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Abstract
To enable closed form conditioning, a common as-
sumption in Gaussian process (GP) regression is
independent and identically distributed Gaussian
observation noise. This strong and simplistic as-
sumption is often violated in practice, which leads
to unreliable inferences and uncertainty quantifi-
cation. Unfortunately, existing methods for ro-
bustifying GPs break closed-form conditioning,
which makes them less attractive to practitioners
and significantly more computationally expensive.
In this paper, we demonstrate how to perform
provably robust and conjugate Gaussian process
(RCGP) regression at virtually no additional cost
using generalised Bayesian inference. RCGP is
particularly versatile as it enables exact conjugate
closed form updates in all settings where standard
GPs admit them. To demonstrate its strong empir-
ical performance, we deploy RCGP for problems
ranging from Bayesian optimisation to sparse vari-
ational Gaussian processes.

1. Introduction
GPs (Rasmussen & Williams, 2006) are one of the most
widely used methods for Bayesian inference on latent func-
tions, especially when uncertainty is required. They have
numerous appealing properties, including that the prior is
relatively interpretable and can be elicited through a choice
of mean and covariance functions, as well as the fact that
they have closed form posteriors under Gaussian likelihoods.
Their convergence is also well understood, even under prior
misspecification (Wynne et al., 2021). Thanks to these ad-
vantages, GPs have found applications in diverse problems
including single- and multi-output regression (Bonilla et al.,
2007; Moreno-Muñoz et al., 2018), emulation of expen-
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Figure 1. The posterior predictive mean of a GP (green) and the
RCGP (blue) on a synthetic dataset where 10% of the data are
uniformly generated outliers. Unlike the RCGP, the GP is adversely
affected.

sive simulators (Santner et al., 2018), Bayesian optimisation
(Shahriari et al., 2015; Garnett, 2021) and Bayesian deep
learning (Damianou & Lawrence, 2013; Salimbeni et al.,
2019; Dutordoir et al., 2020). Their use is enabled by a
plethora of packages including GPflow (Matthews et al.,
2017) GPyTorch (Gardner et al., 2018), BoTorch (Ba-
landat et al., 2020), ProbNum (Wenger et al., 2021) and
emukit (Paleyes et al., 2023).

By far the most common use of GPs is in regression. Here,
the observations correspond to noisy realisations from an
unknown latent function that is assumed to be drawn from a
GP prior. To obtain a conjugate GP posterior distribution on
the latent function, the observation noise is usually assumed
to be Gaussian. While assuming Gaussian observation noise
makes the posterior tractable, it also makes inferences non-
robust. In particular, Gaussian noise makes GPs highly
susceptible to extreme values, heterogeneities, and outliers.
This is illustrated in Figure 1 on a synthetic dataset corrupted
with outliers: The standard GP is adversely affected, leading
to considerable deviations between the inferred function and
the ground truth. In many real-world applications and data
sets, the presence of outliers is almost inevitable. They
can occur for a variety of different reasons, including due
to faulty measurements, broken sensors, extreme weather
events, stock market sell-offs, or genetic mutations.

Existing Work The lack of robustness in GPs is a well-
known fundamental challenge for their widespread appli-
cation, and a number of methods have been proposed to
address this. Broadly, these fall into two categories. The
first replaces the Gaussian measurement error with more
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heavy-tailed error distributions such as Student’s t (Jylänki
et al., 2011; Ranjan et al., 2016), Laplace (Kuss, 2006), Hu-
ber densities (Algikar & Mili, 2023), data-dependent noise
(Goldberg et al., 1997), or mixture distributions (Naish-
Guzman & Holden, 2007; Stegle et al., 2008; Daemi et al.,
2019; Lu et al., 2023). Heavy tails allow these distributions
to better accommodate outliers, rendering them more robust
to corruptions. Their main limitation lies in their compu-
tational cost, as abandoning Gaussian noise nullifies one
key advantage of GPs: conjugacy. As a consequence, these
techniques rely on approximations via variational methods
or Markov chain Monte Carlo. This decreases their accu-
racy while increasing computational costs. The second set
of approaches consists in removing outlying observations
before using a standard GP with Gaussian noise (Li et al.,
2021; Park et al., 2022; Andrade & Takeda, 2023). While
such approaches use conjugacy, it can be challenging to de-
tect outliers in irregularly spaced data or higher dimensions.
Outlier detection also tends to be computationally costly,
and often requires estimating large numbers of parameters.

In this paper, we propose a new and third way to achieve
robustness that uses generalised Bayesian inference (see
e.g. Bissiri et al., 2016; Jewson et al., 2018; Knoblauch
et al., 2022). In doing so, we significantly improve upon an
earlier attempt in this direction due to Knoblauch (2019) that
was applicable only for variational deep GPs, lacked closed
form solutions, and was based on hyperparameters that were
difficult to choose. In line with the ideas of generalised
Bayesian methods, we will not modify the Gaussian noise
model. Instead, we change how information is assimilated,
and leverage robust loss functions instead of robust error
models.

Contributions This paper proposes a novel robust and
conjugate Gaussian process (RCGP) inspired by a gener-
alised Bayesian inference scheme proposed in Altamirano
et al. (2023). The posteriors rely on a generalised form of
score matching (Hyvärinen, 2006; Barp et al., 2019), which
effectively down-weights outlying observations. The result-
ing inference resolves the trade-off between robustness and
computation inherent in existing methods: it is robust in
the sense of Huber (1981) [Proposition 3.2] while retaining
closed form solutions for both its posterior and posterior
predictive [Proposition 3.1]. Additionally—and unlike other
robust GPs—RCGPs can easily be plugged into various GP
techniques such as sparse variational GPs (Titsias, 2009;
Hensman et al., 2013) [Proposition 4.1], deep GPs (Dami-
anou & Lawrence, 2013), multi-output GPs (Bonilla et al.,
2007), and Bayesian optimisation (Shahriari et al., 2015)
[Proposition 4.2]. Finally, even in settings where robustness
is not required, our experiments show that RCGPs performs
as well as standard GPs—raising the possibility that RCGPs
may become a preferred default choice over GPs in the

future.

The remainder of the paper reviews GPs and generalised
Bayesian inference (Section 2), introduces RCGPs and
proves their robustness (Section 3), and investigates their
empirical performance and versatility for a range of experi-
ments (Section 4).

2. Background
Our method applies the logic of generalised Bayesian poste-
riors to GPs. Here, we briefly explain the concepts relevant
to understanding this interface.

Gaussian Processes Let y = (y1, . . . , yn)
⊤ denote n

observations with covariates x = (x1, . . . , xn)
⊤, where

yi ∈ Y ⊆ R and xi ∈ X ⊆ Rd. While we take Y ⊆ R for
simplicity, our method can be straightforwardly generalised
to multi-output regression (i.e., Y ⊆ RT ). We consider
a regression setting where the noisy observations y come
from a latent function f : X → R:

yi = f(xi) + εi.

Here, ε = (ε1, . . . , εn)
⊤ ∈ Rn are independent observation

errors. We place a GP prior on f , so that f ∼ GP(m, k)
with m : X → R and k : X × X → R being mean
and kernel functions. These functions determine key prop-
erties in the draws from the GP such as differentiability,
periodicity, long-range correlation or stationarity, and are
parameterised by θ ∈ Θ ⊆ Rp. Throughout, we write
f = (f(x1), . . . , f(xn))

⊤, and use the fact that the GP
prior implies the Gaussian prior p(f |x) = N (f ;m,K),
where K is the matrix with Kij = k(xi, xj) and m =
(m(x1), . . . ,m(xn))

⊤.

Finally, while there are various options for modelling obser-
vation error, almost all of them break conjugacy. The main
exception is the choice ε ∼ N (0, σ2In) where In is an n×n
identity matrix (or equivalently p(y|f ,x) = N (y; f , σ2In)).
This leads to the posterior

p(f |y,x) = N (f ;µ,Σ),

µ = m+K(K + σ2In)
−1(y −m),

Σ = K(K + σ2In)
−1σ2In.

A key quantity of interest is then the posterior predictive
over f⋆, the value f(x⋆) at a new point x⋆ ∈ X :

p(f⋆|x⋆,x,y) =

∫
Rn

p(f⋆|x⋆, f ,x,y)p(f |y,x)df

= N (f⋆;µ⋆,Σ⋆),

µ⋆ = m⋆ + k⊤
⋆ (K + σ2In)

−1(y −m),

Σ⋆ = k⋆⋆ − k⊤
⋆ (K + σ2In)

−1k⋆,

for k⋆ = (k(x⋆, x1), . . . , k(x⋆, xn))
⊤, k⋆⋆ = k(x⋆, x⋆),

m⋆ = m(x⋆). Though the posterior also depends on θ and
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σ2, we omit this for brevity. Commonly, they are chosen to
maximise the marginal likelihood

p(y|x, θ, σ2) =

∫
Rn

p(f |x, θ, σ2)p(y|f ,x, θ, σ2)df

= N (y;m,K + σ2In).

Alternatively, there are computationally efficient approaches
for leave-one-out cross-validation, and computationally de-
manding Markov chain Monte Carlo methods for hierar-
chical Bayes (see Rasmussen & Williams, 2006, Section
5).

If f and ε are both modelled as Gaussians, GP regression
is conjugate, so that posterior, posterior predictive, and
marginal likelihood can all be obtained in closed forms.
These operations have O(n3) computational and O(n2) stor-
age cost, but are exact. For this reason, practitioners often
model data using Gaussian errors—even when this assump-
tion is wholly inappropriate and yields severe misspecifica-
tion. Note that conjugacy also holds for GP interpolation—
when ε is a Dirac measure at (0, . . . , 0)⊤—in which case
all formulae above remain correct for σ = 0. However,
this assumes that the observations y are noise-free, which
is even more susceptible to model misspecification than
Gaussianity.

Generalised Bayesian Inference If a statistical model is
misspecified so that the model cannot correctly describe the
true data-generating mechanism, standard Bayesian updat-
ing is not the optimal way of integrating prior information
with data (Zellner, 1988). Indeed, standard Bayes results
in miscalibrated uncertainties and misleading inferences.
In the parametric setting, a line of research has tackled
this through generalised Bayesian methodology (see e.g.
Grünwald, 2012; Hooker & Vidyashankar, 2014; Bissiri
et al., 2016; Ghosh & Basu, 2016; Jewson et al., 2018;
Miller & Dunson, 2018; Knoblauch et al., 2022; Miller,
2021; Fong et al., 2021; Jewson & Rossell, 2022; Matsubara
et al., 2022b). Recently, generalised Bayesian posteriors
have also been proposed for the non-parametric case (see
e.g. Knoblauch, 2019; Wild et al., 2022). For regression,
they take the form

pLβ (f |y,x) ∝ p(f |x) exp
(
− βnLn(f ,y,x)

)
, (1)

where ∝ denotes equality up to a multiplicative constant
not depending on f . The learning rate β > 0 is a scaling
parameter that determines how quickly the posterior learns
from data, and Ln : Yn×Yn×Xn → R is a loss connecting
the data and the posited statistical model. Most choices
for Ln are estimators of statistical divergences between
the true data-generating process, p0, and the model, such
as the kernel Stein discrepancy (Matsubara et al., 2022b),
β-divergences (Knoblauch et al., 2018), maximum mean
discrepancies (Chérief-Abdellatif & Alquier, 2020), and

Fisher divergences (Altamirano et al., 2023; Matsubara et al.,
2022a).

The distributions in (1) are called generalised posteriors
since they recover the standard Bayes posterior for β = 1
and Ln(f ,y,x) = − log p(y|f ,x). By instead choosing
Ln to be a robust loss, generalised Bayesian inference has
enhanced applications including filtering (Boustati et al.,
2020; Duran-Martin et al., 2024), changepoint detection
(Knoblauch et al., 2018; Altamirano et al., 2023), deep
Gaussian processes (Knoblauch, 2019), doubly-intractable
problems (Matsubara et al., 2022a;b) and Bayesian neural
networks (Futami et al., 2018). In addition, generalised
posteriors have been leveraged for computational efficiency.
For instance, Matsubara et al. (2022b;a) used generalised
posteriors for accelerated computation with unnormalised
models in both continuous and discrete domains. Similarly,
Schmon et al. (2020), Dellaporta et al. (2022), Pacchiardi
& Dutta (2021), Legramanti et al. (2022), and Frazier et al.
(2024) deployed them for simulation-based inference.

3. Methodology
We now present RCGPs in three steps. First we introduce
our loss and explain how it ensures conjugacy. Second, we
provide formal robustness guarantees. Finally, we show how
to select hyperparameters.

The Loss Function Altamirano et al. (2023) present
a posterior based on a generalised score matching loss
(Hyvärinen, 2006; Lyu, 2009; Yu et al., 2022) due to Barp
et al. (2019). The resulting posterior is provably robust,
and conjugate for exponential family models. Importantly
however, it is not applicable for regression settings and
covariate-dependent models. To rectify this, we follow Xu
et al. (2022) and leverage the tower property of expectations.
Using this and denoting by p0,x the marginal distribution of
the covariates, score matching losses in our setting lead to

EX∼p0,x

[
EY∼p0(·|X)

[
∥(smodel − struth)(X,Y )∥22

]]
,

where struth(x, y) = ∇y log p0(y|x) is the score function
of the true data-generating conditional density, smodel the
score function of our model. In the case of GP regression,
this is smodel(x, y) = σ−2(f(x) − y). As in Altamirano
et al. (2023), we instead use a weighted generalisation due
to Barp et al. (2019):

EX∼p0,x

[
EY∼p0(·|X)

[
∥
(
w(smodel − struth)

)
(X,Y ))∥22

]]
. (2)

Here, w : X ×Y → R\{0} is a weighting function depend-
ing on both x and y, and we discuss how it should be chosen
at the end of this section. Evaluating (2) would require the
unknown score struth. Luckily, under mild smoothness and
boundary conditions (Liu et al., 2022), we can use integra-
tion by parts to rewrite it up to a constant not depending on
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f as

EX∼p0,x

[
EY∼p0(·|X)

[(
(wsmodel)

2 + 2∇y(w
2smodel)

)
(X,Y )

]]
.

Importantly, this expression no longer depends on struth, and
only features p0 through an expectation. This leads to a
natural estimator—and the proposed loss function—which
is given by

Lw
n (f ,y,x) =

1

n

n∑
i=1

(
(wsmodel)

2 + 2∇y(w
2smodel)

)
(xi, yi).

While we have motivated the loss using the marginal p0,x
for simplicity, p0,x can be replaced with any other measure
over x. The active learning setting is a relevant example for
this, and we use Lw

n in a Bayesian optimisation experiment
in Section 4 to showcase this.

Finally, when the model is Gaussian, i.e. p(y|f ,x) =
N (y; f , σ2In), this loss function becomes quadratic in f as
follows:

Lw
n (f ,y,x) = f⊤Anf + b⊤n f + cn

for some An, bn, cn in Appendix A.1. This follows the same
idea as in Matsubara et al. (2022b); Altamirano et al. (2023),
and will be crucial to obtain closed form solution for both
the posterior and predictive.

Robust and Conjugate Gaussian Processes Based on
Lw
n , we propose the RCGP posterior

pw(f |y,x) ∝ p(f) exp{−nLw
n (f ,y,x)},

where we absorb β into w. Considering the same setting as
for the standard GP in Section 2, the RCGP posterior and its
posterior predictive have closed forms. To state them, take
diag(v) as the d× d diagonal matrix D so that Dij = 0 if
i ̸= j and Dii = vi.

Proposition 3.1. Suppose f ∼ GP(m, k) and ε ∼
N (0, Inσ

2). Then, the RCGP posterior is

pw(f |y,x) = N (f ;µR,ΣR),

µR = m+K
(
K + σ2Jw

)−1
(y −mw) ,

ΣR = K
(
K + σ2Jw

)−1
σ2Jw,

for w = (w(x1, y1), . . . , w(xn, yn))
⊤, mw = m +

σ2∇y log(w
2) and Jw = diag(σ

2

2 w−2). The RCGP’s pos-
terior predictive over f⋆ = f(x⋆) at x⋆ ∈ X is

pw(f⋆|x⋆,x,y) =

∫
Rn

p(f⋆|x⋆, f ,x,y)p
w(f |y,x)df

= N (f⋆;µ
R
⋆ ,Σ

R
⋆ ),

µR
⋆ = m⋆ + k⊤

⋆

(
K + σ2Jw

)−1
(y −mw) ,

ΣR
⋆ = k⋆⋆ − k⊤

⋆ (K + σ2Jw)−1k⋆.

Table 1. Existing methods as special cases of RCGPs

Method w(x, y)

Standard GP σ√
2

Heteroskedastic GP σ2
√
2
· r(x)−1

Robust GP β ·
(
1 + (y−m(x))2

c2

)−1/2

Throughout, exponents are applied entry-wise, and the
proofs can be found in Appendix A.1. The distributions
derived in the result have the same structure as their stan-
dard GP counterparts, but replace σ2In with the “noise term”
σ2Jw = σ2 diag(σ

2

2 w−2), and m with the “shrinkage term”
mw = m+ σ2∇y log(w

2). We interpret both terms after
discussing how w should be chosen.

Similar to standard GP regression, RCGP regression is con-
jugate, has a computational cost of O(n3), and storage cost
of O(n2). In addition, a variety of GP schemes fall into
the proposed framework through a specific choice of w.
For example, w(x, y) = σ√

2
recovers the standard GP, and

w(x, y) = σ2
√
2
·r(x)−1 a heteroskedastic GP with noise rate

r(x); see Table 1. Importantly, it would be flawed to simply
interpret RCGPs as GPs with a different noise model: w
depends directly on y.

Finally, we note that RCGPs are in principle not suited to
interpolation: the score smodel and thus the loss Lw

n are not
defined if σ2 = 0. However, it is common to add a “nugget”
to the kernel for regularisation (Andrianakis & Challenor,
2012), which makes the problem equivalent to regression
with very small σ2 > 0. Consequently, RCGP regression
is still applicable for interpolation problems whenever this
regularisation is used—and can in fact strongly improve
robustness in this setting.

Hyperparameter Selection To make RCGPs practically
viable, we need to estimate θ and σ2. A first idea would be
to maximise the pseudo marginal likelihood pw(y|θ, σ2)—
the RCGP’s equivalent to the marginal likelihood, whose
closed form is given in Appendix A.2. Unfortunately,
this would be ill-posed: neither exp{−nLw(f,y,x)} nor
pw(y|θ, σ2) are probability densities over y. Hence, max-
imising pw(y|θ, σ2) is like maximum likelihood estimation
for an un-normalised density whose normaliser depends
on the estimated parameter, leading to implausible hyper-
parameters and numerical issues—a well-known issue for
generalised Bayesian methods (Jewson & Rossell, 2022).
Instead of pw(y|θ, σ2), we thus maximise the leave-one-out
cross validation (LOO-CV) predictive posteriors via

σ̂2, θ̂ = argmax
σ2,θ

{ n∑
i=1

log pw(yi|x,y−i, θ, σ
2)
}
,
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Figure 2. PIFGP (green) and PIFRCGP (blue) for the dataset in
Figure 1. PIFGP → ∞ as |ym − yc

m| → ∞, so that standard
GPs are not robust. In contrast, PIFRCGP is bounded, showing
robustness of the RCGP.

where y−i = (y1, . . . , yi−1, yi+1, . . . , yn) (for details, see
Section 5.2 Rasmussen & Williams, 2006). LOO-CV has
been one of the primary methods for setting hyperparame-
ters in Gaussian Processes (see e.g. Sundararajan & Keerthi,
1999; Bachoc, 2013b; Vehtari et al., 2016; Petit et al., 2020).
A naive implementation of this objective function would
require fitting the model n times, leading to a computational
cost of O(n4). Hence, we follow Sundararajan & Keerthi
(1999) to obtain an analytical formulation that allows us to
compute the LOO objective in O(n3). By Proposition 3.1,
pw(yi|x,y−i, θ, σ

2) = N (µR
i , σ

R
i + σ2) with

µR
i = zi +mi − [

(
K + σ2Jw

)−1
z]i[(K + σ2Jw)−1]−1

ii ,

σR
i = [(K + σ2Jw)−1]−1

ii − σ4

2
w(xi, yi)

−2,

for z = y −mw and z = (z1, . . . zn). The full derivation
can be found in Appendix A.3. Crucially, we only need
to compute (K + σ2Jw)−1 once which leads to a com-
putational cost of O(n3), same as the standard marginal
likelihood method.

Robustness RCGPs are not only computationally attrac-
tive, but also robust to outliers and non-Gaussian errors.
While robustness for Bayesian methods can refer to a
number of other aspects, including calibration (Grünwald,
2012; Huggins & Miller, 2023; Lyddon et al., 2019), ad-
versarial robustness (Bogunovic et al., 2020; Kirschner &
Krause, 2021), and robustness to misspecified priors (van
Der Vaart & van Zanten, 2011; Bachoc, 2013a; Teckentrup,
2020; Wang et al., 2020; Karvonen, 2021; Bogunovic &
Krause, 2021; Stephenson et al., 2022; Naslidnyk et al.,
2023), we prove RCGP’s robustness to misspecification
in the error model. We do so using the classical frame-
work of Huber (1981). To this end, we first define the
contamination of a dataset D = {(xi, yi)}ni=1 by the datum
ycm as Dc

m = (D \ {(xm, ym)}) ∪ {(xm, ycm)} for some
m ∈ {1, . . . , n}. We quantify the impact of ycm on infer-
ence through the divergence between the contaminated and
uncontaminated posteriors. As a function of |ycm− ym|, this
divergence is also sometimes called the posterior influence
function (PIF) and was studied for parametric models in
Ghosh & Basu (2016) and Matsubara et al. (2022b). To
operationalise this, we consider the Kullback-Leibler (KL)
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Figure 3. Comparing kernel-based w with the same hyperparam-
eters: IMQ (blue) and Squared Exponential (SE) (orange). The
dashed vertical lines indicate the soft threshold c past which a
point is increasingly treated as an outlier. The SE down-weights
observations more rapidly as they exceed c than the IMQ. The
maximum possible weight for any observation is β = 1.

divergence:

PIF(ycm, D) = KL
(
pLβ (f |D)∥pLβ (f |Dc

m)
)
.

We call a posterior robust if supyc
m∈Y |PIF(ycm, D)| < ∞,

as this implies that even as |ycm − ym| → ∞, the contami-
nation’s effect on the posterior (as measured by the KL) is
bounded. Choosing the KL is convenient as it allows closed
form expressions for Gaussians, but we could in principle
pick any other divergence with closed form expressions that
is not uniformly bounded.

Proposition 3.2. Suppose f ∼ GP(m, k), ε ∼ N (0, Inσ
2),

and let Ck ∈ R; k = 1, 2, 3 be constants independent of ycm.
Then, GP regression has the PIF

PIFGP(y
c
m, D) = C1(ym − ycm)2,

and is not robust: PIFGP(y
c
m, f,D) → ∞ as |ycm| → ∞.

In contrast, for RCGPs with supx,y w(x, y) < ∞,

PIFRCGP(y
c
m, D) ≤ C2(w(xm, ycm)2ycm)2 + C3.

Thus, if supx,y
{
y · w(x, y)2

}
< ∞, RCGP is robust since

supyc
m
|PIFRCGP(y

c
m, D)| < ∞.

The proof is in Appendix A.4. The two conditions on w in
Proposition 3.2 have clear interpretations: supx,y w(x, y) <
∞ ensures that no observation has infinite weight—
which would be antithetical to robustness. Further,
supx,y

{
y · w(x, y)2

}
< ∞ demonstrates that for robust-

ness, w must down-weight observations at least at rate 1/y
for |y| large enough. Figure 2 shows the PIF for an RCGP
with a weighting function that satisfies these conditions.
Notably, the conditions on w in Proposition 3.2 can only
hold if w depends on y. A consequence is that the w associ-
ated with heteroskedastic GPs in Table 1 does not lead to a
bounded PIF—and is not robust in the sense defined above.

Choice of Weighting Function Many choices of w sat-
isfy the conditions of Proposition 3.2. An ideal choice of w
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Figure 4. Posterior predictive mean for varying values of c obtained by adjusting ε using the quantile absolute deviation method proposed
in Section 3, applied to a synthetic dataset with 10% uniformly generated outliers. Left: Full RCGP. Center: RCGP with no shrinkage
term. Right: RCGP with no noise term.

attains its maximum close to reasonable data points, and de-
creases as outliers become more extreme. In the remainder,
our measure of how outlying an observation yi is will be
|yi−m(xi)|. Additionally, w should be smooth to ensure its
derivatives exist. Conveniently, this makes weighting func-
tions constructed via infinitely differentiable radial kernels
k as w(xi, yi) = k(yi,m(xi)) well-suited. We advocate
for the Inverse Multi-Quadratic (IMQ) kernel: it has heavy
tails, so that extreme observations are not weighted down
too much; see Figure 3. It is given by

wIMQ(x, y) = β
(
1 +

(y −m(x))2

c2

)− 1
2

,

with β, c > 0. Weighting functions chosen this way have
two hyperparameters: the soft threshold c, and the learning
rate β from (1) that we pulled into w. While it is in principle
possible to pick both β and c jointly, we fix β = σ√

2
and

choose only c. We do so since joint selection of β and c is
numerically unstable due to near non-identifiability. While
we could fix c and select β, this is difficult since learning rate
selection is largely unresolved (see e.g. Lyddon et al., 2019;
Syring & Martin, 2019; Bochkina, 2023; Wu & Martin,
2023; Frazier et al., 2023). Fixing β = σ√

2
and choosing c

is much easier as c is interpretable. In particular, as c → ∞,
w → σ√

2
so that the limiting setting recovers the standard

GP (cf. Table 1). On the other hand, finite values c < ∞ can
be interpreted as a soft outlier threshold: Points yi for which
|yi − f(xi)| = c + ξ are increasingly treated as outliers
the larger ξ becomes. This is illustrated in Figure 3, which
depicts two kernels with c = 1 = β, and shows that the
weights decrease rapidly to 0 once the threshold is exceeded.

While, in principle, it is possible to choose c by maximis-
ing the leave-one-out cross-validation predictive posterior,
the performance is not optimal in practice. This is likely
because maximising the predictive posterior for extreme
observations tends to match/fit these outliers by increasing
c, leading to a less robust method. See Appendix B.3 for

further discussion. Therefore, we propose choosing c via
the quantile absolute deviation around the prior mean as
c = Qn(1− ε), where Qn(1− ε) is the (1− ε)-th quantile
of {|yi −m(xi)|}ni=1 for ε ∈ [0, 1]. As a default setting, we
suggest ε = 0.05, which implies that we expect at most 5%
of the data to be outliers.

Figure 4 shows an example of the impact of the choice of ε in
the posterior where we observe that choosing ε = 0.99 will
lead inferences that are too robust and treat nearly all points
as outliers. Conversely, setting ε = 0 nearly reproduces
the non-robust standard GP. Intermediate values exhibit a
well-balanced and effective performance.

Crucially, the proposed weighting function depends on the
prior mean m(xi). Hence, if the prior mean is not well
specified, the method may discard observations that are
not outliers or vice versa. (see Figure 7). Therefore, we
emphasise the importance of carefully selecting the prior
mean, as this choice could impact the performance of our
method. Note that this consideration is crucial not only for
our approach, but also for the standard GP (see e.g. De Ath
et al., 2020; Hwang et al., 2023)

Interpretation of RCGP Terms Having discussed our
choice of w, we are now ready to interpret the new terms
arising in Proposition 3.1. For the RCGP, the noise term
σ2Jw = σ2In(1+ (y−m)2/c2) replaces the standard GP
term σ2In. Here, the exponents have been applied element-
wise and 1 = (1, . . . 1)⊤ ∈ Rn. Functionally, σ2Jw treats
outliers as though they were noisier than other observations.
Note however that the weight for yi depends on yi itself—
and thus cannot be interpreted as coming from a different
or heteroskedastic noise model on ε. Conceptually, the term
treats information as unreliable whenever it comes from
observations yi that deviate very extremely from the prior
mean m(xi). This not only ensures robustness, but also
has computational benefits: in particular, the term tends to
improve conditioning, making it more numerically stable to
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Figure 5. Considered contamination regimes are asymmetric (left)
and focused (right).

invert K+σ2Jw than K+σ2In. This is especially relevant
when σ is small (e.g. for interpolation) and n large, in which
case numerical conditioning is typically a significant issue
for GPs (Andrianakis & Challenor, 2012).

Next, y −mw = y −m− σ2
[

2(y−m)
c21+(y−m)2

]
replaces the

standard GP’s y−m for RCGPs. Unlike the noise term, the
i-th shrinkage term [mw]i is not monotonically increasing
in |yi −m(xi)|. Rather, it is increasing as |yi −m(xi)| ↑ c,
peaks at σ2/c for |yi − m(xi)| = c, and then decreases
monotonically as |yi −m(xi)| increases further. The effect
is most obvious for m = 0, for which y −mw = y(1 −
2σ2[c21+ y2]−1). Generally, shrinkage is associated with
trading off a slight bias for a reduction in variance (e.g.
Von Luxburg & Schölkopf, 2011). This also applies here:
relative to the GP, the RCGP’s posterior mean will exhibit
smaller variance at the expense of a slight bias towards m.

Figure 4 shows the impact of each term in the predictive
posterior. It is clear that the main term providing robustness
to our method is the noise term.

4. Experiments
The code is available at https://github.com/
maltamiranomontero/RCGP. The extensive literature
on robust GPs makes it impossible to compare RCGPs to all
competitors. Thus, we choose two representative and pop-
ular approaches: a GP with heavy tailed Student’s t errors
(Jylänki et al., 2011, “t-GP”), and a GP directly modelling
outliers via mixture distributions (Lu et al., 2023, “m-GP”).
We do not compare against outlier-removal methods: they
complement—rather than compete with—RCGPs. Through-
out, we picked w, c and β as proposed in Section 3. All
hyperparameters are selected via L-BFGS.

Benchmarking We assess our method on four bench-
mark datasets, including the synthetic problem in Figure 1
(d = 1, n = 300), the Boston dataset (d = 13, n = 506),
and two datasets from the UCI repository: Energy (d =
8, n = 768) and Yacht (d = 6, n = 308). These allow
us to compare the performances of robust GP methods in a

Table 2. Average test set mean absolute error and standard devia-
tion (in brackets) for 50 train–test splits.

GP RCGP t-GP m-GP

No Outliers
Synthetic 0.09 (0.00) 0.09 (0.00) 0.09 (0.00) 0.33 (0.00)
Boston 0.19 (0.01) 0.19 (0.01) 0.19 (0.01) 0.28 (0.00)
Energy 0.03 (0.00) 0.02 (0.00) 0.03 (0.00) 0.61 (0.00)
Yacht 0.02 (0.01) 0.02 (0.01) 0.01 (0.00) 0.33 (0.00)

Focused Outliers
Synthetic 0.19 (0.00) 0.15 (0.00) 0.18 (0.00) 0.23 (0.00)
Boston 0.23 (0.06) 0.22 (0.01) 0.27 (0.00) 0.27 (0.00)
Energy 0.03 (0.04) 0.02 (0.00) 0.03 (0.05) 0.24 (0.00)
Yacht 0.26 (0.15) 0.10 (0.14) 0.20 (0.04) 0.24 (0.00)

Asymmetric Outliers
Synthetic 1.14 (0.00) 0.63 (0.00) 1.06 (0.00) 0.61 (0.00)
Boston 0.63 (0.02) 0.49 (0.00) 0.52 (0.00) 0.52 (0.00)
Energy 0.54 (0.02) 0.44 (0.04) 0.42 (0.02) 0.41 (0.00)
Yacht 0.54 (0.06) 0.35 (0.02) 0.41 (0.00) 0.40 (0.00)

Uniform
Synthetic 0.34 (0.00) 0.21 (0.00) 0.30 (0.00) 0.27 (0.00)
Boston 0.53 (0.13) 0.51 (0.12) 0.30 (0.01) 0.24 (0.00)
Energy 0.25 (0.03) 0.24 (0.03) 0.23 (0.05) 0.23 (0.00)
Yacht 0.36 (0.16) 0.29 (0.07) 0.16 (0.00) 0.34 (0.00)

Table 3. Average clock time in seconds and its standard deviation
(in brackets) across 50 repetitions

GP RCGP t-GP m-GP

Synthetic 1.5 (0.1) 1.2 (0.0) 2.2 (0.0) 3.0 (0.0)
Boston 1.9 (0.5) 5.1 (0.9) 30.7 (6.1) 16.7 (1.7)
Energy 3.8 (0.9) 4.6 (2.0) 34.0 (11) 33.8 (0.3)
Yacht 1.6 (0.3) 2.1 (0.2) 5.6 (0.7) 4.5 (0.4)

range of dimensions and number of data points. For each
dataset, we consider four settings: the original dataset (i.e.
no outliers), focused outliers (i.e. outliers clustered in x-
and y- space), asymmetric outliers (i.e. observations cor-
rupted by strictly negative shifts) and uniform outliers (both
positive and negative shifts at random); see Figures 1 and
5 for illustrations. In each case, 10% of observations are
perturbed to become outliers. Results are provided in Tables
2 and 3, and a full description of the datasets and outlier
generation process is provided in Appendix B.3.

As expected, standard GPs outperform robust methods in
absolute mean error when there are no outliers. That being
said, RCGPs can easily compete in this setting—indicating
that there are no clear drawbacks to using RCGPs as a
default. For example, on both the Energy and Boston
datasets, the performance of RCGPs in the setting with no
outliers is comparable to that of GPs. Further, RCGPs tend
to outperform their competitors in the presence of focused
and asymmetric outliers. This happens as the competitors’
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posited noise models are symmetric, but the outlier genera-
tion is not. This phenomenon demonstrates the advantage of
using a generalised Bayesian approach as opposed to a more
refined noised model. In the uniform outlier setting , t-GPs
outperform all alternatives. This is to be expected: Student’s
t errors are a reasonable approximation to that error gener-
ating process. Though t-GPs perform even better, RCGPs
still significantly outperform GPs. Further, while RCGPs
and GPs have comparable computational cost, t-GPs and
m-GPs are significantly more computationally expensive.
To demonstrate this, Table 3 compares the cost of training
(including hyperparameter selection) of each method. The
slowdown of t-GPs and m-GPs is due to needing variational
approximations, and especially noticeable for datasets with
larger n. Both GPs and RCGPs have runtimes of O(n3),
though there are minor numerical differences due to the
adaptive stopping rule of L-BFGS for hyperparameter opti-
misation.

Sparse Variational Gaussian Processes (SVGPs) The
O(n3) cost of GPs is prohibitive for large n. A popular
remedy are SVGPs (Titsias, 2009), which reduce the cost to
O(nm2) with m ≪ n inducing points u = (u1, . . . , um)⊤.
RCGPs are amenable to this type of inference. The resulting
robust conjugate SVGP (RCSVGP) is derived below.
Proposition 4.1. For f ∼ GP(m, k), ε ∼ N (0, σ2), the
RCSVGP posterior is f ∼ GP(µ̃, Σ̃), where

µ̃(x) = ϕu(x)
⊤µu,

Σ̃(x, x′) = k(x, x′)− ϕu(x)
⊤ (Kuu − Σu)ϕu(x

′),

µu = m+KuuP
−1
u Kuσ

−2J−1
w (y −mw),

Σu = KuuP
−1
u Kuu,

for Pu =
(
Kuu +K⊤

u σ−2J−1
w Ku

)
, [Kuu]ij = k(ui, uj),

[Ku]ij = k(ui, xj), [ku(x)]i = k(ui, x), and ϕu(x) =
K−1

uuku(x).

J(u, θ,σ2) =
1

2
ν⊤K⊤

u Q−1
u Kuν +

1

2
log

(
det (Kuu)

2

det (Qu)

)
+C(σ2)− Tr

(
σ−2J

− 1
2

w (K −K⊤
u K−1

uuKu)J
− 1

2
w

)
,
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around 1pm, RCGP is robust. Bottom: wIMQ with β, c chosen as
proposed in Section 3.

where Qu = Kuu + K⊤
u σ−2J−1

w Ku, ν = σ−2J−1
w (y −

mw), and C(σ2) is a function that only depends on σ2.

See Appendix A.5 for a proof and details. A numerical
comparison between SVGPs and RCSVGPs for the syn-
thetic example with 10% uniform outliers is presented in
Figure 6. While RCSVGPs and SVGPs have similar run-
times, RCSVGPs make far more accurate predictions. In
Appendix B.4, we show that this generalises to the other
datasets and outlier types.

Twitter Flash Crash To illustrate the practical utility of
RCGPs, we next analyse the Dow Jones Industrial Average
(DJIA) index on the 17/04/2013. On this day, the Associ-
ated Press’ Twitter account was hacked and falsely tweeted
that explosions at the White House had injured the presi-
dent. This lead to a rapid sell-off in American stock markets
within seconds, quickly followed by an equally fast bounce-
back. This resulted in a few moments after 1pm that day
where the DJIA did not accurately reflect the USA’s eco-
nomic realities. In this sense, it is reasonable to regard the
resulting group of extreme observations as outliers. Figure 7
depicts the raw data as well as a GP and RCGP fit. The
figure not only illustrates the robustness of RCGPs, but also
sheds further light on relevant trade-offs when choosing w.
As the bottom panel shows, most points have weights ≈ 1.
There are two exceptions to this: one of these is the group of
points past 1pm where the crash occurred. Here, the obser-
vations are down-weighted almost all the way to zero. This
is desirable, and exactly what we would expect RCGP to
do. Perhaps more surprisingly, weights are also significantly
smaller than 1 before 10am. This is not obviously desirable,
and due to the choice of prior mean. In particular, recall
that w(xi, yi) is small if |yi −m(xi)| is large. For Figure 7,
the constant function m(x) = 1

n

∑n
i=1 yi is chosen as the

prior mean. Relative to this prior mean, the first observa-
tions are outliers. While this is not ideal, it is worth noting
that this behaviour can be easily remedied by choosing m
more carefully. For example, one can fit a simple parametric
model for m, as is extremely common in the literature. See
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Appendix B.1 for a further discussion.

Bayesian Optimisation One of the most successful appli-
cations of GPs has been Bayesian optimisation (BO) (Gar-
nett, 2021). In BO, a data-dependent acquisition function
a : X → R based on the posterior GP characterises desir-
able regions of X to choose the next—often noisy—function
evaluations of f from. Here, misspecification of the noise
model is a significant concern: it leads to poor acquisition
functions; see e.g. Martinez-Cantin et al. (2018); Bogunovic
et al. (2020); Kirschner & Krause (2021). Using RCGPs in-
stead of GPs leads to a BO algorithm that is naturally robust
to such misspecification. We illustrate this using the upper-
confidence bound (UCB) and probability of improvement
(PI) acquisition functions.
Proposition 4.2. Let f ∼ GP(m, k), ε ∼ N (0, σ2). The
UCB and PI acquisition functions for RCGPs are

aUCB-RCGP(x⋆) = µR
⋆ + λ(ΣR

⋆ )
1/2

aPI-RCGP(x⋆) = Φ
((

µR
⋆ − f(xmax)

)
(ΣR

⋆ )
−1/2

)
where Φ is the cdf of a standard normal, and xmax is the
best solution we have so far.

Here, we have re-used the notations of Proposition 3.1, and
full derivations are available in Appendix A.6. The only
paper explicitly studying BO in the presence of outliers
is Martinez-Cantin et al. (2018), which uses a t-GP. We
thus compare RCGPs to GPs and t-GPs on the classical six-
hump camel, Branin, McCormick and Rosenbrock functions
(see Appendix B.5). Figure 8 shows the results if each new
function evaluation has a 20% chance of being contaminated
by an asymmetric outlier generated as in Figure 5, and
the BO uses UCB as the acquisition function. In terms
of cumulative regret, RCGPs outperform GPs. While t-
GPs can match this, they take orders of magnitude longer
to run. The results remain the same if the PI acquisition
function is used (See Appendix B.5). It is notable that
even without outliers, RCGPs match or outperform GPs
(see Appendix B.5). This is likely because the GP priors
on f are misspecified, and robustness to misspecified error
models may help in this setting.

5. Conclusion
A major issue with existing GP regression techniques is that
they are either robust or conjugate—never both. RCGPs
solve this issue through generalised Bayesian inference, and
demonstrate that robustness does not require prohibitive
computational cost. Intriguingly, our experiments also indi-
cate that there is no clear disadvantage from using RCGPs
in the absence of misspecification—raising the possibility
that RCGPs may become a preferred default choice over
GPs in the future.

Limitations and future work One limitation of our work
is its dependency on a well-specified prior mean through the
weighting function, as illustrated in Figure 7. Despite this,
the weighting function offers flexibility for practitioners
to select one that best suits their specific problem. For
example, a practitioner concerned only with outliers in one
direction could choose a weighting function that penalises
deviations only in that direction. Additionally, we provide
guidelines on selecting a weighting function to ensure that
RCGP remains provably outlier robust (see Proposition 3.2).

Another limitation of our method is the inability to obtain a
posterior over the kernel hyperparameters due to the use of
generalised Bayes. However, it is important to emphasise
that the primary focus of our method is on speed and robust-
ness rather than implementing a fully Bayesian procedure.
Full Bayesian approaches that account for kernel hyper-
parameter uncertainty with standard GPs are significantly
slower, so they are not our primary comparison. Instead, we
focus on conjugacy, which is generally not achievable with
a prior on hyperparameters.

Lastly, the flexibility and conjugacy of RCGPs means that
there is significant scope to extend their use to settings
beyond those presented here—including multi-output GPs
(Bonilla et al., 2007; Altamirano & Tobar, 2022), linear-
time GPs (Hartikainen & Sarkka, 2010), GPs with derivative
(Morris et al., 1993; Wu et al., 2017) or integral data (Yousefi
et al., 2019; Tanaka et al., 2019), deep GPs (Damianou &
Lawrence, 2013), transformed GPs (Maroñas et al., 2021),
and probabilistic numerics (Hennig et al., 2022).
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Robust and Conjugate Gaussian Process Regression:
Supplementary Materials

Our supplementary material is structured as follows. In Appendix A, we provide the proofs of all our theoretical results, as
well as additional results which complement those in the main text. In Appendix B, we provide additional details on our
numerical experiments.

Notation
In this section, we recap the notation used throughout the paper.

• If g : X × Y ⊆ Rd × R → R, then ∇yg =
∂g

∂y
is the partial derivative of g with respect to y.

• X ∼ N (µ,Σ) denotes that X is has a multivariate Gaussian distribution with mean µ and covariance Σ. Furthermore,
p(x) = N (x;µ,Σ) denotes that p is the density of this multivariate Gaussian distribution.

• For some d-dimensional vector v = (v1, . . . , vd)
⊤, diag(v) is the d× d diagonal matrix D so that Dij = 0 if i ̸= j

and Dii = vi. In addition, exponents are applied entry-wise; e.g. v2 = (v21 , . . . , v
2
d)

⊤.

• Tr denotes the trace operator, which for some d× d matrix A is given by: Tr(A) =
∑d

i=1 Aii.

• A positive-definite kernel k : X × X → R is a symmetric function, i.e. k(x, x′) = k(x′, x) for any x, x′, that is
positive-definite, i.e. ∀{x1, ..., xn} ⊂ X , ∀{c1, ..., cn} ⊂ R and ∀n ∈ N:

∑n
i=1

∑n
j=1 cicjk(xi, xj) ≥ 0, which

equivalent that for any n points the n× n matrix given by k(x, x) is positive-semidefinite. According to the Moore-
Aronszajn theorem, every positive-definite kernel is also a reproducing kernel, and according to Loeve’s theorem, any
reproducing kernel is the covariance function of a second-order stochastic process and vice-versa.

• Let X ∼ p be a random variable distributed according to the probability density p. We define the expectation and the
variance of the random variable X as

EX∼p[X] =

∫
Rn

xp(x)dx, VX∼p[X] =

∫
Rn

(x− EX∼p[X])(x− EX∼p[X])⊤p(x)dx

A. Proofs of Theoretical Results
A.1. Proof of Proposition 3.1

Recall the loss function defined in Section 3:

Lw
n (f ,y,x) =

1

n

n∑
i=1

(
(wsmodel)

2 + 2∇y(w
2smodel)

)
(xi, yi).

Here, smodel : X × Y → R is the score function, and w : X × Y → R is the weighting function. Proposition 3.1 gives the
posterior and posterior predictive distributions for RCGPs, and we now derive these one-by-one.

Posterior Distribution Firstly, we show that the RCGP posterior has density pw(f |y,x) = N (f ;µR,ΣR),

µR = m+K
(
K + σ2Jw

)−1
(y −mw) , ΣR = K

(
K + σ2Jw

)−1
σ2Jw,

where w = (w(x1, y1), . . . , w(xn, yn))
⊤, mw = m+ σ2∇y log(w

2), Jw = diag(σ
2

2 w−2).
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Proof. Firstly, it is worth noting that for smodel(x, y) = (f(x)− y)σ−2, the loss function Lw̃
n constructed with the weight

function w can be written as

L w
n (f ,y,x) =

1

n

n∑
i=1

w(xi, yi)
2(f(xi)− yi)

2

σ4
+ 2∇y

(
w(xi, yi)

2(f(xi)− yi)

σ2

)
=

1

n

n∑
i=1

w(xi, yi)
2(f(xi)

2 − 2f(xi)yi + y2i )

σ4
+ 2∇y

(
w(xi, yi)

2(f(xi)− yi)

σ2

)
=

1

n

n∑
i=1

w(xi, yi)
2(f(xi)

2 − 2f(xi)yi)

σ4
+ 2∇y

(
w(xi, yi)

2f(xi)

σ2

)
+

w(xi, yi)
2y2i

σ4
− 2∇y

(
w(xi, yi)

2yi
σ2

)
.

Let us consider w̃(x, y) =
√
2σ−2w(x, y), then

L w̃
n (f ,y,x) =

1

n

n∑
i=1

w̃(xi, yi)
2(f(xi)

2 − 2f(xi)yi)

2σ2
+ f(xi)∇yw̃(xi, yi)

2 +
w̃(xi, yi)

2y2i
2σ2

−∇y(w̃(xi, yi)
2yi)

=
1

2n

(
f⊤σ−2 diag(w̃2)f − 2f⊤

(
σ−2 diag(w̃2)y −∇yw̃

2
)
+ y⊤σ−2 diag w̃2)y − 2∇y(y

⊤w̃2)
)

=
1

2n

(
f⊤σ−2 diag(w̃2)f − 2f⊤σ−2 diag(w̃2)

(
y − σ2∇y log(w̃

2)
)
+ y⊤σ−2 diag(w̃2)y − 2∇y(y

⊤w̃2)
)

=
1

2n

(
f⊤σ−2J−1

w f − 2f⊤σ−2J−1
w (y −mw +m) + C(x,y, σ2)

)
Where we use the fact that ∇yw̃

2 = σ−2 diag(w̃2)× σ2∇y log(w̃
2), and

mw = m+ σ2∇y log(w̃
2) = m+ σ2∇y log(w

2)

Jw = diag(w̃−2) = diag(
σ2

2
w−2)

C(x,y, σ2) = y⊤σ−2 diag(w̃2)y − 2∇yy
⊤w̃2 = y⊤σ−2 diag(2σ−2w2)y − 4σ2∇yy

⊤w2

One remark is that C(x,y, σ2) does not depend on f . Thus, it will not have an impact on the posterior.

Now, we can calculate the density of the generalised posterior of f using the loss function defined before as follows

pw(f |y) ∝ p(f) exp{−nLw
n (f ,y,x)}

∝ exp

(
−1

2
(f −m)⊤K−1(f −m)

)
exp

(
−1

2

(
f⊤σ−2J−1

w f − 2f⊤σ−2J−1
w (y −mw +m)

))
= exp

(
−1

2

(
(f −m)⊤K−1(f −m) + f⊤σ−2J−1

w f − 2f⊤σ−2J−1
w (y −mw +m)

))
∝ exp

(
−1

2

(
f⊤K−1f − 2f⊤K−1m+ f⊤σ−2J−1

w f − 2f⊤σ−2J−1
w (y −mw +m)

))
∝ exp

(
−1

2

(
f⊤(K−1 + σ−2J−1

w )f − 2f⊤
(
(K−1 + σ−2J−1

w )m+ σ−2J−1
w (y −mw)

)))
.

By completing squares, the posterior has the form

pw(f |y) ∝ exp

(
−1

2

(
(f − µR)

⊤Σ−1
R (f − µR)

))
,

ΣR = (K−1 + σ−2J−1
w )−1 = K

(
K + σ2Jw)

)−1
σ2Jw,

µR = ΣR

(
(K−1 + σ−2J−1

w )m+ σ−2J−1
w (y −mw)

)
= m+K

(
K + σ2Jw

)−1
(y −mw),

where we use the fact that for two invertible matrices A,B, we have (A−1 + B−1)−1 = A(A+ B)−1B. One remark is
that ΣR is positive semidefinite, since is the inverse of a sum of positive semidefinite matrices.
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Predictive distribution The RCGP posterior predictive distribution over f⋆ = f(x⋆) at x⋆ ∈ X is a multivariate Gaussian
distribution with density

pw(f⋆|x⋆,x,y) =

∫
Rn

p(f⋆|x⋆, f ,x,y)p
w(f |y,x)dfN (f⋆;µ

R
⋆ ,Σ

R
⋆ ),

µR
⋆ = m⋆ + k⊤

⋆

(
K + σ2Jw

)−1
(y −mw) ,

ΣR
⋆ = k⋆⋆ − k⊤

⋆ (K + σ2Jw)−1k⋆.

Proof. We first derive the predictive for m(x) = 0 and then extend it to an arbitrary prior mean m. In order to compute
the predictive, we first need the conditional density p(f⋆|x⋆, f ,x,y). Using the fact that f is a mean-zero GP, the joint
distribution of f and f⋆ is (

f
f⋆

)
∼ N

(
0,

(
K k⋆

k⊤
⋆ k⋆⋆

))
where k⋆ = (k(x⋆, x1), ..., k(x⋆, xn))

⊤, and k⋆,⋆ = k(x⋆, x⋆). Therefore, the density of the conditional distribution of a
multivariate normal is well known and has the form p(f⋆|x⋆, f ,x,y) = N (f⋆;µ,Σ) where

µ = k⊤
⋆ K

−1f ,

Σ = k⋆⋆ − k⊤
⋆ K

−1k⋆.

Let us define a = K−1k⋆, then µ = a⊤f , and we can write the density of the predictive distribution as follows

pw(f⋆|x⋆,x,y) =

∫
Rn

p(f⋆|x⋆, f ,x,y)p
w(f |y,x)df .

∝
∫
Rn

exp

(
−1

2

(
(f⋆ − a⊤f)⊤Σ−1(f⋆ − a⊤f) + (f − µR)⊤(ΣR)−1(f − µR)

))
df

∝
∫
Rn

exp

(
−1

2

(
f⋆Σ

−1f⋆ − 2f⊤aΣ−1f⋆ + f⊤aΣ−1a⊤f + f⊤(ΣR)−1f − 2f⊤(ΣR)−1µR
))

df

∝ exp

(
−1

2
f⋆Σ

−1f⋆

)∫
Rn

exp

(
−1

2

(
f⊤((ΣR)−1 + aΣ−1a⊤)f − 2f⊤

(
aΣ−1f⋆ + (ΣR)−1µR

)))
df .

where the steps follow from basic arithmetic and taking out all terms which do not depend on f , and ∝ indicates we do not
consider the normalisation constants. Integrating over f , we get

pw (f⋆|x⋆,x,y)

∝ exp

(
−1

2

(
f⋆Σ

−1f⋆ − (aΣ−1f⋆ + (ΣR)−1µR)⊤((ΣR)−1 + aΣ−1a⊤)−1(aΣ−1f⋆ + (ΣR)−1µR)
))

∝ exp

(
−1

2

(
f⋆⊤(Σ−1 − Σ−1a⊤((ΣR)−1 + aΣ−1a⊤)−1aΣ−1)f⋆ − 2f⋆⊤Σ−1a⊤((ΣR)−1 + aΣ−1a⊤)−1(ΣR)−1µR

))
.

Therefore, by completing squares, we obtain p(f⋆|x⋆,x,y) = N (f⋆;µ
R
⋆ ,Σ

R
⋆ ), where,

µR
⋆ = (1− a⊤((ΣR)−1 + aΣ−1a⊤)−1aΣ−1)−1ΣΣ−1a⊤((ΣR)−1 + aΣ−1a⊤)−1(ΣR)−1µR,

ΣR
⋆ = (1− a⊤((ΣR)−1 + aΣ−1a⊤)−1aΣ−1)−1Σ.

Now, we expand the terms by arithmetic rules for matrix-vector multiplication, to obtain the final expressions:

µR
⋆ = (1− a⊤((ΣR)−1 + aΣ−1a⊤)−1aΣ−1)−1ΣΣ−1a⊤((ΣR)−1 + aΣ−1a⊤)−1(ΣR)−1µR

= (1− a⊤((ΣR)−1 + aΣ−1a⊤)−1aΣ−1)−1(((ΣR)−1 + aΣ−1a⊤)(a⊤)−1)(ΣR)−1µR

= (((ΣR)−1 + aΣ−1a⊤)(a⊤)−1 − aΣ−1)−1(ΣR)−1µR

= ((ΣR)−1(a⊤)−1 + aΣ−1 − aΣ−1)−1(ΣR)−1µR

= ((ΣR)−1(a⊤)−1)−1(ΣR)−1µR

= a⊤µR

= k⊤
⋆

(
K + σ2Jw

)−1
(y −mw).
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The covariance follows the form:

ΣR
⋆ = (Σ−1 − Σ−1a⊤((ΣR)−1 + aΣ−1a⊤)−1aΣ−1)−1,

we use the Woodbury matrix identity on the term ((ΣR)−1 + aΣ−1a⊤)−1 and by arithmetic rules for matrix-vector
multiplication we obtain:

ΣR
⋆ = (Σ−1 − Σ−1a⊤(ΣR − ΣRa(Σ + a⊤ΣRa)−1a⊤ΣR)aΣ−1)−1

= (Σ−1 − Σ−1a⊤(ΣRa(Σ + a⊤ΣRa)−1((Σ + a⊤ΣRa)a−1 − a⊤ΣR))aΣ−1)−1

= (Σ−1 − Σ−1a⊤(ΣRa(Σ + a⊤ΣRa)−1(Σa−1 + a⊤ΣR − a⊤ΣR)aΣ−1)−1

= (Σ−1 − Σ−1a⊤(ΣRa(Σ + a⊤ΣRa)−1Σa−1aΣ−1)−1

= (Σ−1 − Σ−1a⊤ΣRa(Σ + a⊤ΣRa)−1)−1

= (Σ + a⊤ΣRa)(Σ−1(Σ + a⊤ΣRa)− Σ−1a⊤ΣRa)−1

= Σ+ a⊤ΣRa.

Finally, we replace ΣR and use the Woodbury matrix identity on it, to get:

ΣR
⋆ = Σ+ k⊤

⋆ K
−1(K−1 + σ−2J−1

w )−1K−1k⋆

= Σ+ k⊤
⋆ K

−1(K −K(K + σ2Jw)−1K)K−1k⋆

= Σ+ k⊤
⋆ K

−1k⋆ − k⊤
⋆ (K + σ2Jw)−1k⋆

= k⋆⋆ − k⊤
⋆ (K + σ2Jw)−1k⋆.

If the prior mean function m : X → R is non-zero, we only need a minor modification of the derivation above. This
involves recognising that if we have a function f ∼ GP(m, k), then f ′ = f −m ∼ f ∼ GP(0, k). Therefore, when we
have observed values of f , we can adjust them by subtracting the corresponding prior mean function values, thus obtaining
observations of f ′. We then perform inference on f ′, and once we have the posterior on this function, we can simply add the
prior mean back to the posterior mean to obtain the posterior estimate for f . In other words, for a general prior mean m the
density of the predictive posterior will be:

pw(f⋆|x⋆,x,y) = N (f⋆;µ
R
⋆ ,Σ

R
⋆ ),

µR
⋆ = m⋆ + k⊤

⋆

(
K + σ2Jw

)−1
(y −mw) ,

ΣR
⋆ = k⋆⋆ − k⊤

⋆ (K + σ2Jw)−1k⋆.

A.2. Pseudo Marginal Likelihood for RCGPs

While maximising the pseudo marginal likelihood for RCGP pw(y|θ, σ2) is ill-posed, it is available in closed form given
below.

Proposition A.1. The pseudo marginal likelihood for RCGPs takes the form

pw(y | x, θ, σ2)

=
1√

|K||K−1 + σ−2J−1
w |

exp

(
1

2
(y −mw)⊤σ−2J−1

w (K−1 + σ−2J−1
w )−1σ−2J−1

w (y −mw)− C(x,y, σ2)

)
.

Proof.

pw(y|x, θ, σ2) =

∫
Rn

p(f |x, θ, σ2) exp{−nLw
n (f ,y,x)}df

=
1√

(2π)n|K|

∫
Rn

exp

(
−1

2
f⊤K−1f − 1

2
f⊤σ−2J−1

w f + f⊤σ−2J−1
w (y −mw)− C(x,y, σ2)

)
df

=
1√

(2π)n|K|

∫
Rn

exp

(
−1

2
f⊤(K−1 + σ−2J−1

w )f + f⊤σ−2J−1
w (y −mw)− C(x,y, σ2)

)
df .

17
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Integrating over f now yields

pw(y|x, θ, σ2)

=
1√

(2π)n|K|

√
(2π)n√

|K−1 + σ−2J−1
w |

exp

(
1

2
(y −mw)⊤σ−2J−1

w (K−1 + σ−2J−1
w )−1σ−2J−1

w (y −mw)− C(x,y, σ2)

)

=
1√

|K||K−1 + σ−2J−1
w |

exp

(
1

2
(y −mw)⊤σ−2J−1

w (K−1 + σ−2J−1
w )−1σ−2J−1

w (y −mw)− C(x,y, σ2)

)
.

A.3. Leave-one-out Cross-validation Predictive

The hyperparameters obtained by the leave-one-out cross-validation predictive posteriors are

σ̂2, θ̂ = argmax
σ2,θ

{ n∑
i=1

log pw(yi|x,y−i, θ, σ
2)
}
,

where y−i = (y1, . . . , yi−1, yi+1, . . . , yn). By Proposition 3.1, pw(yi|x,y−i, θ, σ
2) = N (µR

i , σ
R
i + σ2) with

µR
i = zi +mi − [

(
K + σ2Jw

)−1
z]i[(K + σ2Jw)−1]−1

ii ,

σR
i = [(K + σ2Jw)−1]−1

ii − σ4

2
w(xi, yi)

−2,

for z = y −mw and z = (z1, . . . zn).

Proof. Without loss of generality, we will derive the predictive for i = n, which can be extended for an arbitrary
i ∈ {1, ..., n} using a permutation matrix. Let pw(yn|x,y−n, θ, σ

2) = N (µR
n , σ

R
n + σ2) with

µR
n = mn +K⊤

1:n−1;n[K + σ2Jwc ]−1
1:n−1;1:n−1z1:n−1,

ΣR
⋆ = knn −K⊤

1:n−1;n[K + σ2Jwc ]−1
1:n−1;1:n−1K1:n−1;n.

where [K+σ2Jw]1:n−1;1:n−1 denotes the submatrix formed from rows {1, ..., n−1} and columns {1, ..., n−1}, K1:n−1;n

denotes the submatrix formed from nth row and columns {1, ..., n− 1}, and knn denotes the element from nth row and nth

columns. Now, we observe that we can write the matrix K + σ2Jwc as

K + σ2Jw =

(
[K + σ2Jw]1:n−1;1:n−1 Kn;1:n−1

K1:n−1;n Knn + σ4

2 w(xn, yn)
−2

)
=

(
A B
C D

)
where we use A, B, C and D for clarity in the derivation. Applying block matrix inversion it is now notationally cumbersome,
but it is easy to show that.

(K + σ2Jw)−1 =

(
A−1 +A−1B

(
D − CA−1B

)−1
CA−1 −A−1B

(
D − CA−1B

)−1

−
(
D − CA−1B

)−1
CA−1

(
D − CA−1B

)−1

)
.

Therefore, we have that

[(K + σ2Jw)−1]nn =
(
D − CA−1B

)−1

=

(
Knn +

σ4

2
w(xn, yn)

−2 −K⊤
1:n−1;n[K + σ2Jw]−1

1:n−1;1:n−1K1:n−1;n

)−1

.

This leads to

Knn −K⊤
1:n−1;n[K + σ2Jw]−1

1:n−1;1:n−1K1:n−1;n =
1

[(K + σ2Jw)−1]nn
− σ4

2
w(xn, yn)

−2,

18
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which gives us the desired variance:

σR
n = [(K + σ2Jw)−1]−1

nn − σ4

2
w(xn, yn)

−2,

Now, for the mean, we use again the block matrix inversion to get

(K + σ2Jw)−1z =

(
A−1 +A−1B

(
D − CA−1B

)−1
CA−1 −A−1B

(
D − CA−1B

)−1

−
(
D − CA−1B

)−1
CA−1

(
D − CA−1B

)−1

)(
z1:n−1

zn

)
.

Therefore, we have that

[(K + σ2Jw)−1z]n = −
(
D − CA−1B

)−1
CA−1z1:n−1 +

(
D − CA−1B

)−1
zn

=
(
D − CA−1B

)−1
(zn − CA−1z1:n−1).

Noting that
(
D − CA−1B

)−1
= [(K + σ2Jwc)−1]nn, and replacing A and C by their values we obtain

[(K + σ2Jw)−1z]n = [(K + σ2Jw)−1]nn(zn −K⊤
1:n−1;n[K + σ2Jw]−1

1:n−1;1:n−1z1:n−1).

Finally, rearranging terms, we note that

K⊤
1:n−1;n[K + σ2Jw]−1

1:n−1;1:n−1z1:n−1 = zn − [
(
K + σ2Jw

)−1
z]n[(K + σ2Jw)−1]−1

nn

Leading to the desired mean function:

µR
n = zn +mn − [

(
K + σ2Jw

)−1
z]n[(K + σ2Jw)−1]−1

nn ,

A.4. Proof of Proposition 3.2

First, define the contamination of the dataset D = {(xi, yi)}ni=1 by the datum ycm as Dc
m = (D\{(xm, ym)})∪{(xm, ycm)}

for some m ∈ {1, . . . , n}. Let y = (y1, ..., yn)
⊤ and yc = (y1, ..., ym−1, y

c
m, ym+1, ..., yn)

⊤.

PIF for the standard GP GP regression has the PIF for some constant C1 ∈ R.

PIFGP(y
c
m, D) = C1(ym − ycm)2,

and is not robust: PIFGP(y
c
m, f,D) → ∞ as |ycm| → ∞.

Proof. Let p(f |D) = N (f ;µ,Σ) and p(f |Dc
m) = N (f ;µc,Σc) the uncontaminated and contaminated standard GP posterior

respectively. Here,

µ = m+K(K + σ2In)
−1(y −m) µc = m+K(K + σ2In)

−1(yc −m)

Σ = K(K + σ2In)
−1σ2In Σc = K(K + σ2In)

−1σ2In.

Therefore, the PIF has the form

PIFGP(y
c
m, D) =

1

2

(
Tr
(
Σ−1

c Σ
)
− n+ (µc − µ)

T
(Σc)

−1 (µc − µ) + ln

(
detΣc

detΣ

))
.

We observe that Σc = Σ since they do not depend on y, so that

Tr
(
Σ−1

c Σ
)
− n = Tr (In)− n = n− n = 0,

ln

(
det(Σc)

det(Σ)

)
= ln

(
det(Σc) det(Σ

−1)
)
= ln

(
det(ΣcΣ

−1)
)
= ln (det(In)) = 0.
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This finally leads to the PIF

PIFGP(y
c
m, D) =

1

2

(
(µc − µ)

T
(Σc)

−1 (µc − µ)
)
.

We now notice that the term µc − µ can be written as

µc − µ = (m+K(K + σ2In)
−1(y −m))− (m+K(K + σ2In)

−1(yc −m))

= K(K + σ2In)
−1(y − yc).

Substituting the relevant expressions for µc − µ and Σc above, we find

PIFGP(y
c
m, D) =

1

2

(
(y − yc)T(K + σ2In)

−1K(K(K + σ2In)
−1σ2In)

−1K(K + σ2In)
−1(y − yc)

)
.

=
1

2

(
(y − yc)T(K + σ2In)

−1Kσ−2In(y − yc)
)
.

Finally, since y and yc are the same except for the mth element, the above expression is equal to

PIFGP(y
c
m, D) =

1

2

([
(K + σ2In)

−1Kσ−2In
]
mm

(ym − ycm)2
)
.

PIF for the RCGP For RCGPs with supx,y w(x, y) < ∞, it holds that

PIFRCGP(y
c
m, D) ≤ C1(w(xm, ycm)2ycm)2 + C2,

for some constants C1, C2 ∈ R. Thus, if supx,y
{
y · w(x, y)2

}
< ∞, RCGP is robust since supyc

m
|PIFRCGP(y

c
m, D)| <

∞.

Proof. Without loss of generality, we will prove the bound for m = n, which can be extended for an arbitrary m ∈ {1, . . . , n}
using a permutation matrix. Let pw(f |D) = N (f ;µR,ΣR) and pw(f |Dc

m) = N (f ;µc
R,Σ

c
R) denote the uncontaminated

and contaminated standard posterior respectively. Here,

µR = m+K
(
K + σ2Jw

)−1
(y −mw) µR

c = m+K
(
K + σ2Jwc

)−1
(y −mwc)

ΣR = K
(
K + σ2Jw

)−1
σ2Jw ΣR

c = K
(
K + σ2Jwc

)−1
σ2Jwc .

Here wc = (w(x1, y1), ..., w(xn, y
c
n))

⊤. Therefore, the PIF has the form

PIFRCGP(y
c
m, D) =

1

2

Tr
(
(ΣR

c )
−1ΣR

)
− n︸ ︷︷ ︸

(1)

+
(
µR
c − µR

)T
(ΣR

c )
−1
(
µR
c − µR

)︸ ︷︷ ︸
(2)

+ ln

(
detΣR

c

detΣR

)
︸ ︷︷ ︸

(3)

 .

Now, we will get a bound for each term in the PIF. The first term can be bound as

(1) = Tr
(
(ΣR

c )
−1ΣR

)
− n = Tr

(
σ−2J−1

wc

(
K + σ2Jwc

) (
K + σ2Jw

)−1
σ2Jw

)
− n

≤ Tr
(
σ−2J−1

wc

(
K + σ2Jwc

))
Tr
((

K + σ2Jw
)−1

σ2Jw

)
− n,

where we use the fact that for two positive semidefinite matrices A, B, it holds that Tr(AB) ≤ Tr(A) Tr(B). Observing
that

(
K + σ2Jw

)−1
σ2Jw does not depend on the contamination, we can now write C̃1 = Tr(

(
K + σ2Jw

)−1
σ2Jw), so

that by using the arithmetic rules of traces, we obtain

(1) ≤ Tr
(
σ−2J−1

wc

(
K + σ2Jwc

))
C̃1 − n

= Tr
(
σ−2J−1

wcK + In
)
C̃1 − n

= (Tr
(
σ−2J−1

wcK
)
+ n)C̃1 − n

=

(
n∑

i=1

σ−2w2(xi, yy)Kii + n

)
C̃1 − n.
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Finally, since supx,y w(x, y) < ∞, the entire expression can be bounded by a constant C̃2 that does not depend on the
contamination ycn as

(1) ≤

(
σ−2 sup

x,y
w(x, y)

n∑
i=1

Kii + n

)
C̃1 − n = C̃2.

Next, we tackle the second term by noting that

(2) =
(
µR
c − µR

)T
(ΣR

c )
−1
(
µR
c − µR

)
≤ λmax((Σ

R
c )

−1)∥µR
c − µR∥22 ≤ λmax((Σ

R
c )

−1)∥µR
c − µR∥21,

where λmax((Σ
R
c )

−1) is the maximum eigenvalue of (ΣR
c )

−1. Then, expanding λmax((Σ
R
c )

−1) and using Weyl’s inequality,
we get:

λmax((Σ
R
c )

−1) = λmax(K
−1 + σ−2J−1

wc ) ≤ λmax(K
−1) + λmax(σ

−2J−1
wc )).

Since J−1
wc = diag((wc)2) , and supx,y w(x, y) < ∞, it holds that λmax(σ

−2J−1
wc )) = C̃3 < +∞, so that we have

λmax((Σ
R
c )

−1) = λmax(K
−1) + C̃3 = C̃4.

We replace this in the expression for (2) to obtain

(2) ≤ C̃4∥µR
c − µR∥21

= C̃4∥m+K
(
K + σ2Jwc

)−1
(y −mwc)−m−K

(
K + σ2Jw

)−1
(y −mw)∥21

= C̃4∥K(
(
K + σ2Jwc

)−1
(y −mwc)−

(
K + σ2Jw

)−1
(y −mw))∥21.

Applying Cauchy-Schwartz we obtain:

(2) ≤ C̃4∥K∥F ∥
(
K + σ2Jwc

)−1
(y −mwc)−

(
K + σ2Jw

)−1
(y −mw)∥21,

where ∥.∥F denotes the Frobenius norm. Now, let’s write K + σ2Jwc as the block matrix

K + σ2Jwc =

(
[K + σ2Jwc ]1:n−1;1:n−1 [K + σ2Jwc ]n;1:n−1

[K + σ2Jwc ]1:n−1;n [K + σ2Jwc ]nn

)
=

(
[K + σ2Jwc ]1:n−1;1:n−1 Kn;1:n−1

K1:n−1;n Knn + σ2w(xn, y
c
n)

−2

)
,

where [K + σ2Jwc ]1:n−1;1:n−1 denotes the submatrix formed from rows {1, ..., n − 1} and columns {1, ..., n − 1}, and
K1:n−1;n denotes the submatrix formed from nth row and columns {1, ..., n− 1}. The second equality holds since Jwc is
diagonal. Because we assumed that the contamination is in the nth term, [K+σ2Jwc ]1:n−1;1:n−1 = [K+σ2Jw]1:n−1;1:n−1,
so that

K + σ2Jwc =

(
[K + σ2Jw]1:n−1;1:n−1 Kn;1:n−1

K1:n−1;n Knn + σ2w(xn, y
c
n)

−2

)
=

(
A B
C q(ycn)

)
where we use A, B, and C for clarity in the derivation and to emphasise that these submatrices do not depend on the
contamination and therefore can be treated as constants. Applying block matrix inversion, it is now notationally cumbersome
but easy to show that

(K + σ2Jwc)−1 =

(
A−1 +A−1Bq(ycn)

−1CA−1 −A−1Bq(ycn)
−1

−q(ycn)
−1CA−1 q(ycn)

−1

)
.

We can now use this to rewrite the matrix-vector product(
K + σ2Jwc

)−1
(y −mwc)

=

(
A−1 +A−1Bq(ycn)

−1CA−1 −A−1Bq(ycn)
−1

−q(ycn)
−1CA−1 q(ycn)

−1

)(
y1:n−1

ycn

)
=

(
(A−1 +A−1Bq(ycn)

−1CA−1)y1:n−1 −A−1Bq(ycn)
−1ycn

−q(ycn)
−1CA−1y1:n−1 + q(ycn)

−1ycn

)
,
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where y1:n−1 = (y1, ..., yn−1)
⊤. Replicating the same steps for the uncontaminated terms, we similarly obtain:(
K + σ2Jw

)−1
(y −mw)

=

(
(A−1 +A−1Bq(yn)

−1CA−1)y1:n−1 −A−1Bq(yn)
−1yn

−q(yn)
−1CA−1y1:n−1 + q(yn)

−1yn

)
.

Now, we can write

n−1∑
i=1

∣∣∣( (K + σ2Jwc

)−1
(y −mwc)−

(
K + σ2Jw

)−1
(y −mw)

)
i

∣∣∣
=

n−1∑
i=1

∣∣∣(A−1Bq(ycn)
−1CA−1y1:n−1 −A−1Bq(ycn)

−1ycn −A−1Bq(yn)
−1CA−1y1:n−1 +A−1Bq(yn)

−1yn
)
i

∣∣∣.
Using the triangle inequality, we can bound this as

≤
n−1∑
i=1

∣∣∣(A−1Bq(ycn)
−1CA−1y1:n−1

)
i

∣∣∣+ ∣∣∣(A−1Bq(ycn)
−1ycn

)
i

∣∣∣
+
∣∣∣(A−1Bq(yn)

−1CA−1y1:n−1

)
i

∣∣∣+ ∣∣∣(A−1Bq(yn)
−1yn

∣∣∣︸ ︷︷ ︸
C̃5

= C̃5 +

n−1∑
i=1

∣∣∣q(ycn)−1
∣∣∣∣∣∣(A−1BCA−1y1:n−1

)
i

∣∣∣+ ∣∣∣q(ycn)−1ycn

∣∣∣∣∣∣(A−1B
)
i

∣∣∣
= C̃5 +

∣∣∣q(ycn)−1
∣∣∣ n−1∑
i=1

∣∣∣(A−1BCA−1y1:n−1

)
i

∣∣∣+ ∣∣∣q(ycn)−1ycn

∣∣∣ n−1∑
i=1

∣∣∣(A−1B
)
i

∣∣∣
where C̃5 are all terms that do not depend on the contamination. Now, we can observe that:∣∣∣q(ycn)−1

∣∣∣ = 1∣∣∣Knn + σ2w(xn, ycn)
−2
∣∣∣ = σ−2w(xn, y

c
n)

2∣∣∣Knnσ−2w(xn, ycn)
2 + 1

∣∣∣ ≤ σ−2w(xn, y
c
n)

2,

where the last inequality holds because Knnσ
−2w(xn, y

c
n)

2 > 0. Therefore, since supx,y w(x, y) < ∞, we can write

C̃5 +
∣∣∣q(ycn)−1

∣∣∣ n−1∑
i=1

∣∣∣(A−1BCA−1y1:n−1

)
i

∣∣∣+ ∣∣∣q(ycn)−1ycn

∣∣∣ n−1∑
i=1

∣∣∣(A−1B
)
i

∣∣∣
≤ C̃5 +

∣∣∣q(ycn)−1
∣∣∣ n−1∑
i=1

∣∣∣(A−1BCA−1y1:n−1

)
i

∣∣∣+ ∣∣∣q(ycn)−1ycn

∣∣∣ n−1∑
i=1

∣∣∣(A−1B
)
i

∣∣∣
≤ C̃6 +

∣∣∣w(xn, y
c
n)

2ycn

∣∣∣C̃7

For C̃6 = C̃5 + σ−2 supx,y w(x, y)
2
∑n−1

i=1

∣∣∣(A−1BCA−1y1:n−1

)
i

∣∣∣, and C̃7 = σ−2
∣∣∣∑n−1

i=1

∣∣∣(A−1B
)
i

∣∣∣. Now, similarly
for the nth term we have∣∣∣ (K + σ2Jwc

)−1
(y −mwc)− (K + σ2Jw)−1(y −mw)

)
n

∣∣∣
=
∣∣∣− q(ycn)

−1CA−1y1:n−1 + q(ycn)
−1ycn + q(yn)

−1CA−1y1:n−1 − q(yn)
−1yn

∣∣∣
≤
∣∣∣q(ycn)−1CA−1y1:n−1

∣∣∣+ ∣∣∣q(ycn)−1ycn

∣∣∣+ ∣∣∣q(yn)−1CA−1y1:n−1

∣∣∣+ ∣∣∣q(yn)−1yn

∣∣∣
≤ C̃8 + C̃9

∣∣∣w(xn, y
c
n)

2ycn

∣∣∣,
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for C̃8 = σ−2 supx,y w(x, y)
2
∣∣∣CA−1y1:n−1

∣∣∣ + ∣∣∣q(yn)−1CA−1y1:n−1

∣∣∣ + ∣∣∣q(yn)−1yn

∣∣∣ and C̃9 = σ−2. Putting both
expressions together, we obtain:

(2) ≤ C̃4∥K∥F ∥
(
K + σ2Jwc

)−1
(y −mwc)−

(
K + σ2Jw

)−1
(y −mw)∥21

≤ C̃4∥K∥F ∥2((C̃6 + C̃8)
2 + (C̃7 + C̃9)

2(w(xn, y
c
n)

2ycn)
2)

≤ C̃10 + C̃11(w(xn, y
c
n)

2ycn)
2,

where C̃10 = C̃4∥K∥F ∥2((C̃6 + C̃8)
2, C̃11 = C̃4∥K∥F ∥2(C̃7 + C̃9)

2. Lastly, the third and final term can be rewritten
using properties of determinants as

(3) = ln

(
detΣR

c

detΣR

)
= ln

det
((

K + σ2Jwc

)−1
σ2Jwc

)
det
(
(K + σ2Jw)

−1
σ2Jw

)


= ln
(
det
((
K + σ2Jw

)
σ−2J−1

w

)
det
((

K + σ2Jwc

)−1
)
det
(
σ2Jwc

))
.

Here, we defined C̃12 = det
((
K + σ2Jw

)
σ−2J−1

w

)
since it does not depend on the contamination, and write

(3) = ln
(
C̃12 det

((
K + σ2Jwc

)−1
)
det
(
σ2Jwc

))
= ln

(
C̃12

det
(
σ2Jwc

)
det (K + σ2Jwc)

)

≤ ln

(
C̃12

det
(
σ2Jwc

)
det (K) + det (σ2Jwc)

)
,

where in the last inequality, we use the fact that for two positive semidefinite matrices A, B, it also holds that det(A+B) ≥
det(A) + det(B). Finally, det (K) > 0 and det

(
σ2Jwc

)
> 0, since both are positive definite matrices. Therefore,

det
(
σ2Jwc

)
det (K) + det (σ2Jwc)

≤ 1,

which leads to

(3) ≤ ln
(
C̃12

)
= C̃13.

Finally, putting the three terms together we obtain the desire bound:

PIFRCGP(y
c
m, D) ≤ C̃2 + C̃10 + C̃11(w(xn, y

c
n)

2ycn)
2 + C̃13 = C1(w(xn, y

c
n)

2ycn)
2 + C2

where C2 = C̃2 + C̃10 + C̃11 + C̃13, and C1 = C̃11.

A.5. Proof of Proposition 4.1

For f ∼ GP(m, k), ε ∼ N (0, σ2), the RCSVGP posterior is f ∼ GP(µ̃, Σ̃), where

µ̃(x) = ϕu(x)
⊤µu,

Σ̃(x, x′) = k(x, x′)− ϕu(x)
⊤ (Kuu − Σu)ϕu(x

′),

µu = m+KuuP
−1
u Kuσ

−2J−1
w (y −mw),

Σu = KuuP
−1
u Kuu,

for Pu =
(
Kuu +K⊤

u σ−2J−1
w Ku

)
, [Kuu]ij = k(ui, uj), [Ku]ij = k(ui, xj), [ku(x)]i = k(ui, x), and ϕu(x) =

K−1
uuku(x). As a function of u, θ, and σ2, the corresponding variational objective is

J(u, θ, σ2) =
1

2
ν⊤K⊤

u Q−1
u Kuν + C(σ2) +

1

2
log

(
det (Kuu)

2

det (Qu)

)
−Tr

(
σ−2J

− 1
2

w (K −K⊤
u K−1

uuKu)J
− 1

2
w

)
,
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where Qu = Kuu +K⊤
u σ−2J−1

w Ku, ν = σ−2J−1
w (y −mw), and C(σ2) = C(x,y, σ2) is a function that depends on the

data and σ2.

Proof. Recall that for the standard case, we consider fu = (f(u1), . . . , f(um))⊤ as the evaluations corresponding to the
inducing input locations u = (u1, ..., um)⊤. Given this, we define the variational distribution as

q(f , fu) = p(f |fu)q(fu),

where q(u) = N (u;µ,Σ). We now seek to approximate the exact posterior p(f , fu|y) by the variatonal distribution. We do
so by minimising the Kullback-Leibler (KL) divergence between q(f , fu) and p(f , fu|y). This is equivalent to maximising
the ELBO, which is defined as:

ELBO(u) =

∫
log

Ψ(y, fu)p(fu)

q(fu)
q(fu)dfu,

where

Ψ(y, fu) = exp

(∫
Rn

log(p(y|f))p(f |fu)df
)
.

It is straightforward to verify that the optimal variational distribution is

q(fu) =
Ψ(y, fu)p(fu)∫
Ψ(y, fu)p(fu)dfu

.

Plugging this back into the ELBO, we then get

ELBO(u, µ,Σ) = log

(∫
Ψ(y, fu)p(fu)dfu

)
.

For the RCSVGP, we replace the standard likelihood p(y|f), with the pseudo likelihood exp{−nLw
n (f ,y,x)}, leading to

the RCSVGP’s optimal variational distribution, which is given by

qw(fu) =
Ψw(y, fu)p(fu)∫
Ψw(y, fu)p(fu)dfu

,

where

logΨw(y, fu) =

∫
Rn

log(exp{−nLw
n (f ,y,x)})p(f |fu)df

=

∫
Rn

−1

2

(
f⊤σ−2J−1

w f − 2f⊤ν + C(x,y, σ2)
)
p(f |fu)df ,

where we used the expression of Lw
n (f ,y,x) from Appendix A.1 and defined ν = σ−2J−1

w (y − mw). Recallling that
C(x,y, σ2) = y⊤σ−2 diag(w2)y − 2∇yy

⊤w2.

Recalling that the density of the conditional distribution of f given fu is

p(f |fu) = N (f ;µf |fu ,Σf |fu),

µf |fu = K⊤
u K−1

uu fu,

Σf |fu = K −K⊤
u K−1

uuKu,

[Kuu]ij = k(ui, uj), [Ku]ij = k(ui, xj), [ku(x)]i = k(ui, x). Then, we can write the above expression as:

logΨw(y, fu) =

∫
Rn

−1

2
f⊤σ−2J−1

w fp(f |fu)df +
∫
Rn

f⊤νp(f |fu)df −
∫
Rn

1

2
C(x,y)p(f |fu)df

= −1

2

∫
Rn

f⊤σ−2J−1
w fp(f |fu)df + Ef∼p(f |fu)[f

⊤ν]− 1

2
C(x,y, σ2)
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Recalling that we can write the inner product between two vectors as the trace of their outer product, in this case

f⊤σ−2J−1
w f = (σ−1J−1/2

w f)⊤(σ−1J−1/2
w f) = Tr(σ−1J−1/2

w ff⊤σ−1J−1/2
w ).

Therefore,

logΨw(y, fu) = −1

2

∫
Rn

Tr(σ−1J−1/2
w ff⊤σ−1J−1/2

w )p(f |fu)df + Ef∼p(f |fu)[f
⊤ν]− 1

2
C(x,y, σ2)

= −1

2
Ef∼p(f |fu)[Tr(σ

−1J−1/2
w ff⊤σ−1J−1/2

w )|fu] + Ef∼p(f |fu)[f
⊤ν]− 1

2
C(x,y, σ2).

It is well known that the expectation of the trace is equal to the trace of the expectation so that

logΨw(y, fu) = −1

2
Tr(Ef∼p(f |fu)[σ

−1J−1/2
w ff⊤σ−1J−1/2

w ]) + Ef∼p(f |fu)[f
⊤ν]− 1

2
C(x,y, σ2)

= −1

2
Tr(σ−1J−1/2

w Ef∼p(f |fu)[ff
⊤]σ−1J−1/2

w ) + Ef∼p(f |fu)[f ]
⊤ν − 1

2
C(x,y, σ2).

Recalling that the variance of a random variable is defined for a random variable X distributed by p as

VX∼p[X] = EX∼p[XX⊤]− EX∼p[X]EX [X]⊤,

which implies that EX∼p[XX⊤] = VX∼p[X] + EX∼p[X]EX∼p[X]⊤. Therefore, we can use this relationship to write

logΨw(y, fu) = −1

2
Tr(σ−1J−1/2

w Ef∼p(f |fu)[ff
⊤]σ−1J−1/2

w ) + Ef∼p(f |fu)(f)
⊤ν − 1

2
C(x,y, σ2)

= −1

2
Tr(σ−1J−1/2

w (Vf∼p(f |fu)[f ] + Ef∼p(f |fu)[f ]Ef∼p(f |fu)[f ]
⊤)σ−1J−1/2

w ) + Ef∼p(f |fu)[f ]
⊤ν − 1

2
C(x,y, σ2).

Since p(f |fu) = N (f ;µf |fu ,Σf |fu), we know explicitly Vf∼p(f |fu)[f ] and Ef∼p(f |fu)[f ]. Plug these expressions in and
rearranging terms using traces properties, we obtain the final expression

logΨw(y, fu) = −1

2
Tr(σ−1J−1/2

w (Vf∼p(f |fu)[f ] + Ef∼p(f |fu)[f ]Ef∼p(f |fu)[f ]
⊤)σ−1J−1/2

w ) + E(f |fu)⊤ν − 1

2
C(x,y, σ2)

= −1

2
Tr(σ−1J−1/2

w (Σf |fu + µf |fuµ
⊤
f |fu)σ

−1J−1/2
w ) + µ⊤

f |fuν − 1

2
C(x,y, σ2)

= −1

2
Tr(σ−2J−1/2

w Σf |fuJ
−1/2
w )− 1

2
Tr(σ−2J−1/2

w µf |fuµ
⊤
f |fuJ

−1/2
w ) + µ⊤

f |fuν − 1

2
C(x,y, σ2)

= −1

2
Tr(σ−2J−1/2

w Σf |fuJ
−1/2
w )− 1

2
µ⊤
f |fuσ

−2J−1
w µf |fu + µ⊤

f |fuν − 1

2
C(x,y, σ2).

We now will plug Ψ in optimal variational distribution to finish the proof. Replacing and rearranging terms, we obtain

qw(fu) ∝ Ψw(y, fu)p(fu)

= exp

(
−1

2
µ⊤
f |fuσ

−2J−1
w µf |fu + µ⊤

f |fuν − 1

2
f⊤u K−1

uu fu

)
= exp

(
−1

2
f⊤u K−1

uuKuσ
−2J−1

w K⊤
u K−1

uu fu + f⊤u K−1
uuKuν − 1

2
f⊤u K−1

uu fu

)
= exp

(
−1

2
f⊤u (K−1

uuKuσ
−2J−1

w K⊤
u K−1

uu +K−1
uu )fu + f⊤u K−1

uuKuν

)
completing squares, we obtain

qw(fu) ∝ exp

(
−1

2
(fu − µu)

⊤Σ−1
S (fu − µu)

⊤
)

µu = (K−1
uu +K−1

uuKuσ
−2J−1

w K⊤
u K−1

uu )
−1K−1

uuKuν

= Kuu(Kuu +Kuσ
−2J−1

w K⊤
u )−1Kuν

= KuuP
−1
u Kuσ

−2J−1
w (y −mw),

Σu = (K−1
uu +K−1

uuKuσ
−2J−1

w K⊤
u K−1

uu )
−1

= Kuu(Kuu +Kuσ
−2J−1

w K⊤
u )−1Kuu

= KuuP
−1
u Kuu,
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for Pu =
(
Kuu +K⊤

u σ−2J−1
w Ku

)
. Now, for the predictive posterior over f⋆ = f(x⋆) at new point x⋆ ∈ X , we have

pw(f⋆|,y,x) =
∫
R
pw(f⋆|x⋆, fu)q

w(fu)dfu

= N (f⋆;µf⋆|u,Σf⋆|u)N (fu;µu,Σu)dfu.

Here, we can use the integral obtain for the predictive in Appendix A.1 to get

pw(f⋆|x,y,x) = N (f⋆; µ̃(x⋆), Σ̃(x⋆, x⋆))

µ̃(x⋆) = ϕu(x⋆)
⊤µu,

Σ̃(x⋆, x⋆) = k(x⋆, x⋆)− ϕu(x⋆)
⊤ (Kuu − Σu)ϕu(x⋆),

for [ku(x)]i = k(ui, x), and ϕu(x) = K−1
uuku(x). Finally, plugging Ψw in the ELBO and using log and exponential

properties, we get

ELBO(u) = log

(∫
Ψw(y, fu)p(fu)dy

)
= log

(∫
Rn

exp

(
−1

2
Tr(σ−2J−1/2

w Σf |fuJ
−1/2
w )− 1

2
µ⊤
f |fuσ

−2J−1
w µf |fu + µ⊤

f |fuν − 1

2
C(x,y, σ2)− 1

2
f⊤u K−1

uu fu

)
dfu

)
= − 1

2
(Tr(σ−2J−1/2

w (K −K⊤
u K−1

uuKu)J
−1/2
w )− C(x,y, σ2))

+ log

(∫
Rn

exp

(
−1

2
f⊤u (K−1

uuKuσ
−2J−1

w K⊤
u K−1

uu +K−1
uu )fu + f⊤u K−1

uuKuν

)
dfu

)
integrating over fu and just arithmetic rules for matrix-vector multiplication, we obtain

ELBO(u) = − 1

2
(Tr(σ−2J−1/2

w (K −K⊤
u K−1

uuKu)J
−1/2
w )− C(x,y, σ2))

+ log

exp

(
1

2
ν⊤K⊤

u K−1
uu (K

−1
uu +K−1

uuKuσ
−2J−1

w K⊤
u K−1

uu )
−1K−1

uuKuν

)
√
det
(
K−1

uu +K−1
uuKuσ−2J−1

w K⊤
u K−1

uu

)


= − 1

2
(Tr(σ−2J−1/2

w (K −K⊤
u K−1

uuKu)J
−1/2
w )− C(x,y, σ2))

+ log

exp

(
1

2
ν⊤K⊤

u (Kuu +Kuσ
−2J−1

w K⊤
u )−1Kuν

)
√
det
(
K−1

uu +K−1
uuKuσ−2J−1

w K⊤
u K−1

uu

)


= − 1

2
(Tr(σ−2J−1/2

w (K −K⊤
u K−1

uuKu)J
−1/2
w )− C(x,y, σ2))

+
1

2
ν⊤K⊤

u (Kuu +Kuσ
−2J−1

w K⊤
u )−1Kuν +

1

2
log

(
det(Kuu)

2

det
(
Kuu +Kuσ−2J−1

w K⊤
u

))

A.6. Proof of Proposition 4.2

Let f ∼ GP(m, k), ε ∼ N (0, σ2). The UCB and PI acquisition functions for RCGPs are

aUCB-RCGP(x⋆) = µR
⋆ + λ(ΣR

⋆ )
1/2

aPI-RCGP(x⋆) = Φ
((

µR
⋆ − f(xmax)

)
(ΣR

⋆ )
−1/2

)
where Φ is the cdf of a standard normal, and xmax is the best solution we have so far.
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Proof. Since the RCGP posterior is Gaussian, we can straightforwardly define the upper confidence bound acquisition
function as

aUCB-RCGP(x⋆) = µR
⋆ + λ(ΣR

⋆ )
1/2

For probability of improvement, suppose that the best solution we have so far is xmax. We define the improvement function
as:

I(x⋆) = max(f(x⋆)− f(xmax), 0)

we know that f(x⋆) ∼ N (µR
⋆ ,Σ

R
⋆ ), therefore, we can rewrite it as f(x⋆) = µR

⋆ +ΣR
⋆ z, with z ∼ N (0, 1), leading to:

I(x⋆) = max(µR
⋆ +ΣR

⋆ z − f(xmax), 0) z ∼ N (0, 1)

Finally, we define the probabilty of improvement acquisition function as:

aPI-RCGP(x⋆) = P(I(x⋆) > 0)

= P(f(x⋆) > f(xmax))

= P(z >
(
f(xmax)− µR

⋆

)
(ΣR

⋆ )
−1/2)

= Φ
((

µR
⋆ − f(xmax)

)
(ΣR

⋆ )
−1/2

)

B. Additional Experimental Results
All the experiments were running on an Apple M2 Pro CPU with 16 GB of memory.

B.1. Prior mean

This section illustrates how the choice of the prior mean affects our method. In this particular example, we generated data
from a Gaussian Process (GP) with a zero mean and a periodic squared exponential kernel, where the length scale and
variance are set to 1, and the period is set to 3. We then added 1% of focused contamination near zero. Figure 9 demonstrates
the performance of two RCGPs on this dataset: the blue one with a zero prior mean and the brown one with a prior mean
selected through fitting a polynomial regression. Since the outliers in this dataset are close to zero, the method with a zero
prior mean does not identify them as outliers. In fact, as the outliers align exactly with the prior mean, the corresponding
weight assigned to them is the largest. This leads to a non-optimal performance. In contrast, for the brown RCGP, since the
prior mean is carefully chosen, the outliers are far from it and, therefore, are down-weighted, resulting in a posterior that
matches the true generative process.

−3 −2 −1 0 1 2 3

−4

−2

0

2

4
RCGP, prior mean m = 0

m = 0

RCGP, prior mean m = poly(x, y)

m = poly(x, y)

True
Data
Outliers

Figure 9. The posterior predictive mean of the RCGP with zero prior mean (blue) and the RCGP with a prior mean selected through fitting
a polynomial regression (brown) on a synthetic dataset where 1% of the data are focused generated outliers.

B.2. Implementation of Competing Methods

GP For the standard GP, we choose hyperparameters via maximum likelihood and utilise the implementation in GPflow
(Matthews et al., 2017)
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t-GP This model replaces the usual choice of Gaussian observation noise with a Student-t distributed observation noise;
i.e.

p(y|f(x), ν, σ2) =
Γ(ν+1

2 )
√
νπσ2 Γ(ν2 )

(
1 +

(y − f(x))2

νσ2

)−(ν+1)/2

where ν > 0 is the degrees of freedom and σ2 is the scale parameter. The challenge in this particular scenario lies in the
fact that both its posterior and posterior predictive distributions no longer lend analytically tractable, necessitating the use
of approximate inference methods. There are several ways to approximate this posterior: MCMC, Laplace’s method or
variational inference (Jylänki et al., 2011). Our experiments use the variational inference technique implemented in GPflow
(Matthews et al., 2017) to estimate the posterior, posterior predictive, and hyperparameter selection. 1 In particular, the
student-t GPflow implementation uses the variational approximation proposed by Opper & Archambeau (2009). The main
result of their work is that for a Gaussian process with a non-Gaussian likelihood, the optimal Gaussian approximation — in
terms of the Kullback-Leibler divergence — is given by the expression: q(f) = N (Kα, [K−1 + diag(λ)]−1), where K is
the kernel of the GP and α and λ are the variational parameters

m-GP This model explicitly considers the generation process of outliers as a uniform distribution over a bounded region–
that covers the output y. Then, each observation is associated with a latent variable z ∈ {0, 1}, where z = 0 indicates that
the observation is generated by outlier distribution and z = 1 inlier. Therefore, the observation model is

p(y, z|f(x), γ, σ2) =
(
(1− γ)

1

a

)1−z(
γN (y; f(x), σ2)

)z
,

where γ = p(z = 1), and a > 0 denotes the volume of the outlier region. The variable γ controls the probability of
occurrence of two models, and a Beta prior is assumed. Like t-GP, its posterior and posterior predictive distributions no
longer lend analytically tractable; thus, approximation is needed. We follow the official implementation provided in the
paper. 2

B.3. Benchmarking

B.3.1. DESCRIPTION OF THE DATASETS

Synthetic The dataset consists of n = 300 samples from a GP with zero mean and squared exponential kernel (length
scale and variance equal to 1). Then, we added Gaussian noise ε ∼ N (0, 0.3) to the observations. For the experiments, we
selected a GP prior with mean function m(x) = 1

n

∑n
i=1 yi, and squared exponential kernel as covariance function.

Boston The dataset consists of n = 506 observations, each representing a suburban or town area in Boston. It encompasses
d = 13 features containing data like the average number of rooms in dwellings, pupil-teacher ratios, and per capita crime
rates. We try to predict the median price of homes residents own (excluding rented properties). The dataset can be found
at https://www.cs.toronto.edu/˜delve/data/boston/bostonDetail.html. We selected a GP prior
with mean function m(x) = 1

n

∑n
i=1 yi, and squared exponential kernel as covariance function.

Energy The dataset describes the energy efficiency of buildings by correlating their heating and cooling load requirements
with various building parameters. It consists of n = 768 data samples, each characterised by d = 8 distinct features, with
the ultimate goal of predicting a single continuous response variable found in the last column. The dataset can be found at
https://archive.ics.uci.edu/dataset/242/energy+efficiency. We selected a GP prior with mean
function m(x) = 1

n

∑n
i=1 yi, and squared exponential kernel as covariance function.

Yacht The dataset’s main focus is on predicting the residuary resistance of sailing yachts during their initial design phase,
a critical aspect in evaluating a vessel’s performance and estimating the essential propulsive power required. This prediction
relies on d = 6 primary input parameters, which include the fundamental hull dimensions and boat velocity. The dataset
contains n = 308 observations. The dataset can be found at https://archive.ics.uci.edu/dataset/243/

1An official usage example of this implementation can be found here: https://gpflow.github.io/GPflow/
develop/notebooks/getting_started/classification_and_other_data_distributions.html#
Non-gaussian-regression

2https://github.com/YifanLu2000/Robust-Scalable-GPR
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yacht+hydrodynamics. We selected a GP prior with mean function m(x) = 1
n

∑n
i=1 yi, and squared exponential

kernel as covariance function.

B.3.2. DESCRIPTION OF THE OUTLIER GENERATION PROCESS

While contamination can occur in both the covariate x and the observation y, our work is focused on cases where
contamination exclusively affects the observations y. We now describe the three outlier generation processes presented in
this paper.

Uniform In this setting, our initial step involves uniformly selecting a specified proportion of the dataset that will be
contaminated. To uniformly contaminate the selection, we did a random 50-50 split of this subset: half of the selected subset
is contaminated by adding z ∼ U(3σ, 9σ), while the other half is contaminated by subtracting z ∼ U(3σ, 9σ) where σ is
the standard deviation of the original observations, and U denotes the uniform distribution.

Asymmetric Much like the uniform outliers, we randomly select a subset of data points that we will contaminate. The key
distinction lies in the fact that we do not split the selected subset; instead, we contaminate the entire subset by subtracting
z ∼ U(3σ, 9σ) where σ is the standard deviations of the original observations.

Focused In this outlier generation process, we randomly select and remove a subset of data points, which will be replaced
by outliers. For these outliers, we deterministically choose their values in X . To do so, we calculate the median value for
each input data dimension j. However, we do not place the outliers at this median position directly. Instead, we replace the
removed input values by (m1 + δ1,m2 + δ2 . . . ,md + δd)

⊤, where mj is the median in the j-th input data dimension, and
δj = αju, where αj is the median absolute deviation of the j-th data dimension times 0.1, and u ∼ U(0, 1). Simultaneously,
the outlier values on Y are obtained by subtracting three times the standard deviation of the median of the observations My .
To not have the same value for every outlier position, we also add a small perturbation δy = αyu, where αy is the median
absolute deviation of y times 0.1, and u ∼ U(0, 1).

B.3.3. ADDITIONAL RESULTS

We ran all benchmark experiments, choosing c via leave-one-out (‘c-LOO’), and compared it with the proposed way to
choose c (‘c-Qn’). Overall, the performance is slightly worse for c-LOO—likely because maximising the predictive posterior
for extreme observations tends to match/fit these outliers by increasing c, leading to a less robust method. Illustrative results
can be seen in Table 4.

Table 4. Average test set mean absolute error and standard deviation (in brackets) for 50 train–test splits.

GP c-LOO c-Qn

No Outliers
Synthetic 0.09 (0.00) 0.09 (0.00) 0.09 (0.00)
Boston 0.19 (0.01) 0.19 (0.01) 0.19 (0.01)
Energy 0.03 (0.00) 0.02 (0.00) 0.02 (0.00)
Yacht 0.02 (0.01) 0.02 (0.01) 0.02 (0.01)

Focused Outliers
Synthetic 0.19 (0.00) 0.17 (0.00) 0.15 (0.00)
Boston 0.23 (0.06) 0.22 (0.03) 0.22 (0.01)
Energy 0.03 (0.04) 0.02 (0.00) 0.02 (0.00)
Yacht 0.26 (0.15) 0.11 (0.13) 0.10 (0.14)

Asymmetric Outliers
Synthetic 1.14 (0.00) 1.08 (0.00) 0.63 (0.00)
Boston 0.63 (0.02) 0.61 (0.01) 0.49 (0.00)
Energy 0.54 (0.02) 0.37 (0.10) 0.44 (0.04)
Yacht 0.54 (0.06) 0.47 (0.03) 0.35 (0.02)
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B.4. Sparse Variational Gaussian Processes

This section presents a numerical comparison between SVGP and RCSVGP on the four benchmark datasets presented in
Appendix B.3, with three outliers regimes: no outliers, focused outliers, asymmetric outliers. For both methods, we selected
a GP prior with mean function m(x) = 1

n

∑n
i=1 yi, and squared exponential kernel as covariance function. We consider a

fixed noise variance σ2 = 0.01. Table 5 shows that RCSVGP outperforms SVGP even in cases without outliers.

Table 5. Average test set mean absolute error and standard deviation (in brackets) for 10 train–test splits.

SVGP SVRCGP SVGP SVRCGP SVGP SVRCGP

No Outliers Focused Outliers Asymmetric Outliers
Synthetic 0.08 (0.00) 0.08 (0.00) 0.19 (0.00) 0.13 (0.00) 1.32 (0.00) 1.02 (0.00)
Boston 0.65 (0.01) 0.56 (0.18) 0.64 (0.02) 0.55 (0.16) 0.65 (0.04) 0.64 (0.01)
Energy 0.02 (0.00) 0.03 (0.00) 0.05 (0.05) 0.05 (0.00 0.64 (0.05) 0.09 (0.16)
Yacht 0.01 (0.00) 0.03 (0.00) 0.29 (0.00) 0.13 (0.02) 0.65 (0.04) 0.60 (0.02)

B.5. Bayesian Optimisation

In the Bayesian optimisation experiment section, we compared RCGPs to GPs and t-GPs on two classical functions: the
Six-Hump Camel function and the Branin function. Here, we state the functions explicitly:

Six-Hump Camel: g1(x, x
′) =

(
4− 2.1x2 +

x4

3

)
x2 + xx′ + (4x′2 − 4)x′2 x ∈ (−2, 2), x′ ∈ (−1, 1)

Branin: g2(x, x
′) =

(
x′ − 5.1

4π2
x2 +

5

π
x− 6

)2

+ 10

(
1− 1

8π

)
cos(x) + 10 x ∈ (−5, 10), x′ ∈ (1, 15)

McCormick: g3(x, x
′) = sin(x+ x′) + (x− x′) + (−1.5x+ 2.5x′ + 1) x ∈ (−1.5, 4), x′ ∈ (−3, 4)

Rosenbrock: g4(x, x
′) = 100(x′ − x2)2 + (x2 − 1)2 x ∈ (−5, 10), x′ ∈ (−5, 1)

with global minima g1(x⋆, x
′
⋆) = −1.0316, g2(x⋆, x

′
⋆) = 0.3979, g3(x⋆, x

′
⋆) = −1.9133 and g4(x⋆, x

′
⋆) = 0.

In order to contaminate with outliers, we consider the scenario where, for each function evaluation, there is a 20% chance of
being contaminated by an asymmetric outlier generated as Appendix B.3.2. In order to not change the global minimum, we
consider the case where the outlier is bigger than the actual observation, i.e. asymmetric with adding a value.

We selected a GP prior with zero mean function and squared exponential kernel for the experiments for the three models.
Figure 10 shows the results using PI as the acquisition function. In terms of cumulative regret, RCGPs outperform GPs.
While t-GPs can match this, they take orders of magnitude longer to run.
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Figure 10. Mean cumulative regret (top) and clock time (bottom) for BO with GP (green), RCGP (blue) and t-GP (orange) with 20%
asymmetric outliers and PI acquisition function over 10 realisations.
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Figure 11 shows the results without outliers. In terms of cumulative regret, RCGPs match or sometimes outperform GPs.
While t-GPs can match this, they take orders of magnitude longer to run. It is notable that even without outliers.
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Figure 11. Mean cumulative regret (top) and clock time (bottom) for BO with GP (green), RCGP (blue) and t-GP (orange) without outliers
over 10 realisations.
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