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Abstract. Deep learning provides us with powerful methods to perform
nucleus or cell segmentation with unprecedented quality. However, these
methods usually require large training sets of manually annotated im-
ages, which are tedious — and expensive — to generate. In this paper
we propose to use In Silico Labeling (ISL) as a pretraining scheme for
segmentation tasks. The strategy is to acquire label-free microscopy im-
ages (such as bright-field or phase contrast) along fluorescently labeled
images (such as DAPI or CellMask™). We then train a model to predict
the fluorescently labeled images from the label-free microscopy images.
By comparing segmentation performance across several training set sizes,
we show that such a scheme can dramatically reduce the number of re-
quired annotations.

Keywords: Segmentation - Transfer learning - Pretext task - In Silico
Labeling - Fluorescence microscopy

1 Introduction

Detection and segmentation of cells and nuclei, among other cell structures, are
essential steps for microscopy image analysis. Deep Learning has provided us
with very powerful methods to perform these segmentation tasks. In particu-
lar, recently published neural networks, such as NucleAlzer [1], Cellpose [2] or
StarDist [3], trained on hundreds of images of different modalities, give excel-
lent results, outperforming by far traditional methods for image segmentation.
However, the main drawback of state-of-the-art networks is the need for large
amounts of fully annotated ground truth images, which can take a significant
amount of time to create. Here, we present an alternative strategy, where we pre-
train our segmentation models using In Silico Labeling (ISL) before fine-tuning
them on a very small data set to perform nucleus and cell segmentation.

ISL was first introduced by [4], aiming to predict fluorescent labels from
bright-field inputs. Fluorescence microscopy is the major technique employed
in cellular image-based assays, as the use of fluorescence labels allows to high-
light particular structures or phenotypic cell states. However, the number of
fluorescent labels is limited (typically up to 4). In addition, phototoxicity and
photobleaching can also represent serious drawbacks. In the same line, several
variants have been proposed since [5, 6, 7, 8, 9, 10]. The principle of ISL has
also been proposed for experimental ground truth generation for training cell
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classifiers for the recognition of dead cells [11, 12], tumour cells [13] embryo
polarization [14] or the cell cycle phase [15].

In this paper we show that models trained to generate fluorescence mi-
croscopy images with nuclear or cytoplasmic markers can be used efficiently to
pretrain segmentation networks for nuclear and cell segmentation, respectively.
This provides us with a powerful strategy to minimize the annotation burden
for a given application, and to train models on large data sets, requiring only
minimal effort in terms of manual annotation.

2 Materials and Methods

2.1 Image Acquisition

We work on two different data sets. The first dataset (N = 960) has been gener-
ated by the Opera system. For each position, we acquired bright-field images and
DAPI, both at 4 different focal planes. DAPI is a very common fluorescent stain
binding to AT-rich regions of the DNA, which can thus be used to locate the
nucleus in eukaryotic cells. Additionally we have a phase-contrast image, com-
putationally created from the 4 bright-field images by a proprietary algorithm
of the Opera system.

Our second data set contains 100 images of dimensions (1024, 1024). We used
Differential Interference Contrast (DIC) as label-free microscopy technique, and
we marked the cytoplasmic membrane with the CellMask™marker (Cy5).

2.2 Nucleus Segmentation

Nucleus segmentation is one of the most important segmentation tasks in biol-
ogy, as nuclear morphologies are indicative of cellular states, and because they
are visually very different from the cytoplasm. In particular in fluorescence mi-
croscopy, segmentation of the nucleus is usually a fairly easy segmentation task,
and for this reason we assumed that this might be a good first segmentation
problem to investigate our ISL-based pretraining.

DAPI prediction as pretraining task The first step of our strategy for
nucleus segmentation is the prediction of DAPI images from bright-field inputs.

We used a data set of 421 images of dimensions (2160, 2160), divided into
384 images for training and 37 images for testing. 5 images of dimensions (512,
512) were randomly cropped from each initial image (see Fig.1a, Fig.1b, Fig.1c).
Note that we only included images containing at least one nucleus.

Inspired by the work of [4], the model is a U-net-shape model (Fig. 1d) with
a densenet121 architecture [16]. It has been previously trained on ImageNet
[17], hence it is referred to as ’on steroids’ in the following. As input we used
3 channels, 2 being bright-field images of the same field of view with different
focal planes, and the third the corresponding phase-contrast image. As output
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we used only one channel, the maximum intensity projection of our DAPI images
over the 4 z-stacks available in our data set.

The model was trained on 1000 epochs with an ADAM optimizer, a learning
rate of 0.1 and L1 as loss function.

UNet on steroids
densenet121 DAPI
Pretrained on imagenet

(d)

Fig. 1: (a-c) Images from the same field-of-view, for a given z-stack (a) Bright-
field image (b) Phase contrast image (c¢) Fluorescent DAPI image (d) U-net
model used to predict DAPI image from both bright-field and phase contrast
images.

Phase contrast
+ Bright field (2 z-stacks)

Transfer Learning for Nucleus Segmentation. In a first step, we aimed at
investigating how pretraining on fluorescent markers impacts semantic segmen-
tation. For this, we turned to nucleus segmentation.

In order to generate the ground truth, we applied Cellpose [2], a widely used
segmentation technique in bioimaging, based on a U-net-shaped network, trained
on massive amounts of heterogeneous data. We applied Cellpose to the DAPI
channel and corrected the segmentation results manually. As segmentation of
nuclei from DAPI images with high resolution is a fairly simple task, the results
were overall excellent, as expected (Fig.2a, Fig.2b).

Next, we used training sets with different sizes N € {1, 10, 50, 100, 200, 500},
composed of images of dimension (2160, 2160) and evaluated the accuracy for
each N. Testing is always performed on the same withheld 190 images. 5 images
of dimensions (512, 512) were randomly cropped from each initial image.

To investigate whether our pretraining scheme is useful for segmentation,
we compare two different models. The first model is composed of the U-net
‘on steroids’ followed by a sigmoid activation function in order to output, for
each pixel, its probability of belonging to a nucleus (Fig.2c). The second model
has the same U-net architecture but is pretrained on DAPI images, and has an
activation function displayed in (1) that takes the different range into account
(centered on 0.5), (Fig.2d).

1

f) = 1+ exp(z —0.5)

(1)
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The number of epochs during training depends on the size of the training
set. Both models are trained with an ADAM optimizer, a learning rate of 0.01
and Jaccard loss as loss function.

n
UNet on steroids

Phase contrast densenet121 Cellpose
+ Bright field (2 z-stacks) Pretrained on Sigmold function segmentation
imagenet

(c)

n
UNet on steroids

Phase contrast densenet121 Cellpose

+ Bright feld (2 z-stacks) Pretrained on Custom sigmoid segmentation
function
DAPI images

(d)

Fig. 2: (a) Fluorescent DAPI image (b) Corresponding nucleus semantic segmen-
tation image generated by Cellpose. (c - d) Models compared to predict nucleus
semantic segmentation image: (c) U-net 'on steroids’ which has not been trained
on DAPT images. (d) U-net ’on steroids’ pretrained on DAPI images. Note the
difference in the activation functions as well.

2.3 Cell Segmentation

We next turned to the application of our pretraining scheme to cell segmentation,
a more difficult multiple instance segmentation scenario.

CellMask™Prediction as Pretraining Task In our pretraining strategy, the
first step of cell segmentation is the prediction of CellMask™(Fig.3b) images from
DIC microscopy as inputs (Fig.3a).

We used a data set of 100 images of dimensions (1024, 1024), divided into 90
images for training and 10 images for testing. 5 images of dimensions (512, 512)
were randomly cropped for each initial image.

For comparison, we again used the U-net ’on steroids’ (Fig.3c). The model
was trained on 1000 epochs with an ADAM optimizer, a learning rate of 0.1 and
L1 as loss function.

Transfer Learning for Cell Segmentation. Segmentation of cells is usually
more difficult than nuclear segmentation, because cells tend to touch each other,
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UNet on steroids
DIC (3 z-stacks) densenet121 cy5
Pretrained on imagenet
(a) (b)

(c)

Fig.3: (a-b) Images from the same field-of-view, for a given z-stack (a) DIC
image (b) Fluorescent Cy5 image. (¢) U-net model used to predict Cy5 image
from DIC images.

and the precise detection of the contact line can be challenging. Indeed, we need
to turn to multiple instance segmentation, where object properties are predicted
together with pixel labels.

Again, we used Cellpose [2] with manual correction to generate this instance
segmentation ground truth images from associated CellMaskimages (Fig.4a,
Fig.4b).

As for nuclear segmentation, we used training sets of different sizes N €
{1,10, 50,80} of dimensions (1024, 1024) and evaluated the accuracy for each of
them. Testing is always performed on the same 17 images. 5 images of dimensions
(512, 512) were randomly cropped from each initial image.

To tackle the issue of instance segmentation, we implemented a model pre-
dicting both a cell semantic segmentation image (Fig.4c) and a distance map,
i.e. an image where pixels values get higher as they are closer to the center of
the cell, the background remaining black (Fig.4d), as proposed in [18], [19].

(a)

Fig.4: (a) Fluorescent Cy5 image (CellMask™). (b) Corresponding cell instance
segmentation image generated by Cellpose. (¢) Cell semantic segmentation im-
age generated from Cellpose output. (d) Distance map generated from Cellpose
output.

Like in the previous section we compare two models to investigate whether
transfer learning from an ISL model can significantly improve the accuracy of our
segmentation. The first model is the U-net ’on steroids’, outputting 2 channels

184

194

200

210

224



6 ECCV-22 submission ID 5

(Fig.5a). The second model has the same U-net architecture but is pretrained on
CellMask ™images, thus outputting only 1 channel. Hence we add two Conv2d
layers at the end to upscale to 2 channels (Fig.5b).

The number of epochs during training depends on the size of the training set.
Both models are trained with an ADAM optimizer, a learning rate of 0.01 and
the loss function presented in (2). MSELoss stands for the usual mean square
error, while BCEWithLogitsLoss combines a sigmoid layer with the binary cross
entropy loss. y represents the output of our model, with the two channels y,; and
ym standing for the distance and semantic segmentation image, respectively. The
factor « is used to balance the weights of the different losses during training.
It has been set as a = 2000, 2000 being the initial ratio between MSELoss
and BCEWithLogitsLoss. This has been inspired by the loss function used in
Cellpose [2], which also uses a loss function computed as the sum of two loss
functions, one for each output channel.

Loss(y) = Loss((ya, ym)) = MSELoss(yq) + o - BCEWithLogitsLoss(ym,) (2)

Distance map
Distance map

i
,ﬁ Yy
UNet on steroids "
DIC (3 z-stacks)

Uneton steroigs densenet121 2 conv2d blocks
DIC(3zstacks) ~  densenet Pretrained on Cy5 images )
retra

Cell semantic segmentation Cell semantic segmentation

Fig.5: Models compared to predict cell instance segmentation: (a) U-net 'on
steroids’ which has not been trained on Cy5 images. (b) U-net model pretrained
on Cy5 images.

Finally, we apply a post-processing step to get the final results. For this, we
apply the h-maxima transformation of the predicted distance map, with A = 10.
The h-maxima transformation is defined as the reconstruction by dilation of f—h
under f: HMAX(f) = Rfc(f — h), and removes insignificant local maxima (i.e.
local maxima with a local contrast lower than h). The local maxima of HMAX
then serve as seed for the watershed algorithm (Fig.6), providing the final result.

3 Results

3.1 Nucleus Segmentation

DAPI prediction yields very good results, with a Pearson correlation coefficient
(PCC) of 0.95+0.08.
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Reconstruction
by dilation

Distance map Reconstructed distance map

<4 A
n Local maxima Cell segmentation
L
1

n

Mask

Fig.6: Pipeline to get instance segmentation image from both distance map
and semantic segmentation image. H-maxima transform followed by watershed
algorithm enable to segment cells instance-wise.

Using the Jaccard index (or IoU, Intersection Over Union) as metric, the U-
net 'on steroids’ gives 0.64+0.2 after training on 1 single image. In comparison,
the model pretrained on DAPI reaches 0.84+0.1, improving the previous score
by 31.3% (Fig.7a). This improvement decreases as the size of the training set
increases, being 4.8% (respectively 1.1%, 0.0%, 0.0%, -1.1%) after training on
10 (respectively 50, 100, 200, 500) (Fig.7b).

Results from both models trained on 1 single image are displayed in Fig.8.

1.0
08 12 loU evolution in function of training set size
~— 'Pretrained model'
06 g o rained m
g 8 08
0.4 206
0.4
0.2
g H 02
0.0 - i - : 005y 10 50 100 200 500
Untrained model Pretrained model Training set size (number of pictures - log scale)
(a) (b)

Fig. 7: Nucleus segmentation results. (a) Intersection Over Union (IoU) score for
untrained and pretrained models, after training on 1 image. (b) Evolution of IoU
average score for both models for different training set sizes.

3.2 Cell Segmentation
CellMask™prediction also yields very good results, with a PCC of 0.974:0.02.

271
272
273
274

284

300



8 ECCV-22 submission ID 5

Ground truth Untrained model  Pretrained model
Predicted DAPI segmentation segmentation segmentation

o Wl

Ground truth DAPI
-

Fig.8: Input bright-field images, DAPI images, DAPI predictions generated
by U-net ’on steroids’, ground truth instance segmentation generated by Cell-
pose, untrained U-net ’on steroids’ segmentation prediction, pretrained U-net
‘on steroids’ segmentation prediction. Segmentation is performed after training
on 1 image for both models.

Using the mean average precision (mAP) as metric, the U-net ’on steroids’
gives 0.17+0.1 after training on 1 single image. In comparison, the model pre-
trained on CellMask™reaches 0.3340.09, improving the previous score by 94.1%
(Fig.9a). As in the previous section this improvement decreases as the size of
the training set increases, being 18.5% (respectively -3.0%, -2.9%) after training
on 10 (respectively 50, 80) (Fig.9b).

Results from both models trained on 1 single image are displayed in Fig.10.

4 Discussion

The results presented in the previous sections show that pretraining with in silico
labeling as pretext task significantly improves the performance of a segmentation
model trained on a very small data set. Indeed, the accuracy raises by 31.3%
and 94.1% for nucleus semantic segmentation and cell instance segmentation,
respectively, after training on 1 single image, using a model pretrained in an ISL
setting.

The fact that pretraining on DAPI images helps to generate a nucleus se-
mantic segmentation was actually expected since the two outputs (DAPI and
binary segmentation maps) are very close to each other. On the other hand, cell
instance segmentation is a much more complex problem, and our results clearly
indicate that also in this situation, pretraining of fluorescent markers signifi-
cantly improves segmentation accuracy for small datasets. We also observe that
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0.5
12 mAP evolution in function of training set size
. ~— 'Pretrained model’
1.0 ~— 'Untrained model
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0.8
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0.4
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0.2
0.0 ool

10 50
Training set size (number of pictures - log scale)
(a) (b)

Fig.9: Cell segmentation results (a) mAP score for untrained and pretrained
models, after training on 1 image. (b) Evolution of mAP average score for both
models for different training set sizes.

Untrained model Pretrained model

Ground truth Untrained model  Pretrained model
Input Ground truth Cy5 Predicted Cy5 segmentation segmentation segmentation

s
EERTE
Y

Fig. 10: Input DIC images, Cy5 images, Cyb predictions generated by U-net 'on
steroids’, ground truth instance segmentation generated by Cellpose, untrained
U-net ’on steroids’ segmentation prediction, pretrained U-net 'on steroids’ seg-
mentation prediction. Segmentation is performed after training on 1 image for
both models.
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transfer learning is useful if we work on a very small data set (1 to 10 images),
but that for both nucleus and cytoplasmic segmentation, the accuracy difference
disappears if the models are trained on more than 10 images.

From a practical point of view, this idea provides an interesting alternative to
manual annotation, in particular in the context of High Content Screening, where
it is fairly easy to generate large amounts of data that contain both label-free
and fluorescently labeled microscopy images. In this case, we can train efficient
models for fluorescence prediction, and use these models in a pre-training scheme
to reduce the manual annotation burden. Finally, we showed here that this pre-
training scheme is effective for segmentation of nuclei and cells, but we also
believe that this could be effective for any other type of cell structures as soon
as you can get the associated fluorescent images available. Furthermore, it will be
interesting to investigate to which extent the pre-training scheme provides good
starting points for generalist networks, applicable to a wide variety of modalities.

5 Conclusion

In this paper, we demonstrated that pretraining on the prediction of relevant
fluorescent markers can be very useful to segment nuclei or cells. We showed that
a model trained to predict some fluorescent structures from label-free microscopy
can learn to segment these structures from a very small data set, down to 1 single
image. We believe that this can be of great help for applications where fluorescent
data are easily available, if one wants to avoid tedious manual annotation to build
large ground truth datasets for the training of neural networks. With only a few
images, it is possible to fine-tune a pretrained model achieving performances
matching those obtained by ImageNet-pretrained state-of-the-art networks fine-
tuned on a much larger set of images. Our pre-training scheme can thus help
biologists to save time and money without sacrificing any accuracy.
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