Under review as a conference paper at ICLR 2026

ADVANCING AND BENCHMARKING PERSONALIZED
TooL INVOCATION FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tool invocation is a crucial mechanism for extending the capabilities of Large Lan-
guage Models (LLMs) and has recently garnered significant attention. It enables
LLMs to solve complex problems through tool calls while accessing up-to-date
world knowledge. However, existing work primarily focuses on the fundamental
ability of LLMs to invoke tools for problem-solving, without considering person-
alized constraints in tool invocation. In this work, we introduce the concept of
Personalized Tool Invocation and define two key tasks: Tool Personalization and
Parameter Personalization. Tool Personalization addresses user preferences when
selecting among functionally similar tools, while Parameter Personalization con-
siders cases where a user query lacks certain tool parameters, requiring the model
to infer them from the user profile. To tackle these challenges, we propose PTool,
a data synthesis framework designed for personalized tool invocation. Addition-
ally, we construct PTBench, the first benchmark to evaluate personalized tool
invocation. We then fine-tune various open-source models, demonstrating the ef-
fectiveness of our framework and providing valuable insights. Our model, training
data, and the benchmark will be publicly released upon acceptance.

1 INTRODUCTION

Recently, large language models (LLMs) have demonstrated remarkable capabilities in natural lan-
guage processing tasks, particularly in human-computer interaction, where they can effectively com-
prehend user queries and provide reasonable responses (Zhao et al.,[2023)). However, the knowledge
embedded within LLMs is not inherently up-to-date, as updating these models requires extensive
retraining with large-scale data, which incurs significant time and economic costs. To equip LLMs
with the ability to solve complex problems and access the latest information, tool invocation capa-
bilities are essential. For instance, LLMs can leverage mathematical tools to decompose and solve
intricate mathematical problems or utilize internet APIs (Liu et al.} 2025} |Qin et al., 2024)) and search
engines (Schick et al., [2024} [Nakano et al.| [2021) to retrieve the most recent knowledge.

Existing research on enhancing LLMs’s tool invocation abilities primarily focuses on improving
fundamental capabilities (Qin et al.,|2024; [Yan et al., 2024} Lin et al.| |2024), such as ensuring adher-
ence to the required tool invocation syntax, comprehending tool functionalities, interpreting explicit
user instructions, and extracting tool parameters. However, in real-world applications, user intents
are often implicit rather than explicitly stated, requiring models to infer based on personalized pro-
files and behavioral history before invoking tools. Two common scenarios illustrate this challenge
on personalized tool invocation: (1) Tool Personalization. When multiple tools offer similar func-
tionalities, users often exhibit specific preferences. For example, in online shopping, users may
choose different platforms depending on their preferences for particular product categories. Some
users may prioritize platforms with superior maintenance services when purchasing high-value elec-
tronic products, despite the higher cost, while preferring platforms with faster delivery when buying
inexpensive daily necessities. Inferring such preferences necessitates reasoning from user attributes,
such as age, interests, and purchasing behavior. (2) Parameter Personalization. In everyday sce-
narios, users tend to express their needs concisely and omit crucial details. For instance, a user might
simply request, “Order me a hamburger from KFC”, without specifying essential information such
as the delivery address, recipient contact details, or preferred delivery time. This requires the model
to infer the missing information from the user profile, such as the user’s work location, current time,
and phone number, ensuring a seamless and accurate tool invocation process.

Under review as a conference paper at ICLR 2026

| want to buy some l‘ Recommend some Query-related
cheap snacks. V_/Xﬂ books for me Arguments Values
3 |

Query keyword]—[book]

o

° [PLATFORM1 PLATFORM2 \

4 -Cheap +Expensive s ; ;]

“Mai ort order '—' rice
&i «Fast delivery | “Maintenanc \ p
e service
’0
o

Tool: get_product_list Category]_[IT]

| want to buy a 1. Price sensitivity high
D& 2. Job: IT programmer Profile-related
a

User profile

(a) Tool Personalization (b) Parameter Personalization

Figure 1: Examples of Personalized Tool Invocation. (a) Tool Personalization: Users may prefer
different tools for similar functionalities depending on the query context. (b) Parameter Personal-
ization: Certain tool parameters may be missing from the user’s query and must be inferred from
the user’s profile.

In this work, we propose the novel task of personalized tool invocation, aiming to address the afore-
mentioned critical challenges. To enhance and systematically evaluate a model’s ability in person-
alized tool invocation, we further introduce an automated data synthesis framework for this task,
termed PTool, which consists of three key stages: tool generation, user profile construction, and
user behavior simulation. Firstly, we consider several commonly used real-world scenarios, where
each scenario contains multiple functionally similar platforms organized in a hierarchical tree struc-
ture. We then leverage an advanced LLM to recursively decompose platform functionalities using a
depth-first expansion approach, progressively refining them until distinct tools are defined for each
functional category. Secondly, we abstract and summarize platform features and API parameters to
extract both basic user attributes and personalized characteristics, including psychological traits and
behavioral tendencies. To construct a diverse set of user profiles, we employ a bottom-up clustering
approach for feature induction and a top-down assignment strategy for attribute allocation. Finally,
we exploit the role-playing capabilities of LLMs to simulate user behaviors based on the assigned
user profiles, generating both historical interactions and potential user queries. To establish reliable
ground-truth labels, we further integrate a multi-agent framework that conditions query generation
on user profiles. Following manual review and annotation, we construct Personalized ToolBench
(PTBench), the first benchmark designed to evaluate large models’ ability in personalized tool invo-
cation, consisting of 1,199 high-quality annotated data samples. Key contributions are summarized
as follows:

* We propose the first paradigm for personalized tool invocation, incorporating both user tool per-
sonalization and parameter personalization, two key challenges in real-world applications.

* We develop a systematic personalized data synthesis framework and construct PTBench, the first
benchmark for personalized tool invocation, enabling a comprehensive evaluation of models’ abil-
ity to invoke tools based on user information.

* We demonstrate that training open-source models on our synthesized dataset significantly im-
proves personalized tool invocation capabilities, while also enhancing general tool invocation
without compromising other general abilities.

2 RELATED WORK

2.1 TooL INVOCATION

Tool invocation (also termed tool calling) involves tool selection from candidate tools and parameter
extraction from queries. Existing works can be categorized into two tuning-free and tuning-based
methods (Qu et al., 2025} [Liu et al.). Tuning-free methods mainly rely on the prompt strategy
with few-shot learning, involving encouraging LLM to reason by providing examples (Yao et al.,
2022)), rewriting tool documentation with LLMs to enhance the comprehension (Yuan et al.,|[2024),

Under review as a conference paper at ICLR 2026

summarizing tool description with more concise and precise sentence (Xu et al., 2024), leveraging
multi-agent collaboration to decompose the tool-calling task (Shi et al.| [2024). Tuning-based meth-
ods leverage tool-learning samples to train existing LLMs, where the research problems comprise
data collection and training strategy. Toolformer (Schick et al.| 2024)) and ToolkenGPT (Hao et al.,
2024 add a special tool-related token into the vocabulary, switching the decoding process into tool
selection and calling. Some works leverage advanced LLM to synthesize tool-calling samples to
improve the tool-invocation ability of lightweight models, demonstrating the efficiency of the distil-
lation from advanced models (Qin et al., 2024; Yang et al.,|2023b; [Liu et al., 2025).

2.2 PERSONALIZED LLMsS

Personalized LLMs represent LLMs that have been adapted to align with user preferences and char-
acteristics (Zhang et al}[2024c). Existing works mainly focus on the generation of personalized texts
or applications in information systems. LLMs are customized as personal conversational Al assis-
tants for various domains, including education (Kasneci et al., 2023; |Dan et al., 2023; |Park et al.,
2024), healthcare (Belyaeva et al.| 2023} |Abbasian et al.| 2024 Jin et al.| 2024)), finance (Liu et al.,
2023; Lakkaraju et al.,|2023)), legal (Nguyen) 2023), and etc. User profiles are provided via prompts
or hidden representation, leading the model to generate personalized text in the dialog. Personalized
LLMs have been extensively applied in information systems such as recommender systems (Wu
et al., 2023} |Chen et al.,|2024)). LLMs are leveraged as an augmentation module for traditional rec-
ommender systems, serving as the content interpreter (Bao et al., 2023; |Li et al., [2023}; |Yang et al.,
2023a)), the knowledge base (Xi et al., 2024} |Wei et al., 2024), or the explainer (Lei et al., [2024; ?).
Also, many works directly deploy LLMs as the direct recommenders via prompt techniques (2Hou
et al.,[2024)) or fine-tuning (Zhang et al.). However, there is no work considering personalization in
tool learning. This work is the first to propose personalized tool invocation for LLM:s.

3 PERSONALIZED TOOL INVOCATION

We innovatively consider a practical and high-demand scenario in LLM tool invocation: personal-
ized tool invocation. This scenario requires the model to leverage user-specific information when
selecting and configuring tools to address user needs. In this chapter, we formally define the task of
personalized tool invocation.

Given an LLM with model parameters 6, the general tool invocation task requires the model, when
provided with a query ¢ and a set of candidate tools 7T, to select the appropriate tool ¢ and populate
its corresponding parameters at, - - - , a?,, forming the solution A = [(t!,a%, -+ ,al,), - -].

In conventional formulations of this task, correctness is typically determined by whether the selected
tool successfully resolves the query. However, this setting overlooks the fact that multiple tools may
solve one problem (e.g., APIs from different platforms with similar capabilities), and that users often

have preferences for certain tools—a concept we refer to as tool personalization, defined as follows:

Definition 3.1. (Tool Personalization) User u prefers t* for query q, and t> for query qo, where
q1, go can be solved by both t* and t3:

th gy 5 P g (1)

Moreover, in A, both tool selection and parameter values are determined solely based on the in-
formation contained in the query. For instance, consider the query: “Book me a flight from Los
Angeles to New York at 8:45 AM tomorrow”. However, in real-world scenarios, users often do not
provide such detailed query information. Instead, they may omit certain essential details required
for tool invocation, meaning that the model cannot extract all necessary parameters from the query
alone. We refer to this personalized scenario as an Parameter Personalization, defined as follows:

Definition 3.2. (Parameter Personalization) Given the profile of the user u as P, the query q and
the solution A, there exists value o« € A, o € P, and ¢ q. The phenomenon is called parameter
personalization, and the query q is called a profile-dependent query.

Under review as a conference paper at ICLR 2026

Tool Generation

User Profile Construction

User Feature Tree

Query and Solution Generation

User Agent

Assistant Agent

Basic
Features

Implicit
Preferences|

‘ APIs

Platforms

—>

—

Lm Lm

v

[Rule-based Checker |

=

implicit
preference 1

basic feature?

User
features

basic feature implicit
preference 2
I I

= O [l

[LLM-based Checker |

Figure 2: Framework of our personalized tool invocation data synthesis: PTool. The pipeline com-
prises three stages: Tool Generation, User Profile Generation and Query and Answer Generation.

4 PERSONALIZED TOOL INVOCATION DATA SYNTHESIS

To address the two challenges in personalized tool invocation mentioned above, we propose an
automated data synthesis framework, PTool, for generating high-quality training and evaluation data
for personalized tool invocation. The framework consists of three key stages: Tool Generation,
User Profile Construction, and Query and Solution Generation, as illustrated in Figure [2] The
detailed processes of each stage are described in the subsequent parts of this section.

4.1 TooL GENERATION

To cover the majority of scenarios encountered in daily life, we first constructed a diversified tool
library across multiple contexts. Inspired by existing work, we employed an advanced Large Lan-
guage Model (LLM)-based data synthesis method to generate APIs. Similar to ToolACE, we also
developed a structure akin to an API Tree, which allows for the generation of diverse tools.

Specifically, we initially define several demand scenarios from everyday life (e.g., shopping, food
delivery, office) as the first-level nodes of the tree. Then, using a depth-first expansion approach, we
iteratively refine the functionality at each node until we derive specific API descriptions as the leaf
nodes. Notably, in order to generate data that enhances the model’s Tool Personalization capability,
tools with similar functionalities are required. However, this API Tree expansion approach alone
cannot achieve this. Therefore, at the second level of the tree expansion, we introduce the concept
of platforms. For each scenario, we generated multiple platforms with distinct characteristics. For
example, in the video entertainment scenario, platforms such as YouTube and TikTok were included,
where YouTube focuses on long-form videos and TikTok emphasizes short, lifestyle-oriented clips.
This enables us to obtain multiple tools with functionally interchangeable capabilities.

4.2 USER PROFILE CONSTRUCTION

Personalization requires constructing diverse and realistic user profiles. This process involves three
key challenges: (1) defining feature sets relevant to tool invocation, ensuring a structured linkage
between user traits and tool selection; (2) maintaining sufficient diversity across profiles to enable
generalization to unseen users; and (3) ensuring that profiles contain only observable basic and
behavioral information, without incorporating detailed psychological attributes.

Bottom-up Feature Tree Construction. To systematically define user profile features, we adopt a
tool-driven hierarchical clustering approach. We construct a feature tree, where platform character-
istics and tool parameters serve as leaf nodes. Using LLM-based clustering, we recursively merge
semantically related parameters, summarizing them into higher-level features until the number of
parent nodes at each level falls within a predefined threshold. Notably, we categorize features dur-
ing initial clustering: explicit basic features (e.g., age, gender) are directly observable, while implicit
preferences (e.g., shopping preferences) remain latent and are used in user behavior generation.

Top-down Characteristic Assignment. Once the user feature tree is constructed, we encounter the
second issue: how to diversify the assignment of values to these features to generate distinct user
profiles. When using an advanced LLM to assign N different user features, two options typically
arise: one is to assign all features for a single user at a time and repeat this process N times; the other
is to assign all features for IV users in one pass. The first method incurs higher inference costs and

Under review as a conference paper at ICLR 2026

makes it challenging to avoid repetition across multiple generations, while the second is constrained
by the model’s context length limitation, especially when N or the number of features is large.
Therefore, we adopt a top-down hierarchical assignment based on the tree structure. Specifically,
for nodes at the [-th layer, we assign k; different values simultaneously, and for the (I + 1)-th layer
nodes, the model generates k;; different values for each parent node’s feature value. Thus, for a

user feature tree with depth L, we can ultimately obtain N = H1L=0 k; distinct user profiles. It’s
important to note that each time the LLM generates k;, this number can be much smaller than N,
allowing the LLM to generate diverse features in one pass.

User Behavior Generation. Once user profiles are assigned, they include both explicit basic fea-
tures (e.g., occupation, gender, location) and implicit preferences (e.g., price sensitivity, product
affinity). However, in real-world scenarios, user preferences are typically inferred through behav-
ioral patterns rather than explicitly stated. To simulate authentic behavioral traits, we employ an
LLM-based role-playing approach, where the model generates user actions on various platforms
based on their profile and platform characteristics. For instance, given a user’s preference for budget-
conscious shopping, the model may generate interactions such as ”searches for hiking backpacks on
Amazon” or “purchases coffee from Walmart for $30.” While implicit preferences remain unob-
servable to the model during task execution, they are embedded in prompts when generating tool
invocation solutions, ensuring accurate and contextually appropriate tool selection.

4.3 QUERY AND SOLUTION GENERATION

For generating query-solution pairs, we adopt a multi-agent collaborative approach, involving two
agents: the user agent and the assistant agent. The user agent generates queries by role-playing
based on the user profile, while the assistant agent generates tool invocation solutions. The user
agent’s role information includes both basic and implicit features, as these provide a more accurate
user representation than explicit behavioral features.

Given that a user’s platform preferences may vary across queries, we explicitly incorporate platform
information into the user agent’s prompt. This enables the agent to generate queries aligned with
the user’s platform preferences. Additionally, we instruct the user agent to avoid revealing profile
information in the queries, ensuring the generation of profile-dependent queries as well.

To ensure the correctness of tool invocations, we employ a two-tier verification strategy: rule-based
validation and model-based verification. Rule-based validation checks the format of tool invocations
to prevent issues such as unresolvable results or hallucinated tools and parameters. Model-based
verification inputs the user profile, query, and solution triples into the LLM to verify parameter
correctness, detect hallucinations, and assess whether the solution effectively resolves the query.
Furthermore, to ensure evaluation accuracy, we manually inspect tool invocation parameters. These
parameters are annotated as profile-related or query-related, indicating whether they originate from
the user profile or the query, facilitating more precise error feedback during evaluation.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Dataset Details. We leverage GPT-4-turbo to synthesize the personalized tool invocation dataset
via our proposed framework. The overall dataset consists of a total of 80 users and 8,197 queries
under 5 scenarios, including shopping, takeout, entertainment, work, and travel. Under each sce-
nario, there are 3 platforms and 24 APIs in each platform as tools. We separate the dataset into
training and test sets, randomly selecting all queries of 6 users and about 6% queries of another 74
users to form the test set PTBench. The 6 users will not be visible to models in the training process,
termed as untrained. To ensure the quality of the test set, we manually verify each sample. Addi-
tionally, we construct a dataset comprising 116 samples from two unseen scenarios—finance and
lifestyle—which were not exposed to the models during training, to evaluate their generalization
capability. The statistics are illustrated in Appendix [A.2]

Evaluation. We first evaluate the format accuracy by checking if the model’s output can give for-
matted output, verifying instruction following ability. The solution of each sample comprises two
parts: platform and tool invocation. The models are required to select the correct user-preferred plat-

Under review as a conference paper at ICLR 2026

Table 1: Comparison with baseline models on PTBench in terms of accuracy. Bold and underline
represent the best and the 2nd best results. Tool-P denotes the tool personalization. 7-* denotes the
correctness * in tool invocation. DS-R1-Dis is the abbreviation of DeepSeek-R1-Distill.

Type‘ Model ‘Format Tool-P Param Value Tool Invocation Overall

| | Query Profile T-name T-param T-value Trained Untrained Overall

GPT-4-turbo 97.78 54.84 81.23 68.32 91.78 77.09 35.18 18.34 18.56 18.47
GPT-40 90.12 44.84 71.44 61.04 82.83 6991 28.69 13.50 17.08 15.51
Deepseek-v3 90.95 52.80 73.09 64.16 84.60 7530 30.85 17.08 17.57 17.36

API Deepseek-rl 81.99 48.19 63.04 58.06 73.76 6294 2624 14.77 1494 14.86
Qwen-max 76.92 49.46 60.94 5440 7091 5843 2348 14.56 17.07 15.97
Claude-3.5-sonnet| 96.86 58.26 78.24 65.04 71.10 64.45 2326 13.29 13.95 13.67
DS-R1-Llama-8B | 64.27 30.19 38.23 30.12 50.80 38.02 9.81 4.85 394 434
DS-R1-Qwen-7B | 60.95 14.69 23.41 1039 36.56 21.13 221 042 0.66 0.55
Qwen2.5-7B-Inst | 78.58 37.95 61.32 41.65 6833 5430 1837 7.17 7.55 17.38
Llama-3.1-8B-Inst| 88.65 40.53 66.48 5141 79.97 6252 2133 9.29 9.85 9.60
0SS Mistral-7B-v0.3 | 85.87 39.03 55.98 37.23 66.12 3572 1450 6.74 559 6.09

Hammer2.1-7b | 96.49 36.38 72.96 52.59 84.02 63.16 22.62 7.39 6.89 7.11
ToolACE-8B 40.35 16.81 32.89 20.49 3887 2631 9.06 3.38 378 3.60
Watt-tool-8B 37.49 2281 27.16 1990 34.08 22.18 826 5091 411 4.89
xLAM-7b-r 95.29 32.85 67.94 49.68 86.88 5934 22.17 6.96 771 7.38

95.75 73.74 79.33 7341 9242 8290 34.17 27.01 26.60 26.78

| Ours

form and then generate suitable tool invocations. Platform accuracy demonstrates the ability of tool
preference understanding. The tool invocation consists of three parts: tool name, parameters, and
parameter values, where the parameter values comprise query-related and profile-related parameters.
Profile-related parameters require the model to infer from the user profile, evaluating the ability to
handle profile-dependent query. We calculate the accuracy of the function name, function parameter,
and function value, respectively. The calculations of accuracy are detailed in Appendix

Baselines. We compare the latest open-source models and API-based models, as well as fine-tuned
tool-calling models. Open-source models include DeepSeek-R1-Distill-Llama-8B(DeepSeek-Al,
2023])), DeepSeek-R1-Distill-Qwen-7B(DeepSeek-Al,2025), Qwen2.5-7B-Instruct(Team, 2024azb)),
Llama-3.1-8B-Instruct (Al@Metal 2024) and Mistral-7B-Instruct-v0.3(Jiang et al., [2023). API-
based models include GPT—4—turbcﬂ GPT—4d]], Deepseek-v3(DeepSeek-Al, [2024), Deepseek-
r1(DeepSeek-Al, 2025), Qwen-max(Team), 2024b) and Claude-3.5—sonneﬂ Models fine-tuned for
tool-calling include Hammer2.1-7b(Lin et al., 2024), ToolACE-8B(Liu et al., 2025), watt-t001-8
and xXLAM-7b-r(Zhang et al., 2024b; |Liu et al.,|2024; |[Zhang et al.| [2024al).

Implementation Details. To validate the effectiveness of our model, we conducted various experi-
ments by training LLMs with the synthesized dataset. We train the open-source LLM, Qwen2.5-7B-
Instruct(Team, 2024a3b)), in the supervised fine-tuning (SFT) manner. Due to limited resources, we
adopt the parameter-efficient LoORA(Hu et al., [2022) training strategy to fine-tune the model. As for
the hyper-parameters setting, we set the rank as 8, alpha as 16 learning rate as 10~%, LR scheduler
as cosine, WarmUp Ratio as 0.1 and epoch as 1 for all modules in the model.

5.2 MAIN RESULTS

The overall results are illustrated in Table [l The detailed results of trained and untrained users are
presented in Appendix [A.2] We have the following findings according to the results:

Finding 1: API-based large models significantly outperform smaller OSS models across various
dimensions, including format compliance, tool preference capabilities, and tool invocation abilities.
This aligns with the findings of most benchmarks, primarily attributed to the enhanced capabilities
enabled by the larger scale of model parameters.

"https://chatgpt.com
2https://www.anthropic.com
3https://ollama.com

Under review as a conference paper at ICLR 2026

Table 2: Ablation of user profile on PTBench. The models are trained with various variants. The
input in evaluation remains consistent with the training input.

Data Untrained Trained Overall
All 26.60 27.01 26.78
All w/o Basic 9.69 2426 16.06
All w/o History 24.63 2531 2493
All w/o Basic&History 591 7.81 6.74

Finding 2: Most models fall short on the tool-preference task, including the state-of-the-art model—
GPT-4-turbo, indicating the high complexity of selecting a suitable one from several similar tools
according to the user profile. Our model outperforms nearly all models in all aspects by a consider-
able improvement, presenting the necessity of personalized tool-invocation enhancement.

Finding 3: Our model demonstrates a significant improvement in its performance across various
tasks on PTBench. Notably, the enhancement in the Tool Preference task is particularly pronounced
when compared to the pre-trained Qwen2.5-7B-Instruct model. This also indicates that, even with-
out additional manual verification of the training data, the model achieves a high accuracy, demon-
strating the effectiveness of the proposed synthesis framework. Additionally, our model shows a
significant improvement on untrained users, presenting the generalization of the model.

Finding 4: All models exhibit lower accuracy on profile-dependent parameter values compared to
query-dependent parameters, indicating that inferring parameters from the profile presents a greater
challenge. While our trained model does not surpass GPT-4-turbo in accuracy on query-dependent
parameters, it outperforms larger models on profile-dependent parameters. Furthermore, the im-
provement over the pre-trained Qwen2.5-7B-Instruct model is more substantial, demonstrating the
effectiveness of our data generation framework in handling the query-dependent query tasks.

5.3 ABLATION STUDY

To investigate the importance of various parts in our synthesized user profile, we conduct the ablation
study on the user profile, including 4 variants on the user profile:

All. All information in the user profile is used, including basic features and behavioral history.

All w/o Basic. Basic features are omitted.

All w/o History. The behavioral history is given.

All w/o Basic&History. Both basic features and behavioral history are omitted.

First, We use the four dataset variants to train and then evaluate the model with the consistent input.
The results are reported in Table From the result, we can observe that the existence of user history
and basic features hold contributions to the overall performance of the model to an extent.

Additionally, we conduct experiments under two settings: (1) train the model with the All variant
and evaluate the model with the four variants, illustrated in Figure (2) train the model with
the four variants and evaluate the models with the All variant, illustrated in Figure @ The results
exhibit that the model shows poor performance in the tool preference task when lacking user history
information in training or evaluation. On the other hand, the accuracy of tool invocation suffers
when basic features are absent, led by the challenging profile-dependent query task.

To further confirm that the curated instructions can only be completed with personalized informa-
tion, we conducted an additional experiment where all personalized information was removed from
the instructions. As shown in Table[3] model performance decreases in all settings compared to main
results, with the most pronounced decline observed in the precision of tool values. These results con-
firm that personalized information is crucial and indispensable for achieving optimal performance.

Under review as a conference paper at ICLR 2026

Table 3: Evaluating Model Performance Without Personalized Information.

Model \Format Platform T-name T-param T-value Overall
GPT-40 92.80 4829 87.26 64.54 8.59 5.35
Deepseek-v3 98.34 5125 91.69 7728 10.16 5.72

Qwen2.5-7B-Instruct | 90.58 4432 82.64 64.64 8.96 4.16
Llama-3.1-8B-Instruct | 95.29 4331 8735 69.07 9.23 3.97

Ours | 95.57 52.34 96.51 87.55 6.18 591
0.8
0.7 0.7
0.6
0.6
L2‘0.5 —e— Overall L{? —e— Overall
S04 Platform 50.5 Platform
¥ o, —e— Tool o —e— Tool
<03 o4
e e
0.2 0.3
0.1 < . i
0.2 =
All-known History Basic Ignorance All-known History Basic Ignorance
(a) User profile ablation in evaluation. (b) User profile ablation in training.

Figure 3: Ablation study on user profile in evaluation and training, respectively.

5.4 ERROR ANALYSIS

To gain deeper insights into the types of errors made by the models during the evaluation, we conduct
investigations into the error types on our model, GPT-4-turbo, and Qwen2.5-7B-Instruct. We only
analyze solutions with the correct format.

We analyze the function errors generally and divide them into 6 categories: wrong tools, missing
tools, excessive tools, missing parameters, excessive parameters, and wrong parameters. The results
are shown in Figure @ From the pie chart, it is evident that filling the correct parameters is more
challenging than the selection of the correct tools. After training with our synthesized data, the
model is more familiar with the candidate tools, demonstrating less error percentage in tool selection.

5.5 FURTHER ANALYSIS

Model Scaling. For the purpose of analyzing the influence of model size on the performance of our
trained model, we utilize models with different sizes in the Qwen2.5 series, including 7B, 3B, 1.5B
and 0.5B. The results are shown in Figure 5] We can observe that the 1.5B and 0.5B model only
show slight improvement from the training, while 3B and 7B model gain substantial improvement
from the training. This demonstrate that the personalized tool invocation is a high-level capability
of LLMs, requiring a certain scale of parameters.

BFCL

o
N
a

MMLU

<
N
o

PTBench e XLAM-7B-r
llama3.1-8B-Instruct
Qwen2.5-7B-Instruct

—e— ours

overall accuracy
o =]
= [
o w

.

/ HumanEval

/ —e— Raw

0.00 S—T A Fine-tuned CSQA

©
o
a

0.5B 1.5B 3B 7B
Model Size GSM8K

Figure 5: Study of model scaling. (Base model: Figure 6: General Capabilities Analysis.
Qwen2.5-series.) (Base model: Qwen2.5-7B-Instruct.)

Under review as a conference paper at ICLR 2026

Table 4: Models performance results on new scenarios.Bold represents the best result.

Model \ Format Platform T-name T-param T-value Overall
GPT-4-turbo 95.69 4138 8793 64.65 20.69 5.17
Deepseek-v3 100.00 50.00 94.83 8276 2241 8.62

Qwen2.5-7B-Instruct | 75.00 24.14 6638 21.55 5.17 2.59
Llama-3.1-8B-Instruct | 88.80 37.07 81.03 58.62 8.62 2.59

Hammer2.1-7b 92.24 30.17 8534 37.07 7.76 4.31
xLAM-7b-r 78.45 18.97 76.73 35.34 31.02 2.59
Ours | 100.00 67.24 94.83 81.89 25.00 15.52
T-wrong T-missing T-excessive P-wrong P-missing P-excessive
0.9%
0.9% 10.5%
4.5%
0.5%
4.1% 5.3% 3.0%
1.2%
2.9%
66.5%
15.2% 79.5%
58.4% 18.4% 13.0%
8.8%
6.5%
GPT-4-turbo Qwen2.5-7B-Instruct Ours

Figure 4: Error Analysis on PTBench. T-wrong, T-missing, and T-excessive represent wrong tools,
missing tools and excessive tools, respectively. P-missing, P-excessive and P-error represent missing
parameters, excessive parameters and wrong parameters, respectively.

Generalization to Unseen Scenarios. To further examine the generalizability of our model beyond
the five common scenarios, we conducted an additional evaluation on unseen domains. Specifically,
we synthesized 116 samples covering two new scenarios: finance and lifestyle. As shown in Table[d]
our model consistently outperforms the baselines in these settings, demonstrating strong robustness
and adaptability. These results provide evidence that the proposed methods and benchmark are not
limited to the initial set of scenarios, but can extend to a broader range of real-world scenarios.

General Capabilities. In order to validate that our synthesized data does not introduce nega-
tive effects on the model’s general capabilities, we employ a diverse set of benchmarks to as-
sess the performance from different perspectives, including general ability(MMLU(Hendrycks
et al., |2021a3b))), coding(HumanEval(Chen et al.| [2021))), math(GSM8K(Cobbe et al., [2021)), rea-
soning(CommonSenceQA (Talmor et al., [2019)) and basic function calling(tool-invocation) ability
(BFCL non-live(Yan et al., 2024)). XLAM-7B-r, LLaMA-3-8B-Instruct, Raw Qwen2.5-7B-Instruct
serve as baselines. The results are shown in Figure [§] From the figure, it is evident that there is
no significance deterioration on abilities of our model compared to the raw model Qwen2.5-7B-
Instruct. Nonetheless, our model gains a notable improvement on BFCL non-live, These findings
suggest that our approach effectively enhances personalized functional calling capabilities without
compromising the underlying LLM’s other abilities.

6 CONCLUSION

In this work, we introduce the concept of personalized tool invocation, which encompasses two
primary tasks: tool preference and profile-dependent queries. These tasks require the model’s ability
to understand the user’s profile, select preferred tools based on historical behavior, and extract tool
parameters from user information. To enhance and evaluate the model’s personalized tool invocation
capabilities, we propose a data synthesis framework and create a benchmark, PTBench, by manually
inspecting a subset of the generated data. Extensive experimental evaluations assess the personalized
tool invocation abilities of existing models, confirming the effectiveness of our synthesized data and
its harmlessness to other model capabilities.

Under review as a conference paper at ICLR 2026

REFERENCES

Mahyar Abbasian, Zhongqi Yang, Elahe Khatibi, Pengfei Zhang, Nitish Nagesh, Iman Azimi,
Ramesh Jain, and Amir M Rahmani. Knowledge-infused llm-powered conversational health
agent: A case study for diabetes patients. arXiv preprint arXiv:2402.10153, 2024.

Al@Meta. Llama 3 model card. 2024. URL hhttps://github.com/meta-1llama/
llama3/blob/main/MODEL_ CARD.md.

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An
effective and efficient tuning framework to align large language model with recommendation. In
Proceedings of the 17th ACM Conference on Recommender Systems, pp. 1007-1014, 2023.

Anastasiya Belyaeva, Justin Cosentino, Farhad Hormozdiari, Krish Eswaran, Shravya Shetty, Greg
Corrado, Andrew Carroll, Cory Y McLean, and Nicholas A Furlotte. Multimodal llms for health
grounded in individual-specific data. In Workshop on Machine Learning for Multimodal Health-
care Data, pp. 86—102. Springer, 2023.

Jin Chen, Zheng Liu, Xu Huang, Chenwang Wu, Qi Liu, Gangwei Jiang, Yuanhao Pu, Yuxuan
Lei, Xiaolong Chen, Xingmei Wang, et al. When large language models meet personalization:
Perspectives of challenges and opportunities. World Wide Web, 27(4):42, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, and et al.
Evaluating large language models trained on code. 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Yuhao Dan, Zhikai Lei, Yiyang Gu, Yong Li, Jianghao Yin, Jiaju Lin, Linhao Ye, Zhiyan Tie,
Yougen Zhou, Yilei Wang, et al. Educhat: A large-scale language model-based chatbot system
for intelligent education. arXiv preprint arXiv:2308.02773, 2023.

DeepSeek-Al. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.
19437.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in 1lms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948\

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. Advances in neural information processing sys-
tems, 36, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
Steinhardt. Aligning ai with shared human values. Proceedings of the International Conference
on Learning Representations (ICLR), 2021a.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021b.

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, and Wayne Xin
Zhao. Large language models are zero-shot rankers for recommender systems. In European
Conference on Information Retrieval, pp. 364-381. Springer, 2024.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYfO.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Under review as a conference paper at ICLR 2026

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825,

Mingyu Jin, Qinkai Yu, Dong Shu, Chong Zhang, Lizhou Fan, Wenyue Hua, Suiyuan Zhu, Yanda
Meng, Zhenting Wang, Mengnan Du, et al. Health-llm: Personalized retrieval-augmented disease
prediction system. arXiv preprint arXiv:2402.00746, 2024.

Enkelejda Kasneci, Kathrin SeBler, Stefan Kiichemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Giinnemann, Eyke Hiillermeier, et al. Chatgpt for
good? on opportunities and challenges of large language models for education. Learning and
individual differences, 103:102274, 2023.

Kausik Lakkaraju, Sai Krishna Revanth Vuruma, Vishal Pallagani, Bharath Muppasani, and Biplav
Srivastava. Can llms be good financial advisors?: An initial study in personal decision making
for optimized outcomes. arXiv preprint arXiv:2307.07422, 2023.

Yuxuan Lei, Jianxun Lian, Jing Yao, Xu Huang, Defu Lian, and Xing Xie. Recexplainer: Aligning
large language models for explaining recommendation models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1530-1541, 2024.

Ruyu Li, Wenhao Deng, Yu Cheng, Zheng Yuan, Jiaqi Zhang, and Fajie Yuan. Exploring the upper
limits of text-based collaborative filtering using large language models: Discoveries and insights.
arXiv preprint arXiv:2305.11700, 2023.

Qigiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu
Zhou, Cheng Cheng, Yin Zhao, Jun Wang, and Weinan Zhang. Hammer: Robust function-calling
for on-device language models via function masking, 2024. URL https://arxiv.org/
abs/2410.04587.

Weiwen Liu, Xingshan Zeng, Xu Huang, xinlong hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanging Yu, Zezhong WANG, Yuxian Wang, Wu Ning, Yutai Hou, Bin
Wang, Chuhan Wu, Wang Xinzhi, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng
Shang, Xin Jiang, Ruiming Tang, Defu Lian, Qun Liu, and Enhong Chen. ToolACE: Enhancing
function calling with accuracy, complexity, and diversity. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
8EB8k6DdCUL

Xiao-Yang Liu, Guoxuan Wang, Hongyang Yang, and Daochen Zha. Fingpt: Democratizing
internet-scale data for financial large language models. arXiv preprint arXiv:2307.10485, 2023.

Z Liu, Z Lai, Z Gao, E Cui, Z Li, X Zhu, L Lu, Q Chen, Y Qiao, J Dai, et al. Controlllm: augment
language models with tools by searching on graphs (2023). arXiv preprint arXiv:2310.17796.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, et al. Apigen: Automated pipeline for generating verifiable and
diverse function-calling datasets. arXiv preprint arXiv:2406.18518, 2024.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Ha-Thanh Nguyen. A brief report on lawgpt 1.0: A virtual legal assistant based on gpt-3. arXiv
preprint arXiv:2302.05729, 2023.

Minju Park, Sojung Kim, Seunghyun Lee, Soonwoo Kwon, and Kyuseok Kim. Empowering person-

alized learning through a conversation-based tutoring system with student modeling. In Extended
Abstracts of the CHI Conference on Human Factors in Computing Systems, pp. 1-10, 2024.

11

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2410.04587
https://arxiv.org/abs/2410.04587
https://openreview.net/forum?id=8EB8k6DdCU
https://openreview.net/forum?id=8EB8k6DdCU

Under review as a conference paper at ICLR 2026

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
dahai li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating large language models to master
16000+ real-world APIs. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=dHng200Jjr.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaigiang Wang, Dawei Yin, Jun Xu, and Ji-
Rong Wen. Tool learning with large language models: A survey. Frontiers of Computer Science,
19(8):198343, 2025.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng, Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie
Ren, Suzan Verberne, and Zhaochun Ren. Learning to use tools via cooperative and interac-
tive agents. pp. 10642—-10657, Miami, Florida, USA, November 2024. doi: 10.18653/v1/2024.
findings-emnlp.624. URL 2024 .findings-emnlp. 624/,

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A ques-
tion answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4149—-4158, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/
N19-1421/.

Qwen Team. Qwen?2 technical report. arXiv preprint arXiv:2407.10671, 2024a.

Qwen Team. Qwen2.5: A party of foundation models, September 2024b. URL https:
//gwenlm.github.io/blog/gwen2.5/.

Wei Wei, Xubin Ren, Jiabin Tang, Qinyong Wang, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei Yin,
and Chao Huang. Llmrec: Large language models with graph augmentation for recommendation.
In Proceedings of the 17th ACM International Conference on Web Search and Data Mining, pp.
806-815, 2024.

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen
Zhu, Hengshu Zhu, Qi Liu, Hui Xiong, and Enhong Chen. A survey on large language models
for recommendation. CoRR, abs/2305.19860, 2023.

Yunjia Xi, Weiwen Liu, Jianghao Lin, Xiaoling Cai, Hong Zhu, Jieming Zhu, Bo Chen, Ruim-
ing Tang, Weinan Zhang, and Yong Yu. Towards open-world recommendation with knowledge
augmentation from large language models. In Proceedings of the 18th ACM Conference on Rec-
ommender Systems, pp. 12-22, 2024.

Yang Xu, Yunlong Feng, Honglin Mu, Yutai Hou, Yitong Li, Xinghao Wang, Wanjun Zhong,
Zhongyang Li, Dandan Tu, Qingfu Zhu, Min Zhang, and Wanxiang Che. Concise and precise
context compression for tool-using language models. pp. 16430-16441, Bangkok, Thailand, Au-
gust 2024. doi: 10.18653/v1/2024 .findings-acl.974. URL|2024 . findings-acl. 974/,

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica,
and Joseph E. Gonzalez. Berkeley function calling leaderboard. https://gorilla.cs.
berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html)
2024.

Fan Yang, Zheng Chen, Ziyan Jiang, Eunah Cho, Xiaojiang Huang, and Yanbin Lu. Palr: Personal-
ization aware llms for recommendation. arXiv preprint arXiv:2305.07622, 2023a.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. GPT4tools: Teaching
large language model to use tools via self-instruction. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023b. URL https://openreview.net/forum?id=
cwjh81gmOL.

12

https://openreview.net/forum?id=dHng2O0Jjr
2024.findings-emnlp.624/
https://aclanthology.org/N19-1421/
https://aclanthology.org/N19-1421/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
2024.findings-acl.974/
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://openreview.net/forum?id=cwjh8lqmOL
https://openreview.net/forum?id=cwjh8lqmOL

Under review as a conference paper at ICLR 2026

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Yongliang Shen, Ren Kan, Dongsheng Li, and
Deqing Yang. Easytool: Enhancing llm-based agents with concise tool instruction. arXiv preprint
arXiv:2401.06201, 2024.

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, Weiran Yao, Juntao Tan, Thai Hoang, Liang-
wei Yang, Yihao Feng, Zuxin Liu, et al. Agentohana: Design unified data and training pipeline
for effective agent learning. arXiv preprint arXiv:2402.15506, 2024a.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
Tan, Akshara Prabhakar, Haolin Chen, et al. xlam: A family of large action models to empower
ai agent systems. arXiv preprint arXiv:2409.03215, 2024b.

Junjie Zhang, Ruobing Xie, Yupeng Hou, Xin Zhao, Leyu Lin, and Ji-Rong Wen. Recommendation
as instruction following: A large language model empowered recommendation approach. ACM
Transactions on Information Systems.

Zhehao Zhang, Ryan A Rossi, Branislav Kveton, Yijia Shao, Diyi Yang, Hamed Zamani, Franck
Dernoncourt, Joe Barrow, Tong Yu, Sungchul Kim, et al. Personalization of large language mod-
els: A survey. arXiv preprint arXiv:2411.00027, 2024c.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,

Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

A EXPERIMENTS

A.1 EVALUATION METRICS
The calculation of various metrics in PTBench are formulated as follows:

* Format Accuracy indicates the instruction-following ability.

#parsable samples

format_acc = total 2)
* Platform Accuracy indicates the tool preference recognition ability.
plat form_acc = #correct plat form samples 3)

F#total

* Query-related Parameter-Value Accuracy indicates the ability to extract values from query.

Fcorrect query params

query_param-acc =

“

#total query params

* Profile-related Parameter-Value Accuracy indicates the ability to extract values from profile.

Ftcorrect profile params

ile _acc = 5
profile-param-acc #total profile params ®)
* Tool Name Accuracy indicates the tool selection ability.
F#correct name samples
tool_name_acc = (6)
#total
* Tool Parameter Accuracy indicates the tool comprehension ability.
F#correct param samples
tool_param_acc = (@)

F#total

13

Under review as a conference paper at ICLR 2026

Table 5: Statistics of our synthesized dataset. The samples in the test set are verified by human
annotators. Trained and untrained represent the user profiles present and absent in the training set,
respectively. Unseen scenario represents additional data used in generalization study.

Dataset #Scenario #Platform #API #User #Query
Train 5 15 360 74 7,096
Test(PTBench) 7 21 504 8 1,199
—Trained 5 15 360 74 474
—Untrained 5 15 360 6 609
—Unseen Scenarios 2 6 144 5 116
Total 5 15 360 80 8,197

* Tool Parameter-Value Accuracy indicate the value extraction on context ability.

#correct value samples

tool _value_acc = total ®)
* Overall Accuracy on Trained Users indicate the personalized tool ability on trained users.
t trained [
trained_overall_acc = feorrect trained samples)

#trained total

* Overall Accuracy on Untrained Users indicate the personalized tool selection ability on trained

users.
F#correct untrained samples

10)

untrained_overall _acc =
#untrained total

Overall Accuracy indicate the overall personalized tool selection ability.

#correct samples

F#total (1

overall_acc =

A.2 DETAILED RESULTS

the detailed component of the dataset are illustrated in Table 3]

The detailed results of the trained and untrained subset on PTBench are illustrated in Table [6] and
Table[7] respectively.

B HUMAN-IN-THE-LOOP VERIFICATION

In the human verification stage, we adopt a systematic evaluation and refinement protocol consisting
of three main steps.

B.1 DESIGNING EVALUATION CRITERIA

* Query Reasonableness: Ensures that queries include all required parameters, align with
user profiles, and exclude meaningless characters.

* Platform Consistency: Checks whether the platform preference implied in the query is
consistent with the answer. If no explicit platform is specified, historical preferences from
the user profile are used for verification.

* Tool Invocation Accuracy: Verifies that the invoked tool appropriately addresses the query
and that its parameters are correctly specified.

B.2 HUMAN ANNOTATION AND REFINEMENT

A human annotator reviews queries, answers, and tool invocations against the above criteria, making
necessary corrections to ensure overall data quality.

14

Under review as a conference paper at ICLR 2026

Table 6: Comparison with baseline models on trained users in PTBench. Bold and underline repre-
sent the best and the 2nd best results.

Type |

‘ Format

Preference Param Value

Tool Invocation

Model Qverall
| | Platform Query Profile T-name T-param T-value
GPT-4-turbo 0.9831 0.5569 0.7927 0.7080 0.9325 0.7869 0.3502 0.1834
GPT-40 0.8840 0.4157 0.6520 0.6164 0.8143 0.6941 0.2637 0.1350
API Deepseek-v3 0.8903 0.5043 0.6868 0.6508 0.8376 0.7617 0.3059 0.1708
Deepseek-rl 0.8376 0.4958 0.6112 0.6317 0.7637 0.6604 0.2574 0.1477
Qwen-max 0.6941 0.4430 0.5083 0.5162 0.6393 0.5358 0.2152 0.1456
Claude-3.5-sonnet 0.9662 0.5822 0.7519 0.6794 0.7152 0.6498 0.2236 0.1329
DeepSeek-R1-Distill-Llama-8B| 0.6203 0.2891 0.3495 0.3111 0.4958 0.3925 0.1013 0.0485
DeepSeek-R1-Distill-Qwen-7B | 0.6013 0.1519 0.2148 0.0954 0.3503 0.1941 0.0147 0.0042
Qwen2.5-7B-Instruct 0.7827 0.3882 0.5900 0.4447 0.6856 0.5612 0.1772 0.0717
Llama-3.1-8B-Instruct 0.8819 0.3797 0.6384 0.5439 0.8039 0.6498 0.2236 0.0929
0SS Mistral-7B-Instruct-v0.3 0.8713 0.4198 0.5522 0.4113 0.6645 0.3734 0.1477 0.0674
Hammer2.1-7b 0.9641 0.3650 0.7126 0.5468 0.8439 0.6582 0.2257 0.0739
ToolACE-8B 0.4114 0.1709 0.3147 0.2061 0.3987 0.2721 0.0865 0.0338
Watt-tool-8B 0.3966 0.2405 0.2708 0.2156 0.3586 0.2510 0.0992 0.0591
xLAM-7b-r 0.9641 0.3586 0.6732 0.5315 0.8881 0.6329 0.2194 0.0696
\Ours ‘0.9662 0.7826 0.7791 0.7653 0.9409 0.8628 0.3333 0.2701

B.3 TooOL PARAMETER CLASSIFICATION

A second annotator categorizes tool invocation parameters into two groups:

* Query-dependent Parameters: Explicitly provided in the user query.

* Profile-dependent Parameters: Not directly mentioned in the query but inferable from

the user profile.

This classification enables a fine-grained evaluation of model accuracy across different parameter

types.

C EXAMPLES

To enhance the understanding of the proposed personalized tool invocation, we illustrate an example
in Figure

15

Under review as a conference paper at ICLR 2026

Table 7: Comparison with baseline models on untrained users in PTBench. Bold and underline
represent the best and the 2nd best results.

‘ Format

Preference Param Value

Tool Invocation

Type‘Model Qverall
| | Platform Query Profile T-name T-param T-value
GPT-4-turbo 0.9737 0.5419 0.8266 0.6637 0.9064 0.7586 0.3531 0.1856
GPT-40 0.9146 0.4746 0.7596 0.6057 0.8391 0.7028 0.3054 0.1708

API Deepseek-v3 0.9245 0.5468 0.7629 0.6343 0.8522 0.7455 0.3104 0.1757
Deepseek-rl 0.8062 0.4712 0.6443 0.5403 0.7175 0.6059 0.2660 0.1494
Qwen-max 0.8276 0.5353 0.6828 0.5658 0.7635 0.6207 0.2496 0.1707
Claude-3.5-sonnet 0.9704 0.5829 0.8046 0.6275 0.7077 0.6404 0.2397 0.1395
DeepSeek-R1-Distill-Llama-8B| 0.6601 0.3120 0.4061 0.2935 0.5173 0.3695 0.0953 0.0394
DeepSeek-R1-Distill-Qwen-7B | 0.6158 0.1429 0.2481 0.1106 0.3777 0.2250 0.0279 0.0066
Qwen2.5-7B-Instruct 0.7882 0.3727 0.6301 0.3943 0.6815 0.5287 0.1889 0.0755
Llama-3.1-8B-Instruct 0.8900 0.4253 0.6839 0.4906 0.7964 0.6059 0.2052 0.0985

0SS Mistral-7B-Instruct-v0.3 0.8489 0.3678 0.5653 0.3416 0.6584 0.3448 0.1429 0.0559
Hammer2.1-7b 0.9655 0.3629 0.7420 0.5094 0.8374 0.6109 0.2266 0.0689
ToolACE-8B 0.3974 0.1659 0.3392 0.2039 0.3810 0.2562 0.0936 0.0378
Watt-tool-8B 0.3580 0.2184 0.2722 0.1859 0.3268 0.2003 0.0706 0.0411
xLAM-7b-r 0.9442 03054 0.6839 0.4695 0.8538 0.5632 0.2233 0.0771
\Ours ‘ 0.9507 0.7028 0.8035 0.7096 0.9112 0.8030 0.3481 0.2660

16

Under review as a conference paper at ICLR 2026

[SYSTEM]
You are given a user profile:

{
"basic_features": {
"username":"WineTraveler38",

}
"user_history":{
"shopping": [{
"platform":"MegaMart",
"action":"Purchased a selection of premium imported wines"

}
Here is some platforms under the scenario:

[{
"name":"MegaMart",
"profile": {
"product range":"A wide-ranging selection, offering products from various catego

]
Here is some APIs under the platforms:

[{
"type’: ’function’,
’ function’ : {
"name’ : ’'registerUser’,
"description’: 'Registers a new user in the application.’,
'parameters’ : {
"type’: ’'object’,
'properties’: {

"username’ : {
"type’: ’string’,
"description’: \"User’s chosen username.\"
by
I
'required’: [’username’, ’‘password’, ’‘email’]

I

"response’: {
"type’: ’'object’,
'properties’: {

"success’: {
"type’: ’"boolean’,
"description’: ’Status of registration.’

by

1

The user will give you a query. Based on the profile, try to solve the query by using the platforms and APIs. The platform you choose
should fit the user profile or the needs of the user’s query. All the necessary information are provided in the user profile. DO NOT
ask the user for further information. You should respond in the format of {platform:[funcl(paraml_name = param]_value, param2...),
func2...]} No other text MUST be included.

[USER]

Could you please register an account for me using my username, password and email address, and setting my home location to my
place of residence? I prefer not to receive any marketing emails.

[ASSISTANT]

{
MegaMart: [
registerUser (
username=’'WineTraveler38’, password=’strongpasswordl23!’,
email='" jeanlucbordeaux@email.com’, preferredLanguage=’French’,
marketingConsent=False, homelLocation=’Paris, France’

Figure 7: Tllustration of personalized tool invocla,}ion task. The blue part represents the expected
output.

	Introduction
	Related Work
	Tool Invocation
	Personalized LLMs

	Personalized Tool Invocation
	Personalized Tool Invocation Data Synthesis
	Tool Generation
	User Profile Construction
	Query and Solution Generation

	Experiments
	Experimental Settings
	Main Results
	Ablation Study
	Error Analysis
	Further Analysis

	Conclusion
	Experiments
	Evaluation Metrics
	Detailed Results

	Human-in-the-Loop Verification
	Designing Evaluation Criteria
	Human Annotation and Refinement
	Tool Parameter Classification

	Examples

