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ABSTRACT

Tool invocation is a crucial mechanism for extending the capabilities of Large Lan-
guage Models (LLMs) and has recently garnered significant attention. It enables
LLMs to solve complex problems through tool calls while accessing up-to-date
world knowledge. However, existing work primarily focuses on the fundamental
ability of LLMs to invoke tools for problem-solving, without considering per-
sonalized constraints in tool invocation. In this work, we introduce the concept
of Personalized Tool Invocation and define two key tasks: Tool Personalization
and Parameter Personalization. Tool Personalization addresses user preferences
when selecting among functionally similar tools, while Parameter Personaliza-
tion considers cases where a user query lacks certain tool parameters, requiring
the model to infer them from the user profile. To tackle these challenges, we pro-
pose PTool, a data synthesis framework designed for personalized tool invocation.
Additionally, we construct PTBench, a benchmark to evaluate personalized tool
invocation. We then fine-tune various open-source models, demonstrating the ef-
fectiveness of our framework and providing valuable insights. Our model, training
data, and the benchmark will be publicly released upon acceptance.

1 INTRODUCTION

Recently, large language models (LLMs) have demonstrated remarkable capabilities in natural lan-
guage processing tasks, particularly in human-computer interaction, where they can effectively com-
prehend user queries and provide reasonable responses (Zhao et al., 2023). However, the knowledge
embedded within LLMs is not inherently up-to-date, as updating these models requires extensive
retraining with large-scale data, which incurs significant time and economic costs. To equip LLMs
with the ability to solve complex problems and access the latest information, tool invocation capa-
bilities are essential. For instance, LLMs can leverage mathematical tools to decompose and solve
intricate mathematical problems or utilize internet APIs (Liu et al., 2025; Qin et al., 2024) and search
engines (Schick et al., 2024; Nakano et al., 2021) to retrieve the most recent knowledge.

Existing research on enhancing LLMs’s tool invocation abilities primarily focuses on improving
fundamental capabilities (Qin et al., 2024; Yan et al., 2024; Lin et al., 2024), such as ensuring
adherence to the required syntax, comprehending tool functionalities, interpreting explicit user in-
structions, and extracting tool parameters. However, in real-world applications, user intents are often
implicit rather than explicitly stated, requiring models to infer based on personalized profiles. Re-
cent studies have begun to explore personalized tool invocation (Xu et al., 2025; Cheng et al., 2025),
yet a systematic definition is still lacking. Existing work typically relies on idealized assumptions
about user profiles–assuming that users’ implicit preferences are observable to the model. However,
such preferences are embedded in behavioral histories and are rarely provided explicitly in practice.

In this work, we first provide a systematic formulation of personalized tool invocation and highlight
two common concepts that exemplify this challenge: (1) Tool Personalization. When multiple
tools offer similar functionalities, users often exhibit specific preferences. For example, in on-
line shopping, users may choose different platforms depending on their preferences for particular
product categories. Some users may prioritize platforms with superior maintenance services when
purchasing high-value electronic products, despite the higher cost, while preferring platforms with
faster delivery when buying inexpensive daily necessities. Inferring such preferences necessitates
reasoning from user attributes, such as age, interests, and purchasing behavior. (2) Parameter Per-
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I want to buy a camera
as soon as possible

I want to buy some 
cheap snacks. 

1. Price sensitivity high
2. Job: IT programmer

Recommend some 
books for me

Tool: get_product_list

User profile

keyword book

Sort order price

Category IT

•Cheap
•Fast delivery

PLATFORM1

•Expensive
•Maintenanc
e service

Query

Query-related

Profile-related

Arguments Values

(a) Tool Personalization (b) Parameter Personalization

PLATFORM2

Figure 1: Examples of Personalized Tool Invocation. (a) Tool Personalization: Users may prefer
different tools with similar functionalities. (b) Parameter Personalization: Certain tool parameters
may be missing from the user’s query and must be inferred from the user’s profile.

sonalization. In everyday scenarios, users tend to express their needs concisely and omit crucial
details. For instance, a user might simply request, “Order me a hamburger from KFC”, without
specifying essential information such as the delivery address, recipient contact details, or preferred
delivery time. This requires the model to infer the missing information from the user profile, such
as the user’s work location, current time, and phone number, ensuring a seamless and accurate tool
invocation process. To enhance and systematically evaluate a model’s ability in personalized tool
invocation, we further introduce an automated data synthesis framework for this task, termed PTool,
which consists of three key stages: tool generation, user profile construction, and user behavior
simulation. Firstly, we consider several commonly used real-world scenarios, where each scenario
contains multiple functionally similar platforms organized in a hierarchical tree structure. We then
leverage an advanced LLM to recursively decompose platform functionalities using a depth-first
expansion approach, progressively refining them until distinct tools are defined for each functional
category. Secondly, we abstract and summarize platform features and API parameters to extract both
basic user attributes and personalized characteristics, including psychological traits and behavioral
tendencies. To construct a diverse set of user profiles, we employ a bottom-up clustering approach
for feature induction and a top-down assignment strategy for attribute allocation. Finally, we exploit
the role-playing capabilities of LLMs to simulate user behaviors based on the assigned user profiles,
generating both historical interactions and potential user queries. To establish reliable ground-truth
labels, we further integrate a multi-agent framework that conditions query generation on user pro-
files. Following manual review and annotation, we construct Personalized ToolBench (PTBench),
a benchmark designed to evaluate large models’ ability in personalized tool invocation, consisting
of 1,301 high-quality annotated data samples. Key contributions are summarized as follows:

• We propose a role-playing-based paradigm for personalized tool invocation towards real-world
applications, incorporating both user tool personalization and parameter personalization.

• We develop a systematic personalized data synthesis framework and construct PTBench, a bench-
mark for personalized tool invocation, enabling a comprehensive evaluation of the ability to invoke
tools based on user information.

• We demonstrate that training open-source models on our synthesized dataset significantly im-
proves personalized tool invocation capabilities, while also enhancing general tool invocation
without compromising other general abilities.

2 RELATED WORK

2.1 TOOL INVOCATION

Tool invocation (also termed tool calling) involves tool selection from candidate tools and parameter
extraction from queries. Existing works can be categorized into two tuning-free and tuning-based
methods (Qu et al., 2025; Liu et al.). Tuning-free methods mainly rely on the prompt strategy
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with few-shot learning, involving encouraging LLM to reason by providing examples (Yao et al.,
2022), rewriting tool documentation with LLMs to enhance the comprehension (Yuan et al., 2024),
summarizing tool description with more concise and precise sentence (Xu et al., 2024), leveraging
multi-agent collaboration to decompose the tool-calling task (Shi et al., 2024). Tuning-based meth-
ods leverage tool-learning samples to train existing LLMs, where the research problems comprise
data collection and training strategy. Toolformer (Schick et al., 2024) and ToolkenGPT (Hao et al.,
2024) add a special tool-related token into the vocabulary, switching the decoding process into tool
selection and calling. Some works leverage advanced LLM to synthesize tool-calling samples to
improve the tool-invocation ability of lightweight models, demonstrating the efficiency of the distil-
lation from advanced models (Qin et al., 2024; Yang et al., 2023b; Liu et al., 2025).

2.2 PERSONALIZED LLMS

Personalized LLMs represent LLMs that have been adapted to align with user preferences and char-
acteristics (Zhang et al., 2024c). Existing works mainly focus on the generation of personalized texts
or applications in information systems. LLMs are customized as personal conversational AI assis-
tants for various domains, including education (Kasneci et al., 2023; Dan et al., 2023; Park et al.,
2024), healthcare (Belyaeva et al., 2023; Abbasian et al., 2024; Jin et al., 2024), finance (Liu et al.,
2023; Lakkaraju et al., 2023), legal (Nguyen, 2023), and etc. User profiles are provided via prompts
or hidden representation, leading the model to generate personalized text in the dialog. Personalized
LLMs have been extensively applied in information systems such as recommender systems (Wu
et al., 2023; Chen et al., 2024). LLMs are leveraged as an augmentation module for traditional rec-
ommender systems, serving as the content interpreter (Bao et al., 2023; Li et al., 2023; Yang et al.,
2023a), the knowledge base (Xi et al., 2024; Wei et al., 2024), or the explainer (Lei et al., 2024;
Wang et al., 2023). Also, many works directly deploy LLMs as the direct recommenders via prompt
techniques (Lyu et al., 2024; Hou et al., 2024) or fine-tuning (Zhang et al.). Recent work has begun
to investigate personalized tool invocation by treating user characteristics as explicit profile features
for selecting appropriate tools (Xu et al., 2025; Cheng et al., 2025). However, these approaches over-
look a key challenge: in practical settings, users’ implicit preferences are not directly observable by
the model and instead must be inferred from their behavioral histories.

3 PERSONALIZED TOOL INVOCATION

We innovatively consider a practical and high-demand scenario in LLM tool invocation: personal-
ized tool invocation. This scenario requires the model to leverage user-specific information when
selecting and configuring tools to address user needs. In this chapter, we formally define the task of
personalized tool invocation.

Given an LLM with model parameters θ, the general tool invocation task requires the model, when
provided with a query q and a set of candidate tools T , to select the appropriate tool ti and populate
its corresponding parameters ai1, · · · , aim, forming the solution A = [(ti, ai1, · · · , aim), · · · ].
In conventional formulations of this task, correctness is typically determined by whether the selected
tool successfully resolves the query. However, this setting overlooks the fact that multiple tools may
solve one problem (e.g., APIs from different platforms with similar capabilities), and that users often
have preferences for certain tools–a concept we refer to as tool personalization, defined as follows:
Definition 3.1. (Tool Personalization) User u prefers t1 for query q1 and t2 for query q2, where
q1, q2 can be solved by both t1 and t2:

t1 ≻(u,q1) t
2; t2 ≻(u,q2) t

1 (1)

Moreover, in A, both tool selection and parameter values are determined solely based on the in-
formation contained in the query. For instance, consider the query: ”Book me a flight from Los
Angeles to New York at 8:45 AM tomorrow”. However, in real-world scenarios, users often do not
provide such detailed query information. Instead, they may omit certain essential details required
for tool invocation, meaning that the model cannot extract all necessary parameters from the query
alone. We refer to this personalized scenario as an Parameter Personalization, defined as follows:
Definition 3.2. (Parameter Personalization) Given the profile of the user u as Pu, the query q and
the solution A, there exists value α ∈ A, α ∈ Pu and α /∈ q. The phenomenon is called parameter
personalization, and the query q is called a profile-dependent query.
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Query Solution

Rule-based Checker
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Figure 2: Framework of our personalized tool invocation data synthesis: PTool. The pipeline com-
prises three stages: Tool Generation, User Profile Generation and Query and Answer Generation.

4 PERSONALIZED TOOL INVOCATION DATA SYNTHESIS

To address the two challenges in personalized tool invocation mentioned above, we propose an
automated data synthesis framework, PTool, for generating high-quality training and evaluation data
for personalized tool invocation. The framework consists of three key stages: Tool Generation,
User Profile Construction, and Query and Solution Generation, as illustrated in Figure 2. The
detailed processes of each stage are described in the subsequent parts of this section.

4.1 TOOL GENERATION

To cover the majority of scenarios encountered in daily life, we first constructed a diversified tool
library across multiple contexts. Inspired by existing work, we employed an advanced Large Lan-
guage Model (LLM)-based data synthesis method to generate APIs. Similar to ToolACE, we also
developed a structure akin to an API Tree, which allows for the generation of diverse tools.

Specifically, we initially define several demand scenarios from everyday life (e.g., shopping, food
delivery, office) as the first-level nodes of the tree. Then, using a depth-first expansion approach, we
iteratively refine the functionality at each node until we derive specific API descriptions as the leaf
nodes. Notably, in order to generate data that enhances the model’s Tool Personalization capability,
tools with similar functionalities are required. However, this API Tree expansion approach alone
cannot achieve this. Therefore, at the second level of the tree expansion, we introduce the concept
of platforms. For each scenario, we generated multiple platforms with distinct characteristics. For
example, in the video entertainment scenario, platforms such as YouTube and TikTok were included,
where YouTube focuses on long-form videos and TikTok emphasizes short, lifestyle-oriented clips.
This enables us to obtain multiple tools with functionally interchangeable capabilities.

4.2 USER PROFILE CONSTRUCTION

Personalization requires constructing diverse and realistic user profiles. This process involves three
key challenges: (1) defining feature sets relevant to tool invocation, ensuring a structured linkage
between user traits and tool selection; (2) maintaining sufficient diversity across profiles to enable
generalization to unseen users; and (3) ensuring that profiles contain only observable basic and
behavioral information, without incorporating detailed psychological attributes.

Bottom-up Feature Tree Construction. To systematically define user profile features, we adopt a
tool-driven hierarchical clustering approach. We construct a feature tree, where platform character-
istics and tool parameters serve as leaf nodes. Using LLM-based clustering, we recursively merge
semantically related parameters, summarizing them into higher-level features until the number of
parent nodes at each level falls within a predefined threshold. Notably, we categorize features dur-
ing initial clustering: explicit basic features (e.g., age, gender) are directly observable, while implicit
preferences (e.g., shopping preferences) remain latent and are used in user behavior generation.

Top-down Characteristic Assignment. Once the user feature tree is constructed, we encounter the
second issue: how to diversify the assignment of values to these features to generate distinct user
profiles. When using an advanced LLM to assign N different user features, two options typically
arise: one is to assign all features for a single user at a time and repeat this process N times; the other
is to assign all features for N users in one pass. The first method incurs higher inference costs and
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makes it challenging to avoid repetition across multiple generations, while the second is constrained
by the model’s context length limitation, especially when N or the number of features is large.
Therefore, we adopt a top-down hierarchical assignment based on the tree structure. Specifically,
for nodes at the l-th layer, we assign kl different values simultaneously, and for the (l + 1)-th layer
nodes, the model generates kl+1 different values for each parent node’s feature value. Thus, for a
user feature tree with depth L, we can ultimately obtain N =

∏L
l=0 kl distinct user profiles. It’s

important to note that each time the LLM generates kl, this number can be much smaller than N ,
allowing the LLM to generate diverse features in one pass.

User Behavior Generation. Once user profiles are assigned, they include both explicit basic fea-
tures (e.g., occupation, gender, location) and implicit preferences (e.g., price sensitivity, product
affinity). However, in real-world scenarios, user preferences are typically inferred through behav-
ioral patterns rather than explicitly stated. To simulate authentic behavioral traits, we employ an
LLM-based role-playing approach, where the model generates user actions on various platforms
based on their profile and platform characteristics. For instance, given a user’s preference for budget-
conscious shopping, the model may generate interactions such as ”searches for hiking backpacks on
Amazon” or ”purchases coffee from Walmart for $30.” While implicit preferences remain unob-
servable to the model during task execution, they are embedded in prompts when generating tool
invocation solutions, ensuring accurate and contextually appropriate tool selection.

4.3 QUERY AND SOLUTION GENERATION

For generating query-solution pairs, we adopt a multi-agent collaborative approach, involving two
agents: the user agent and the assistant agent. The user agent generates queries by role-playing
based on the user profile, while the assistant agent generates tool invocation solutions. The user
agent’s role information includes both basic and implicit features, as these provide a more accurate
user representation than explicit behavioral features.

Given that a user’s platform preferences may vary across queries, we explicitly incorporate platform
information into the user agent’s prompt. This enables the agent to generate queries aligned with
the user’s platform preferences. Additionally, we instruct the user agent to avoid revealing profile
information in the queries, ensuring the generation of profile-dependent queries as well.

To ensure the correctness of tool invocations, we employ a two-tier verification strategy: rule-based
validation and model-based verification. Rule-based validation checks the format of tool invocations
to prevent issues such as unresolvable results or hallucinated tools and parameters. Model-based
verification inputs the user profile, query, and solution triples into the LLM to verify parameter
correctness, detect hallucinations, and assess whether the solution effectively resolves the query.
Furthermore, to ensure evaluation accuracy, we manually inspect tool invocation parameters. These
parameters are annotated as profile-related or query-related, indicating whether they originate from
the user profile or the query, facilitating more precise error feedback during evaluation.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Dataset Details. We leverage GPT-4-turbo to synthesize the personalized tool invocation dataset
via our proposed framework. The overall dataset consists of a total of 80 users and 8,197 queries
under 5 scenarios, including shopping, takeout, entertainment, work, and travel. Under each sce-
nario, there are 3 platforms and 24 APIs in each platform as tools. We separate the dataset into
training and test sets, randomly selecting all queries of 6 users and about 6% queries of another 74
users to form the test set PTBench. The 6 users will not be visible to models in the training process,
termed as untrained. To ensure the quality of the test set, we manually verify each sample. Addi-
tionally, we construct a dataset comprising 116 samples from two unseen scenarios—finance and
lifestyle—which were not exposed to the models during training, to evaluate their generalization
capability. The statistics are illustrated in Appendix A.2.

Evaluation. We first evaluate the format accuracy by checking if the model’s output can give for-
matted output, verifying instruction following ability. The solution of each sample comprises two
parts: platform and tool invocation. The models are required to select the correct user-preferred plat-
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Table 1: Comparison with baseline models on PTBench in terms of accuracy. Bold and underline
represent the best and the 2nd best results. Tool-P denotes the tool personalization. T-* denotes the
correctness * in tool invocation. DS-R1-Dis is the abbreviation of DeepSeek-R1-Distill.

Type Model Format Tool-P Param Value Tool Invocation Overall

Query Profile T-name T-param T-value Trained Untrained Overall

API

GPT-4-turbo 97.78 54.84 81.23 68.32 91.78 77.09 35.18 18.34 18.56 18.47
GPT-4o 90.12 44.84 71.44 61.04 82.83 69.91 28.69 13.50 17.08 15.51

Deepseek-v3 90.95 52.80 73.09 64.16 84.60 75.30 30.85 17.08 17.57 17.36
Deepseek-r1 81.99 48.19 63.04 58.06 73.76 62.94 26.24 14.77 14.94 14.86
Qwen-max 76.92 49.46 60.94 54.40 70.91 58.43 23.48 14.56 17.07 15.97

Claude-3.5-sonnet 96.86 58.26 78.24 65.04 71.10 64.45 23.26 13.29 13.95 13.67

OSS

DS-R1-Llama-8B 64.27 30.19 38.23 30.12 50.80 38.02 9.81 4.85 3.94 4.34
DS-R1-Qwen-7B 60.95 14.69 23.41 10.39 36.56 21.13 2.21 0.42 0.66 0.55
Qwen2.5-7B-Inst 78.58 37.95 61.32 41.65 68.33 54.30 18.37 7.17 7.55 7.38

Llama-3.1-8B-Inst 88.65 40.53 66.48 51.41 79.97 62.52 21.33 9.29 9.85 9.60
Mistral-7B-v0.3 85.87 39.03 55.98 37.23 66.12 35.72 14.50 6.74 5.59 6.09
Hammer2.1-7b 96.49 36.38 72.96 52.59 84.02 63.16 22.62 7.39 6.89 7.11
ToolACE-8B 40.35 16.81 32.89 20.49 38.87 26.31 9.06 3.38 3.78 3.60
Watt-tool-8B 37.49 22.81 27.16 19.90 34.08 22.18 8.26 5.91 4.11 4.89
xLAM-7b-r 95.29 32.85 67.94 49.68 86.88 59.34 22.17 6.96 7.71 7.38

Ours 95.75 73.74 79.33 73.41 92.42 82.90 34.17 27.01 26.60 26.78

form and then generate suitable tool invocations. Platform accuracy demonstrates the ability of tool
preference understanding. The tool invocation consists of three parts: tool name, parameters, and
parameter values, where the parameter values comprise query-related and profile-related parameters.
Profile-related parameters require the model to infer from the user profile, evaluating the ability to
handle profile-dependent query. We calculate the accuracy of the function name, function parameter,
and function value, respectively. The calculations of accuracy are detailed in Appendix A.1.

Baselines. We compare the latest open-source models and API-based models, as well as fine-tuned
tool-calling models. Open-source models include DeepSeek-R1-Distill-Llama-8B(DeepSeek-AI,
2025), DeepSeek-R1-Distill-Qwen-7B(DeepSeek-AI, 2025), Qwen2.5-7B-Instruct(Team, 2024a;b),
Llama-3.1-8B-Instruct (AI@Meta, 2024) and Mistral-7B-Instruct-v0.3(Jiang et al., 2023). API-
based models include GPT-4-turbo1, GPT-4o1, Deepseek-v3(DeepSeek-AI, 2024), Deepseek-
r1(DeepSeek-AI, 2025), Qwen-max(Team, 2024b) and Claude-3.5-sonnet2. Models fine-tuned for
tool-calling include Hammer2.1-7b(Lin et al., 2024), ToolACE-8B(Liu et al., 2025), watt-tool-8B3

and xLAM-7b-r(Zhang et al., 2024b; Liu et al., 2024; Zhang et al., 2024a).

Implementation Details. To validate the effectiveness of our model, we conducted various experi-
ments by training LLMs with the synthesized dataset. We train the open-source LLM, Qwen2.5-7B-
Instruct(Team, 2024a;b), in the supervised fine-tuning (SFT) manner. Due to limited resources, we
adopt the parameter-efficient LoRA(Hu et al., 2022) training strategy to fine-tune the model. As for
the hyper-parameters setting, we set the rank as 8, alpha as 16 learning rate as 10−4, LR scheduler
as cosine, WarmUp Ratio as 0.1 and epoch as 1 for all modules in the model.

5.2 MAIN RESULTS

The overall results are illustrated in Table 1. The detailed results of trained and untrained users are
presented in Appendix A.2. We have the following findings according to the results:

Finding 1: API-based large models significantly outperform smaller OSS models across various
dimensions, including format compliance, tool preference capabilities, and tool invocation abilities.
This aligns with the findings of most benchmarks, primarily attributed to the enhanced capabilities
enabled by the larger scale of model parameters.

1https://chatgpt.com
2https://www.anthropic.com
3https://ollama.com
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Table 2: Ablation of user profile on PTBench. The models are trained with various variants. The
input in evaluation remains consistent with the training input.

Data Untrained Trained Overall

All 26.60 27.01 26.78
All w/o Basic 9.69 24.26 16.06
All w/o History 24.63 25.31 24.93
All w/o Basic&History 5.91 7.81 6.74

Finding 2: Most models fall short on the tool-preference task, including the state-of-the-art model–
GPT-4-turbo, indicating the high complexity of selecting a suitable one from several similar tools
according to the user profile. Our model outperforms nearly all models in all aspects by a consider-
able improvement, presenting the necessity of personalized tool-invocation enhancement.

Finding 3: Our model demonstrates a significant improvement in its performance across various
tasks on PTBench. Notably, the enhancement in the Tool Preference task is particularly pronounced
when compared to the pre-trained Qwen2.5-7B-Instruct model. This also indicates that, even with-
out additional manual verification of the training data, the model achieves a high accuracy, demon-
strating the effectiveness of the proposed synthesis framework. Additionally, our model shows a
significant improvement on untrained users, presenting the generalization of the model.

Finding 4: All models exhibit lower accuracy on profile-dependent parameter values compared to
query-dependent parameters, indicating that inferring parameters from the profile presents a greater
challenge. While our trained model does not surpass GPT-4-turbo in accuracy on query-dependent
parameters, it outperforms larger models on profile-dependent parameters. Furthermore, the im-
provement over the pre-trained Qwen2.5-7B-Instruct model is more substantial, demonstrating the
effectiveness of our data generation framework in handling the query-dependent query tasks.

5.3 ABLATION STUDY

To investigate the importance of various parts in our synthesized user profile, we conduct the ablation
study on the user profile, including 4 variants on the user profile:

• All. All information in the user profile is used, including basic features and behavioral history.

• All w/o Basic. Basic features are omitted.

• All w/o History. The behavioral history is given.

• All w/o Basic&History. Both basic features and behavioral history are omitted.

First, We use the four dataset variants to train and then evaluate the model with the consistent input.
The results are reported in Table 2. From the result, we can observe that the existence of user history
and basic features hold contributions to the overall performance of the model to an extent.

Additionally, we conduct experiments under two settings: (1) train the model with the All variant
and evaluate the model with the four variants, illustrated in Figure 3a; (2) train the model with
the four variants and evaluate the models with the All variant, illustrated in Figure 3b. The results
exhibit that the model shows poor performance in the tool preference task when lacking user history
information in training or evaluation. On the other hand, the accuracy of tool invocation suffers
when basic features are absent, led by the challenging profile-dependent query task.

To further confirm that the curated instructions can only be completed with personalized informa-
tion, we conducted an additional experiment where all personalized information was removed from
the instructions. As shown in Table 3, model performance decreases in all settings compared to main
results, with the most pronounced decline observed in the precision of tool values. These results con-
firm that personalized information is crucial and indispensable for achieving optimal performance.

7
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Table 3: Evaluating Model Performance Without Personalized Information.

Model Format Platform T-name T-param T-value Overall

GPT-4o 92.80 48.29 87.26 64.54 8.59 5.35
Deepseek-v3 98.34 51.25 91.69 77.28 10.16 5.72
Qwen2.5-7B-Instruct 90.58 44.32 82.64 64.64 8.96 4.16
Llama-3.1-8B-Instruct 95.29 43.31 87.35 69.07 9.23 3.97

Ours 95.57 52.34 96.51 87.55 6.18 5.91
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(a) User profile ablation in evaluation.

All-known History Basic Ignorance
0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy Overall

Platform
Tool

(b) User profile ablation in training.

Figure 3: Ablation study on user profile in evaluation and training, respectively.

5.4 ERROR ANALYSIS

To gain deeper insights into the types of errors made by the models during the evaluation, we conduct
investigations into the error types on our model, GPT-4-turbo, and Qwen2.5-7B-Instruct. We only
analyze solutions with the correct format.

We analyze the function errors generally and divide them into 6 categories: wrong tools, missing
tools, excessive tools, missing parameters, excessive parameters, and wrong parameters. The results
are shown in Figure 4. From the pie chart, it is evident that filling the correct parameters is more
challenging than the selection of the correct tools. After training with our synthesized data, the
model is more familiar with the candidate tools, demonstrating less error percentage in tool selection.

5.5 FURTHER ANALYSIS

Model Scaling. For the purpose of analyzing the influence of model size on the performance of our
trained model, we utilize models with different sizes in the Qwen2.5 series, including 7B, 3B, 1.5B
and 0.5B. The results are shown in Figure 5. We can observe that the 1.5B and 0.5B model only
show slight improvement from the training, while 3B and 7B model gain substantial improvement
from the training. This demonstrate that the personalized tool invocation is a high-level capability
of LLMs, requiring a certain scale of parameters.
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Figure 5: Study of model scaling. (Base model:
Qwen2.5-series.)

ARC

PTBench

CSQA

GSM8K

HumanEval

MMLUBFCL

xLAM-7B-r
llama3.1-8B-Instruct
Qwen2.5-7B-Instruct
ours

Figure 6: General Capabilities Analysis.
(Base model: Qwen2.5-7B-Instruct.)
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Table 4: Models performance results on new scenarios.Bold represents the best result.

Model Format Platform T-name T-param T-value Overall

GPT-4-turbo 91.80 38.37 76.32 55.30 16.92 5.48
Deepseek-v3 94.10 47.05 86.80 77.19 20.10 7.77
Qwen2.5-7B-Instruct 83.48 28.44 60.09 24.31 4.13 1.84
Llama-3.1-8B-Instruct 94.50 30.73 71.10 52.30 9.63 2.29
Hammer2.1-7b 94.04 33.03 75.23 37.16 9.63 4.59
xLAM-7b-r 98.62 26.61 83.49 41.28 10.55 3.67

Ours 100.00 73.39 88.99 75.69 26.15 18.35

4.1%

4.5%
0.9%

66.5%

8.8%

15.2%

GPT-4-turbo

5.3%

10.5%
0.9%

58.4%

6.5%

18.4%

Qwen2.5-7B-Instruct

1.2%
3.0%

0.5%

79.5%
13.0%

2.9%

Ours

T-wrong T-missing T-excessive P-wrong P-missing P-excessive

Figure 4: Error Analysis on PTBench. T-wrong, T-missing, and T-excessive represent wrong tools,
missing tools and excessive tools, respectively. P-missing, P-excessive and P-error represent missing
parameters, excessive parameters and wrong parameters, respectively.

Generalization to Unseen Scenarios. To further examine the generalizability of our model beyond
the five common scenarios, we conduct additional evaluation on unseen domains. Specifically, we
synthesized 218 samples covering three new scenarios: finance(42 samples), lifestyle(74 samples),
and knowledge(102 samples). As shown in Table 4, our model consistently outperforms the base-
lines under all domains, demonstrating strong robustness and adaptability. These results provide
evidence that the synthesized framework can be extended to a broader range of real-world scenarios.
Further derailed results are shown in Appendix A.2.

General Capabilities. In order to validate that our synthesized data does not introduce nega-
tive effects on the model’s general capabilities, we employ a diverse set of benchmarks to assess
the performance from different perspectives, Including general ability (MMLU (Hendrycks et al.,
2021a;b)), coding (HumanEval (Chen et al., 2021)), math (GSM8K (Cobbe et al., 2021)), reason-
ing (CommonSenseQA (Talmor et al., 2019)), abstract reasoning (ARC (Chollet, 2019)), and basic
function-calling (tool-invocation) ability (BFCL non-live (Yan et al., 2024)). xLAM-7B-r, LLaMA-
3-8B-Instruct, Raw Qwen2.5-7B-Instruct serve as baselines. The results are shown in Figure 6.
From the figure, it is evident that there is no significance deterioration on abilities of our model
compared to the raw model Qwen2.5-7B-Instruct. Nonetheless, our model gains a notable improve-
ment on BFCL non-live, These findings suggest that our approach effectively enhances personalized
functional calling capabilities without compromising the underlying LLM’s other abilities.

6 CONCLUSION

In this work, we introduce the concept of personalized tool invocation, which encompasses two
primary tasks: tool preference and profile-dependent queries. These tasks require the model’s ability
to understand the user’s profile, select preferred tools based on historical behavior, and extract tool
parameters from user information. To enhance and evaluate the model’s personalized tool invocation
capabilities, we propose a data synthesis framework and create a benchmark, PTBench, by manually
inspecting a subset of the generated data. Extensive experimental evaluations assess the personalized
tool invocation abilities of existing models, confirming the effectiveness of our synthesized data and
its harmlessness to other model capabilities.
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A EXPERIMENTS

A.1 EVALUATION METRICS

We categorize the PTBench metrics according to the key competencies required in personalized
tool-use scenarios as follows:

• General Tool Use Capabilities. This includes assessing format adherence through Format Ac-
curacy, selecting correct tool through Tool Name Accuracy, specifying valid parameter names
through Tool Parameter Accuracy, and filling correct values through Tool Parameter-Value Accu-
racy.

• Personalized Tool Use Capabilities. This includes (i) tool preference personalization, measured
by Platform Accuracy, and (ii) profile-dependent query personalization, measured by the Profile-
related Parameter-Value Accuracy.

The calculation of various metrics in PTBench are formulated as follows:

• Format Accuracy indicates the instruction-following ability.

format acc =
#parsable samples

#total
(2)

• Platform Accuracy indicates the tool preference recognition ability.

platform acc =
#correct platformsamples

#total
(3)

• Query-related Parameter-Value Accuracy indicates the ability to extract values from query.

query param acc =
#correct query params

#total query params
(4)

• Profile-related Parameter-Value Accuracy indicates the ability to extract values from profile.

profile param acc =
#correct profile params

#total profile params
(5)

• Tool Name Accuracy indicates the tool selection ability.

tool name acc =
#correct name samples

#total
(6)

• Tool Parameter Accuracy indicates the tool comprehension ability.

tool param acc =
#correct paramsamples

#total
(7)

• Tool Parameter-Value Accuracy indicate the value extraction on context ability.

tool value acc =
#correct value samples

#total
(8)

• Overall Accuracy on Trained Users indicate the personalized tool ability on trained users.

trained overall acc =
#correct trained samples

#trained total
(9)

• Overall Accuracy on Untrained Users indicate the personalized tool selection ability on trained
users.

untrained overall acc =
#correct untrained samples

#untrained total
(10)

• Overall Accuracy indicate the overall personalized tool selection ability.

overall acc =
#correct samples

#total
(11)
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Table 5: Statistics of our synthesized dataset. The samples in the test set are verified by human
annotators. Trained and untrained represent the user profiles present and absent in the training set,
respectively. Unseen scenario represents additional data used in generalization study.

Dataset #Scenario #Platform #API #User #Query

Train 5 15 360 74 7,096

Test(PTBench) 8 24 576 95 1,301
–Trained 5 15 360 74 474
–Untrained 5 15 360 6 609
–Unseen Scenarios 3 9 216 15 218

Total 8 21 576 95 8,397

A.2 DETAILED RESULTS

Dataset statistics. The statistics of our training and test sets are illustrated in Table 5.

Detailed results on trained and untrained user sets. The detailed results of the trained and un-
trained user set on PTBench are illustrated in Table 11 and Table 12, respectively.

Detailed results on three unseen scenarios. The detailed results of unseen scenarios (lifestyle,
finance, and knowledge) are illustrated in Table 6, Table 7 and Table 8, respectively.

Table 6: Models performance results on lifestyle scenario. Bold represents the best result.

Model Format Platform T-name T-param T-value Overall

GPT-4-turbo 98.65 41.90 94.60 70.27 20.27 4.05
Deepseek-v3 100.00 47.30 97.30 83.78 21.62 6.76
Qwen2.5-7B-Instruct 81.08 20.27 72.97 21.62 4.05 1.35
Llama-3.1-8B-Instruct 97.30 39.19 93.24 64.87 10.81 2.70
Hammer2.1-7b 91.89 25.67 87.84 36.49 8.10 2.70
xLAM-7b-r 97.30 28.38 95.95 44.59 8.11 2.70

Ours 100.00 63.51 97.30 82.43 27.03 14.86

Table 7: Models performance results on finance scenario. Bold represents the best result.

Model Format Platform T-name T-param T-value Overall

GPT-4-turbo 90.48 40.48 76.19 54.76 21.43 7.14
Deepseek-v3 100.00 54.76 90.48 80.95 23.81 11.90
Qwen2.5-7B-Instruct 83.33 30.95 54.76 21.43 7.14 4.76
Llama-3.1-8B-Instruct 90.48 33.33 59.52 47.62 4.76 2.38
Hammer2.1-7b 92.86 38.10 80.95 38.10 7.14 7.14
xLAM-7b-r 100.00 26.19 90.48 35.71 11.90 7.14

Ours 100.00 73.81 90.48 80.95 21.43 16.67

A.3 ADDITIONAL ANALYSIS ON RELATED WORKS.

Comparison with Existing Personalized Tool Benchmarks. We compare our benchmark with
existing personalized tool-use benchmarks, such as ETAPP (Hao et al., 2025) and ToolSpec-
trum (Cheng et al., 2025). Despite the concurrency, our benchmark maintains several substantive
advantages in terms of scale, personalization coverage, and profile design , which is shown in 9:

• Broader coverage: We include substantially more domains and tools.

• Comprehensive personalization definition: We jointly define personalization in both tool selec-
tion and parameter completion.
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Table 8: Models performance results on knowledge scenario. Bold represents the best result.

Model Format Platform T-name T-param T-value Overall

GPT-4-turbo 87.38 34.95 63.11 44.66 12.62 5.83
Deepseek-v3 87.38 43.69 77.67 70.87 17.48 6.80
Qwen2.5-7B-Instruct 85.29 33.33 52.94 27.45 2.94 0.98
Llama-3.1-8B-Instruct 94.12 23.53 59.80 45.10 10.78 1.96
Hammer2.1-7b 96.08 36.27 63.73 37.25 11.76 4.90
xLAM-7b-r 99.02 25.49 71.57 41.18 11.76 2.94

Ours 100.00 80.39 82.35 68.63 27.45 21.57

• More realistic profile design: Instead of using basic features + implicit preferences (where im-
plicit preferences are directly provided), we structure profiles as basic features + user history. This
design is closer to real-world settings, where users’ implicit preferences (e.g., price sensitivity) are
not explicitly written but must be inferred from behavioral history. This strengthens the practical
value of our data synthesis pipeline.

Table 9: Comparison among personalized tool-use benchmarks.

Benchmarks #Tools #Users #Samples Tool P. Param P. User Traj

ETAPP 35 16 800 ✓ ✗ ✗
ToolSpectrum 42 158 1000 ✓ ✓ ✗

Ours 360 85 1301 ✓ ✓ ✓

Generalization on other personalized tool benchmarks. To further investigate whether our
method generalizes beyond our proposed benchmark PTBench, we additionally evaluate the models
on two other personalized tool-use benchmarks: ACEBench (Chen et al., 2025) and ToolSpectrum
(Cheng et al., 2025). In addition to general-purpose model Qwen2.5-7B-Instruct, we also include
PEToolLLM (Xu et al., 2025) as strong personalized tool-use baselines, ensuring a fair and com-
prehensive comparison. The results are presented in Table 10. From the results, it is clear that our
model achieves consistent and robust improvements across all three benchmarks, demonstrating not
only its capability in general personalized tool invocation but also its effectiveness in handling di-
verse tool-use patterns. These observations collectively show that our synthesized data and training
strategy enable the model to generalize well across multiple personalized tool-use benchmarks.

Table 10: Performance on various personalized tool benchmarks. Bold represents the best result.

Model ACEBench ToolSpectrum PTBench

Qwen2.5-7B-Instruct 0.58 0.1759 0.0738
PETool-sft 0.34 0.1648 0.0433
PETool-sft-dpo 0.10 0.0133 0.0130

Ours 0.66 0.1782 0.2678

B HUMAN-IN-THE-LOOP VERIFICATION

In the human verification stage, we adopt a systematic evaluation and refinement protocol consisting
of three main steps.

B.1 DESIGNING EVALUATION CRITERIA

• Query Reasonableness: Ensures that queries include all required parameters, align with user
profiles, and exclude meaningless characters.
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• Platform Consistency: Checks whether the platform preference implied in the query is consistent
with the answer. If no explicit platform is specified, historical preferences from the user profile
are used for verification.

• Tool Invocation Accuracy: Verifies that the invoked tool appropriately addresses the query and
that its parameters are correctly specified.

B.2 HUMAN ANNOTATION AND REFINEMENT

A human annotator reviews queries, answers, and tool invocations against the above criteria, making
necessary corrections to ensure overall data quality.

A second annotator categorizes tool invocation parameters into two groups:

• Query-dependent Parameters: Explicitly provided in the user query.
• Profile-dependent Parameters: Not directly mentioned in the query but inferable from the user

profile.

This classification enables a fine-grained evaluation of accuracy on different parameters.

C EXAMPLES

To enhance the understanding of the proposed personalized tool invocation, we illustrate an example
in Figure 7.
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Table 11: Comparison with baseline models on trained users in PTBench. Bold and underline
represent the best and the 2nd best results.

Type Model Format Preference Param Value Tool Invocation Overall
Platform Query Profile T-name T-param T-value

API

GPT-4-turbo 0.9831 0.5569 0.7927 0.7080 0.9325 0.7869 0.3502 0.1834
GPT-4o 0.8840 0.4157 0.6520 0.6164 0.8143 0.6941 0.2637 0.1350
Deepseek-v3 0.8903 0.5043 0.6868 0.6508 0.8376 0.7617 0.3059 0.1708
Deepseek-r1 0.8376 0.4958 0.6112 0.6317 0.7637 0.6604 0.2574 0.1477
Qwen-max 0.6941 0.4430 0.5083 0.5162 0.6393 0.5358 0.2152 0.1456
Claude-3.5-sonnet 0.9662 0.5822 0.7519 0.6794 0.7152 0.6498 0.2236 0.1329

OSS

DeepSeek-R1-Distill-Llama-8B 0.6203 0.2891 0.3495 0.3111 0.4958 0.3925 0.1013 0.0485
DeepSeek-R1-Distill-Qwen-7B 0.6013 0.1519 0.2148 0.0954 0.3503 0.1941 0.0147 0.0042
Qwen2.5-7B-Instruct 0.7827 0.3882 0.5900 0.4447 0.6856 0.5612 0.1772 0.0717
Llama-3.1-8B-Instruct 0.8819 0.3797 0.6384 0.5439 0.8039 0.6498 0.2236 0.0929
Mistral-7B-Instruct-v0.3 0.8713 0.4198 0.5522 0.4113 0.6645 0.3734 0.1477 0.0674
Hammer2.1-7b 0.9641 0.3650 0.7126 0.5468 0.8439 0.6582 0.2257 0.0739
ToolACE-8B 0.4114 0.1709 0.3147 0.2061 0.3987 0.2721 0.0865 0.0338
Watt-tool-8B 0.3966 0.2405 0.2708 0.2156 0.3586 0.2510 0.0992 0.0591
xLAM-7b-r 0.9641 0.3586 0.6732 0.5315 0.8881 0.6329 0.2194 0.0696

Ours 0.9662 0.7826 0.7791 0.7653 0.9409 0.8628 0.3333 0.2701

Table 12: Comparison with baseline models on untrained users in PTBench. Bold and underline
represent the best and the 2nd best results.

Type Model Format Preference Param Value Tool Invocation Overall
Platform Query Profile T-name T-param T-value

API

GPT-4-turbo 0.9737 0.5419 0.8266 0.6637 0.9064 0.7586 0.3531 0.1856
GPT-4o 0.9146 0.4746 0.7596 0.6057 0.8391 0.7028 0.3054 0.1708
Deepseek-v3 0.9245 0.5468 0.7629 0.6343 0.8522 0.7455 0.3104 0.1757
Deepseek-r1 0.8062 0.4712 0.6443 0.5403 0.7175 0.6059 0.2660 0.1494
Qwen-max 0.8276 0.5353 0.6828 0.5658 0.7635 0.6207 0.2496 0.1707
Claude-3.5-sonnet 0.9704 0.5829 0.8046 0.6275 0.7077 0.6404 0.2397 0.1395

OSS

DeepSeek-R1-Distill-Llama-8B 0.6601 0.3120 0.4061 0.2935 0.5173 0.3695 0.0953 0.0394
DeepSeek-R1-Distill-Qwen-7B 0.6158 0.1429 0.2481 0.1106 0.3777 0.2250 0.0279 0.0066
Qwen2.5-7B-Instruct 0.7882 0.3727 0.6301 0.3943 0.6815 0.5287 0.1889 0.0755
Llama-3.1-8B-Instruct 0.8900 0.4253 0.6839 0.4906 0.7964 0.6059 0.2052 0.0985
Mistral-7B-Instruct-v0.3 0.8489 0.3678 0.5653 0.3416 0.6584 0.3448 0.1429 0.0559
Hammer2.1-7b 0.9655 0.3629 0.7420 0.5094 0.8374 0.6109 0.2266 0.0689
ToolACE-8B 0.3974 0.1659 0.3392 0.2039 0.3810 0.2562 0.0936 0.0378
Watt-tool-8B 0.3580 0.2184 0.2722 0.1859 0.3268 0.2003 0.0706 0.0411
xLAM-7b-r 0.9442 0.3054 0.6839 0.4695 0.8538 0.5632 0.2233 0.0771

Ours 0.9507 0.7028 0.8035 0.7096 0.9112 0.8030 0.3481 0.2660
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[SYSTEM]
You are given a user profile:

{
"basic_features":{

"username":"WineTraveler38",
...

}
"user_history":{
"shopping":[{

"platform":"MegaMart",
"action":"Purchased a selection of premium imported wines"

}
]

}
}

Here is some platforms under the scenario:

[{
"name":"MegaMart",
"profile":{

"product range":"A wide-ranging product from various categories."
...

}
}
...

]

Here is some APIs under the platforms:

[{
’type’: ’function’,
’function’: {

’name’: ’registerUser’,
’description’: ’Registers a new user in the application.’,
’parameters’: {

’type’: ’object’,
’properties’: {

’username’: {
’type’: ’string’,
’description’: \"User’s chosen username.\"

},
...

},
’required’: [’username’, ’password’, ’email’]

},
’response’: {

’type’: ’object’,
’properties’: {

’success’: {
’type’: ’boolean’,
’description’: ’Status of registration.’

},
...

}
}

}
},
...

]

The user will give you a query. Based on the profile, try to solve the query by using the platforms and APIs. The platform you choose
should fit the user profile or the needs of the user’s query. All the necessary information are provided in the user profile. DO NOT
ask the user for further information. You should respond in the format of {platform:[func1(param1 name = param1 value, param2...),
func2...]} No other text MUST be included.

[USER]
Could you please register an account for me using my username, password and email address, and setting my home location to my
place of residence? I prefer not to receive any marketing emails.

[ASSISTANT]

{
MegaMart:[
registerUser(

username=’WineTraveler38’, password=’strongpassword123!’,
email=’jeanlucbordeaux@email.com’, preferredLanguage=’French’,
marketingConsent=False, homeLocation=’Paris, France’

)
]

}

Figure 7: Illustration of personalized tool invocation task. The blue part is the expected output.
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