
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CURING THE TRANSITIVITY CURSE: SHORTCUT LOG-
ICAL REASONING VIA A PRIORI KNOWLEDGE COMPI-
LATION

Anonymous authors
Paper under double-blind review

ABSTRACT

While large language models (LLMs) have shown remarkable reasoning abili-
ties, they often fail at multi-hop logical reasoning tasks that require chaining in-
ferences, struggling to deduce transitive relations like (P → R) from (P →
Q) ∧ (Q → R). This fundamental limitation, which we term the “Transitivity
Curse”, leads to brittle reasoning chains and significant error propagation. Exist-
ing reasoning frameworks, often based on Chain-of-Thought, attempt to traverse
these long paths sequentially, a process that is both inefficient and prone to fail-
ure as complexity increases. To cure this curse, we introduce a novel mechanism
designed to be integrated into existing logical reasoners. Our mechanism shifts
the paradigm from passively traversing reasoning chains to proactively compiling
them through a process we call A Priori Knowledge Compilation (APKC). This
process unfolds in two critical phases. First, it employs a goal-oriented backward
analysis to identify a focused, relevant subgraph of the knowledge base. Subse-
quently, within this constrained boundary, our mechanism performs a systematic
forward-chaining process to synthesize new knowledge in the form of both foun-
dational derived facts and powerful composite rules. This compiled knowledge
collapses multi-step inferences into fewer, more robust steps. By allowing a host
framework to leverage this compiled knowledge, our mechanism enables a more
direct form of Shortcut Reasoning, drastically reducing the required depth of
runtime inference. Experiments show that when integrated into state-of-the-art
reasoning frameworks, our mechanism consistently and significantly boosts their
performance on several logical reasoning benchmarks. Our findings demonstrate
that APKC, as a plug-in mechanism, is a critical component for making existing
LLM-based reasoners more robust, efficient, and trustworthy.

1 INTRODUCTION

The advent of Large Language Models (LLMs), spurred by Chain-of-Thought (CoT) prompting
(Wei et al., 2022b), has significantly advanced automated reasoning capabilities. This breakthrough
inspired advanced strategies like Tree-of-Thought (Yao et al., 2023b) and Graph-of-Thought (),
which emulate human cognitive patterns by exploring complex problem spaces step-by-step. How-
ever, while these methods excel at tasks requiring broad, heuristic exploration, they exhibit a critical
fragility when confronted with the stringent demands of formal logical reasoning. This weakness
is starkly exposed in their struggle with multi-hop transitive inferences—the fundamental challenge
of reliably deducing a conclusion R from a fact P through a chain of rules such as (P → Q)
and (Q → R). We term this fundamental limitation the “Transitivity Curse”: the propensity
of LLMs to lose inferential coherence and propagate errors across long logical chains. To illus-
trate, consider the deductive problem shown in Figure 1. Given the fact IsAustin(the city, True)
and the necessary rules—IsAustin($x, True) → IsInTexas($x, True) and IsInTexas($x, True) →
IsInUSA($x, True)—a model may still fail to conclude IsInUSA(the city, True). Existing methods,
acting as path followers, attempt to traverse these steps sequentially; however, they often fail mid-
chain, culminating in aborted reasoning paths or factually unsound judgments, even if all preceding
steps in the chain were logically sound. This reliance on a fragile, step-by-step traversal strategy

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An illustration of the Transitivity Curse in Chain-of-Though Reasoning. Existing ”path
follower” methods attempt to sequentially traverse a fragile reasoning chain, where each step (e.g.,
Q→ R) is a potential point of failure.

exposes a critical gap in current methodologies: they lack a mechanism to proactively simplify or
shorten the reasoning chain before execution.

Attempts to address the challenges of multi-hop reasoning can be broadly categorized into two dom-
inant paradigms, neither of which is sufficient to cure the Transitivity Curse. The first is a neuro-
symbolic approach that relegates the LLM to a mere translator for an external symbolic solver (??).
While leveraging the solver’s precision, this paradigm sidesteps the core problem of error propaga-
tion in long chains by simply offloading the reasoning task, failing to enhance the LLM’s intrinsic
capabilities. The second, a more integrated paradigm, uses symbolic Chain-of-Thought to perform
reasoning entirely within the LLM (). Although this improves step-by-step faithfulness, it still metic-
ulously traces the full logical path, thus remaining fundamentally vulnerable to the inefficiencies and
error accumulation that define the curse. Ultimately, both paradigms remain fundamentally reactive
path followers. They lack the ability to proactively restructure the problem by compiling logical
steps into efficient shortcuts. This highlights the need for a new mechanism that does not just follow
paths, but intelligently and reliably creates them.

To answer this call, we introduce a novel mechanism that operates as a true and effective path
creator. The core of our approach is a process we term A Priori Knowledge Compilation (APKC),
a structured, two-phase procedure. First, it performs a goal-oriented backward analysis, starting
from the query, to strategically prune the vast reasoning space down to a small, relevant subgraph of
rules. With this focused scope defined, the mechanism then initiates a systematic forward-chaining
process to synthesize new knowledge in the form of both foundational derived facts and powerful
composite rules. This compiled knowledge fundamentally alters the reasoning landscape for the
LLM. Its final deductive task is dramatically simplified, as it can now leverage the derived facts as
new, reliable starting points and apply the composite rules to traverse what were previously long
logical distances in fewer, more robust steps. This method directly confronts the Transitivity Curse
by shortening the inferential chain required at runtime, with the set of all generated knowledge
serving as a transparent and interpretable audit trail of the compilation process.

We empirically validate the effectiveness of our APKC mechanism through extensive evaluation
on several challenging logical reasoning benchmarks. Our experiments demonstrate that integrat-
ing APKC into existing reasoners leads to significant performance gains over leading frameworks,
particularly in scenarios requiring long-chain, transitive inferences. The main contributions of this
work are threefold:

• We identify and characterize the “Transitivity Curse” as a key failure mode for LLM rea-
soners and, in response, propose a new reasoning paradigm that shifts from passive path
following to proactive path creation.

• We design and implement the APKC mechanism, a concrete realization of this paradigm.
It operates in two phases: (1) a goal-oriented backward analysis to prune the logical space,
and (2) a constrained forward-chaining process to synthesize both foundational derived
facts and powerful composite rules.

• We empirically validate that our APKC mechanism substantially improves both accuracy
and efficiency on multi-hop reasoning tasks, while enhancing interpretability by producing
an explicit, human-verifiable audit trail of the compiled knowledge.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Sequential and Search-Based Reasoning Frameworks. Recent achievements in reasoning re-
search powered by LLMs have shown promising results Huang & Chang (2023); Dunivin (2024),
significantly advancing their capabilities. The Chain-of-Thought (CoT) methodology Wei et al.
(2022a) and its variants have been central to this progress, emulating human-like sequential rea-
soning. To overcome the limitations of linear paths, more advanced frameworks have introduced
non-linear exploration, such as Tree-of-Thought Yao et al. (2023a) and Graph-of-Thought Besta
et al. (2023); Zheng et al. (2024). These methods represent the state-of-the-art in what we term
path following: they are sophisticated strategies for exploring and validating steps along a given
reasoning chain.

The Role of Symbolic Representation. However, a parallel line of research has highlighted that
the representational format of these reasoning steps is crucial. While natural language is versatile,
studies show that structured representations can significantly bolster reasoning in specific domains.
For instance, using pseudo-code for code generation tasks Li et al. (2023) or mathematical equations
for math problems ? leads to more robust outcomes. For formal logical reasoning, this is even more
critical. The ambiguity of natural language is a primary contributor to the error propagation seen in
the Transitivity Curse, where the fidelity of a long reasoning chain degrades with each step.

Neuro-Symbolic Approaches for Logical Reasoning. To bring more rigor to logical reasoning,
one dominant neuro-symbolic paradigm uses LLMs as translators. Approaches like Logic-LM Pan
et al. (2023) and LINC Olausson et al. (2023) leverage LLMs to convert natural language problems
into formal languages like First-Order Logic, which are then passed to external symbolic solvers.
While these methods benefit from the precision of classical solvers, they fail to enhance the LLM’s
intrinsic reasoning ability and merely offload the challenge of traversing a long deductive path. A
different, more integrated approach might use symbols within a CoT framework, but it would still
be meticulously tracing each step of the chain, thus remaining vulnerable to the curse.

In this work, we propose a fundamentally different approach. Instead of refining the process of
path following (whether with better search or more robust symbolic steps), our work introduces a
mechanism for proactive path creation. Our core contribution, A Priori Knowledge Compilation
(APKC), is a process that analyzes the symbolic structure of a problem before runtime deduction.
It systematically synthesizes foundational facts and composite rules to build high-speed ”shortcuts”
across the knowledge graph. This compilation step directly confronts the Transitivity Curse by
reducing the number of sequential steps required for a conclusion—a problem that both advanced
search strategies and translator-based neuro-symbolic methods leave unaddressed.

3 PRELIMINARIES

Logical Reasoning. The task of multi-hop logical reasoning is to determine the truth value of a
given hypothesis H (e.g., True, False, Unknown) based on a knowledge base K = (F ,R,P). This
knowledge base consists of a set of known Facts, F = {fi}, and a set of Rules, R = {ri}. Each
fact fi is a ground atomic formula representing a true statement (e.g., ‘IsAustin(the city, True)’). An
atomic formula is composed of a PredicateP , which describes a property or relation (e.g., IsAustin),
and one or more arguments representing entities (e.g., ‘the city’). Each rule ri is a conditional state-
ment of the form P → Q (eg., IsAustin($x, True)→ IsInTexas($x, True)), where the antecedent P
is a logical expression over atomic formulas and the consequent Q is the resulting conclusion.

LLM-based Reasoning Frameworks. Modern LLM-based reasoners have evolved significantly
beyond simple Chain-of-Thought (Wei et al., 2022a). To handle the stringent demands of for-
mal logic, state-of-the-art frameworks such as SymbCoT (Xu et al., 2024b) and Aristotle (Xu
et al., 2024a) integrate symbolic representations and structured architectures (e.g., plan-then-solve
or decompose-search-resolve). These systems represent the pinnacle of sophisticated path followers,
designed to traverse complex logical chains with high fidelity. However, their fundamental limita-
tion is that they still meticulously trace these long paths step-by-step, leaving them vulnerable to the
Transitivity Curse. This shared characteristic makes them ideal host frameworks for our mechanism,
a proactive path creator designed to augment their step-by-step reasoning by pre-compiling the very
inference chains they are tasked to follow.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: An overview of our A Priori Knowledge Compilation (APKC) mechanism. The mecha-
nism operates in two distinct phases: (1) A Priori Relevance Scoping uses backward analysis from
the query to prune the initial rule base to a small, relevant subset. (2) Constrained Shortcut Com-
pilation then performs forward-chaining on this pruned set to synthesize new foundational facts and
powerful composite rules. The final output is an augmented knowledge base that enables a down-
stream reasoner to perform more direct and robust Shortcut Reasoning.

4 METHODOLOGY

To cure the Transitivity Curse, we introduce our mechanism based on the principle of A Priori
Knowledge Compilation (APKC). This approach reframes the reasoning task from a reactive, step-
by-step traversal to a proactive, two-phase procedure that first prunes the logical space and then
compiles the necessary knowledge within it. Our mechanism operates on an initial knowledge base
K = (F ,R) and a hypothesis H , with the objective of transformingK into an augmented knowledge
base K′ = (F ′,R′). This new base contains synthesized derived facts and shortcut rules, drastically
simplifying the final deductive task for a downstream reasoner.

As outlined in our introduction, the APKC mechanism is composed of two core phases, which we
have termed: Phase 1: A Priori Relevance Scoping and Phase 2: Constrained Shortcut Compilation.
In the following subsections, we provide a detailed operational description of each phase.

4.1 A PRIORI RELEVANCE SCOPING

Algorithm 1 The A Priori Knowledge Compila-
tion (APKC) Mechanism
Require: Initial knowledge baseK = (F ,R,P),

Hypothesis H .

// — A Priori Relevance Scoping —
1: Rrelevant ← Scope(R,P,H)

// — Constrained Knowledge Compilation —
2: Fderived ← DeduceFacts(F ,Rrelevant)
3: Rshortcut ← ComposeRules(Rrelevant)

// — Return Augmented Knowledge Base —
4: F ′ ← F ∪ Fderived
5: R′ ← R∪Rshortcut
6: return K′ = (F ′,R′,P)

This phase implements the ‘Scope‘ function
(Algorithm 1), which is the cornerstone of our
a priori approach. Its primary objective is to
mitigate the combinatorial explosion inherent
in forward-chaining by identifying a small yet
sufficient subset of rules, Rrelevant, pertinent to
the hypothesis H , instead of reasoning over the
entire rule baseR.

The ‘Scope‘ function operates through a back-
ward analysis that reasons about the relation-
ships between rule predicates. We define a
predicate as the symbolic relation in an atomic
formula. The analysis begins by initializing
a set of relevant predicates, Prelevant, with all
predicates found in the hypothesis H . It then it-
eratively expands this set by traversing the rule
base R backwards: for any rule r : P → Q
where the consequent’s predicate is in Prelevant,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

all predicates from the antecedent P are added to the set. This expansion continues until a fixed
point is reached, ensuring all potentially relevant logical precursors are included.

With the set Prelevant fully constructed, we can now formally define the complete ‘Scope‘ function as
follows:

Scope(R,P,H) := {r ∈ R | Predicates(r) ⊆ Prelevant}
where Predicates(r) is a function returning all predicates in rule r. The output of this function is
the desired set of relevant rules,Rrelevant. This a priori pruning step dramatically reduces the search
space, creating a constrained and computationally tractable environment for the compilation phase
that follows.

4.2 CONSTRAINED SHORTCUT COMPILATION

With the constrained set of relevant rules, Rrelevant, produced by Phase 1, the mechanism now pro-
ceeds to the compilation phase. This phase is the core of the “path creator,” where new knowledge
is actively synthesized, corresponding to the ‘DeduceFacts‘ and ‘ComposeRules‘ functions in our
main algorithm (Algorithm 1). The process involves two parallel operations: deriving all reachable
facts and composing transitive rules into shortcuts.

The first operation is an exhaustive forward-chaining process to materialize all possible conclusions
from the initial facts. This iterative process, encapsulated by the ‘DeduceFacts‘ function, applies the
rules in Rrelevant to the initial facts F until a fixed point is reached. We formally define the function
as computing the deductive closure over the initial facts, minus the initial facts themselves:

DeduceFacts(F ,Rrelevant) := Closure(F ,Rrelevant)−F

where Closure(F ,Rrelevant) represents the complete set of facts derivable from F using the rules in
Rrelevant. The output is the set of all newly derived facts, Fderived.

Concurrently, the mechanism performs rule composition to create the shortcuts that directly cure the
Transitivity Curse. The ‘ComposeRules‘ function systematically identifies and synthesizes transitive
rule pairs. We formally define this one-step composition as:

ComposeRules(Rrelevant) :=

{
(P → R)

∣∣∣∣ ∃Q s.t. (P → Q) ∈ Rrelevant

(Q→ R) ∈ Rrelevant

}
This process is repeated until no new shortcuts can be composed. The final output is the complete
set of synthesized shortcut rules,Rshortcut.

The outputs of this phase, Fderived and Rshortcut, are then combined with the initial knowledge base
to form the augmented knowledge base, K′ = (F ∪ Fderived,R ∪ Rshortcut). This enriched and
computationally superior knowledge base is the final product of the APKC mechanism, ready to be
passed to a downstream reasoner for a simplified and robust final judgment.

5 EXPERIMENTS

To evaluate the effectiveness of our A Priori Knowledge Compilation (APKC) mechanism, we
formulate the following research questions (RQs):

RQ1 (Overall Performance) How effective is our APKC mechanism at improving the perfor-
mance of state-of-the-art logical reasoners like SymbCoT and Aristotle?

RQ2 (Scalability with Reasoning Depth) How does the performance benefit of APKC scale as
the logical depth of the reasoning tasks increase?

5.1 EXPERIMENTAL SETUP

Models. We assess the baselines and our method using GPT-4o-mini, Gemini-2.0-flash-lite,
Gemma-3-27B-it and GPT-5. We also include GPT-5 to verify whether our method can general-
ize to Larger LLMs other than small LLMs.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Model Method
Dataset

LogicalDeduction AR-LSAT PrOntoQA ProofWriter LogicNLI

GPT-4o-mini

CoT 63.3 20.8 83.0 49.5 37.0
CR 75.3 26.0 59.4 46.2 30.3
ToT 72.3 23.8 59.8 48.3 29.7

DetermLR 75.7 23.4 59.4 49.5 31.3
Aristotle - - 62.4 61.9 49.2

Aristotle + Ours - - 78.4 64.2 66.3
SymbCoT 70.7 22.5 65.6 62.3 57.7

SymbCoT + Ours 78.0 27.3 92.6 69.8 63.0

Gemini-2.0-flash-lite

CoT 71.3 19.1 87.6 56.7 39.8
CR 76.3 30.7 82.2 62.3 37.7
ToT 75.3 30.3 85.6 63.7 36.3

DetermLR 75.7 29.9 78.2 60.7 35.0
Aristotle - - 80.8 74.7 69.0

Aristotle + Ours - - 84.4 81.9 69.7
SymbCoT 78.3 25.5 99.8 76.7 63.7

SymbCoT + Ours 89.0 31.2 99.8 84.2 65.7

Gemma-3-27B-it

CoT 78.0 30.3 99.4 67.5 38.3
CR 83.3 31.2 93.2 71.2 38.0
ToT 85.3 35.1 93.4 69.8 36.7

DetermLR 86.0 30.7 92.0 71.2 35.3
Aristotle - - 79.4 77.8 53.7

Aristotle + Ours - - 94.4 79.0 60.0
SymbCoT 73.7 37.7 99.0 81.5 66.7

SymbCoT + Ours 80.3 41.1 99.6 83.8 67.3

GPT-5

CoT 83.8 40.3 100.0 98.0 47.3
CR 90.1 84.9 98.8 97.6 89.1
ToT 85.4 90.5 99.6 95.7 92.3

DetermLR 84.6 86.8 99.8 96.9 93.3
Aristotle - - 94.6 81.9 68.7

-
Aristotle + Ours - - 99.8 92.0 77.0

SymbCoT 98.3 98.3 100.0 94.2 95.0
SymbCoT + Ours 99.7 98.3 100.0 94.3 97.3

Table 1: Proof accuracy of different methods across five logical reasoning datasets on GPT-4o-mini,
Gemini-2.0-flash-lite, Gemma-3-27B-it and GPT-5.

Datasets. To verify the capability of LLMs to engage in rigorous logical reasoning based solely
on established conditions, without external knowledge, we carefully select five challenging logical
reasoning benchmarks: (1) PrOntoQA is similar to ProofWriter for evaluating logical reasoning.
(2) ProofWriter is a widely used logical reasoning benchmark. We use the open-world assumption
subset where each case requires to be proven true, false or unknown. We use the depth-5 subset
containing 600 cases for evaluation. (3) LogicNLI is a challenging benchmark requiring complex
first-order logic reasoning to solve. We follow the official data split and choose the validation set
containing 300 examples for evaluation. (4) LogicalDeduction (LD) is a challenging task in Big-
Bench. The problems are mainly about deducing the order of objects from a set of conditions. We
use the full test set containing 300 examples for evaluation. (5) AR-LSAT is a challenging task in
BigBench (). The problems are mainly about deducing the order of objects from a set of conditions.
We use the full test set containing 300 examples for evaluation.

Baselines. We compare with a wide range of established baselines. Those baselines can be classi-
fied into three main categories. (1) Linear Reasoning (LR) refers to approaches where the model
arrives at an answer through a single-step process, using a straightforward response based on the ini-
tial prompt including: CoT ; (2) Aggregative Reasoning (AR) refers to methods where the model
performs reasoning multiple times or aggregates the results to reach a final answer. This includes:
Cumulative Reasoning (CR;); DetermLR ; ToT ; (3) Symbolic Reasoning (SR), which engages
symbolic expressions and rules in the reasoning framework including: Aristotle and SymbCoT .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.2 OVERALL PERFORMANCE (RQ1)

The main results of our evaluation are presented in Table 1. The findings strongly support the
effectiveness of our APKC mechanism, leading to the following key observations:

APKC consistently enhances state-of-the-art reasoners. Our mechanism is not a standalone
reasoner but a plug-in component. The results clearly show that integrating APKC provides a sig-
nificant performance boost to already powerful host frameworks. For instance, on GPT-4o-mini,
augmenting SymbCoT with APKC improves accuracy on LogicalDeduction from 70.7% to 78.0%,
and on ProofWriter from 62.3% to 69.8%. Similarly, enhancing Aristotle raises its performance on
LogicNLI from 49.2% to a much more competitive 66.3%. This demonstrates that APKC effectively
serves as a powerful enhancement, enabling SOTA reasoners to reach new performance levels.

The advantage of APKC is most pronounced on complex, deep-reasoning tasks. This trend
directly validates our core thesis. On simpler datasets like PrOntoQA, where baselines already ap-
proach a performance ceiling (e.g., 99.8% for SymbCoT on Gemini), the room for improvement is
minimal. However, on more challenging datasets that feature longer and more complex deductive
paths, APKC’s ”path creation” ability shines. The most dramatic improvements are seen on Logic-
NLI, the most difficult dataset, where APKC boosts Aristotle’s performance by a remarkable 17.1
points on GPT-4o-mini (from 49.2% to 66.3%) and by 6.3 points on Gemma-3-27B-it (from 53.7%
to 60.0%). This shows that APKC is not just a minor refinement but a crucial tool for curing the
Transitivity Curse where it is most severe.

Our mechanism is generalizable across different models. Our results confirm that APKC’s ben-
efits are not confined to a specific model or architecture. First, it is architecturally general, suc-
cessfully enhancing both the planner-solver approach of SymbCoT and the decomposer-searcher
approach of Aristotle. Second, it is scalable across different model sizes. For smaller models
like GPT-4o-mini and Gemma-3-27B-it, APKC provides a critical boost, often elevating their per-
formance to the level of much larger models. For the most powerful models like GPT-5, where
baselines are already extremely high, APKC still provides a consistent edge, pushing the frontier of
performance even further (e.g., improving SymbCoT on LogicNLI from 95.0% to 97.3%).

5.3 SCALABILITY WITH REASONING DEPTH (RQ2)

Figure 3: On the ProofWriter dataset (us-
ing Gemini-2.0-flash-lite), our APKC mech-
anism’s performance advantage over the
CoT baseline widens as reasoning depth in-
creases, a gap highlighted by the red dual-
headed arrows.

Having established the overall effectiveness of our
APKC mechanism, we now turn to a more fine-
grained analysis of its performance as a function of
reasoning depth. This RQ is designed to directly test
our central hypothesis: that APKC’s primary advan-
tage lies in its ability to cure the Transitivity Curse, a
problem that becomes exponentially more severe as
the length of the inferential chain increases.

The results, visualized in Figure 3, provide a clear
and compelling validation of this hypothesis. First,
we observe a textbook illustration of the Transitiv-
ity Curse in the vanilla CoT baseline: its accuracy
plummets from 80.3% at depth-0 to a mere 52.6% at
depth-5, demonstrating a catastrophic decay in per-
formance as the path lengthens. The more robust
SymbCoT framework, while significantly better, is
not immune; its performance also steadily degrades
from 95.0% down to 76.3%. This shows that even a
sophisticated path follower eventually succumbs to the challenges of a long journey.

The true impact of our path creator is revealed when we analyze the performance delta between
SymbcoT+APKC and SymbCoT. At shallow depths (0-2), where SymbCoT is already highly effec-
tive, our APKC provides a modest but consistent improvement. However, as the reasoning depth
increases, the advantage conferred by APKC becomes dramatically more pronounced. The perfor-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

mance gap, which is marginal at depth-1 (+0.7%), widens to +1.4% at depth-3, and culminates in
a substantial +6.4% advantage at a reasoning depth of 5. This trend powerfully demonstrates that
APKC is not a mere incremental improvement; its value becomes most critical precisely when the
Transitivity Curse is at its most potent. By pre-compiling the long inferential chain into shorter,
more robust steps, our mechanism provides a resilient solution that scales effectively to complex,
multi-hop reasoning challenges.

6 CONCLUSION

In this paper, we identified and characterized the “Transitivity Curse” as a fundamental vulnera-
bility in modern Large Language Models, where the reliability of reasoning decays rapidly with
the length of the inferential chain. We argued that existing state-of-the-art reasoning frameworks,
while sophisticated, operate as reactive path followers, leaving them susceptible to this curse. To
address this critical gap, we introduced A Priori Knowledge Compilation (APKC), a novel plug-in
mechanism that transforms these models into proactive path creators. By employing a two-phase
process of goal-oriented relevance scoping and constrained forward-chaining, APKC proactively
synthesizes foundational derived facts and powerful composite rules. This compiled knowledge ef-
fectively shortens the deductive paths that the host reasoner must traverse at runtime. Our extensive
experiments empirically validated that integrating APKC significantly enhances the performance of
leading logical reasoning frameworks like SymbCoT and Aristotle. Crucially, we demonstrated that
the performance advantage of our mechanism becomes more pronounced as the reasoning depth in-
creases, providing direct evidence that it successfully mitigates the Transitivity Curse. Our work sug-
gests that for LLMs to achieve robust, high-fidelity reasoning, the focus must expand from merely
improving path-traversal strategies to also include proactive, intelligent knowledge preparation. Fu-
ture work could explore the scalability of this compilation approach to vastly larger knowledge bases
and its applicability to other reasoning domains such as planning and causal inference.

7 STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, Large Language Models (LLMs) were utilized as a general-
purpose writing assistance tool. The specific roles of the LLMs were confined to the following
aspects:

Language Polishing: Improving sentence structure, diction, and grammar to enhance the clarity
and readability of the text.

Grammar and Spelling Correction: Assisting in proofreading the manuscript to correct potential
grammatical errors and spelling mistakes.

It is important to state that all core research ideas, experimental design, data analysis, interpretation
of results, and the final conclusions presented in this paper are entirely the original work of the
authors. The LLMs did not contribute to any of the conceptual or substantive aspects of the research,
such as ideation, methodology design, or drawing conclusions. Their use was strictly limited to
improving the linguistic quality of the manuscript. Therefore, the LLMs do not qualify as authors
or contributors to this work.

REFERENCES

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda,
Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoe-
fler. Graph of thoughts: Solving elaborate problems with large language models. CoRR,
abs/2308.09687, 2023.

Zackary Okun Dunivin. Scalable qualitative coding with llms: Chain-of-thought reasoning matches
human performance in some hermeneutic tasks. CoRR, abs/2401.15170, 2024.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. In
Proceedings of the Annual Meeting of the Association for Computational Linguistics, pp. 1049–
1065, 2023.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. Structured chain-of-thought prompting for code generation,
2023.

Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang, Armando Solar-Lezama, Joshua Tenenbaum,
and Roger Levy. LINC: A neurosymbolic approach for logical reasoning by combining language
models with first-order logic provers. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pp. 5153–5176, 2023.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. Logic-LM: Empowering large
language models with symbolic solvers for faithful logical reasoning. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, pp. 3806–3824, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the Annual Conference on Neural Information Processing Systems, pp.
24824–24837, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Jundong Xu, Hao Fei, Meng Luo, Qian Liu, Liangming Pan, William Yang Wang, Preslav Nakov,
Mong-Li Lee, and Wynne Hsu. Aristotle: Mastering logical reasoning with a logic-complete
decompose-search-resolve framework. arXiv preprint arXiv:2412.16953, 2024a.

Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-Li Lee, and Wynne Hsu. Faithful logical
reasoning via symbolic chain-of-thought. arXiv preprint arXiv:2405.18357, 2024b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. CoRR,
abs/2305.10601, 2023a.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023b.

Li Zheng, Hao Fei, Fei Li, Bobo Li, Lizi Liao, Donghong Ji, and Chong Teng. Reverse multi-choice
dialogue commonsense inference with graph-of-thought. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 19688–19696, 2024.

9

	Introduction
	Related Work
	Preliminaries
	Methodology
	A Priori Relevance Scoping
	Constrained Shortcut Compilation

	Experiments
	Experimental Setup
	Overall Performance (RQ1)
	Scalability with Reasoning Depth (RQ2)

	Conclusion
	Statement on the Use of Large Language Models (LLMs)

