
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADVANCING AND BENCHMARKING PERSONALIZED
TOOL INVOCATION FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tool invocation is a crucial mechanism for extending the capabilities of Large Lan-
guage Models (LLMs) and has recently garnered significant attention. It enables
LLMs to solve complex problems through tool calls while accessing up-to-date
world knowledge. However, existing work primarily focuses on the fundamental
ability of LLMs to invoke tools for problem-solving, without considering person-
alized constraints in tool invocation. In this work, we introduce the concept of
Personalized Tool Invocation and define two key tasks: Tool Personalization and
Parameter Personalization. Tool Personalization addresses user preferences when
selecting among functionally similar tools, while Parameter Personalization con-
siders cases where a user query lacks certain tool parameters, requiring the model
to infer them from the user profile. To tackle these challenges, we propose PTool,
a data synthesis framework designed for personalized tool invocation. Addition-
ally, we construct PTBench, the first benchmark to evaluate personalized tool
invocation. We then fine-tune various open-source models, demonstrating the ef-
fectiveness of our framework and providing valuable insights. Our model, training
data, and the benchmark will be publicly released upon acceptance.

1 INTRODUCTION

Recently, large language models (LLMs) have demonstrated remarkable capabilities in natural lan-
guage processing tasks, particularly in human-computer interaction, where they can effectively com-
prehend user queries and provide reasonable responses (Zhao et al., 2023). However, the knowledge
embedded within LLMs is not inherently up-to-date, as updating these models requires extensive
retraining with large-scale data, which incurs significant time and economic costs. To equip LLMs
with the ability to solve complex problems and access the latest information, tool invocation capa-
bilities are essential. For instance, LLMs can leverage mathematical tools to decompose and solve
intricate mathematical problems or utilize internet APIs (Liu et al., 2025; Qin et al., 2024) and search
engines (Schick et al., 2024; Nakano et al., 2021) to retrieve the most recent knowledge.

Existing research on enhancing LLMs’s tool invocation abilities primarily focuses on improving
fundamental capabilities (Qin et al., 2024; Yan et al., 2024; Lin et al., 2024), such as ensuring adher-
ence to the required tool invocation syntax, comprehending tool functionalities, interpreting explicit
user instructions, and extracting tool parameters. However, in real-world applications, user intents
are often implicit rather than explicitly stated, requiring models to infer based on personalized pro-
files and behavioral history before invoking tools. Two common scenarios illustrate this challenge
on personalized tool invocation: (1) Tool Personalization. When multiple tools offer similar func-
tionalities, users often exhibit specific preferences. For example, in online shopping, users may
choose different platforms depending on their preferences for particular product categories. Some
users may prioritize platforms with superior maintenance services when purchasing high-value elec-
tronic products, despite the higher cost, while preferring platforms with faster delivery when buying
inexpensive daily necessities. Inferring such preferences necessitates reasoning from user attributes,
such as age, interests, and purchasing behavior. (2) Parameter Personalization. In everyday sce-
narios, users tend to express their needs concisely and omit crucial details. For instance, a user might
simply request, “Order me a hamburger from KFC”, without specifying essential information such
as the delivery address, recipient contact details, or preferred delivery time. This requires the model
to infer the missing information from the user profile, such as the user’s work location, current time,
and phone number, ensuring a seamless and accurate tool invocation process.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

I want to buy a camera
as soon as possible

I want to buy some
cheap snacks.

1. Price sensitivity high
2. Job: IT programmer

Recommend some
books for me

Tool: get_product_list

User profile

keyword book

Sort order price

Category IT

•Cheap
•Fast delivery

PLATFORM1

•Expensive
•Maintenanc
e service

Query

Query-related

Profile-related

Arguments Values

(a) Tool Personalization (b) Parameter Personalization

PLATFORM2

Figure 1: Examples of Personalized Tool Invocation. (a) Tool Personalization: Users may prefer
different tools for similar functionalities depending on the query context. (b) Parameter Personal-
ization: Certain tool parameters may be missing from the user’s query and must be inferred from
the user’s profile.

In this work, we propose the novel task of personalized tool invocation, aiming to address the afore-
mentioned critical challenges. To enhance and systematically evaluate a model’s ability in person-
alized tool invocation, we further introduce an automated data synthesis framework for this task,
termed PTool, which consists of three key stages: tool generation, user profile construction, and
user behavior simulation. Firstly, we consider several commonly used real-world scenarios, where
each scenario contains multiple functionally similar platforms organized in a hierarchical tree struc-
ture. We then leverage an advanced LLM to recursively decompose platform functionalities using a
depth-first expansion approach, progressively refining them until distinct tools are defined for each
functional category. Secondly, we abstract and summarize platform features and API parameters to
extract both basic user attributes and personalized characteristics, including psychological traits and
behavioral tendencies. To construct a diverse set of user profiles, we employ a bottom-up clustering
approach for feature induction and a top-down assignment strategy for attribute allocation. Finally,
we exploit the role-playing capabilities of LLMs to simulate user behaviors based on the assigned
user profiles, generating both historical interactions and potential user queries. To establish reliable
ground-truth labels, we further integrate a multi-agent framework that conditions query generation
on user profiles. Following manual review and annotation, we construct Personalized ToolBench
(PTBench), the first benchmark designed to evaluate large models’ ability in personalized tool invo-
cation, consisting of 1,199 high-quality annotated data samples. Key contributions are summarized
as follows:

• We propose the first paradigm for personalized tool invocation, incorporating both user tool per-
sonalization and parameter personalization, two key challenges in real-world applications.

• We develop a systematic personalized data synthesis framework and construct PTBench, the first
benchmark for personalized tool invocation, enabling a comprehensive evaluation of models’ abil-
ity to invoke tools based on user information.

• We demonstrate that training open-source models on our synthesized dataset significantly im-
proves personalized tool invocation capabilities, while also enhancing general tool invocation
without compromising other general abilities.

2 RELATED WORK

2.1 TOOL INVOCATION

Tool invocation (also termed tool calling) involves tool selection from candidate tools and parameter
extraction from queries. Existing works can be categorized into two tuning-free and tuning-based
methods (Qu et al., 2025; Liu et al.). Tuning-free methods mainly rely on the prompt strategy
with few-shot learning, involving encouraging LLM to reason by providing examples (Yao et al.,
2022), rewriting tool documentation with LLMs to enhance the comprehension (Yuan et al., 2024),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

summarizing tool description with more concise and precise sentence (Xu et al., 2024), leveraging
multi-agent collaboration to decompose the tool-calling task (Shi et al., 2024). Tuning-based meth-
ods leverage tool-learning samples to train existing LLMs, where the research problems comprise
data collection and training strategy. Toolformer (Schick et al., 2024) and ToolkenGPT (Hao et al.,
2024) add a special tool-related token into the vocabulary, switching the decoding process into tool
selection and calling. Some works leverage advanced LLM to synthesize tool-calling samples to
improve the tool-invocation ability of lightweight models, demonstrating the efficiency of the distil-
lation from advanced models (Qin et al., 2024; Yang et al., 2023b; Liu et al., 2025).

2.2 PERSONALIZED LLMS

Personalized LLMs represent LLMs that have been adapted to align with user preferences and char-
acteristics (Zhang et al., 2024c). Existing works mainly focus on the generation of personalized texts
or applications in information systems. LLMs are customized as personal conversational AI assis-
tants for various domains, including education (Kasneci et al., 2023; Dan et al., 2023; Park et al.,
2024), healthcare (Belyaeva et al., 2023; Abbasian et al., 2024; Jin et al., 2024), finance (Liu et al.,
2023; Lakkaraju et al., 2023), legal (Nguyen, 2023), and etc. User profiles are provided via prompts
or hidden representation, leading the model to generate personalized text in the dialog. Personalized
LLMs have been extensively applied in information systems such as recommender systems (Wu
et al., 2023; Chen et al., 2024). LLMs are leveraged as an augmentation module for traditional rec-
ommender systems, serving as the content interpreter (Bao et al., 2023; Li et al., 2023; Yang et al.,
2023a), the knowledge base (Xi et al., 2024; Wei et al., 2024), or the explainer (Lei et al., 2024; ?).
Also, many works directly deploy LLMs as the direct recommenders via prompt techniques (?Hou
et al., 2024) or fine-tuning (Zhang et al.). However, there is no work considering personalization in
tool learning. This work is the first to propose personalized tool invocation for LLMs.

3 PERSONALIZED TOOL INVOCATION

We innovatively consider a practical and high-demand scenario in LLM tool invocation: personal-
ized tool invocation. This scenario requires the model to leverage user-specific information when
selecting and configuring tools to address user needs. In this chapter, we formally define the task of
personalized tool invocation.

Given an LLM with model parameters θ, the general tool invocation task requires the model, when
provided with a query q and a set of candidate tools T , to select the appropriate tool ti and populate
its corresponding parameters ai1, · · · , aim, forming the solution A = [(ti, ai1, · · · , aim), · · ·].
In conventional formulations of this task, correctness is typically determined by whether the selected
tool successfully resolves the query. However, this setting overlooks the fact that multiple tools may
solve one problem (e.g., APIs from different platforms with similar capabilities), and that users often
have preferences for certain tools–a concept we refer to as tool personalization, defined as follows:

Definition 3.1. (Tool Personalization) User u prefers t1 for query q1 and t2 for query q2, where
q1, q2 can be solved by both t1 and t2:

t1 ≻(u,q1) t
2; t2 ≻(u,q2) t

1 (1)

Moreover, in A, both tool selection and parameter values are determined solely based on the in-
formation contained in the query. For instance, consider the query: ”Book me a flight from Los
Angeles to New York at 8:45 AM tomorrow”. However, in real-world scenarios, users often do not
provide such detailed query information. Instead, they may omit certain essential details required
for tool invocation, meaning that the model cannot extract all necessary parameters from the query
alone. We refer to this personalized scenario as an Parameter Personalization, defined as follows:

Definition 3.2. (Parameter Personalization) Given the profile of the user u as Pu, the query q and
the solution A, there exists value α ∈ A, α ∈ Pu and α /∈ q. The phenomenon is called parameter
personalization, and the query q is called a profile-dependent query.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

User Profile Construction

implicit
preference 2basic feature1 basic feature2 implicit

preference 1

arg 1 arg 2 arg 3 arg ... arg n

Feature 1 Feature 2

User Feature Tree

... ...

User
features

1. Clustering 2. Assigning

LLM

PlatformsScenario

history

basic

3. Role Playing

Profile

Tool Generation

Scenario 1 Scenario 2 Scenario 3

Platform 1 Platform 2

API 1 API 2
APIs

real
world

Args

Function 1 Function 2

...

ArgsPlatforms

API TreeDepth-First
Expansion

Query and Solution Generation

Basic
Features

Implicit
Preferences

LLM

User Agent

APIs Platforms

LLM

Assistant Agent

Query Solution

Rule-based Checker

LLM-based Checker

Figure 2: Framework of our personalized tool invocation data synthesis: PTool. The pipeline com-
prises three stages: Tool Generation, User Profile Generation and Query and Answer Generation.

4 PERSONALIZED TOOL INVOCATION DATA SYNTHESIS

To address the two challenges in personalized tool invocation mentioned above, we propose an
automated data synthesis framework, PTool, for generating high-quality training and evaluation data
for personalized tool invocation. The framework consists of three key stages: Tool Generation,
User Profile Construction, and Query and Solution Generation, as illustrated in Figure 2. The
detailed processes of each stage are described in the subsequent parts of this section.

4.1 TOOL GENERATION

To cover the majority of scenarios encountered in daily life, we first constructed a diversified tool
library across multiple contexts. Inspired by existing work, we employed an advanced Large Lan-
guage Model (LLM)-based data synthesis method to generate APIs. Similar to ToolACE, we also
developed a structure akin to an API Tree, which allows for the generation of diverse tools.

Specifically, we initially define several demand scenarios from everyday life (e.g., shopping, food
delivery, office) as the first-level nodes of the tree. Then, using a depth-first expansion approach, we
iteratively refine the functionality at each node until we derive specific API descriptions as the leaf
nodes. Notably, in order to generate data that enhances the model’s Tool Personalization capability,
tools with similar functionalities are required. However, this API Tree expansion approach alone
cannot achieve this. Therefore, at the second level of the tree expansion, we introduce the concept
of platforms. For each scenario, we generated multiple platforms with distinct characteristics. For
example, in the video entertainment scenario, platforms such as YouTube and TikTok were included,
where YouTube focuses on long-form videos and TikTok emphasizes short, lifestyle-oriented clips.
This enables us to obtain multiple tools with functionally interchangeable capabilities.

4.2 USER PROFILE CONSTRUCTION

Personalization requires constructing diverse and realistic user profiles. This process involves three
key challenges: (1) defining feature sets relevant to tool invocation, ensuring a structured linkage
between user traits and tool selection; (2) maintaining sufficient diversity across profiles to enable
generalization to unseen users; and (3) ensuring that profiles contain only observable basic and
behavioral information, without incorporating detailed psychological attributes.

Bottom-up Feature Tree Construction. To systematically define user profile features, we adopt a
tool-driven hierarchical clustering approach. We construct a feature tree, where platform character-
istics and tool parameters serve as leaf nodes. Using LLM-based clustering, we recursively merge
semantically related parameters, summarizing them into higher-level features until the number of
parent nodes at each level falls within a predefined threshold. Notably, we categorize features dur-
ing initial clustering: explicit basic features (e.g., age, gender) are directly observable, while implicit
preferences (e.g., shopping preferences) remain latent and are used in user behavior generation.

Top-down Characteristic Assignment. Once the user feature tree is constructed, we encounter the
second issue: how to diversify the assignment of values to these features to generate distinct user
profiles. When using an advanced LLM to assign N different user features, two options typically
arise: one is to assign all features for a single user at a time and repeat this process N times; the other
is to assign all features for N users in one pass. The first method incurs higher inference costs and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

makes it challenging to avoid repetition across multiple generations, while the second is constrained
by the model’s context length limitation, especially when N or the number of features is large.
Therefore, we adopt a top-down hierarchical assignment based on the tree structure. Specifically,
for nodes at the l-th layer, we assign kl different values simultaneously, and for the (l + 1)-th layer
nodes, the model generates kl+1 different values for each parent node’s feature value. Thus, for a
user feature tree with depth L, we can ultimately obtain N =

∏L
l=0 kl distinct user profiles. It’s

important to note that each time the LLM generates kl, this number can be much smaller than N ,
allowing the LLM to generate diverse features in one pass.

User Behavior Generation. Once user profiles are assigned, they include both explicit basic fea-
tures (e.g., occupation, gender, location) and implicit preferences (e.g., price sensitivity, product
affinity). However, in real-world scenarios, user preferences are typically inferred through behav-
ioral patterns rather than explicitly stated. To simulate authentic behavioral traits, we employ an
LLM-based role-playing approach, where the model generates user actions on various platforms
based on their profile and platform characteristics. For instance, given a user’s preference for budget-
conscious shopping, the model may generate interactions such as ”searches for hiking backpacks on
Amazon” or ”purchases coffee from Walmart for $30.” While implicit preferences remain unob-
servable to the model during task execution, they are embedded in prompts when generating tool
invocation solutions, ensuring accurate and contextually appropriate tool selection.

4.3 QUERY AND SOLUTION GENERATION

For generating query-solution pairs, we adopt a multi-agent collaborative approach, involving two
agents: the user agent and the assistant agent. The user agent generates queries by role-playing
based on the user profile, while the assistant agent generates tool invocation solutions. The user
agent’s role information includes both basic and implicit features, as these provide a more accurate
user representation than explicit behavioral features.

Given that a user’s platform preferences may vary across queries, we explicitly incorporate platform
information into the user agent’s prompt. This enables the agent to generate queries aligned with
the user’s platform preferences. Additionally, we instruct the user agent to avoid revealing profile
information in the queries, ensuring the generation of profile-dependent queries as well.

To ensure the correctness of tool invocations, we employ a two-tier verification strategy: rule-based
validation and model-based verification. Rule-based validation checks the format of tool invocations
to prevent issues such as unresolvable results or hallucinated tools and parameters. Model-based
verification inputs the user profile, query, and solution triples into the LLM to verify parameter
correctness, detect hallucinations, and assess whether the solution effectively resolves the query.
Furthermore, to ensure evaluation accuracy, we manually inspect tool invocation parameters. These
parameters are annotated as profile-related or query-related, indicating whether they originate from
the user profile or the query, facilitating more precise error feedback during evaluation.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Dataset Details. We leverage GPT-4-turbo to synthesize the personalized tool invocation dataset
via our proposed framework. The overall dataset consists of a total of 80 users and 8,197 queries
under 5 scenarios, including shopping, takeout, entertainment, work, and travel. Under each sce-
nario, there are 3 platforms and 24 APIs in each platform as tools. We separate the dataset into
training and test sets, randomly selecting all queries of 6 users and about 6% queries of another 74
users to form the test set PTBench. The 6 users will not be visible to models in the training process,
termed as untrained. To ensure the quality of the test set, we manually verify each sample. Addi-
tionally, we construct a dataset comprising 116 samples from two unseen scenarios—finance and
lifestyle—which were not exposed to the models during training, to evaluate their generalization
capability. The statistics are illustrated in Appendix A.2.

Evaluation. We first evaluate the format accuracy by checking if the model’s output can give for-
matted output, verifying instruction following ability. The solution of each sample comprises two
parts: platform and tool invocation. The models are required to select the correct user-preferred plat-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Comparison with baseline models on PTBench in terms of accuracy. Bold and underline
represent the best and the 2nd best results. Tool-P denotes the tool personalization. T-* denotes the
correctness * in tool invocation. DS-R1-Dis is the abbreviation of DeepSeek-R1-Distill.

Type Model Format Tool-P Param Value Tool Invocation Overall

Query Profile T-name T-param T-value Trained Untrained Overall

API

GPT-4-turbo 97.78 54.84 81.23 68.32 91.78 77.09 35.18 18.34 18.56 18.47
GPT-4o 90.12 44.84 71.44 61.04 82.83 69.91 28.69 13.50 17.08 15.51

Deepseek-v3 90.95 52.80 73.09 64.16 84.60 75.30 30.85 17.08 17.57 17.36
Deepseek-r1 81.99 48.19 63.04 58.06 73.76 62.94 26.24 14.77 14.94 14.86
Qwen-max 76.92 49.46 60.94 54.40 70.91 58.43 23.48 14.56 17.07 15.97

Claude-3.5-sonnet 96.86 58.26 78.24 65.04 71.10 64.45 23.26 13.29 13.95 13.67

OSS

DS-R1-Llama-8B 64.27 30.19 38.23 30.12 50.80 38.02 9.81 4.85 3.94 4.34
DS-R1-Qwen-7B 60.95 14.69 23.41 10.39 36.56 21.13 2.21 0.42 0.66 0.55
Qwen2.5-7B-Inst 78.58 37.95 61.32 41.65 68.33 54.30 18.37 7.17 7.55 7.38

Llama-3.1-8B-Inst 88.65 40.53 66.48 51.41 79.97 62.52 21.33 9.29 9.85 9.60
Mistral-7B-v0.3 85.87 39.03 55.98 37.23 66.12 35.72 14.50 6.74 5.59 6.09
Hammer2.1-7b 96.49 36.38 72.96 52.59 84.02 63.16 22.62 7.39 6.89 7.11
ToolACE-8B 40.35 16.81 32.89 20.49 38.87 26.31 9.06 3.38 3.78 3.60
Watt-tool-8B 37.49 22.81 27.16 19.90 34.08 22.18 8.26 5.91 4.11 4.89
xLAM-7b-r 95.29 32.85 67.94 49.68 86.88 59.34 22.17 6.96 7.71 7.38

Ours 95.75 73.74 79.33 73.41 92.42 82.90 34.17 27.01 26.60 26.78

form and then generate suitable tool invocations. Platform accuracy demonstrates the ability of tool
preference understanding. The tool invocation consists of three parts: tool name, parameters, and
parameter values, where the parameter values comprise query-related and profile-related parameters.
Profile-related parameters require the model to infer from the user profile, evaluating the ability to
handle profile-dependent query. We calculate the accuracy of the function name, function parameter,
and function value, respectively. The calculations of accuracy are detailed in Appendix A.1.

Baselines. We compare the latest open-source models and API-based models, as well as fine-tuned
tool-calling models. Open-source models include DeepSeek-R1-Distill-Llama-8B(DeepSeek-AI,
2025), DeepSeek-R1-Distill-Qwen-7B(DeepSeek-AI, 2025), Qwen2.5-7B-Instruct(Team, 2024a;b),
Llama-3.1-8B-Instruct (AI@Meta, 2024) and Mistral-7B-Instruct-v0.3(Jiang et al., 2023). API-
based models include GPT-4-turbo1, GPT-4o1, Deepseek-v3(DeepSeek-AI, 2024), Deepseek-
r1(DeepSeek-AI, 2025), Qwen-max(Team, 2024b) and Claude-3.5-sonnet2. Models fine-tuned for
tool-calling include Hammer2.1-7b(Lin et al., 2024), ToolACE-8B(Liu et al., 2025), watt-tool-8B3

and xLAM-7b-r(Zhang et al., 2024b; Liu et al., 2024; Zhang et al., 2024a).

Implementation Details. To validate the effectiveness of our model, we conducted various experi-
ments by training LLMs with the synthesized dataset. We train the open-source LLM, Qwen2.5-7B-
Instruct(Team, 2024a;b), in the supervised fine-tuning (SFT) manner. Due to limited resources, we
adopt the parameter-efficient LoRA(Hu et al., 2022) training strategy to fine-tune the model. As for
the hyper-parameters setting, we set the rank as 8, alpha as 16 learning rate as 10−4, LR scheduler
as cosine, WarmUp Ratio as 0.1 and epoch as 1 for all modules in the model.

5.2 MAIN RESULTS

The overall results are illustrated in Table 1. The detailed results of trained and untrained users are
presented in Appendix A.2. We have the following findings according to the results:

Finding 1: API-based large models significantly outperform smaller OSS models across various
dimensions, including format compliance, tool preference capabilities, and tool invocation abilities.
This aligns with the findings of most benchmarks, primarily attributed to the enhanced capabilities
enabled by the larger scale of model parameters.

1https://chatgpt.com
2https://www.anthropic.com
3https://ollama.com

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Ablation of user profile on PTBench. The models are trained with various variants. The
input in evaluation remains consistent with the training input.

Data Untrained Trained Overall

All 26.60 27.01 26.78
All w/o Basic 9.69 24.26 16.06
All w/o History 24.63 25.31 24.93
All w/o Basic&History 5.91 7.81 6.74

Finding 2: Most models fall short on the tool-preference task, including the state-of-the-art model–
GPT-4-turbo, indicating the high complexity of selecting a suitable one from several similar tools
according to the user profile. Our model outperforms nearly all models in all aspects by a consider-
able improvement, presenting the necessity of personalized tool-invocation enhancement.

Finding 3: Our model demonstrates a significant improvement in its performance across various
tasks on PTBench. Notably, the enhancement in the Tool Preference task is particularly pronounced
when compared to the pre-trained Qwen2.5-7B-Instruct model. This also indicates that, even with-
out additional manual verification of the training data, the model achieves a high accuracy, demon-
strating the effectiveness of the proposed synthesis framework. Additionally, our model shows a
significant improvement on untrained users, presenting the generalization of the model.

Finding 4: All models exhibit lower accuracy on profile-dependent parameter values compared to
query-dependent parameters, indicating that inferring parameters from the profile presents a greater
challenge. While our trained model does not surpass GPT-4-turbo in accuracy on query-dependent
parameters, it outperforms larger models on profile-dependent parameters. Furthermore, the im-
provement over the pre-trained Qwen2.5-7B-Instruct model is more substantial, demonstrating the
effectiveness of our data generation framework in handling the query-dependent query tasks.

5.3 ABLATION STUDY

To investigate the importance of various parts in our synthesized user profile, we conduct the ablation
study on the user profile, including 4 variants on the user profile:

• All. All information in the user profile is used, including basic features and behavioral history.

• All w/o Basic. Basic features are omitted.

• All w/o History. The behavioral history is given.

• All w/o Basic&History. Both basic features and behavioral history are omitted.

First, We use the four dataset variants to train and then evaluate the model with the consistent input.
The results are reported in Table 2. From the result, we can observe that the existence of user history
and basic features hold contributions to the overall performance of the model to an extent.

Additionally, we conduct experiments under two settings: (1) train the model with the All variant
and evaluate the model with the four variants, illustrated in Figure 3a; (2) train the model with
the four variants and evaluate the models with the All variant, illustrated in Figure 3b. The results
exhibit that the model shows poor performance in the tool preference task when lacking user history
information in training or evaluation. On the other hand, the accuracy of tool invocation suffers
when basic features are absent, led by the challenging profile-dependent query task.

To further confirm that the curated instructions can only be completed with personalized informa-
tion, we conducted an additional experiment where all personalized information was removed from
the instructions. As shown in Table 3, model performance decreases in all settings compared to main
results, with the most pronounced decline observed in the precision of tool values. These results con-
firm that personalized information is crucial and indispensable for achieving optimal performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Evaluating Model Performance Without Personalized Information.

Model Format Platform T-name T-param T-value Overall

GPT-4o 92.80 48.29 87.26 64.54 8.59 5.35
Deepseek-v3 98.34 51.25 91.69 77.28 10.16 5.72
Qwen2.5-7B-Instruct 90.58 44.32 82.64 64.64 8.96 4.16
Llama-3.1-8B-Instruct 95.29 43.31 87.35 69.07 9.23 3.97

Ours 95.57 52.34 96.51 87.55 6.18 5.91

All-known History Basic Ignorance

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy Overall

Platform
Tool

(a) User profile ablation in evaluation.

All-known History Basic Ignorance
0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy Overall

Platform
Tool

(b) User profile ablation in training.

Figure 3: Ablation study on user profile in evaluation and training, respectively.

5.4 ERROR ANALYSIS

To gain deeper insights into the types of errors made by the models during the evaluation, we conduct
investigations into the error types on our model, GPT-4-turbo, and Qwen2.5-7B-Instruct. We only
analyze solutions with the correct format.

We analyze the function errors generally and divide them into 6 categories: wrong tools, missing
tools, excessive tools, missing parameters, excessive parameters, and wrong parameters. The results
are shown in Figure 4. From the pie chart, it is evident that filling the correct parameters is more
challenging than the selection of the correct tools. After training with our synthesized data, the
model is more familiar with the candidate tools, demonstrating less error percentage in tool selection.

5.5 FURTHER ANALYSIS

Model Scaling. For the purpose of analyzing the influence of model size on the performance of our
trained model, we utilize models with different sizes in the Qwen2.5 series, including 7B, 3B, 1.5B
and 0.5B. The results are shown in Figure 5. We can observe that the 1.5B and 0.5B model only
show slight improvement from the training, while 3B and 7B model gain substantial improvement
from the training. This demonstrate that the personalized tool invocation is a high-level capability
of LLMs, requiring a certain scale of parameters.

0.5B 1.5B 3B 7B
Model Size

0.00

0.05

0.10

0.15

0.20

0.25

ov
er

al
l a

cc
ur

ac
y

Raw
Fine-tuned

Figure 5: Study of model scaling. (Base model:
Qwen2.5-series.)

PTBench

CSQA

GSM8K

HumanEval

MMLU

BFCL

xLAM-7B-r
llama3.1-8B-Instruct
Qwen2.5-7B-Instruct
ours

Figure 6: General Capabilities Analysis.
(Base model: Qwen2.5-7B-Instruct.)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Models performance results on new scenarios.Bold represents the best result.

Model Format Platform T-name T-param T-value Overall

GPT-4-turbo 95.69 41.38 87.93 64.65 20.69 5.17
Deepseek-v3 100.00 50.00 94.83 82.76 22.41 8.62
Qwen2.5-7B-Instruct 75.00 24.14 66.38 21.55 5.17 2.59
Llama-3.1-8B-Instruct 88.80 37.07 81.03 58.62 8.62 2.59
Hammer2.1-7b 92.24 30.17 85.34 37.07 7.76 4.31
xLAM-7b-r 78.45 18.97 76.73 35.34 31.02 2.59

Ours 100.00 67.24 94.83 81.89 25.00 15.52

4.1%

4.5%
0.9%

66.5%

8.8%

15.2%

GPT-4-turbo

5.3%

10.5%
0.9%

58.4%

6.5%

18.4%

Qwen2.5-7B-Instruct

1.2%
3.0%

0.5%

79.5%
13.0%

2.9%

Ours

T-wrong T-missing T-excessive P-wrong P-missing P-excessive

Figure 4: Error Analysis on PTBench. T-wrong, T-missing, and T-excessive represent wrong tools,
missing tools and excessive tools, respectively. P-missing, P-excessive and P-error represent missing
parameters, excessive parameters and wrong parameters, respectively.

Generalization to Unseen Scenarios. To further examine the generalizability of our model beyond
the five common scenarios, we conducted an additional evaluation on unseen domains. Specifically,
we synthesized 116 samples covering two new scenarios: finance and lifestyle. As shown in Table 4,
our model consistently outperforms the baselines in these settings, demonstrating strong robustness
and adaptability. These results provide evidence that the proposed methods and benchmark are not
limited to the initial set of scenarios, but can extend to a broader range of real-world scenarios.

General Capabilities. In order to validate that our synthesized data does not introduce nega-
tive effects on the model’s general capabilities, we employ a diverse set of benchmarks to as-
sess the performance from different perspectives, including general ability(MMLU(Hendrycks
et al., 2021a;b)), coding(HumanEval(Chen et al., 2021)), math(GSM8K(Cobbe et al., 2021)), rea-
soning(CommonSenceQA(Talmor et al., 2019)) and basic function calling(tool-invocation) ability
(BFCL non-live(Yan et al., 2024)). xLAM-7B-r, LLaMA-3-8B-Instruct, Raw Qwen2.5-7B-Instruct
serve as baselines. The results are shown in Figure 6. From the figure, it is evident that there is
no significance deterioration on abilities of our model compared to the raw model Qwen2.5-7B-
Instruct. Nonetheless, our model gains a notable improvement on BFCL non-live, These findings
suggest that our approach effectively enhances personalized functional calling capabilities without
compromising the underlying LLM’s other abilities.

6 CONCLUSION

In this work, we introduce the concept of personalized tool invocation, which encompasses two
primary tasks: tool preference and profile-dependent queries. These tasks require the model’s ability
to understand the user’s profile, select preferred tools based on historical behavior, and extract tool
parameters from user information. To enhance and evaluate the model’s personalized tool invocation
capabilities, we propose a data synthesis framework and create a benchmark, PTBench, by manually
inspecting a subset of the generated data. Extensive experimental evaluations assess the personalized
tool invocation abilities of existing models, confirming the effectiveness of our synthesized data and
its harmlessness to other model capabilities.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Mahyar Abbasian, Zhongqi Yang, Elahe Khatibi, Pengfei Zhang, Nitish Nagesh, Iman Azimi,
Ramesh Jain, and Amir M Rahmani. Knowledge-infused llm-powered conversational health
agent: A case study for diabetes patients. arXiv preprint arXiv:2402.10153, 2024.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An
effective and efficient tuning framework to align large language model with recommendation. In
Proceedings of the 17th ACM Conference on Recommender Systems, pp. 1007–1014, 2023.

Anastasiya Belyaeva, Justin Cosentino, Farhad Hormozdiari, Krish Eswaran, Shravya Shetty, Greg
Corrado, Andrew Carroll, Cory Y McLean, and Nicholas A Furlotte. Multimodal llms for health
grounded in individual-specific data. In Workshop on Machine Learning for Multimodal Health-
care Data, pp. 86–102. Springer, 2023.

Jin Chen, Zheng Liu, Xu Huang, Chenwang Wu, Qi Liu, Gangwei Jiang, Yuanhao Pu, Yuxuan
Lei, Xiaolong Chen, Xingmei Wang, et al. When large language models meet personalization:
Perspectives of challenges and opportunities. World Wide Web, 27(4):42, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, and et al.
Evaluating large language models trained on code. 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Yuhao Dan, Zhikai Lei, Yiyang Gu, Yong Li, Jianghao Yin, Jiaju Lin, Linhao Ye, Zhiyan Tie,
Yougen Zhou, Yilei Wang, et al. Educhat: A large-scale language model-based chatbot system
for intelligent education. arXiv preprint arXiv:2308.02773, 2023.

DeepSeek-AI. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.
19437.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. Advances in neural information processing sys-
tems, 36, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
Steinhardt. Aligning ai with shared human values. Proceedings of the International Conference
on Learning Representations (ICLR), 2021a.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021b.

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, and Wayne Xin
Zhao. Large language models are zero-shot rankers for recommender systems. In European
Conference on Information Retrieval, pp. 364–381. Springer, 2024.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Mingyu Jin, Qinkai Yu, Dong Shu, Chong Zhang, Lizhou Fan, Wenyue Hua, Suiyuan Zhu, Yanda
Meng, Zhenting Wang, Mengnan Du, et al. Health-llm: Personalized retrieval-augmented disease
prediction system. arXiv preprint arXiv:2402.00746, 2024.

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for
good? on opportunities and challenges of large language models for education. Learning and
individual differences, 103:102274, 2023.

Kausik Lakkaraju, Sai Krishna Revanth Vuruma, Vishal Pallagani, Bharath Muppasani, and Biplav
Srivastava. Can llms be good financial advisors?: An initial study in personal decision making
for optimized outcomes. arXiv preprint arXiv:2307.07422, 2023.

Yuxuan Lei, Jianxun Lian, Jing Yao, Xu Huang, Defu Lian, and Xing Xie. Recexplainer: Aligning
large language models for explaining recommendation models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1530–1541, 2024.

Ruyu Li, Wenhao Deng, Yu Cheng, Zheng Yuan, Jiaqi Zhang, and Fajie Yuan. Exploring the upper
limits of text-based collaborative filtering using large language models: Discoveries and insights.
arXiv preprint arXiv:2305.11700, 2023.

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu
Zhou, Cheng Cheng, Yin Zhao, Jun Wang, and Weinan Zhang. Hammer: Robust function-calling
for on-device language models via function masking, 2024. URL https://arxiv.org/
abs/2410.04587.

Weiwen Liu, Xingshan Zeng, Xu Huang, xinlong hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, Zezhong WANG, Yuxian Wang, Wu Ning, Yutai Hou, Bin
Wang, Chuhan Wu, Wang Xinzhi, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng
Shang, Xin Jiang, Ruiming Tang, Defu Lian, Qun Liu, and Enhong Chen. ToolACE: Enhancing
function calling with accuracy, complexity, and diversity. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
8EB8k6DdCU.

Xiao-Yang Liu, Guoxuan Wang, Hongyang Yang, and Daochen Zha. Fingpt: Democratizing
internet-scale data for financial large language models. arXiv preprint arXiv:2307.10485, 2023.

Z Liu, Z Lai, Z Gao, E Cui, Z Li, X Zhu, L Lu, Q Chen, Y Qiao, J Dai, et al. Controlllm: augment
language models with tools by searching on graphs (2023). arXiv preprint arXiv:2310.17796.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, et al. Apigen: Automated pipeline for generating verifiable and
diverse function-calling datasets. arXiv preprint arXiv:2406.18518, 2024.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Ha-Thanh Nguyen. A brief report on lawgpt 1.0: A virtual legal assistant based on gpt-3. arXiv
preprint arXiv:2302.05729, 2023.

Minju Park, Sojung Kim, Seunghyun Lee, Soonwoo Kwon, and Kyuseok Kim. Empowering person-
alized learning through a conversation-based tutoring system with student modeling. In Extended
Abstracts of the CHI Conference on Human Factors in Computing Systems, pp. 1–10, 2024.

11

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2410.04587
https://arxiv.org/abs/2410.04587
https://openreview.net/forum?id=8EB8k6DdCU
https://openreview.net/forum?id=8EB8k6DdCU

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
dahai li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating large language models to master
16000+ real-world APIs. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=dHng2O0Jjr.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-
Rong Wen. Tool learning with large language models: A survey. Frontiers of Computer Science,
19(8):198343, 2025.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng, Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie
Ren, Suzan Verberne, and Zhaochun Ren. Learning to use tools via cooperative and interac-
tive agents. pp. 10642–10657, Miami, Florida, USA, November 2024. doi: 10.18653/v1/2024.
findings-emnlp.624. URL 2024.findings-emnlp.624/.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A ques-
tion answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/
N19-1421/.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024a.

Qwen Team. Qwen2.5: A party of foundation models, September 2024b. URL https:
//qwenlm.github.io/blog/qwen2.5/.

Wei Wei, Xubin Ren, Jiabin Tang, Qinyong Wang, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei Yin,
and Chao Huang. Llmrec: Large language models with graph augmentation for recommendation.
In Proceedings of the 17th ACM International Conference on Web Search and Data Mining, pp.
806–815, 2024.

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen
Zhu, Hengshu Zhu, Qi Liu, Hui Xiong, and Enhong Chen. A survey on large language models
for recommendation. CoRR, abs/2305.19860, 2023.

Yunjia Xi, Weiwen Liu, Jianghao Lin, Xiaoling Cai, Hong Zhu, Jieming Zhu, Bo Chen, Ruim-
ing Tang, Weinan Zhang, and Yong Yu. Towards open-world recommendation with knowledge
augmentation from large language models. In Proceedings of the 18th ACM Conference on Rec-
ommender Systems, pp. 12–22, 2024.

Yang Xu, Yunlong Feng, Honglin Mu, Yutai Hou, Yitong Li, Xinghao Wang, Wanjun Zhong,
Zhongyang Li, Dandan Tu, Qingfu Zhu, Min Zhang, and Wanxiang Che. Concise and precise
context compression for tool-using language models. pp. 16430–16441, Bangkok, Thailand, Au-
gust 2024. doi: 10.18653/v1/2024.findings-acl.974. URL 2024.findings-acl.974/.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica,
and Joseph E. Gonzalez. Berkeley function calling leaderboard. https://gorilla.cs.
berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html,
2024.

Fan Yang, Zheng Chen, Ziyan Jiang, Eunah Cho, Xiaojiang Huang, and Yanbin Lu. Palr: Personal-
ization aware llms for recommendation. arXiv preprint arXiv:2305.07622, 2023a.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. GPT4tools: Teaching
large language model to use tools via self-instruction. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023b. URL https://openreview.net/forum?id=
cwjh8lqmOL.

12

https://openreview.net/forum?id=dHng2O0Jjr
2024.findings-emnlp.624/
https://aclanthology.org/N19-1421/
https://aclanthology.org/N19-1421/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
2024.findings-acl.974/
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://openreview.net/forum?id=cwjh8lqmOL
https://openreview.net/forum?id=cwjh8lqmOL

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Yongliang Shen, Ren Kan, Dongsheng Li, and
Deqing Yang. Easytool: Enhancing llm-based agents with concise tool instruction. arXiv preprint
arXiv:2401.06201, 2024.

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, Weiran Yao, Juntao Tan, Thai Hoang, Liang-
wei Yang, Yihao Feng, Zuxin Liu, et al. Agentohana: Design unified data and training pipeline
for effective agent learning. arXiv preprint arXiv:2402.15506, 2024a.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
Tan, Akshara Prabhakar, Haolin Chen, et al. xlam: A family of large action models to empower
ai agent systems. arXiv preprint arXiv:2409.03215, 2024b.

Junjie Zhang, Ruobing Xie, Yupeng Hou, Xin Zhao, Leyu Lin, and Ji-Rong Wen. Recommendation
as instruction following: A large language model empowered recommendation approach. ACM
Transactions on Information Systems.

Zhehao Zhang, Ryan A Rossi, Branislav Kveton, Yijia Shao, Diyi Yang, Hamed Zamani, Franck
Dernoncourt, Joe Barrow, Tong Yu, Sungchul Kim, et al. Personalization of large language mod-
els: A survey. arXiv preprint arXiv:2411.00027, 2024c.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

A EXPERIMENTS

A.1 EVALUATION METRICS

The calculation of various metrics in PTBench are formulated as follows:

• Format Accuracy indicates the instruction-following ability.

format acc =
#parsable samples

#total
(2)

• Platform Accuracy indicates the tool preference recognition ability.

platform acc =
#correct platformsamples

#total
(3)

• Query-related Parameter-Value Accuracy indicates the ability to extract values from query.

query param acc =
#correct query params

#total query params
(4)

• Profile-related Parameter-Value Accuracy indicates the ability to extract values from profile.

profile param acc =
#correct profile params

#total profile params
(5)

• Tool Name Accuracy indicates the tool selection ability.

tool name acc =
#correct name samples

#total
(6)

• Tool Parameter Accuracy indicates the tool comprehension ability.

tool param acc =
#correct paramsamples

#total
(7)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 5: Statistics of our synthesized dataset. The samples in the test set are verified by human
annotators. Trained and untrained represent the user profiles present and absent in the training set,
respectively. Unseen scenario represents additional data used in generalization study.

Dataset #Scenario #Platform #API #User #Query

Train 5 15 360 74 7,096

Test(PTBench) 7 21 504 85 1,199
–Trained 5 15 360 74 474
–Untrained 5 15 360 6 609
–Unseen Scenarios 2 6 144 5 116

Total 5 15 360 80 8,197

• Tool Parameter-Value Accuracy indicate the value extraction on context ability.

tool value acc =
#correct value samples

#total
(8)

• Overall Accuracy on Trained Users indicate the personalized tool ability on trained users.

trained overall acc =
#correct trained samples

#trained total
(9)

• Overall Accuracy on Untrained Users indicate the personalized tool selection ability on trained
users.

untrained overall acc =
#correct untrained samples

#untrained total
(10)

• Overall Accuracy indicate the overall personalized tool selection ability.

overall acc =
#correct samples

#total
(11)

A.2 DETAILED RESULTS

the detailed component of the dataset are illustrated in Table 5

The detailed results of the trained and untrained subset on PTBench are illustrated in Table 6 and
Table 7, respectively.

B HUMAN-IN-THE-LOOP VERIFICATION

In the human verification stage, we adopt a systematic evaluation and refinement protocol consisting
of three main steps.

B.1 DESIGNING EVALUATION CRITERIA

• Query Reasonableness: Ensures that queries include all required parameters, align with
user profiles, and exclude meaningless characters.

• Platform Consistency: Checks whether the platform preference implied in the query is
consistent with the answer. If no explicit platform is specified, historical preferences from
the user profile are used for verification.

• Tool Invocation Accuracy: Verifies that the invoked tool appropriately addresses the query
and that its parameters are correctly specified.

B.2 HUMAN ANNOTATION AND REFINEMENT

A human annotator reviews queries, answers, and tool invocations against the above criteria, making
necessary corrections to ensure overall data quality.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Comparison with baseline models on trained users in PTBench. Bold and underline repre-
sent the best and the 2nd best results.

Type Model Format Preference Param Value Tool Invocation Overall
Platform Query Profile T-name T-param T-value

API

GPT-4-turbo 0.9831 0.5569 0.7927 0.7080 0.9325 0.7869 0.3502 0.1834
GPT-4o 0.8840 0.4157 0.6520 0.6164 0.8143 0.6941 0.2637 0.1350
Deepseek-v3 0.8903 0.5043 0.6868 0.6508 0.8376 0.7617 0.3059 0.1708
Deepseek-r1 0.8376 0.4958 0.6112 0.6317 0.7637 0.6604 0.2574 0.1477
Qwen-max 0.6941 0.4430 0.5083 0.5162 0.6393 0.5358 0.2152 0.1456
Claude-3.5-sonnet 0.9662 0.5822 0.7519 0.6794 0.7152 0.6498 0.2236 0.1329

OSS

DeepSeek-R1-Distill-Llama-8B 0.6203 0.2891 0.3495 0.3111 0.4958 0.3925 0.1013 0.0485
DeepSeek-R1-Distill-Qwen-7B 0.6013 0.1519 0.2148 0.0954 0.3503 0.1941 0.0147 0.0042
Qwen2.5-7B-Instruct 0.7827 0.3882 0.5900 0.4447 0.6856 0.5612 0.1772 0.0717
Llama-3.1-8B-Instruct 0.8819 0.3797 0.6384 0.5439 0.8039 0.6498 0.2236 0.0929
Mistral-7B-Instruct-v0.3 0.8713 0.4198 0.5522 0.4113 0.6645 0.3734 0.1477 0.0674
Hammer2.1-7b 0.9641 0.3650 0.7126 0.5468 0.8439 0.6582 0.2257 0.0739
ToolACE-8B 0.4114 0.1709 0.3147 0.2061 0.3987 0.2721 0.0865 0.0338
Watt-tool-8B 0.3966 0.2405 0.2708 0.2156 0.3586 0.2510 0.0992 0.0591
xLAM-7b-r 0.9641 0.3586 0.6732 0.5315 0.8881 0.6329 0.2194 0.0696

Ours 0.9662 0.7826 0.7791 0.7653 0.9409 0.8628 0.3333 0.2701

B.3 TOOL PARAMETER CLASSIFICATION

A second annotator categorizes tool invocation parameters into two groups:

• Query-dependent Parameters: Explicitly provided in the user query.
• Profile-dependent Parameters: Not directly mentioned in the query but inferable from

the user profile.

This classification enables a fine-grained evaluation of model accuracy across different parameter
types.

C EXAMPLES

To enhance the understanding of the proposed personalized tool invocation, we illustrate an example
in Figure 7.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Comparison with baseline models on untrained users in PTBench. Bold and underline
represent the best and the 2nd best results.

Type Model Format Preference Param Value Tool Invocation Overall
Platform Query Profile T-name T-param T-value

API

GPT-4-turbo 0.9737 0.5419 0.8266 0.6637 0.9064 0.7586 0.3531 0.1856
GPT-4o 0.9146 0.4746 0.7596 0.6057 0.8391 0.7028 0.3054 0.1708
Deepseek-v3 0.9245 0.5468 0.7629 0.6343 0.8522 0.7455 0.3104 0.1757
Deepseek-r1 0.8062 0.4712 0.6443 0.5403 0.7175 0.6059 0.2660 0.1494
Qwen-max 0.8276 0.5353 0.6828 0.5658 0.7635 0.6207 0.2496 0.1707
Claude-3.5-sonnet 0.9704 0.5829 0.8046 0.6275 0.7077 0.6404 0.2397 0.1395

OSS

DeepSeek-R1-Distill-Llama-8B 0.6601 0.3120 0.4061 0.2935 0.5173 0.3695 0.0953 0.0394
DeepSeek-R1-Distill-Qwen-7B 0.6158 0.1429 0.2481 0.1106 0.3777 0.2250 0.0279 0.0066
Qwen2.5-7B-Instruct 0.7882 0.3727 0.6301 0.3943 0.6815 0.5287 0.1889 0.0755
Llama-3.1-8B-Instruct 0.8900 0.4253 0.6839 0.4906 0.7964 0.6059 0.2052 0.0985
Mistral-7B-Instruct-v0.3 0.8489 0.3678 0.5653 0.3416 0.6584 0.3448 0.1429 0.0559
Hammer2.1-7b 0.9655 0.3629 0.7420 0.5094 0.8374 0.6109 0.2266 0.0689
ToolACE-8B 0.3974 0.1659 0.3392 0.2039 0.3810 0.2562 0.0936 0.0378
Watt-tool-8B 0.3580 0.2184 0.2722 0.1859 0.3268 0.2003 0.0706 0.0411
xLAM-7b-r 0.9442 0.3054 0.6839 0.4695 0.8538 0.5632 0.2233 0.0771

Ours 0.9507 0.7028 0.8035 0.7096 0.9112 0.8030 0.3481 0.2660

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

[SYSTEM]
You are given a user profile:

{
"basic_features":{

"username":"WineTraveler38",
...

}
"user_history":{
"shopping":[{

"platform":"MegaMart",
"action":"Purchased a selection of premium imported wines"

}
...

]
...

}
}

Here is some platforms under the scenario:

[{
"name":"MegaMart",
"profile":{

"product range":"A wide-ranging selection, offering products from various categories."
...

}
}
...

]

Here is some APIs under the platforms:

[{
’type’: ’function’,
’function’: {

’name’: ’registerUser’,
’description’: ’Registers a new user in the application.’,
’parameters’: {

’type’: ’object’,
’properties’: {

’username’: {
’type’: ’string’,
’description’: \"User’s chosen username.\"

},
...

},
’required’: [’username’, ’password’, ’email’]

},
’response’: {

’type’: ’object’,
’properties’: {

’success’: {
’type’: ’boolean’,
’description’: ’Status of registration.’

},
...

}
}

}
},
...

]

The user will give you a query. Based on the profile, try to solve the query by using the platforms and APIs. The platform you choose
should fit the user profile or the needs of the user’s query. All the necessary information are provided in the user profile. DO NOT
ask the user for further information. You should respond in the format of {platform:[func1(param1 name = param1 value, param2...),
func2...]} No other text MUST be included.

[USER]
Could you please register an account for me using my username, password and email address, and setting my home location to my
place of residence? I prefer not to receive any marketing emails.

[ASSISTANT]

{
MegaMart:[
registerUser(

username=’WineTraveler38’, password=’strongpassword123!’,
email=’jeanlucbordeaux@email.com’, preferredLanguage=’French’,
marketingConsent=False, homeLocation=’Paris, France’

)
]

}

Figure 7: Illustration of personalized tool invocation task. The blue part represents the expected
output. 17

	Introduction
	Related Work
	Tool Invocation
	Personalized LLMs

	Personalized Tool Invocation
	Personalized Tool Invocation Data Synthesis
	Tool Generation
	User Profile Construction
	Query and Solution Generation

	Experiments
	Experimental Settings
	Main Results
	Ablation Study
	Error Analysis
	Further Analysis

	Conclusion
	Experiments
	Evaluation Metrics
	Detailed Results

	Human-in-the-Loop Verification
	Designing Evaluation Criteria
	Human Annotation and Refinement
	Tool Parameter Classification

	Examples

