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Conditional Diffusion Model for Open-ended VideoQuestion
Answering

Anonymous Authors

ABSTRACT
Open-ended VideoQA presents a significant challenge due to the
absence of fixed options, requiring the identification of the correct
answer from a vast pool of candidate answers. Previous approaches
typically utilize classifier or similarity comparison on fusion feature
to yield prediction directly, lacking coarse-to-fine filtering on nu-
merous candidates. Gradual refining the probability distribution of
candidates can achieve more precise prediction. Thus, we propose
the DiffAns model, which integrates the diffusion model to handle
open-ended VideoQA task, simulating the gradual process by which
humans answer open-ended question. Specifically, we first diffuse
the true answer label into a random distribution (forward process).
And under the guidance of answer-aware condition generated from
video and question, the model iteratively denoises to obtain the
correct probability distribution (backward process). This equips the
model with the capability to progressively refine the random prob-
ability distribution of candidates, ultimately predicting the correct
answer. We conduct experiments on three challenging open-ended
VideoQA datasets, surpassing existing SoTA methods. Extensive
experiments further explore and analyse the impact of each mod-
ules, as well as the design of diffusion model, demonstrating the
effectiveness of DiffAns. Our code will be available.

CCS CONCEPTS
• Information systems→ Question answering;Multimedia
and multimodal retrieval.

KEYWORDS
Video Question Answering, Video-Language, Diffusion Model

1 INTRODUCTION
Video Question Answering (VideoQA) seek to explore technique
that combines video when answering question [50], representing
one of the challenging multimodal tasks. The VideoQA task can be
categorized into two types: multi-choice (several candidate answers
are provided for each question) [23, 44] and open-ended (a very
large candidate answers set are constructed for all questions)[18,
48, 49]. In this paper, we focus on the open-ended VideoQA which
is more challenging than multi-choice VideoQA.
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Figure 1: Comparison between our diffusion method and
other methods.

Open-ended VideoQA is popularly set as a multi-class classifica-
tion problem, where the means of answer generation are mainly di-
vided into two categories: classifier and similarity method. Classifier
method directly use a classifier to predict the answer [12, 27, 45, 51],
as illustrated in Figure 1(a). Initially, the features of video and ques-
tion are modeled for interaction and fusion, followed by the usage
of a classifier to classify the fused feature on a large candidate an-
swer set. Cross-entropy is employed as the loss function during
training, while the candidate corresponding to the highest probabil-
ity score is selected as the answer during prediction. This method
is straightforward but may lose the textual semantic information
of answer while treating candidates solely as classification labels.
Therefore, some recent methods [5, 46, 47] attempt to encode the
textual content of candidates as features, aiming to optimize the
answer prediction semantically, as depicted in Figure 1(b). During
training, they employ contrastive learning to minimize the distance
between the fused features of video-question pairs and the features
of ground truth answers. Then they select answer with the highest
similarity to the fused features as the prediction.

These two methods, while both achieving decent results, se-
lect only one answer from a vast candidate set directly without
coars-to-fine filtering, inevitably leading to significant inaccuracy
in answer prediction. According to the general intuition when fac-
ing open-ended question, human typically continuously search for

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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the direction, narrow down the scope of candidates and finally re-
spond more precisely. For example, given the video and question in
Figure 1(c), we can first come up with some more relevant answers
(with a higher probability), and then lock in the correct answers
("phone"). This characteristic is what the model precisely needs
when handling open-ended VideoQA. Excitingly, the recent diffu-
sion models[33, 38], which are popular and applied in various fields
[6, 20, 25, 43], precisely align with this advantage. Their notable ef-
fectiveness lies in progressively generating vivid images from noisy
images, approaching real scenes step by step. Thus, we incorporate
the gradual refining from random to precise features of diffusion
models to simulate human intuition for open-ended VideoQA, as
shown in Figure 1(c). Firstly, we interact with the video and ques-
tion to generate condition aware of answer. Then, we introduce
a random probability distribution of candidate answers and use
a denoising network based on diffusion models to incrementally
refine the probability distribution of answers, guided by the condi-
tion possessing fusion information of video and question. In this
way, the model continuously iterates to search for the direction and
narrow down the scope of answers until finally locking onto the
answer accurately. This achieves a more precise process of selecting
the unique correct answer from a vast candidate set.

Therefore, to model the open-ended VideoQA process mentioned
above, we propose DiffAns to tackle open-ended VideoQA with
Diffusion Model. Specifically, we first embed the video and question
using pre-trained image and text backbones, and achieve semantic
projection of the visual modal and contextual perception of ques-
tion. Next, we construct the Answer-aware Condition Generator
for generating condition aware of answre for the subsequent dif-
fusion model. It handles the video and question features through
interaction and fusion, extracting the key information required for
answering which ensures the correct distribution updating during
denoising. After that, the proposed Answer Denoiser encode the
answer probability distribution and denoises it with noise intensity
guided by answer-aware condition. Then, it decodes the denoised
feature yielding the distribution at next step. Iterate that process
and finally obtain the correct answer probability distribution.

Our contributions can be summarized as follows:

• We tackle the open-endedVideoQA taskwith diffusionmodel
and propose DiffAns. It emulates human intuition by itera-
tive seeking answer direction and narrowing down scope of
the answer to select the unique correct answer from a large
candidate set. The coarse-to-fine refining process achieving
a more precise answer prediction.

• We design the Answer Denoiser to enhance the denoising
process of diffusion model. It entails encoding and decoding
answer probability distribution and incorporates noise in-
tensity to refine the noisy distribution under the guidance
of answer-aware condition.

• We conduct comparative experiments on three commonly
used and challenging open-ended VideoQA datasets, demon-
strating the superiority of our method over existing SoTA
approaches. Additionally, our extensive experiments further
explore and analyse the impact of each modules, as well as
the design of diffusion model.

2 RELATEDWORK
2.1 Open-ended VideoQA
Open-ended VideoQA is aimed at comprehending video content
to answer to related questions without provided answer options,
unlike multi-choice VideoQA[50]. Thus, a vast answer set is often
constructed as global answer options specific to the dataset. Conse-
quently, each answer is treated as class label and the task is trans-
formed into a multi-label classification task[50]. In recent years,
two predominant solutions have emerged: classifier method and
similarity method. Classifier method is more prevalent, involving
various forms of interaction modeling between video and question,
which can be spatio-temporal[7, 11, 19, 21], hierarchical[7, 22, 29,
34, 45], multi-scale[12, 34], multi-granularity[45], or Transformer-
based[27, 28, 51]. And the final fusion of feature is fed into a clas-
sifier. This method typically employ cross-entropy loss for model
training, and select the label with the highest probability score as
the predicted answer. However, such straightforward approaches
to a certain extent sacrifice the intrinsic semantic information of
each answer text. Recently, some endeavors [5, 46, 47] have sought
to harness the semantic of answers to guide the training and in-
ference process of model. During the training phase, they employ
contrastive learning as a loss function to steer the distribution of
fusion features and answer features after interacting and fusing
the video and the question. This method treats the label answer
as positive sample while considering other answers as negative
samples, aiming to align the distributions of fused feature with
the label answer closer and diverge from other candidate answers.
In the inference phase, they compute the dot product similarity
between the fused feature and all candidate answers, selecting the
answer with the highest similarity as the prediction. Despite the
respectable performance achieved by both methods, the process
of directly selecting the sole answer from an extensive answer set
in one step raises doubts. We aspire for models to progressively
refine and determine answers step by step to possess the coarse-to-
fine filtering of singular answer selection. Thus, we leverage the
corresponding properties of diffusion models to tackle open-ended
VideoQA. We realize an intuitive approach, iteratively narrowing
down the range of answers and ultimately predicting the correct
answer. We use denoiser of diffusion model to mimick the process
of iteratively refining answers from the vague recesses of the mind
in accordance with human intuition.

2.2 Diffusion Models
The diffusionmodel [17, 33, 41] belongs to generativemodels, which
simulate diffusion processes in physical thermodynamics. During
the training process, it initially adds noise to the labels through
a forward process until they approximately conform to a Gauss-
ian distribution. Subsequently, in the reverse process, it learns to
reverse this noisy process through a denoiser to obtain the orig-
inal labels. In recent years, the remarkable success of this model
in the generative domain has been exhilarating, especially in the
field of visual generation[2, 38, 40], which have generated high-
quality images that are difficult to distinguish between real and
fake, completely overturning previous generative models. Recently,
in the domain of video generation, models [3, 16] have similarly
produced stunning generated videos using diffusion models. Due
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Figure 2: The forward and reverse process of diffusionmodel.

to its progressive refinement of labels and the continuous improve-
ment in training and inference efficiency, it has also been applied in
various fields such as Image Detection[6], recommend system[43],
Video-Text Retrieval[20], and Video-Text Localization[25]. In the
early stages, the denoising networks of diffusion models were typi-
cally dominated by U-Net[39], but recently, Transformer [42] have
been gradually explored and applied, achieving remarkable results.
However, to our knowledge, researchers have not yet utilized dif-
fusion models to tackle VideoQA. Therefore, to address this gap,
we fully leverage the characteristics of diffusion models to handle
open-ended VideoQA in a more precise manner. Meanwhile, we
implement the denoiser of the diffusion model using transformer-
based modules. To the best of our knowledge, we are the first to
adapt the diffusion model for VideoQA.

3 PRELIMILARIES
To better comprehend our utilization of the diffusion model in
achieving a coars-to-fine answer process for open-ended VideoQA,
we first describe the definition of open-ended VideoQA, and then
clarify the theory of the forward and reverse processes within the
diffusion model.

3.1 Open-ended VideoQA Definition
For open-endedVideoQA, the input typically comprises an untrimmed
video (i.e., V = {𝑣𝑖 }𝑁𝑣

𝑖=1) and a corresponding question (i.e., Q =

{𝑞𝑖 }
𝑁𝑞

𝑖=1), where 𝑁𝑣 and 𝑁𝑞 denote the number of frames and words
respectively. Concurrently, there exists an extensive answer set (i.e.,
A = {𝑎𝑖 }𝑁𝑎

𝑖=1) aiming to encompass all possible answers specific to
dataset, where 𝑁𝑎 represent the number of candidate answers. The
model necessitates modeling the function Ω process to achieve the
selection of the correct answer 𝑎∗ = Ω𝜃 (V,Q), where 𝑎∗ ∈ A and
𝜃 denotes the parameters of model.

3.2 Forward and Reverse Process
Forward process is essentially a noisy process that requires contin-
uously adding noise to the original label information 𝑥0 ∼ 𝑞(𝑥0) to
obtain noisy data 𝑥𝑇 after 𝑇 steps, where 𝑇 represents the inten-
sity of the noise. As depicted in Figure 2, in each step, the forward
process of adding noise [17] can be represented as

𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;
√︁
1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 𝐼 ), (1)

where 𝛽 denotes the variance schedule. The process to get 𝑥𝑇 in 𝑇
steps can be defined as

𝑞(𝑥1:𝑇 |𝑥0) =
𝑇∏
𝑖=1

𝑞(𝑥𝑡 |𝑥𝑡−1). (2)

Through reparameterization technique, the final noisy distribution
𝑥𝑇 can be directly represented as

𝑥𝑇 =
√︁
𝛼𝑇 𝑥0 +

√︁
1 − 𝛼𝑇 𝜖𝑇 , (3)

where the 𝜖𝑇 ∼ N(0, 𝐼 ) denotes the noise and 𝛼𝑇 =
∏𝑇

𝑖=1 (1 − 𝛽𝑖 ).
Reverse process is a denoising process, which continuously de-

noises the noised distribution 𝑥𝑇 to obtain the original distribution
𝑥0, asymptotically. As depicted in Figure 2, the reverse process of
each step can be represented as

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) = N(𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡), 𝜎2𝑡 𝐼 ), (4)

where the 𝜇𝜃 (𝑥𝑡 , 𝑡) is predicted mean, 𝜃 is model parameter and 𝜎2𝑡
is associated with 𝛽𝑡 . Similarly, in our work, we employ the Answer
Denoiser to achieve this reverse process. However, we predict the
distribution of candidate answers instead of 𝜇𝜃 (𝑥𝑡 , 𝑡), like [25].

4 METHOD
The main structure of DiffAns is illustrated in Figure 3, compris-
ing three modules. Firstly, Encoders achieve the encoding of both
video and question, effectively mapping the visual modality into
the semantic space of text modality, and facilitating contextual
understanding of question. Subsequently, the Answer-aware Con-
dition Generator interact and fuse the video and question to obtain
answer-aware condition, essential for guiding the subsequent de-
noising process. Lastly, Answer Denoiser iterate to denoise the
noised probability distribution integrating noise intensity, which
simulate the coars-to-fine filtering on vast candidate answers.

4.1 Video and Question Encoders
For the textual input (e.i., question Q), we introduce the robust
RoBERTa[31] in NLP as our language backbone. Specifically, Q
is initially treated as a text sequence of length 𝑙𝑡 . If the sequence
length is insufficient, padding is applied; otherwise, the sequence
is truncated. Subsequently, they are tokenized and passed through
the pre-trained RoBERTa, where the output of the last hidden layer
serves as the representation of question (e.i.,𝑄𝑒𝑚𝑏 ∈ 𝑅𝑙𝑡×𝑑𝑡 ), where
𝑑𝑡 denotes the hidden size of RoBERTa. To mitigate potential bi-
ases introduced by the pre-trained RoBERTa, we employ Encoder
in Transformer[42] (e.i., a multi-head attention layer (ATTN) fol-
lowed by a feedforward network (FFN)) to perceive the contextual
information of question. This can be defined as

𝑄𝑒𝑛𝑐 = 𝐿𝑁 (𝐹𝑁𝑁 (𝐴𝑇𝑇𝑁 (𝑄𝑒𝑚𝑏 , 𝑄𝑒𝑚𝑏 , 𝑄𝑒𝑚𝑏 ))), (5)

where 𝐿𝑁 denotes a regularization method (i.e. LayerNorm). The
definition of ATTN is:

𝑎𝑡𝑡𝑛(𝑄,𝐾,𝑉 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝜏

)𝑉 , (6)

𝐴𝑇𝑇𝑁 (𝑄,𝐾,𝑉 ) = 𝑎𝑡𝑡𝑛(𝑄𝑊1, 𝐾𝑊2,𝑉𝑊3)𝑊4 +𝑄, (7)

where𝑊𝑖 ∈ 𝑅𝑑×𝑑 are trainable parameters, and 𝑑 is the size of
our model dimension, which is equal to 𝑑𝑡 in our implementation.
𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 is an activation function, 𝜏 denotes the temperature of
attention. The 𝑎𝑡𝑡𝑛(𝑄,𝐾,𝑉 ) represents scaled dot product attention
with 𝑄 , 𝐾 and 𝑉 as the query, key and value respectively. And the
definition of FNN is:

𝐹𝑁𝑁 (𝑥) = 𝑅𝑒𝐿𝑈 (𝑥𝑊1)𝑊2 + 𝑥, (8)
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Figure 3: The overall architecture of DiffAns, which contains three modules: (1) Encoders embed the video and question
respectively, projecting multimodal features to consistent semantic space. (2) Answer-aware Condition Generator (ACG)
interact and fuse the video and question, and obtains the condition that guides the following denoising process. (3) Answer
Denoiser (AD) refines the noised answer distribution and predict the correct answer. Fusion feature is obtained by ACG and
inputted into AD as condition. Pooling feature refers to the pooling of fusion feature in the temporal dimension. The dashed
line represents the iterative process.

where𝑊𝑖 ∈ 𝑅𝑑×𝑑 are trainable parameters, 𝑅𝑒𝐿𝑈 represents an
activation function.

For the visual input (e.i., video V), we employ the ViT[9] as
the visual backbone, which is a widely used and effective model
in CV. Specifically, we first uniformly sample 𝑙𝑣 frames from the
video. For video with fewer than 𝑙𝑣 frames, we duplicate the last
frame to fill the gap. Subsequently, each frame is embedded by the
ViT initialized by CLIP[37], resulting in video representation (e.i.,
𝑉𝑒𝑚𝑏 ∈ 𝑅𝑙𝑣×𝑑𝑣 ). In order to align the visual and textual features in a
unified semantic space, we froze the ViT and introduced projecter, a
linear layer followed by LN. It project the visual feature into textual
semantic space, which can be represented as follow:

𝑉𝑒𝑛𝑐 = 𝐿𝑁 (𝑉𝑒𝑚𝑏𝑊 + 𝑏), (9)

where𝑊 ∈ 𝑅𝑑𝑣×𝑑 and 𝑏 ∈ 𝑅𝑑 are trainable parameters.

4.2 Answer-aware Condition Generator(ACG)
We aspire to achieve a comprehensive interaction and fusion of
video𝑉𝑒𝑛𝑐 and question𝑄𝑒𝑛𝑐 , incorporating fusion features as con-
dition for subsequent denoising process. This condition should
encompass information for answering question, guiding the de-
noiser to refine candidates probability distribution more rapidly
and accurately from random distributions. A intuition solution is
the Decoder in Transformer[42], which comprises a self-attention
layer, a cross-attention layer and a FFN layer. Specifically, it first
learns potential query semantic of 𝑄𝑒𝑛𝑐 through self-attention to
facilitate subsequent capture of video related information, which
can be denoted as:

𝑄𝑐 = 𝐴𝑇𝑇𝑁 (𝑄𝑒𝑛𝑐 , 𝑄𝑒𝑛𝑐 , 𝑄𝑒𝑛𝑐 ), (10)

where 𝐴𝑇𝑇𝑁 (𝑄,𝐾,𝑉 ) denotes the attention layer. Then, the cross-
attention is employed with 𝑉𝑒𝑛𝑐 as key and value and 𝑄𝑐 as query

respectively. It utilizes attention mechanism to focus on video in-
formation relevant to the question. By removing redundant infor-
mation, the model obtains crucial feature for answering question.
This process can be defined as

𝐹𝑐 = 𝐴𝑇𝑇𝑁 (𝑄𝑐 ,𝑉𝑒𝑛𝑐 ,𝑉𝑒𝑛𝑐 ). (11)

Finally, we further explore deep semantic information through
a FFN layer followed by LN to abstract the fusion of video and
question, obtaining a more refined and higher-order condition. This
can be denoted as

𝐶 = 𝐿𝑁 (𝐹𝑁𝑁 (𝐹𝑐 )) . (12)

Due to the truth that different videos and questions require
different answers to be generated. The denoising process heavily
relies on the quality of the generated condition (e.i., 𝐶). To further
ensure the quality of𝐶 , we retain the cross-entropy loss to constrain
the condition generation process. We perform mean pooling on the
fused features 𝐶 to obtain the global information. Then, we map it
to the dimension of the answer distribution through MLP. These
can be defined as

𝑥𝑐 = 𝐸𝐿𝑈 (𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝐶)𝑊1)𝑊2, (13)

where 𝑊1 ∈ 𝑅𝑑×𝑑 and 𝑊2 ∈ 𝑅𝑑×𝑁𝑎 are trainable parameters,
𝑝𝑜𝑜𝑙𝑖𝑛𝑔 denotes the mean pooling on token length dimension. 𝐸𝐿𝑈
denotes an activation function. Then, we employ cross-entropy loss
to constrain the relationship between this distribution and the gold
label, with the formula as

𝐿𝑐 = −
𝑁𝑎∑︁
𝑖=1

𝑧𝑖𝑙𝑛(𝑥𝑖𝑐 ), (14)

where 𝑧𝑖 = 1 if 𝑖 is the index of ground-truth answer 𝑎∗ and 0
otherwise. 𝑁𝑎 denotes the size of candidate answer set.
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Figure 4: The Answer Denoiser module, refining the noised
answer distribution aggregating the intensity, under the
guidence of answer-aware condition.

Obviously, through these operations, the 𝐶 is expected to yield
real answers 𝑎∗. Therefore, the condition 𝐶 inevitably possesses
complete information for answer generation, bringing superior
guidance to the subsequent denoiser.

4.3 Answer Denoiser(AD)
To mitigate the difficulty caused by selecting a single answer 𝑎∗
from a vast answer set A, we introduce the conditional diffusion
models, which progressively refine a random probability distribu-
tion 𝑥𝑇 to the correct distribution 𝑥0 over multiple steps𝑇 using the
Answer Denoiser (AD), as shown in Figure 4. At each iteration, AD
gradually refine the noised probability distribution, mimicking the
direction selection and narrowing of the answer scope. Specifically,
this process models 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) by mapping 𝑥𝑡 to denoised 𝑥𝑡−1.
AD mainly comprises three components: Answer Encoder module
maps the candidates probability distribution 𝑥𝑡 into the semantic
space. Denoising Block module refines the feature of the noised
distribution under guidance of condition 𝐶 , and finally Answer De-
coder module decodes the embedded distribution feature to obtain
the denoised probability distribution 𝑥𝑡−1 after the current step.

For Answer Encoder, initially, during the forward process we
need to continuously add noise into original answer distribution.
Unlike generative tasks[41], the ground truth distribution is a one-
hot representation in scope of [0, 1]. Therefore, in order to align it
with noise in the distribution, we first scale the distribution to the
[−𝜆, 𝜆] to better fit the Gaussian distribution, following previous
method[6, 25]. This is represented as

𝑥0 = 𝜆(𝑥0 − 0.5). (15)

After noise addition from 𝑥0 to 𝑥𝑇 , it is rescaled back to the original
[0, 1] which can be denoted as

𝑥𝑇 = 𝑥𝑇 /𝜆 + 0.5. (16)

We encode the distribution of noisy 𝑥𝑡 using a linear layer, mapping
it to the semantic space of the model, denoted as

𝑥𝑒𝑛𝑐 = 𝑥𝑡𝑊 + 𝑏, (17)

where𝑊 ∈ 𝑅𝑁𝑎×𝑑 and 𝑏 ∈ 𝑅𝑑 are trainable parameters.

For Denoising Block, we introduce information of noise intensity
𝑇 to aid in the denoising process. We encode 𝑇 using a sinusoidal
mapping and add it into 𝑥𝑒𝑛𝑐 , obtaining the intensity-aware noisy
answer encoding 𝑥𝑖𝑛𝑡 . There we stack 𝑁 blocks based on cross-
attention and FFN to achieve denoising of 𝑥𝑖𝑛𝑡 under guidance of
condition 𝐶 . In each block, we treat 𝑥𝑖𝑛𝑡 as query and 𝐶 as key and
value, respectively. These are interacted via cross-attention, yielding
an answer distribution 𝑥𝑐 fused with conditional information. This
is formulated as

𝑥𝑐 = 𝐴𝑇𝑇𝑁 (𝑥𝑖𝑛𝑡 ,𝐶,𝐶) . (18)
Then, we refine the answer distribution through a FNN layer, rep-
resented as

𝑥𝑟 = 𝐹𝐹𝑁 (𝑥𝑐 ). (19)
In the above two formulations, we omitted LayerNorm for sim-
plicity, which specific position in module can be seen in Figure 4.
Undergoing 𝑁 blocks, we achieve the denoising process for the
step 𝑡 , obtaining the refined answer encoding for 𝑥𝑟 .

For Answer Decoder, after a LayerNorm, we decode the encoded
information 𝑥𝑟 with MLP, transforming 𝑥𝑟 into 𝑥𝑡−1. This process
can be represented as

𝑥𝑡−1 = 𝐸𝐿𝑈 (𝐿𝑁 (𝑥𝑟 )𝑊1)𝑊2, (20)

where𝑊1 ∈ 𝑅𝑑×𝑑 and𝑊1 ∈ 𝑅𝑑×𝑁𝑎 are trainable parameters. After
multiple iterations of denoising over several time steps𝑇 , we derive
the predicted 𝑥0. Then, we employ the Kullback-Leibler divergence
as loss of 𝑥0 and 𝑥0, aiming to minimize the distributional gap
between them. This can be denoted as

𝐿𝑑𝑖 𝑓 = 𝐾𝐿(𝑥0∥𝑥0). (21)

4.4 Training and Inference
During the training process, the true label distribution 𝑥0 is initially
mapped to a distribution 𝑥𝑇 close to Gaussian noise through a
forward process. Subsequently, Answer Denoiser is applied in the
reverse process, effectively denoising 𝑥𝑇 under guidance condition
𝐶 . After multiple iterations to obtaine the predicted probability
distribution 𝑥0, the diffusion loss 𝐿𝑑𝑖 𝑓 is calculated. Additionally,
to ensure the quality of the generated condition, 𝐿𝑐 is incorporated
into Answer-aware Condition Generator. Therefore, the overall loss
during training can be expressed as

𝐿𝑎𝑙𝑙 = 𝐿𝑑𝑖 𝑓 + 𝛼𝐿𝑐 , (22)

where 𝛼 is hyparameter to control the weight of 𝐿𝑐 .
During the inference process, without ground truth answer, only

the reverse process is feasible. The corresponding noisy distribution
𝑥𝑇 is replaced with randomly generated Gaussian noise. The model
graduallty refines the random distribution through the reverse
process and obtains the final predicted probability distribution 𝑥0.
The ultimate prediction class label 𝑎 is the candidate answer with
the highest probability score, represented as follows:

𝑎 = argmax(𝑥0) . (23)

5 EXPERIMENTS
5.1 Experimental settings
5.1.1 Datasets. We evaluated our method with three widely used
and challenging datasets in the open-endedVideoQA:MSVD-QA[48],
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Table 1: Statistics on datasets.

Dataset #Video #QA pair *V *Q |A|

MSVD[48] 2K 50K 10s 6.6 2081
MSRVTT[49] 10K 244K 15s 7.4 4000

TGIF-Frame[18] 39.5K 53.1K 3s 9.8 1541

MSRVTT-QA[49] and TGIF-FrameQA[18]. The statistics on these
three datasets can be seen in Table 1.

MSVD-QA[48] encompasses a plethora of topics, including hu-
mans, animals, various actions, and unique scenarios, providing
rich content for evaluation. It comprises approximately 2k videos,
with around 50k samples (i.e., QA pairs) in total. On average, each
video has 25 related questions. The average video length is 10 sec-
onds, and the average number of words in question is 6.6. The size
of the candidate answer set is around 2k.

MSRVTT-QA[49] represents a broader compilation, showcasing
a more diverse visual content, including the most comprehensive
categories. It contains around 10k videos, with approximately 244k
samples in total. Similar to MSVD-QA, each video has an average of
24.4 questions. The average video length is 15 seconds, the longest
among the three datasets. The average question length is 7.4, longer
compared to MSVD-QA. The size of the candidate answer set is 4k,
which is the largest of these dataset.

TGIF-FrameQA[18] features videos sourced from real internet
GIFs, accompanied by human-generated questions and answers,
enhancing the authenticity. It comprises an astounding number of
approximately 39.5k videos, with around 53.1k samples in total,
implying that each video has fewer than 2 related questions on
average. The average video length is 3 seconds due to the GIF
format, and the average question length is 9.8, the longest among
the three datasets. The size of the candidate answer set is 1,541.

For all three datasets, we followed previous works and evaluated
the models using Accuracy(%) as the metric.

5.1.2 Implementation Details. In the feature representation mod-
ule, we sample 𝑙𝑣 = 16 frames for video and fix the maximum
length of input sequences to 𝑙𝑡 = 20 tokens. Subsequently, we em-
ploy ViT-L14 initialized by CLIP[37] and RoBERTa-base [31] as the
visual and language backbones respectively, both with the hidden
dimension size 𝑑𝑣 = 𝑑𝑡 = 768. We froze the ViT and fine-tune the
RoBERTa. The model is configured with a same dimension size
𝑑 = 768 of language backbone. For the MSVD-QA, MSRVTT-QA,
and TGIF-FrameQA datasets, the numbers of denoising blocks 𝑁
are set to {4, 2, 3} respectively, with a loss weight 𝛼 = 1. Within
the diffusion model, we utilize DDIM[41] as the diffusion strategy,
cosine schedule for noise, with the scale 𝜆 = 0.5. And the sampling
steps (e.i. noise intensity) 𝑇 = 50. During training, the model’s
learning rate is 1𝑒 − 4, with a batch size of 128, and a maximum
iteration of 10.

5.2 Main Result
We compared our DiffAns model with recent SoTA methods on
three datasets in Table 2. To highlight the competitiveness of our
method, we analyze the result from three perspectives.

5.2.1 Answer Generation. Most SoTA methods addressing open-
ended VideoQA are classifier-based, exhibiting commendable ef-
fectiveness. However, some recent approaches such as CoVGT[47]
and ATM[5], have also proposed the utilization of similarity-based
method. Unlike other methods, they both have all embraced pre-
training strategy. It is evident that similaritymethod ismore suitable
for models with pre-training process; otherwise, classifier method
are sufficient to achieve commendable results, such as TranSTR[27]
and KPI[24], which achieve the best performance. Given the large
size of answer set in open-ended VideoQA, both of the aforemen-
tioned models inevitably introduce difficulty by selecting a unique
answer from such a multitude of candidate answers in a single
step. Therefore, we opt to utilize a diffusion-based method to refine
the predicted answer gradually, marking the first employment of
diffusion methods in VideoQA. Ultimately, our results surpass all
recent SoTA methods, whether classifier-based or similarity-based.
This demonstrat the effectiveness of our proposed DiffAns model.

5.2.2 Backbone. As time goes on, an increasing number of ad-
vanced backbones have been proposed and applied in the field of
videoQA. In the early time, SoTA methods mostly employ CNN-
based model [1, 4, 10, 13, 14] as visual backbone and utilize word
embedding[36] to encode question. With the success and applica-
tion of Transformer[42], it has also been introduced into VideoQA,
achieving remarkable performance. Many methods have begun
to use them as the backbone, whether in the field of visual[9] or
language[8, 15, 31] domain. The two modal backbones utilized in
our model are respectively the commonly used and efficient ViT[9]
and RoBERTa[31]. Compared to our model, TranSTR[27] incorpo-
rates Faster R-CNN[1] for extracting object features in addition
to ViT for the visual aspect. Moreover, a more advanced language
model(e.i., Deberta[15]) is utilized as language backbone. However,
their ultimate performance still falls short of our model’s. This fur-
ther substantiates the effectiveness of the proposed diffusion-based
paradigm.

5.2.3 Answer Set Size. Meanwhile, our analysis reveals that the
difficulty of these three datasets precisely corresponds to the size of
the answer set (lower accuracy indicating higher difficulty). TGIF-
FrameQA[18] has the smallest answer set, with the highest accuracy,
while MSRVTT-QA[49] has the largest answer set, with the lowest
accuracy. Thus, it can be concluded that the broader answer scope in
open-ended VideoQA leads to increased interference in model selec-
tion of the correct answer from numerous candidates, rendering the
dataset more challenging. The proposed DiffAns focuses on coars-
to-fine filtering candidate answers to address open-ended VideoQA.
Experimental results demonstrate that our approach surpass SoTA
methods, validating the effectiveness of multi-step denoising for
selecting correct answer from large answer sets.

5.3 Modules Analysis
5.3.1 Model Design. We conducted ablation experiments on the
three main components of our model: Encoders, Answer-aware
Conditon Generator (ACG) and Answer Denoiser(AD). The results
are presented in Table 3, where Proj and Enc denote the visual pro-
jecter and question encoder in Encoders, respectively. The model
in the first row represents our baseline architecture, consisting of
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Table 2: Comparison to recent SoTA methods. Bold represents the highest, underline represents the second highest.

Method Venus Answer Visual Language MSVD MSRVTT TGIF-Frame

B2A[32] CVPR21 Classifier ResNet, ResNeXt GloVe 37.2 36.9 57.5
HOSTR[7] IJCAI21 Classifier ResNet, ResNeXt, Faster-R-CNN GloVe 39.4 35.9 58.2
MSPAN[12] ACL21 Classifier ResNet, ResNeXt GloVe 40.3 37.8 59.7
MHN[34] IJCAI22 Classifier ResNet, ResNeXt Glove 40.4 38.6 58.1
HQGA[45] AAAI22 Classifier ResNeXt, Faster-R-CNN BERT 41.2 38.6 61.3
EIGV[26] MM22 Classifier ResNet, ResNeXt BERT 42.6 39.3 -

MMQEN[30] MM23 Classifier ResNet, Faster-R-CNN, I3D RoBERTa 41.4 37.9 61.0
PMT[35] AAAI23 Classifier X3D Glove 41.8 40.3 60.6
ATM[5] MM23 Similarity ResNet, Faster-R-CNN BERT - 40.3 61.6

CoVGT[47] TPAMI23 Similarity ResNet, Faster R-CNN RoBERTa - 40.0 61.7
KPI[24] ICCV23 Classifier ResNet, ResNeXt, Faster-R-CNN BERT 43.3 40.0 63.0

RaFormer[28] MM23 Classifier ViT, Faster-RCNN DeBERTa 46.0 42.3 -
TranSTR[27] ICCV23 Classifier ViT, Faster-RCNN DeBERTa 47.1 43.1 -

DiffAns - Diffusion ViT RoBERTa 49.1 43.3 65.4

Table 3: Analysis of model design. AD means Answer De-
noiser, ACG means Answer-aware Conditon Generator. Proj
and Enc denote the visual projecter and question encoder in
Encoders, respectively.

Model MSVD MSRVTT TGIF-Frame

Linear 46.8 42.4 64.5
+ AD 49.0 42.6 64.7
+ ACG 49.0 43.0 65.1
+ Proj&Enc 49.1 43.3 65.4

backbones followed by concatenating and a linear layer. Each subse-
quent row corresponds to the preceding model plus the newmodule.
It demonstrates that with each module added, the performance of
the model improves incrementally. Specifically, employing the dif-
fusion model (e.i., AD) enhances the model’s performance across
all three datasets. Furthermore, leveraging ACG to refine learned
condition in significant improvements for both MSRVTT-QA and
TGIF-FrameQA. This underscores how answer-aware condition
generated by ACG greatly aids the denoising process of AD. Sub-
sequently, the incorporation of Proj and Enc further benefit the
model, leading to better performance across all datasets.

5.3.2 Loss. The model is jointly trained with two losses (e.i., con-
dition loss 𝐿𝑐 and diffusion loss 𝐿𝑑𝑖 𝑓 ). We analyze the influence
of loss weight 𝛼 on the model, which represents the importance
of 𝐿𝑐 , as shown in Figure 5(a). (1) Comparing with the boundary
(𝛼 = 0), which implies the model only utilizes 𝐿𝑑𝑖 𝑓 without 𝐿𝑐 ,
the performance of the model is lower compared to joint training
(𝛼 = 1). This demonstrates the effectiveness of constraining ACG to
achieve better guidance for AD. (2) When 𝛼 is too low or too high,
the model’s accuracy decreases, especially at 0.1. This indicates that
excessively low 𝛼 not only lack the ability to learn high-quality
condition, but also interfere with the learning of the main task (e.i.,
𝐿𝑑𝑖 𝑓 ). On the other hand, when 𝛼 is too high, the model focuses
excessively on learning condition, thereby losing denoising ability.

(a) (b)

Figure 5: Analysis of (a)𝛼 and (b)𝑁 . The white dots represent
the highest accuracy.

Finally, an appropriate 𝛼 can make the two losses more compatible,
leading to optimal result.

5.3.3 Denoising Block. We explore the impact of 𝑁 , which de-
notes the number of denoising blocks, as shown in Table 5(b). It
proves that too large or too small 𝑁 leads to decrease of model
performance. This phenomenon may arise from insufficient lay-
ers causing inadequate denoising and excessive layers leading to
overfitting.

5.4 Diffusion Analysis
5.4.1 Impact of Design. We analyzed the usage of noise intensity
𝑇 , 𝐿𝑑𝑖 𝑓 type, diffusion strategy and the schedule of 𝛽 in diffusion
model, as shown in Table 4a. (1) After removing the𝑇 when denois-
ing, the model experiences significant declines on MSRVTT-QA
and TGIF-FrameQA. It proves that the perception of noise intensity
can improve denoiser. (2) We utilized another commonly used loss
MSE as 𝐿𝑑𝑖 𝑓 . We find that the effectiveness of KL divergence is
superior, possibly due to its better suitability for measuring the
similarity between two distributions. (3) DDPM[17] and DDIM[41]
are two commonly used strategies for diffusion. DDPM learns the
latent data distribution from Markov chain, while DDIM models
a non-Markovian process, accelerating the sampling process. As
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Figure 6: The inference process of DiffAns, demonstrating the answer distributions at different number of denoising steps.

Table 4: Diffusion Analysis.

(a) Variants of diffusion model.

variant MSVD MSRVTT TGIF-Frame

w/o intensity 𝑇 49.2 42.7 64.9
KL →MSE 19.3 31.8 35.0

DDIM → DDPM 48.7 40.8 64.6
cosine→ linear 48.4 33.0 62.0

DiffAns 49.1 43.3 65.4

(b) Impact of scale 𝜆.

scale 𝜆 MSVD MSRVTT TGIF-Frame

0.2 49.0 43.0 65.4
0.5 49.1 43.3 65.4
1 48.9 42.7 64.7
2 48.9 41.0 64.4

(c) Impact of steps 𝑇 . The t denotes the average
time of inferring one sample on TGIF-Frame.

steps 𝑇 MSVD MSRVTT TGIF-Frame t

10 49.2 42.5 65.2 0.15ms
50 49.1 43.3 65.4 0.36ms
100 48.6 42.8 65.3 0.53ms
1000 48.8 42.6 65.4 4.71ms

indicated, DDIM still outperforms DDPM in performance, thus we
adopted DDIM. (4) The schedule of 𝛽 in diffusion model determines
how the step size increases. When replacing cosine with linear,
the decrease of model performance is observed, particularly on
MSRVTT-QA. Therefore, cosine schedule is more suitable and is
utilized in our model.

5.4.2 Impact of scale 𝜆. To better align the probability distribution
with Gaussian distribution for enhanced noise integration, we ap-
plied scaling process. The results under different 𝜆 are presented
in Table 4b. It is observed that the model achieved optimal perfor-
mance when 𝜆 = 0.5, indicating its suitability. Our analysis suggests
that excessively low 𝜆 lead to information loss, while overly high 𝜆
hinder the model to develop robust denoising capabilities.

5.4.3 Impact of steps𝑇 . We investigated the impact of varying𝑇 on
the model’s performance, as depicted in Table 4c, where t denotes
the average time of inferring one sample on TGIF-FrameQA. A
higher 𝑇 incurred greater computational costs. It was observed
that our model achieve optimal performance when 𝑇 = 50. This
contrasts with tasks such as Image Generation, where 1000 or more
steps are commonly utilized. This difference can be attributed to the
requirement of precise pixel-level generation in image tasks[41],
whereas our model focuses on deriving a probability distribution.

5.5 Visualization
DiffAns differs from other conventional methods in that model iter-
atively denoising the answers through multi-step refinement, grad-
ually shaping the correct probability distribution. Consequently, we
visualize the distributions at different step of inference on MSVD-
QA dataset, as depicted in Figure 6. Due to space constraints, we
illustrate the probability of top 8 candidate answers, which is refined
from random to biased during inference. The phenomenon meet
expectation that firstly the answers relevant to video or question
get top probability, but finally ground truth is higher while others
decrease. In that practice, we also find that less step is enough,
which reason may be same to 5.4.3.

6 CONCLUSION
Open-ended VideoQA involve a vast candidate answer set. Selecting
a single answer in a one-step manner without coarse-to-fine filter-
ing leads to inaccuracy. Hence, we introduce a diffusion model that
gradually refines answers through multi-step denoising, achieving
a more precise answer generation process. This marks the first
application of diffusion model to VideoQA, and our experiments
corroborate the efficacy of our approach. We aspire that our inno-
vative work will bring insights to open-ended VideoQA field.
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