions, MLE will also be negatively
impacted because of its unsuitable in dealing with such samples during training. This would explain
why our system is superior to and on par with state of the art on OOD and IND test sets, respectively
(refer to Sec. 4). In both IND and OOD scenarios, our calibrated models are much better.

4 EXPERIMENTS

4.1 MODELS AND DATASETS

ImageNet-1k setup. 1. Models. We use 10 models trained or fine-tuned on the ImageNet-1k training
set ( ). We source these models from the model zoo Timm ( , ).
2. Calibration sets We use ImageNet-Val ( R ) to train calibrator. 3. Test sets. (1)
ImageNet-A(dversarial) ( , ) comprises natural adversarial examples that are
unmodified and occur in the real world. (2) ImageNet-S(ketch) ( s ) contains images
with a sketch-like style. (3) ImageNet-R(endition) ( , ) comprises of 30,000
images that exhibit diverse styles. (4) ObjectNet ( , ) is a real-world test set for
object recognition where illumination, backgrounds and imaging viewpoints are very challenging.
(5) ImageNet-Val. We train the calibrator on half of the ImageNet validation set and test it on the
remaining half.

*We first compute the ratio of the probability on the ground-truth class to that on the wrongly predicted class.
We define a sample is narrowly wrong prediction if this ratio is higher than 0.5.
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Table 1: Calibrator comparison under the ImageNet setup. Each reported number is averaged over
10 classifiers, described in Sec. 4.1. We use five test sets: ImageNet-Val, ImageNet-A, ImageNet-R,
ImageNet-S, and ObjectNet, and four metrics: ECE (bin=25), BS, KS and AUC (AUROC). Best
results in each column are in bold. When comparing CA and CE, better results are in blue color.

Method ImageNet-Val ImageNet-A ImageNet-R ImageNet-S ObjectNet
ECE| BS] KS| AUCTECE| BS| KS| AUCTECE| BS] KS| AUCTECE| BS| KS| AUCTECE| BS| KS| AUCT
Uncal 8.71 14.0114.39 85.96 39.44 32.9043.47 61.87 13.97 16.8919.90 88.06 20.9221.6729.01 82.57 31.2125.2036.48 78.05
TS 9.10 13.8513.26 85.41 29.2423.2432.50 62.86 6.28 13.8014.51 88.27 8.92 16.1119.18 83.22 19.70 17.9726.92 78.35
ETS 3.22 12.6112.43 85.90 32.4026.2136.98 62.68 8.29 14.2117.09 88.22 14.79 17.4723.72 83.17 25.1320.6131.11 78.28
MIR 2.36 12.5112.93 85.92 34.7026.9239.37 61.87 10.33 14.7119.43 88.01 17.39 18.2826.41 82.55 27.56 21.2933.48 78.02
SPL 2.38 12.5012.75 85.94 33.6126.7138.28 61.87 9.41 14.5818.33 88.02 16.48 18.0925.45 82.56 26.44 21.0932.27 78.37
Adaptive TS 6.35 14.2011.04 82.94 29.3023.6132.99 61.43 5.65 14.2914.68 86.99 9.65 16.9620.01 81.01 20.77 18.9927.79 76.95
TCP 8.30 17.3817.45 72.15 28.07 19.6232.05 47.57 8.81 22.5921.16 62.77 9.79 21.6925.56 56.95 21.79 18.5831.25 72.57
ProCal 2.89 12.6013.33 86.08 38.8230.9942.35 61.75 11.84 16.2919.13 86.22 19.8519.6328.10 82.30 25.2222.6131.58 75.15
CE only (PTS) 5.02 12.5011.40 86.69 41.2332.0245.60 60.85 19.14 18.7026.44 87.05 14.39 17.0124.82 82.75 32.8924.8538.18 77.77
CA only 2.22 12.2512.63 86.74 32.1425.2836.47 61.08 11.62 15.7920.44 86.86 5.49 15.2914.97 82.50 22.09 18.5928.99 77.89
CE+trans. 3.42 12.8711.77 85.36 28.0622.0132.38 63.47 6.22 13.2815.30 88.64 11.5215.9421.08 83.84 20.89 18.2827.69 78.50

CA-+trans. (ours) 4.63 11.8511.55 87.44 20.6516.7922.50 63.74 4.91 12.2110.12 90.22 4.00 13.8313.12 84.87 10.33 14.5918.72 79.25
CA + CE + trans 4.24 13.1511.53 84.91 26.54 20.8530.80 63.85 5.63 12.8614.57 88.96 9.50 15.1519.52 84.31 21.4218.7928.02 78.14

Table 2: Calibrator comparison under the CIFAR-10 setup. Each number is averaged over 10
classifiers (see Sec. 4.1). We use one IND test set (CIFAR10.1) and three OOD test sets (CIFAR-10.1
, CINIC, and CIFAR-10-C). Other notations are the same as Table 1.

Method CIFAR-10.1 Gaussian Blur Defocus Blur CINIC

ECE|] BS|] KS| AUCtT ECE| BS| KS| AUCtT ECE| BS| KS] AUCtT ECE| BS| KS| AUCT
Uncal 10.22 12.59 13.80 85.08 45.72 43.48 50.01 66.7 34.79 34.79 39.73 71.49 24.25 25.29 28.42 78.76
TS 4.84 11.06 11.78 85.15 35.25 34.54 42.81 66.78 24.99 28.17 33.93 71.40 16.04 20.77 24.17 79.15
ETS 2.77 10.78 10.87 85.08 30.04 30.84 39.41 66.69 19.98 25.69 39.73 71.23 11.48 19.13 22.15 79.25
MIR 2.29 10.83 11.01 84.98 30.39 30.83 39.73 66.67 20.31 25.63 31.51 71.41 12.58 19.59 22.86 78.68
SPL 3.04 10.89 10.61 85.04 29.12 30.57 38.49 66.72 19.64 25.53 30.46 71.48 11.88 19.51 22.03 78.72
Adaptive TS 4.17 11.29 11.74 83.40 22.07 26.58 34.44 65.97 12.15 2331 27.27 70.27 10.73 19.48 21.99 77.76
TCP 11.40 13.83 12.78 76.09 12.38 24.64 30.48 54.83 6.71 24.66 24.35 58.25 15.35 23.62 17.47 73.16
ProCal 296 11.27 11.60 82.85 37.26 36.83 44.28 64.50 25.68 28.99 34.36 69.39 18.04 22.19 25.14 76.22
CE Only (PTS) 292 10.85 11.26 85.12 31.01 31.24 40.07 67.28 21.01 25.86 31.80 71.95 13.69 19.92 23.27 78.93
CA Only 242 10.87 11.06 84.82 29.41 30.19 39.05 67.11 19.45 25.17 30.99 72.04 12.65 19.68 22.93 78.55
CE-+trans. 2.87 10.90 11.22 84.84 18.49 24.51 3222 67.18 9.09 22.04 25.79 71.52 7.05 18.31 20.65 79.03

CA+trans. (ours) 2.76 10.79 10.72 85.15 11.45 22.18 27.91 67.33 4.65 21.30 2242 71.57 7.27 18.34 1590 7891

CIFAR-10 setup. 1. Models. We use 10 different models trained on the training split of CIFAR-10
( R ) in this setup. We follow the practice in ( s ) to access the
model weights. 2. Calibration set. Calibrators are trained on the test set of CIFAR-10. 3. Test sets
(1) CINIC-10 ( , ) is a fusion of both CIFAR-10 and ImageNet-C (

R ) image classification datasets. It contains the same 10 classes as CIFAR-10. (2)
CIFAR-10-C(orruptions) contains subsets from CIFAR-10 modified by perturbations such as blur,
pixelation, and compression artifacts at various severities.

iWildCam setup. 1. Model. We use 10 models trained on the iWildCam( , ) training
set. They are downloaded from the official dataset website. 2. Calibration set. We train the calibrator
on the iWildCam validation set. 3. Test set. We use the iWildCam test set containing animal pictures
captured in the wild. Further details of the three setups are provided in Appendix C.

4.2 CALIBRATION METHODS AND EVALUATION METRICS

Methods. We compare our method with six popular calibration methods. They include scaling-based

methods such as temperature scaling (TS) ( , ), ensemble temperature scaling (ETS)
( , ), adaptive temperature scaling (Adaptive TS) ( , ), and parameterized
temperature scaling (PTS) ( s ). We also compare with binning method multi-
isotonic regression (MIR) ( , ), True Class Probability (TCP) ( , ),
spline-based re-calibration method (Spline) ( , ), and Proximity-Informed Calibratio
(ProCal) ( s ).
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Metrics. Apart from the expected calibration error (ECE) ( , ), we report the Brier
score (BS), adaptive calibration error (ACE) ( s ), and Kolmogorov-Smirnov (KS)
error ( R ). In addition, we use area under the ROC curve (AUROC) to evaluate how

well the calibrators separate correct predictions from wrong predictions, which might also be a good
metric for calibration (Appendix B). All the numbers in Table 1, 2, and 3 are averaged over results of
calibrating 10 different models.

4.3 MAIN OBSERVATIONS

Comparison of calibration performance with the Table 3: Calibrator comparison under
state of the art. We summarize calibration results un- iWildCam setup. Each number is averaged
der the ImageNet, CIFAR-10, and iWildCam setups over 10 classifiers (see Sec. 4.1). We use
in Table 1, 2, and 3, respectively. We have two ob- the iWildCam test set. Other notations are
servations. First, on OOD test sets, our method is the same as Table 1.

very competitive across various metrics. For example,

when compared with the second-best method on Object- Method ECE{ BS, KS| AUC?
Net, the ECE, BS, and KS metrics of our method are Uncal 604 1777 2211 8659
10.56%, 3.69%, and 8.97% lower, respectively. Second, s 6.63 1406 1490 8622
on near IND or IND test sets such as ImageNet-Val and f/{TnSz ggi }‘3“5)2 122‘7‘ Sgéz
C;FAR-IO.I' , our method is less advantageous bu't IS sp 508 1370 1244 8663
still competitive. The reason for our method being  ProCal 709 14.68 1639 8470
more effective on OOD test sets is that there are more ~ AdPtve TS Rl
narrowly wrong predictions, mentioned in the last para-  —GEony PTS) 873 1790 1745 7865
graph in Sec. 3.4. Besides, as explained in Sec. 3.3, _CAonly 807 1754 1695 79.15

CE-+trans. 678 1288 1207 83.70

the use of transformed images might not be an optimal

. . . CA+trans. (ours)  7.21 11.81 10.24 90.52
way to inform classification correctness.

Comparing CA with MLE. In Table 1, 2, and 3, we compare ‘CA only’ with ‘CE only’, and
‘CA+trans’ with ‘CE+trans’. First, ‘CA only’ consistently outperforms ‘MSE only’ in 18 out of 20
scenarios under the ImageNet setup, 13 out of 16 scenarios under the CIFAR-10 setup, and 4 out
of 4 scenarios under the iWildCam setup. Second, in most cases (e.g., 19 out of 20 scenarios under
ImageNet setup), ‘CA+trans’ is better than ‘CE+trans’. In addition, in Table 1, we observe that the
combination of CE and CA does not yield better results compared to using CA alone in the OOD test
set. The superiority of the CA loss is more evident on OOD datasets as discussed in Appendix B.

Potential of CA in allowing confidence to better separate correct and wrong predictions. In
Tables 1, 2, and 3, we compare separability and have two observations. First, existing methods typi-
cally do not have improvement in AUROC. This is not surprising, because their working mechanisms
are not relevant to the separation of correct and wrong predictions. Second, our method improves
AUROC under the ImageNet and iWildCam setups and in on par with existing methods on CIFAR-
10. In fact, we find predictions of transformed images offer much less diversity under CIFAR-10
classifiers, losing their efficacy in telling prediction correctness. This could be addressed with a
better method than transformed images, and we leave it for future work. These results, especially
those under the challenging ImageNet and iWildCam setups, suggest our method has the potential to
better distinguish between correct and wrong predictions by confidence scores, which could lead to
improved decision making. A closer look at the ROC curves is provided in Fig. 4 and Appendix D.

Effectiveness of using transformed images as calibrator input. We compare ‘CA+trans’ and ‘CA
only’ in Table 1, 2, and 3. It is very clearly that ‘CA+trans’ gives consistently better calibration
performance than ‘CA only’. It indicates the necessity of using transformed images.

5 FURTHER ANALYSIS

Impact of narrowly wrong predictions in training and testing. We construct various calibration
(training) sets and test sets with samples of controlled degrees of being wrongly predicted. From
Fig. 5 (left), if a test set is dominantly filled with narrowly wrong predictions, our method will
have a huge improvement over CE and no calibration: in fact, CE has the same performance as no
calibration in this scenario. As more absolutely wrong samples are included, the gap between smaller,
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Transformation combinations
Figure 4: (Left:) Comparing various combinations of image transformations, including rotation
(R), grayscale (S), colorjitter (C), random erasing (E) and Gaussian noise (G). Different colors
means different numbers of transformations. Dashed lines denote performance of no calibration and
retrieval-based augmentation that accesses test batches. (Right:) Visualization of ROC curves of
various calibrators. Existing methods typically do not improve AUC, while our method effectively
does. All results in this figure are reported for ObjectNet using the model ‘beit_base_patch16_384",
as introduced in Appendix C.

but our method is still superior. This is because the calibration set also has various degrees of wrong
predictions, so CE is not as well trained as CA and actually has similar performance as no calibration.

On the other hand, from Fig. 5 (right), when training set contains lots of narrowly wrong predictions,
CE is very poor and even worse then no calibration. When more absolutely wrong samples are
included, CE becomes gradually better and even close to our method. These results empirically
verifies our discussion in Sec. 3.4.

Comparing different image transformations. . Test set variants Calibration set variants
We try different combinations of image transfor- eeen | e

. . . . . &~ CA 14
mations (including retrieval-based augmentation »
. . . d =12
in test batches) as calibrator input. Results are g, S
summarized in Fig. 4. We observe that using ro- 81, 8,
tation, gray-scaling, and color-jittering generally s - 6
give good calibration results. Retrieval-based olo—" ® [ ]
augmentation is also competitive, but it requires < <

narrowly wrong  absolutely wrong narrowly wrong  absolutely wrong

access to test batches which might not be practi-
cal. Moreover, we find that using only one trans-
formation is not ideal. While using more trans-
formations is effective, three is a good number
to balance between calibration performance and
computational cost.

Figure 5: Impact of narrowly wrong and abso-
lutely wrong predictions on calibrator perfor-
mance. (Left:) we craft test sets containing 500
wrongly predicted samples with various degrees
of being wrong. For example, the leftmost test set
contains narrowly wrong samples, while the right-
6 CONCLUSION most one contains absolutely wrong sample. Cal-
ibrator is trained on ImageNet-Val. (Right:) we
craft training sets containing 1,000 wrong predic-
tions and 1,000 correct predictions. The wrongly
predicted samples also have different degrees of
being wrong. We use ImageNet-A as test set. For
both subfigures, we use ‘beit_base’ as the classi-
fier and compare CA with CE and no calibration.
Our method is more superior when training/test
sets contain more narrowly wrong predictions.

This paper starts from the general goal of cali-
bration, mathematically interprets it, and derives
a concrete loss function for calibration. Name
as correctness-aware (CA) loss, in training it re-
quires correct (wrong) predictions to have high
(low) confidence, where such correctness is in-
formed by transformed versions of original im-
ages. During inference, our calibrator also takes
transformed images as input and tends to give high (low) confidence to likely correctly (wrongly)
predicted images. We show our method is very competitive compared with the state of the art and
potentially benefits decision making with plausible results on better separability of correct and wrong
predictions. Moreover, we reveal the limitations of the CE and MSE losses for certain type of samples
in the calibration set. Rich insights are given w.r.t how our method deals with such samples. In future
we will study more effective correctness prediction methods to improve our system and how our
method can be used for training large vision language models.

10
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A  OUR ALGORITHM

Alg. 1 shows the calibrator with our proposed Correctness-Aware loss.

Algorithm 1 Calibrator with our proposed Correctness-Aware Loss

Input: a classification model f to be calibrated (f’(-) extracts the logit vector, and o (-) denotes the softmax
function), a calibrator g parameterized by 6, the total number of transforms M, and k for selecting the top-k
maximum softmax scores. y and g denote the ground truth label and the predicted label for a given image
sample X, respectively.

Step 1: Obtain the logit vector: z = f/(X) and the softmax vector: v = o (z).

Step 2: Apply M transforms to the original input image X to obtain its transformed images XD (i € In),
then obtain their corresponding softmax vectors: v; = o(f/(X)).

Step 3: Get the indices q of the top-k maximum softmax scores from the logit vector v using Eq. (16).
Step 4: Use the generated indices q to form new vectors v; € R*, concatenate these new k-dimensional
vectors resulting in ®iez,,vi[q] € RM** then pass this resulting matrix to the calibrator g to produce the
temperature 7 via Eq. (17).

Step 5: Apply the learned temperature 7 to the original logit vector and obtain its maximum softmax score
via Eq. (18).

Step 6: Plug the updated maximum softmax prediction score from Step 5, the ground truth label y, and the
predicted label ¢ into our proposed Correctness-Aware Loss via Eq. (19).

Return: Calibrator model weights 6.

B FURTHER DISCUSSION

How could the CA loss improve the ECE metric? ECE bins confidence and calculates the difference
between confidence and accuracy of samples in each bin. In the extreme case where bin size is
infinitely small, each bin will contain only one sample (assuming no image duplicates), meaning
accuracy of each bin is either 100% or 0%. In this scenario, the CA loss will push correct (wrong)
predictions to the high (low) confidence, which always reduces ECE. When bin size gradually
becomes larger, improvement brought by CA loss will be less definite but still visible.

Sample-adaptive temperature used in ( ); ( ); ( )
and our method has different properties from global temperature ( ). Because global
temperature does not change the order of samples ranked by their confidence, it cannot improve
the ability of confidence to separate correct and wrong predictions. Sample-adaptive temperature
at least has such potential (but under specific design). On the other hand, trained with the CE loss,
the sample-adaptive temperature is demonstrated to produce a competitive calibrator for IND test
sets ( ); ( ). But issues with CE and the lack of using additional
information limit its effectiveness for OOD data. In comparison, our method is competitive on both
IND and OQOD test sets.

Why the CA loss sometimes still have empirical failures? A calibrator perfectly optimized by the
CA loss will give 0 ECE, because all the correctly (wrongly) classified samples will have confidence
of 1 (0). In practice, however, the bottleneck is to tell prediction correctness. We use augmented
images but it might not be an optimal solution. In future we will explore new methods for correctness
prediction.

Correctness prediction performance as a potential calibration metric. Given a confidence value,
better separability between correct and wrong predictions leads to safer decision making for users,
because less mistakes are made. This paper uses area under the ROC curve (AUROC) to measure the
performance of predicting classification correctness. As shown in Sec. D.2, using a calibration method
does not always mean user makes less mistakes during decision making. Considering the strong tie
between this 2-way classification problem and model calibration (Eq. (1)), we think AUROC can be
an additional evaluation metric for model calibration.

Impact of k. We use the indices of top-k confidences to locate and select the k-dim Softmax vectors
from the transformed images. In Fig. 6, we find that for various values of £ our method improves over
uncalibrated models. Moreover, k£ > 5 does not bring much improvement. Considering computational
cost, we use k=4. Note k is chosen on the ImageNet-A test set and applied on all the other test sets.

13
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Computational cost. On a server with 1 GeForce »® -t catibration 790

RTX 3090 GPU, it takes our method 583 seconds 30 e <

to train a calibrator on ImageNet-Val; in com- 225 ***************** %78'5

parison, it take PTS and temperature scaling 987 ¥ R
seconds and 32 seconds respectively in training. Vo oo—uo—o—o| _ |71 ..
Because temperature scaling only learns a single 2 P 6 2 p 6

parameter (i.e., temperature), it is the quickest to
train. The inference time for ours, temperature
scaling, and PTS is similar: 2.33, 1.63, and 2.8
milliseconds per image, respectively. The time
complexity of our method is the same as that of
PTS.

Figure 6: Impact of £ in top-£ index selection
(Sec. 3.3). We use ObjectNet test set. Under vari-
ous k our method is better (lower KS and higher
AUROC) than uncalibrated models and TS. We
choose k =4 as trade-off between performance
and computational cost.

C ACCESS
OF BENCHMARKS AND MODELS

In this section, we introduce the benchmarking datasets and classification models used in our paper.

ImageNet models. We employ the ImageNet models from the PyTorch Image Models (timm) library
( , ), which offers models trained or fine-tuned on the ImageNet-1k training set (
, ). The models utilized in our paper are listed below:

{ ‘beit_base_patchl6_384’, ‘tv_resnetl52’, ‘tv_resnet50’, ‘tv_resnetl01’, ‘denseneti2]’, ‘incep-
tion_v4’, ‘densenet201’, ‘vit_base_patchl6_384’, ‘deit_base_patchl6_224’, ‘inception_v3’ }

Datasets. We present the test sets employed in the main paper to evaluate the aforementioned
ImageNet models. Datasets mentioned below can be accessed publicly via the provided links.

ImageNet-A(dversarial) ( , ): https://github.com/hendrycks/natural-adv-
examples.

ImageNet-S(ketch) ( , ): https://github.com/HaohanWang/ImageNet-Sketch.
ImageNet-R(endition) ( , ): https://github.com/hendrycks/imagenet-r.
ImageNet-Blur ( , ): https://github.com/hendrycks/robustness.
ObjectNet ( , ): https://objectnet.dev/download.html.

CIFAR-10 models. We employ the CIFAR-10 models from the open source library
(https://github.com/kuangliu/pytorch-cifar) which offers models trained or fine-tuned on the CIFAR-
10 training set ( , ). The models utilized in our paper are listed below:

{ ‘'VGG19’, ‘DenseNetl121’, ‘DenseNet201’, ‘ResNetl8’, ‘ResNet50°, ‘ShuffleNetV2’, ‘MobileNet’,
‘PreActResNet101’, ‘RegNetX_200MF’, ‘ResNeXt29_2x64d’ }

Datasets. Datasets used in the CIFAR10 setup can be found through the following links. CINIC

( , ):
https://github.com/BayesWatch/cinic-10. CIFARIO-C
( )(https://github.com/hendrycks/robustness);

iWildCam models. We use the iWildCam models from the open source library
(https://worksheets.codalab.org/worksheets/0x52cea64d 1d3f4fa89de326b4e3 1aa50a) which offers
models trained/fine-tuned on the iWildCam training set ( , ). The models utilized in
our paper are listed below:

{ Ciwildcam_erm_seedl’, ‘iwildcam_deepCORAL_seed0’, ‘twildcam_groupDRO_seed(’,
‘Gwildcam_irm_seed0’, ‘iwildcam_erm_tune(’, ‘iwildcam_ermaugment_tuneQ’, ‘iwild-
cam_ermoracle_extraunlabeled_tune0’, ‘twildcam_swav30_ermaugment_seed0’, ‘twild-
cam_dann_coarse_extraunlabeled_tuneQ’, ‘iwildcam_afn_extraunlabeled_tuneQ’ }

Dataset. iWildCam-OOD ( , ) can be download from the the official guidence:

https://github.com/p-lambda/wilds/.
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Figure 7: Reliability diagram of various models on the ImageNet validation set (25 bins). Bars
above the dashed line indicate underconfidence, while those below indicate overconfidence. Our
method effectively mitigates both overconfident and underconfident predictions across different
scenarios.
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Figure 8: Reliability diagram of various models on the out-of-distribution (OOD) ObjectNet
dataset (25 bins). Bars above the dashed line indicate underconfidence, while those below indicate
overconfidence. ObjectNet is a highly challenging OOD test set, where models often exhibit severe
overconfidence. Our method significantly mitigates this issue.

D ADDITIONAL VISUALISATIONS

D.1 RELIABILITY DIAGRAM
D.2 AUROC CURVES

Fig. 9 shows the comparison of Receiver Operating Characteristic (ROC) curves across different
calibration methods.

D.3 DISTRIBUTIONS OF PREDICTIONS

Visualizations of the distributions for correct and incorrect predictions on four datasets are given in
Fig. 10.

LIMITATION

Our method is limited in deployment environments where computational resources are extremely
constrained because it requires predicting results from transformed images.
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Figure 9: Comparison of Receiver Operating Characteristic (ROC) Curves Across Different
Calibration Methods. Each figure’s title specifies the classifier and the test set used. It is evident
that our methods (green curves) yield a higher area under ROC curve (AUROC) compared to other
calibration methods, signifying an enhanced ability of our model to distinguish between correct and
incorrect predictions based on calibrated confidence.
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(d) ObjectNet

Figure 10: Visualization of the distributions for correct and incorrect predictions of
‘beit_base_patch16_384" on (a) ImageNet-A, (b) ImageNet-R, (c) ImageNet-S, and (d) Object-
Net. From left to right, the methods are no calibration, temperature scaling, and our method. We find
that our method can better distinguish between correct and incorrect predictions by increasing the
confidence value for correct predictions and decreasing it for incorrect ones.
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