

000 001 002 003 004 005 ADVANCING AND BENCHMARKING PERSONALIZED 006 TOOL INVOCATION FOR LLMs 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Tool invocation is a crucial mechanism for extending the capabilities of Large Language Models (LLMs) and has recently garnered significant attention. It enables LLMs to solve complex problems through tool calls while accessing up-to-date world knowledge. However, existing work primarily focuses on the fundamental ability of LLMs to invoke tools for problem-solving, without considering personalized constraints in tool invocation. In this work, we introduce the concept of Personalized Tool Invocation and define two key tasks: Tool Personalization and Parameter Personalization. Tool Personalization addresses user preferences when selecting among functionally similar tools, while Parameter Personalization considers cases where a user query lacks certain tool parameters, requiring the model to infer them from the user profile. To tackle these challenges, we propose **PTool**, a data synthesis framework designed for personalized tool invocation. Additionally, we construct **PTBench**, a benchmark to evaluate personalized tool invocation. We then fine-tune various open-source models, demonstrating the effectiveness of our framework and providing valuable insights. Our model, training data, and the benchmark will be publicly released upon acceptance.

1 INTRODUCTION

Recently, large language models (LLMs) have demonstrated remarkable capabilities in natural language processing tasks, particularly in human-computer interaction, where they can effectively comprehend user queries and provide reasonable responses (Zhao et al., 2023). However, the knowledge embedded within LLMs is not inherently up-to-date, as updating these models requires extensive retraining with large-scale data, which incurs significant time and economic costs. To equip LLMs with the ability to solve complex problems and access the latest information, tool invocation capabilities are essential. For instance, LLMs can leverage mathematical tools to decompose and solve intricate mathematical problems or utilize internet APIs (Liu et al., 2025; Qin et al., 2024) and search engines (Schick et al., 2024; Nakano et al., 2021) to retrieve the most recent knowledge.

Existing research on enhancing LLMs's tool invocation abilities primarily focuses on improving fundamental capabilities (Qin et al., 2024; Yan et al., 2024; Lin et al., 2024), such as ensuring adherence to the required syntax, comprehending tool functionalities, interpreting explicit user instructions, and extracting tool parameters. However, in real-world applications, user intents are often implicit rather than explicitly stated, requiring models to infer based on personalized profiles. Recent studies have begun to explore personalized tool invocation (Xu et al., 2025; Cheng et al., 2025), yet a systematic definition is still lacking. Existing work typically relies on idealized assumptions about user profiles—assuming that users' implicit preferences are observable to the model. However, such preferences are embedded in behavioral histories and are rarely provided explicitly in practice.

In this work, we first provide a systematic formulation of personalized tool invocation and highlight two common concepts that exemplify this challenge: (1) **Tool Personalization**. When multiple tools offer similar functionalities, users often exhibit specific preferences. For example, in online shopping, users may choose different platforms depending on their preferences for particular product categories. Some users may prioritize platforms with superior maintenance services when purchasing high-value electronic products, despite the higher cost, while preferring platforms with faster delivery when buying inexpensive daily necessities. Inferring such preferences necessitates reasoning from user attributes, such as age, interests, and purchasing behavior. (2) **Parameter Per-**

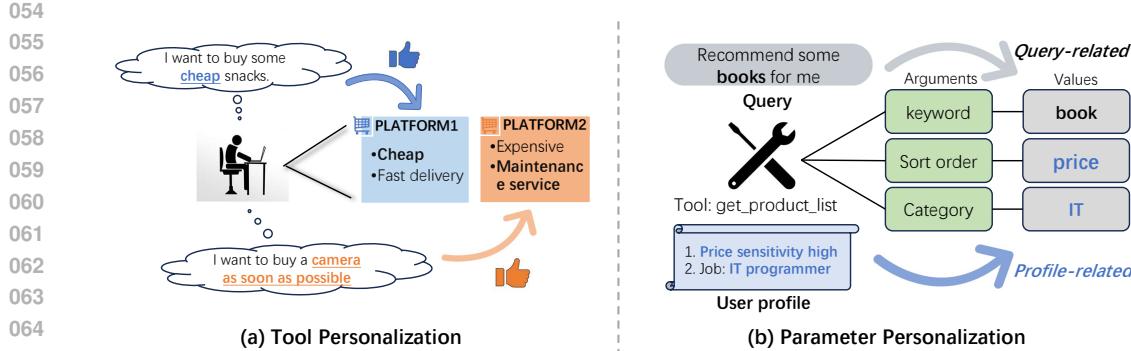


Figure 1: Examples of Personalized Tool Invocation. (a) Tool Personalization: Users may prefer different tools with similar functionalities. (b) Parameter Personalization: Certain tool parameters may be missing from the user’s query and must be inferred from the user’s profile.

sonalization. In everyday scenarios, users tend to express their needs concisely and omit crucial details. For instance, a user might simply request, “Order me a hamburger from KFC”, without specifying essential information such as the delivery address, recipient contact details, or preferred delivery time. This requires the model to infer the missing information from the user profile, such as the user’s work location, current time, and phone number, ensuring a seamless and accurate tool invocation process. To enhance and systematically evaluate a model’s ability in personalized tool invocation, we further introduce an automated data synthesis framework for this task, termed **PTool**, which consists of three key stages: tool generation, user profile construction, and user behavior simulation. Firstly, we consider several commonly used real-world scenarios, where each scenario contains multiple functionally similar platforms organized in a hierarchical tree structure. We then leverage an advanced LLM to recursively decompose platform functionalities using a depth-first expansion approach, progressively refining them until distinct tools are defined for each functional category. Secondly, we abstract and summarize platform features and API parameters to extract both basic user attributes and personalized characteristics, including psychological traits and behavioral tendencies. To construct a diverse set of user profiles, we employ a bottom-up clustering approach for feature induction and a top-down assignment strategy for attribute allocation. Finally, we exploit the role-playing capabilities of LLMs to simulate user behaviors based on the assigned user profiles, generating both historical interactions and potential user queries. To establish reliable ground-truth labels, we further integrate a multi-agent framework that conditions query generation on user profiles. Following manual review and annotation, we construct **Personalized ToolBench (PTBench)**, a benchmark designed to evaluate large models’ ability in personalized tool invocation, consisting of 1,301 high-quality annotated data samples. Key contributions are summarized as follows:

- We propose a role-playing-based paradigm for personalized tool invocation towards real-world applications, incorporating both user tool personalization and parameter personalization.
- We develop a systematic personalized data synthesis framework and construct PTBench, a benchmark for personalized tool invocation, enabling a comprehensive evaluation of the ability to invoke tools based on user information.
- We demonstrate that training open-source models on our synthesized dataset significantly improves personalized tool invocation capabilities, while also enhancing general tool invocation without compromising other general abilities.

2 RELATED WORK

2.1 TOOL INVOCATION

Tool invocation (also termed tool calling) involves tool selection from candidate tools and parameter extraction from queries. Existing works can be categorized into two tuning-free and tuning-based methods (Qu et al., 2025; Liu et al.). Tuning-free methods mainly rely on the prompt strategy

108 with few-shot learning, involving encouraging LLM to reason by providing examples (Yao et al.,
 109 2022), rewriting tool documentation with LLMs to enhance the comprehension (Yuan et al., 2024),
 110 summarizing tool description with more concise and precise sentence (Xu et al., 2024), leveraging
 111 multi-agent collaboration to decompose the tool-calling task (Shi et al., 2024). Tuning-based meth-
 112 ods leverage tool-learning samples to train existing LLMs, where the research problems comprise
 113 data collection and training strategy. Toolformer (Schick et al., 2024) and ToolkenGPT (Hao et al.,
 114 2024) add a special tool-related token into the vocabulary, switching the decoding process into tool
 115 selection and calling. Some works leverage advanced LLM to synthesize tool-calling samples to
 116 improve the tool-invocation ability of lightweight models, demonstrating the efficiency of the distil-
 117 lation from advanced models (Qin et al., 2024; Yang et al., 2023b; Liu et al., 2025).

118 2.2 PERSONALIZED LLMs

120 Personalized LLMs represent LLMs that have been adapted to align with user preferences and char-
 121 acteristics (Zhang et al., 2024c). Existing works mainly focus on the generation of personalized texts
 122 or applications in information systems. LLMs are customized as personal conversational AI assis-
 123 tants for various domains, including education (Kasneci et al., 2023; Dan et al., 2023; Park et al.,
 124 2024), healthcare (Belyaeva et al., 2023; Abbasian et al., 2024; Jin et al., 2024), finance (Liu et al.,
 125 2023; Lakkaraju et al., 2023), legal (Nguyen, 2023), and etc. User profiles are provided via prompts
 126 or hidden representation, leading the model to generate personalized text in the dialog. Personalized
 127 LLMs have been extensively applied in information systems such as recommender systems (Wu
 128 et al., 2023; Chen et al., 2024). LLMs are leveraged as an augmentation module for traditional rec-
 129 ommender systems, serving as the content interpreter (Bao et al., 2023; Li et al., 2023; Yang et al.,
 130 2023a), the knowledge base (Xi et al., 2024; Wei et al., 2024), or the explainer (Lei et al., 2024;
 131 Wang et al., 2023). Also, many works directly deploy LLMs as the direct recommenders via prompt
 132 techniques (Lyu et al., 2024; Hou et al., 2024) or fine-tuning (Zhang et al.). **Recent work has begun**
 133 **to investigate personalized tool invocation by treating user characteristics as explicit profile features**
 134 **for selecting appropriate tools (Xu et al., 2025; Cheng et al., 2025).** However, these approaches over-
 135 look a key challenge: in practical settings, users' implicit preferences are not directly observable by
 136 the model and instead must be inferred from their behavioral histories.

137 3 PERSONALIZED TOOL INVOCATION

139 We innovatively consider a practical and high-demand scenario in LLM tool invocation: **personal-**
 140 **ized tool invocation.** This scenario requires the model to leverage user-specific information when
 141 selecting and configuring tools to address user needs. In this chapter, we formally define the task of
 142 personalized tool invocation.

143 Given an LLM with model parameters θ , the general tool invocation task requires the model, when
 144 provided with a query q and a set of candidate tools T , to select the appropriate tool t^i and populate
 145 its corresponding parameters a_1^i, \dots, a_m^i , forming the solution $A = [(t^i, a_1^i, \dots, a_m^i), \dots]$.

146 In conventional formulations of this task, correctness is typically determined by whether the selected
 147 tool successfully resolves the query. However, this setting overlooks the fact that multiple tools may
 148 solve one problem (e.g., APIs from different platforms with similar capabilities), and that users often
 149 have preferences for certain tools—a concept we refer to as **tool personalization**, defined as follows:

150 **Definition 3.1. (Tool Personalization)** *User u prefers t^1 for query q_1 and t^2 for query q_2 , where
 151 q_1, q_2 can be solved by both t^1 and t^2 :*

$$t^1 \succ_{(u, q_1)} t^2; \quad t^2 \succ_{(u, q_2)} t^1 \quad (1)$$

154 Moreover, in A , both tool selection and parameter values are determined solely based on the in-
 155 formation contained in the query. For instance, consider the query: "Book me a flight from Los
 156 Angeles to New York at 8:45 AM tomorrow". However, in real-world scenarios, users often do not
 157 provide such detailed query information. Instead, they may omit certain essential details required
 158 for tool invocation, meaning that the model cannot extract all necessary parameters from the query
 159 alone. We refer to this personalized scenario as an **Parameter Personalization**, defined as follows:

160 **Definition 3.2. (Parameter Personalization)** *Given the profile of the user u as P_u , the query q and
 161 the solution A , there exists value $\alpha \in A$, $\alpha \in P_u$ and $\alpha \notin q$. The phenomenon is called parameter
 162 personalization, and the query q is called a profile-dependent query.*

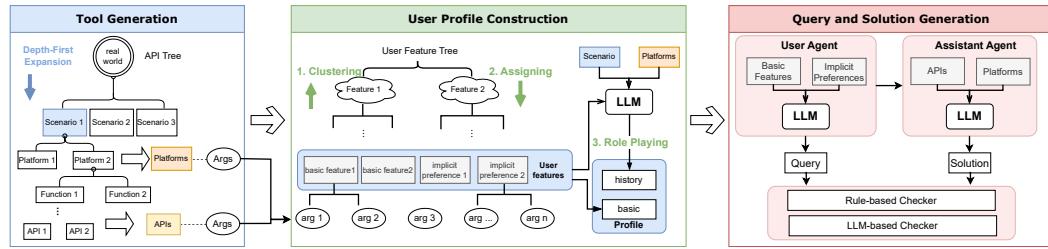


Figure 2: Framework of our personalized tool invocation data synthesis: PTool. The pipeline comprises three stages: Tool Generation, User Profile Generation and Query and Answer Generation.

4 PERSONALIZED TOOL INVOCATION DATA SYNTHESIS

To address the two challenges in personalized tool invocation mentioned above, we propose an automated data synthesis framework, PTool, for generating high-quality training and evaluation data for personalized tool invocation. The framework consists of three key stages: **Tool Generation**, **User Profile Construction**, and **Query and Solution Generation**, as illustrated in Figure 2. The detailed processes of each stage are described in the subsequent parts of this section.

4.1 TOOL GENERATION

To cover the majority of scenarios encountered in daily life, we first constructed a diversified tool library across multiple contexts. Inspired by existing work, we employed an advanced Large Language Model (LLM)-based data synthesis method to generate APIs. Similar to ToolACE, we also developed a structure akin to an API Tree, which allows for the generation of diverse tools.

Specifically, we initially define several demand scenarios from everyday life (e.g., shopping, food delivery, office) as the first-level nodes of the tree. Then, using a depth-first expansion approach, we iteratively refine the functionality at each node until we derive specific API descriptions as the leaf nodes. Notably, in order to generate data that enhances the model’s Tool Personalization capability, tools with similar functionalities are required. However, this API Tree expansion approach alone cannot achieve this. Therefore, at the second level of the tree expansion, we introduce the concept of platforms. For each scenario, we generated multiple platforms with distinct characteristics. For example, in the video entertainment scenario, platforms such as YouTube and TikTok were included, where YouTube focuses on long-form videos and TikTok emphasizes short, lifestyle-oriented clips. This enables us to obtain multiple tools with functionally interchangeable capabilities.

4.2 USER PROFILE CONSTRUCTION

Personalization requires constructing diverse and realistic user profiles. This process involves three key challenges: (1) defining feature sets relevant to tool invocation, ensuring a structured linkage between user traits and tool selection; (2) maintaining sufficient diversity across profiles to enable generalization to unseen users; and (3) ensuring that profiles contain only observable basic and behavioral information, without incorporating detailed psychological attributes.

Bottom-up Feature Tree Construction. To systematically define user profile features, we adopt a tool-driven hierarchical clustering approach. We construct a feature tree, where platform characteristics and tool parameters serve as leaf nodes. Using LLM-based clustering, we recursively merge semantically related parameters, summarizing them into higher-level features until the number of parent nodes at each level falls within a predefined threshold. Notably, we categorize features during initial clustering: explicit basic features (e.g., age, gender) are directly observable, while implicit preferences (e.g., shopping preferences) remain latent and are used in user behavior generation.

Top-down Characteristic Assignment. Once the user feature tree is constructed, we encounter the second issue: how to diversify the assignment of values to these features to generate distinct user profiles. When using an advanced LLM to assign N different user features, two options typically arise: one is to assign all features for a single user at a time and repeat this process N times; the other is to assign all features for N users in one pass. The first method incurs higher inference costs and

216 makes it challenging to avoid repetition across multiple generations, while the second is constrained
 217 by the model’s context length limitation, especially when N or the number of features is large.
 218 Therefore, we adopt a top-down hierarchical assignment based on the tree structure. Specifically,
 219 for nodes at the l -th layer, we assign k_l different values simultaneously, and for the $(l + 1)$ -th layer
 220 nodes, the model generates k_{l+1} different values for each parent node’s feature value. Thus, for a
 221 user feature tree with depth L , we can ultimately obtain $N = \prod_{l=0}^L k_l$ distinct user profiles. It’s
 222 important to note that each time the LLM generates k_l , this number can be much smaller than N ,
 223 allowing the LLM to generate diverse features in one pass.

224 **User Behavior Generation.** Once user profiles are assigned, they include both explicit basic fea-
 225 tures (e.g., occupation, gender, location) and implicit preferences (e.g., price sensitivity, product
 226 affinity). However, in real-world scenarios, user preferences are typically inferred through behav-
 227 ior patterns rather than explicitly stated. To simulate authentic behavioral traits, we employ an
 228 LLM-based role-playing approach, where the model generates user actions on various platforms
 229 based on their profile and platform characteristics. For instance, given a user’s preference for budget-
 230 conscious shopping, the model may generate interactions such as “searches for hiking backpacks on
 231 Amazon” or “purchases coffee from Walmart for \$30.” While implicit preferences remain unob-
 232 servable to the model during task execution, they are embedded in prompts when generating tool
 233 invocation solutions, ensuring accurate and contextually appropriate tool selection.

234 4.3 QUERY AND SOLUTION GENERATION

236 For generating query-solution pairs, we adopt a multi-agent collaborative approach, involving two
 237 agents: the user agent and the assistant agent. The user agent generates queries by role-playing
 238 based on the user profile, while the assistant agent generates tool invocation solutions. The user
 239 agent’s role information includes both basic and implicit features, as these provide a more accurate
 240 user representation than explicit behavioral features.

241 Given that a user’s platform preferences may vary across queries, we explicitly incorporate platform
 242 information into the user agent’s prompt. This enables the agent to generate queries aligned with
 243 the user’s platform preferences. Additionally, we instruct the user agent to avoid revealing profile
 244 information in the queries, ensuring the generation of profile-dependent queries as well.

245 To ensure the correctness of tool invocations, we employ a two-tier verification strategy: rule-based
 246 validation and model-based verification. Rule-based validation checks the format of tool invocations
 247 to prevent issues such as unresolvable results or hallucinated tools and parameters. Model-based
 248 verification inputs the user profile, query, and solution triples into the LLM to verify parameter
 249 correctness, detect hallucinations, and assess whether the solution effectively resolves the query.
 250 Furthermore, to ensure evaluation accuracy, we manually inspect tool invocation parameters. These
 251 parameters are annotated as profile-related or query-related, indicating whether they originate from
 252 the user profile or the query, facilitating more precise error feedback during evaluation.

254 5 EXPERIMENTS

256 5.1 EXPERIMENTAL SETTINGS

258 **Dataset Details.** We leverage GPT-4-turbo to synthesize the personalized tool invocation dataset
 259 via our proposed framework. The overall dataset consists of a total of 80 users and 8,197 queries
 260 under 5 scenarios, including shopping, takeout, entertainment, work, and travel. Under each sce-
 261 nario, there are 3 platforms and 24 APIs in each platform as tools. We separate the dataset into
 262 training and test sets, randomly selecting all queries of 6 users and about 6% queries of another 74
 263 users to form the test set PTBench. The 6 users will not be visible to models in the training process,
 264 termed as untrained. To ensure the quality of the test set, we manually verify each sample. Addi-
 265 tionally, we construct a dataset comprising 116 samples from two unseen scenarios—finance and
 266 lifestyle—which were not exposed to the models during training, to evaluate their generalization
 267 capability. The statistics are illustrated in Appendix A.2.

268 **Evaluation.** We first evaluate the format accuracy by checking if the model’s output can give for-
 269 matted output, verifying instruction following ability. The solution of each sample comprises two
 parts: platform and tool invocation. The models are required to select the correct user-preferred plat-

270 Table 1: Comparison with baseline models on PTBench in terms of accuracy. **Bold** and underline
 271 represent the best and the 2nd best results. **Tool-P** denotes the tool personalization. T^* denotes the
 272 correctness * in tool invocation. **DS-R1-Dis** is the abbreviation of DeepSeek-R1-Distill.

Type	Model	Format	Tool-P	Param Value		Tool Invocation			Overall		
				Query	Profile	T-name	T-param	T-value	Trained	Untrained	Overall
API	GPT-4-turbo	97.78	54.84	81.23	<u>68.32</u>	<u>91.78</u>	<u>77.09</u>	35.18	<u>18.34</u>	<u>18.56</u>	18.47
	GPT-4o	90.12	44.84	71.44	61.04	82.83	69.91	28.69	13.50	17.08	15.51
	Deepseek-v3	90.95	52.80	73.09	64.16	84.60	75.30	30.85	17.08	17.57	17.36
	Deepseek-r1	81.99	48.19	63.04	58.06	73.76	62.94	26.24	14.77	14.94	14.86
	Qwen-max	76.92	49.46	60.94	54.40	70.91	58.43	23.48	14.56	17.07	15.97
	Claude-3.5-sonnet	96.86	58.26	78.24	65.04	71.10	64.45	23.26	13.29	13.95	13.67
OSS	DS-R1-Llama-8B	64.27	30.19	38.23	30.12	50.80	38.02	9.81	4.85	3.94	4.34
	DS-R1-Qwen-7B	60.95	14.69	23.41	10.39	36.56	21.13	2.21	0.42	0.66	0.55
	Qwen2.5-7B-Inst	78.58	37.95	61.32	41.65	68.33	54.30	18.37	7.17	7.55	7.38
	Llama-3.1-8B-Inst	88.65	40.53	66.48	51.41	79.97	62.52	21.33	9.29	9.85	9.60
	Mistral-7B-v0.3	85.87	39.03	55.98	37.23	66.12	35.72	14.50	6.74	5.59	6.09
	Hammer2.1-7b	96.49	36.38	72.96	52.59	84.02	63.16	22.62	7.39	6.89	7.11
	ToolACE-8B	40.35	16.81	32.89	20.49	38.87	26.31	9.06	3.38	3.78	3.60
	Watt-tool-8B	37.49	22.81	27.16	19.90	34.08	22.18	8.26	5.91	4.11	4.89
	xLAM-7b-r	95.29	32.85	67.94	49.68	86.88	59.34	22.17	6.96	7.71	7.38
	Ours	95.75	73.74	<u>79.33</u>	73.41	92.42	82.90	<u>34.17</u>	27.01	26.60	26.78

291
 292
 293 form and then generate suitable tool invocations. Platform accuracy demonstrates the ability of tool
 294 preference understanding. The tool invocation consists of three parts: tool name, parameters, and
 295 parameter values, where the parameter values comprise query-related and profile-related parameters.
 296 Profile-related parameters require the model to infer from the user profile, evaluating the ability to
 297 handle profile-dependent query. We calculate the accuracy of the function name, function parameter,
 298 and function value, respectively. The calculations of accuracy are detailed in Appendix A.1.

299 **Baselines.** We compare the latest open-source models and API-based models, as well as fine-tuned
 300 tool-calling models. Open-source models include DeepSeek-R1-Distill-Llama-8B(DeepSeek-AI,
 301 2025), DeepSeek-R1-Distill-Qwen-7B(DeepSeek-AI, 2025), Qwen2.5-7B-Instruct(Team, 2024a;b),
 302 Llama-3.1-8B-Instruct (AI@Meta, 2024) and Mistral-7B-Instruct-v0.3(Jiang et al., 2023). API-
 303 based models include GPT-4-turbo¹, GPT-4o¹, Deepseek-v3(DeepSeek-AI, 2024), Deepseek-
 304 r1(DeepSeek-AI, 2025), Qwen-max(Team, 2024b) and Claude-3.5-sonnet². Models fine-tuned for
 305 tool-calling include Hammer2.1-7b(Lin et al., 2024), ToolACE-8B(Liu et al., 2025), watt-tool-8B³
 306 and xLAM-7b-r(Zhang et al., 2024b; Liu et al., 2024; Zhang et al., 2024a).

307 **Implementation Details.** To validate the effectiveness of our model, we conducted various experiments
 308 by training LLMs with the synthesized dataset. We train the open-source LLM, Qwen2.5-7B-
 309 Instruct(Team, 2024a;b), in the supervised fine-tuning (SFT) manner. Due to limited resources, we
 310 adopt the parameter-efficient LoRA(Hu et al., 2022) training strategy to fine-tune the model. As for
 311 the hyper-parameters setting, we set the rank as 8, alpha as 16 learning rate as 10^{-4} , LR scheduler
 312 as cosine, WarmUp Ratio as 0.1 and epoch as 1 for all modules in the model.

313 5.2 MAIN RESULTS

314
 315 The overall results are illustrated in Table 1. The detailed results of trained and untrained users are
 316 presented in Appendix A.2. We have the following findings according to the results:

317 *Finding 1:* API-based large models significantly outperform smaller OSS models across various
 318 dimensions, including format compliance, tool preference capabilities, and tool invocation abilities.
 319 This aligns with the findings of most benchmarks, primarily attributed to the enhanced capabilities
 320 enabled by the larger scale of model parameters.

321¹<https://chatgpt.com>

322²<https://www.anthropic.com>

323³<https://ollama.com>

324 Table 2: Ablation of user profile on PTBench. The models are trained with various variants. The
 325 input in evaluation remains consistent with the training input.

Data	Untrained	Trained	Overall
All	26.60	27.01	26.78
All w/o Basic	9.69	24.26	16.06
All w/o History	24.63	25.31	24.93
All w/o Basic&History	5.91	7.81	6.74

326
 327
 328
 329
 330
 331
 332
 333
 334
 335 *Finding 2:* Most models fall short on the tool-preference task, including the state-of-the-art model-
 336 GPT-4-turbo, indicating the high complexity of selecting a suitable one from several similar tools
 337 according to the user profile. Our model outperforms nearly all models in all aspects by a consider-
 338 able improvement, presenting the necessity of personalized tool-invocation enhancement.

339 *Finding 3:* Our model demonstrates a significant improvement in its performance across various
 340 tasks on PTBench. Notably, the enhancement in the Tool Preference task is particularly pronounced
 341 when compared to the pre-trained Qwen2.5-7B-Instruct model. This also indicates that, even with-
 342 out additional manual verification of the training data, the model achieves a high accuracy, demon-
 343 strating the effectiveness of the proposed synthesis framework. Additionally, our model shows a
 344 significant improvement on untrained users, presenting the generalization of the model.

345 *Finding 4:* All models exhibit lower accuracy on profile-dependent parameter values compared to
 346 query-dependent parameters, indicating that inferring parameters from the profile presents a greater
 347 challenge. While our trained model does not surpass GPT-4-turbo in accuracy on query-dependent
 348 parameters, it outperforms larger models on profile-dependent parameters. Furthermore, the im-
 349 provement over the pre-trained Qwen2.5-7B-Instruct model is more substantial, demonstrating the
 350 effectiveness of our data generation framework in handling the query-dependent query tasks.

351 352 353 ABLATION STUDY

354 To investigate the importance of various parts in our synthesized user profile, we conduct the ablation
 355 study on the user profile, including 4 variants on the user profile:

- 356 • **All.** All information in the user profile is used, including basic features and behavioral history.
- 357 • **All w/o Basic.** Basic features are omitted.
- 358 • **All w/o History.** The behavioral history is given.
- 359 • **All w/o Basic&History.** Both basic features and behavioral history are omitted.

360 First, We use the four dataset variants to train and then evaluate the model with the consistent input.
 361 The results are reported in Table 2. From the result, we can observe that the existence of user history
 362 and basic features hold contributions to the overall performance of the model to an extent.

363 Additionally, we conduct experiments under two settings: (1) train the model with the All variant
 364 and evaluate the model with the four variants, illustrated in Figure 3a; (2) train the model with
 365 the four variants and evaluate the models with the All variant, illustrated in Figure 3b. The results
 366 exhibit that the model shows poor performance in the tool preference task when lacking user history
 367 information in training or evaluation. On the other hand, the accuracy of tool invocation suffers
 368 when basic features are absent, led by the challenging profile-dependent query task.

369 To further confirm that the curated instructions can only be completed with personalized informa-
 370 tion, we conducted an additional experiment where all personalized information was removed from
 371 the instructions. As shown in Table 3, model performance decreases in all settings compared to main
 372 results, with the most pronounced decline observed in the precision of tool values. These results con-
 373 firm that personalized information is crucial and indispensable for achieving optimal performance.

378
379
380 Table 3: Evaluating Model Performance Without Personalized Information.
381
382
383
384
385
386

Model	Format	Platform	T-name	T-param	T-value	Overall
GPT-4o	92.80	48.29	87.26	64.54	8.59	5.35
Deepseek-v3	98.34	51.25	91.69	77.28	10.16	5.72
Qwen2.5-7B-Instruct	90.58	44.32	82.64	64.64	8.96	4.16
Llama-3.1-8B-Instruct	95.29	43.31	87.35	69.07	9.23	3.97
Ours	95.57	52.34	96.51	87.55	6.18	5.91

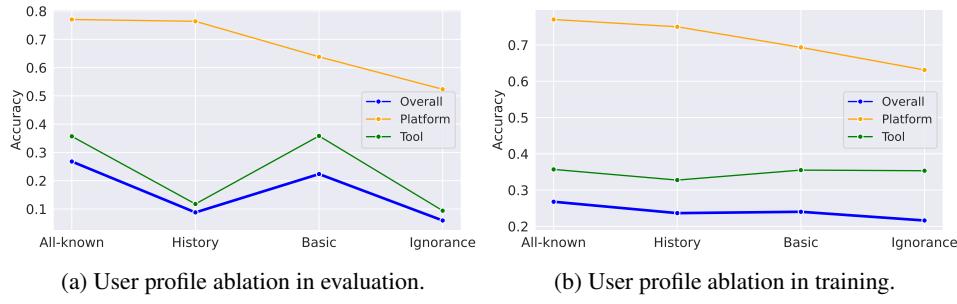
387
388
389
390
391
392
393
394
395
396 (a) User profile ablation in evaluation.
397 (b) User profile ablation in training.
398
399
400
401

Figure 3: Ablation study on user profile in evaluation and training, respectively.

402
403
404
405
406
407
408
409
410
5.4 ERROR ANALYSIS

411 To gain deeper insights into the types of errors made by the models during the evaluation, we conduct
412 investigations into the error types on our model, GPT-4-turbo, and Qwen2.5-7B-Instruct. We only
413 analyze solutions with the correct format.

414 We analyze the function errors generally and divide them into 6 categories: wrong tools, missing
415 tools, excessive tools, missing parameters, excessive parameters, and wrong parameters. The results
416 are shown in Figure 4. From the pie chart, it is evident that filling the correct parameters is more
417 challenging than the selection of the correct tools. After training with our synthesized data, the
418 model is more familiar with the candidate tools, demonstrating less error percentage in tool selection.

419
420
421
422
423
424
425
426
427
5.5 FURTHER ANALYSIS

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70300
70301
70302
70303
70304
70305
70306
70307
70308
70309
70310
70311
70312
70313
70314
70315
70316
70317
70318
70319
70320
70321
70322
70323
70324
70325
70326
70327
70328
70329
70330
70331
70332
70333
70334
70335
70336
70337
70338
70339
70340
70341
70342
70343
70344
70345
70346
70347
70348
70349
70350
70351
70352
70353
70354
70355
70356
70357
70358
70359
70360
70361
70362
70363
70364
70365
70366
70367
70368
70369
70370
70371
70372
70373
70374
70375
70376
70377
70378
70379
70380
70381
70382
70383
70384
70385
70386
70387
70388
70389
70390
70391
70392
70393
70394
70395
70396
70397
70398
70399
70400
70401
70402
70403
70404
70405
70406
70407
70408
70409
70410
70411
70412
70413
70414
70415
70416
70417
70418
70419
70420
70421
70422
70423
70424
70425
70426
70427
70428
70429
70430
70431
70432
70433
70434
70435
70436
70437
70438
70439
70440
70441
70442
70443
70444
70445
70446
70447
70448
70449
70450
70451
70452
70453
70454
70455
70456
70457
70458
70459
70460
70461
70462
70463
70464
70465
70466
70467
70468
70469
70470
70471
70472
70473
70474
70475
70476
70477
70478
70479
70480
70481
70482
70483
70484
70485
70486
70487
70488
70489
70490
70491
70492
70493
70494
70495
70496
70497
70498
70499
70500
70501
70502
70503
70504
70505
70506
70507
70508
70509
70510
70511
70512
70513
70514
70515
70516
70517
70518
70519
70520
70521
70522
70523
70524
70525
70526
70527
70528
70529
70530
70531
70532
70533
70534
70535
70536
70537
70538
70539
70540
70541
70542
70543
70544
70545
70546
70547
70548
70549
70550
70551
70552
70553
70554
70555
70556
70557
70558
70559
70560
70561
70562
70563
70564
70565
70566
70567
70568
70569
70570
70571
70572
70573
70574
70575
70576
70577
70578
70579
70580
70581
70582
70583
70584
70585
70586
70587
70588
70589
70590
70591
70592
70593
70594
70595
70596
70597
70598
70599
70600
70601
70602
70603
70604
70605
70606
70607
70608
70609
70610
70611
70612
70613
70614
70615
70616
70617
70618
70619
70620
70621
70622
70623
70624
70625
70626
70627
70628
70629
70630
70631
70632
70633
70634
70635
70636
70637
70638
70639
70640
70641
70642
70643
70644
70645
70646
70647
70648
70649
70650
70651
70652
70653
70654
70655
70656
70657
70658
70659
70660
70661
70662
70663
70664
70665
70666
70667
70668
70669
70670
70671
70672
70673
70674
70675
70676
70677
70678
70679
70680
70681
70682
70683
70684
70685
70686
70687
70688
70689
70690
70691
70692
70693
70694
70695
70696
70697
70698
70699
70700
70701
70702
70703
70704
70705
70706
70707
70708
70709
70710
70711
70712
70713
70714
70715
70716
70717
70718
70719
70720
70721
70722
70723
70724
70725
70726
70727
70728
70729
70730
70731
70732
70733
70734
70735
70736
70737
70738
70739
70740
70741
70742
70743
70744
70745
70746
70747
70748
70749
70750
70751
70752
70753
70754
70755
70756
70757
70758
70759
70760
70761
70762
70763
70764
70765
70766
70767
70768
70769
70770
70771
70772
70773
70774
70775
70776
70777
70778
70779
70780
70781
70782
70783
70784
70785
70786
70787
70788
70789
70790
70791
70792
70793
70794
70795
70796
70797
70798
70799
70800
70801
70802
70803
70804
70805
70806
70807
70808
70809
70810
70811
70812
70813
70814
70815
70816
70817
70818
70819
70820
70821
70822
70823
70824
70825
70826
70827
70828
70829
70830
70831
70832
70833
70834
70835
70836
70837
70838
70839
70840
70841
70842
70843
70844
70845
70846
70847
70848
70849
70850
70851
70852
70853
70854
70855
70856
70857
70858
70859
70860
70861
70862
70863
70864
70865
70866
70867
70868
70869
70870
70871
70872
70873
70874
70875
70876
70877
70878
70879
70880
70881
70882
70883
70884
70885
70886
70887
70888
70889
70890
70891
70892
70893
70894
70895
70896
70897
70898
70899
70900
70901
70902
70903
70904
70905
70906
70907
70908
70909
70910
70911
70912
70913
70914
70915
70916
70917
70918
70919
70920
70921
70922
70923
70924
70925
70926
70927
70928
70929
70930
70931
70932
70933
70934
70935
70936
70937
70938
70939
70940
70941
70942
70943
70944
70945
70946
70947
70948
70949
70950
70951
70952
70953
70954
70955
70956
70957
70958
70959
70960
70961
70962
70963
70964
70965
70966
70967
70968
70969
70970
70971
70972
70973
70974
70975
70976
70977
70978
70979
70980
70981
70982
70983
70984
70985
70986
70987
70988
70989
70990
70991
70992
70993
70994
70995
70996
70997
70998
70999
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
702100
702101
702102
702103
702104
702105
70

Table 4: Models performance results on new scenarios. Bold represents the best result.

Model	Format	Platform	T-name	T-param	T-value	Overall
GPT-4-turbo	91.80	38.37	76.32	55.30	16.92	5.48
Deepseek-v3	94.10	47.05	86.80	77.19	20.10	7.77
Qwen2.5-7B-Instruct	83.48	28.44	60.09	24.31	4.13	1.84
Llama-3.1-8B-Instruct	94.50	30.73	71.10	52.30	9.63	2.29
Hammer2.1-7b	94.04	33.03	75.23	37.16	9.63	4.59
xLAM-7b-r	98.62	26.61	83.49	41.28	10.55	3.67
Ours	100.00	73.39	88.99	75.69	26.15	18.35

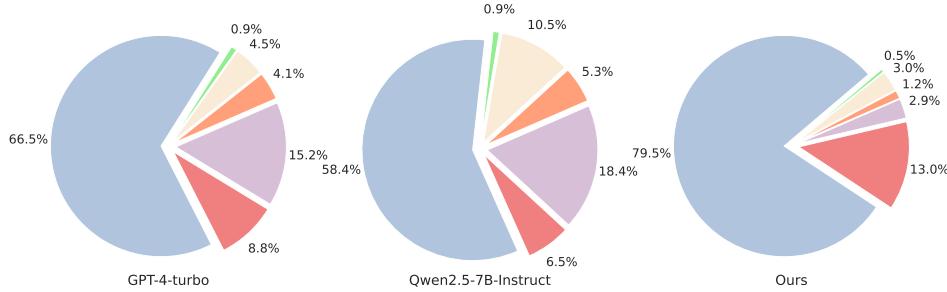


Figure 4: Error Analysis on PTBench. T-wrong, T-missing, and T-excessive represent wrong tools, missing tools and excessive tools, respectively. P-missing, P-excessive and P-error represent missing parameters, excessive parameters and wrong parameters, respectively.

Generalization to Unseen Scenarios. To further examine the generalizability of our model beyond the five common scenarios, we conduct additional evaluation on unseen domains. Specifically, we synthesized 218 samples covering three new scenarios: finance(42 samples), lifestyle(74 samples), and knowledge(102 samples). As shown in Table 4, our model consistently outperforms the baselines under all domains, demonstrating strong robustness and adaptability. These results provide evidence that the synthesized framework can be extended to a broader range of real-world scenarios. Further derailed results are shown in Appendix A.2.

General Capabilities. In order to validate that our synthesized data does not introduce negative effects on the model’s general capabilities, we employ a diverse set of benchmarks to assess the performance from different perspectives, Including general ability (MMLU (Hendrycks et al., 2021a;b)), coding (HumanEval (Chen et al., 2021)), math (GSM8K (Cobbe et al., 2021)), reasoning (CommonSenseQA (Talmor et al., 2019)), abstract reasoning (ARC (Chollet, 2019)), and basic function-calling (tool-invocation) ability (BFCL non-live (Yan et al., 2024)). xLAM-7B-r, LLaMA-3-8B-Instruct, Raw Qwen2.5-7B-Instruct serve as baselines. The results are shown in Figure 6. From the figure, it is evident that there is no significance deterioration on abilities of our model compared to the raw model Qwen2.5-7B-Instruct. Nonetheless, our model gains a notable improvement on BFCL non-live, These findings suggest that our approach effectively enhances personalized functional calling capabilities without compromising the underlying LLM’s other abilities.

6 CONCLUSION

In this work, we introduce the concept of personalized tool invocation, which encompasses two primary tasks: tool preference and profile-dependent queries. These tasks require the model’s ability to understand the user’s profile, select preferred tools based on historical behavior, and extract tool parameters from user information. To enhance and evaluate the model’s personalized tool invocation capabilities, we propose a data synthesis framework and create a benchmark, PTBench, by manually inspecting a subset of the generated data. Extensive experimental evaluations assess the personalized tool invocation abilities of existing models, confirming the effectiveness of our synthesized data and its harmlessness to other model capabilities.

486 REFERENCES
487

488 Mahyar Abbasian, Zhongqi Yang, Elahe Khatibi, Pengfei Zhang, Nitish Nagesh, Iman Azimi,
489 Ramesh Jain, and Amir M Rahmani. Knowledge-infused llm-powered conversational health
490 agent: A case study for diabetes patients. *arXiv preprint arXiv:2402.10153*, 2024.

491 AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md.

492

493 Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An
494 effective and efficient tuning framework to align large language model with recommendation. In
495 *Proceedings of the 17th ACM Conference on Recommender Systems*, pp. 1007–1014, 2023.

496

497 Anastasiya Belyaeva, Justin Cosentino, Farhad Hormozdiari, Krish Eswaran, Shravya Shetty, Greg
498 Corrado, Andrew Carroll, Cory Y McLean, and Nicholas A Furlotte. Multimodal llms for health
499 grounded in individual-specific data. In *Workshop on Machine Learning for Multimodal Health-
500 care Data*, pp. 86–102. Springer, 2023.

501

502 Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai
503 Wang, Weinan Gan, Yuefeng Huang, et al. Acebench: Who wins the match point in tool learning?
504 *arXiv preprint arXiv:2501.12851*, 2025.

505

506 Jin Chen, Zheng Liu, Xu Huang, Chenwang Wu, Qi Liu, Gangwei Jiang, Yuanhao Pu, Yuxuan
507 Lei, Xiaolong Chen, Xingmei Wang, et al. When large language models meet personalization:
508 Perspectives of challenges and opportunities. *World Wide Web*, 27(4):42, 2024.

509

510 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, and et al.
511 Evaluating large language models trained on code. 2021.

512

513 Zihao Cheng, Hongru Wang, Zeming Liu, Yuhang Guo, Yuanfang Guo, Yunhong Wang, and
514 Haifeng Wang. ToolSpectrum: Towards personalized tool utilization for large language models.
515 In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.),
516 *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 20679–20699, Vi-
517 enna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-
518 5. doi: 10.18653/v1/2025.findings-acl.1063. URL <https://aclanthology.org/2025.findings-acl.1063/>.

519

520 François Chollet. On the measure of intelligence, 2019. URL <https://arxiv.org/abs/1911.01547>.

521

522 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
523 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
524 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
525 2021.

526

527 Yuhao Dan, Zhikai Lei, Yiyang Gu, Yong Li, Jianghao Yin, Jiaju Lin, Linhao Ye, Zhiyan Tie,
528 Yougen Zhou, Yilei Wang, et al. Educhat: A large-scale language model-based chatbot system
529 for intelligent education. *arXiv preprint arXiv:2308.02773*, 2023.

530

531 DeepSeek-AI. Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.

532

533 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
534 2025. URL <https://arxiv.org/abs/2501.12948>.

535

536 Shibo Hao, Tianyang Liu, Zhen Wang, and Zhitong Hu. Toolkengpt: Augmenting frozen language
537 models with massive tools via tool embeddings. *Advances in neural information processing sys-
538 tems*, 36, 2024.

539

540 Yupu Hao, Pengfei Cao, Zhuoran Jin, Huanxuan Liao, Yubo Chen, Kang Liu, and Jun Zhao. Eval-
541 uating personalized tool-augmented LLMs from the perspectives of personalization and proac-
542 tivity. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
543 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics*

540 (Volume 1: Long Papers), pp. 21897–21935, Vienna, Austria, July 2025. Association for Com-
 541 putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1064. URL
 542 <https://aclanthology.org/2025.acl-long.1064/>.

543

544 Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
 545 Steinhardt. Aligning ai with shared human values. *Proceedings of the International Conference*
 546 *on Learning Representations (ICLR)*, 2021a.

547 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 548 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the Interna-*
 549 *tional Conference on Learning Representations (ICLR)*, 2021b.

550

551 Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, and Wayne Xin
 552 Zhao. Large language models are zero-shot rankers for recommender systems. In *European*
 553 *Conference on Information Retrieval*, pp. 364–381. Springer, 2024.

554

555 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 556 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Con-*
 557 *ference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeFYf9>.

558

559 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 560 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 561 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
 562 Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

563

564 Mingyu Jin, Qinkai Yu, Dong Shu, Chong Zhang, Lizhou Fan, Wenyue Hua, Suiyuan Zhu, Yanda
 565 Meng, Zhenting Wang, Mengnan Du, et al. Health-llm: Personalized retrieval-augmented disease
 566 prediction system. *arXiv preprint arXiv:2402.00746*, 2024.

567

568 Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
 569 Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for
 570 good? on opportunities and challenges of large language models for education. *Learning and*
individual differences, 103:102274, 2023.

571

572 Kausik Lakkaraju, Sai Krishna Revanth Vuruma, Vishal Pallagani, Bharath Muppasani, and Biplav
 573 Srivastava. Can llms be good financial advisors?: An initial study in personal decision making
 574 for optimized outcomes. *arXiv preprint arXiv:2307.07422*, 2023.

575

576 Yuxuan Lei, Jianxun Lian, Jing Yao, Xu Huang, Defu Lian, and Xing Xie. Recexplainer: Aligning
 577 large language models for explaining recommendation models. In *Proceedings of the 30th ACM*
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1530–1541, 2024.

578

579 Ruyu Li, Wenhao Deng, Yu Cheng, Zheng Yuan, Jiaqi Zhang, and Fajie Yuan. Exploring the upper
 580 limits of text-based collaborative filtering using large language models: Discoveries and insights.
arXiv preprint arXiv:2305.11700, 2023.

581

582 Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu
 583 Zhou, Cheng Cheng, Yin Zhao, Jun Wang, and Weinan Zhang. Hammer: Robust function-calling
 584 for on-device language models via function masking, 2024. URL <https://arxiv.org/abs/2410.04587>.

585

586 Weiwen Liu, Xingshan Zeng, Xu Huang, xinlong hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
 587 Gan, Zhengying Liu, Yuanqing Yu, Zehong WANG, Yuxian Wang, Wu Ning, Yutai Hou, Bin
 588 Wang, Chuhan Wu, Wang Xinzhi, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng
 589 Shang, Xin Jiang, Ruiming Tang, Defu Lian, Qun Liu, and Enhong Chen. ToolACE: Enhancing
 590 function calling with accuracy, complexity, and diversity. In *The Thirteenth International Confer-*
 591 *ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=8EB8k6DdCU>.

592

593 Xiao-Yang Liu, Guoxuan Wang, Hongyang Yang, and Daochen Zha. Fingpt: Democratizing
 594 internet-scale data for financial large language models. *arXiv preprint arXiv:2307.10485*, 2023.

594 Z Liu, Z Lai, Z Gao, E Cui, Z Li, X Zhu, L Lu, Q Chen, Y Qiao, J Dai, et al. Controlllm: augment
 595 language models with tools by searching on graphs (2023). *arXiv preprint arXiv:2310.17796*.
 596

597 Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
 598 Yao, Zhiwei Liu, Yihao Feng, et al. Apigen: Automated pipeline for generating verifiable and
 599 diverse function-calling datasets. *arXiv preprint arXiv:2406.18518*, 2024.

600 Hanjia Lyu, Song Jiang, Hanqing Zeng, Yinglong Xia, Qifan Wang, Si Zhang, Ren Chen, Chris
 601 Leung, Jiajie Tang, and Jiebo Luo. LLM-rec: Personalized recommendation via prompting large
 602 language models. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Findings of the*
 603 *Association for Computational Linguistics: NAACL 2024*, pp. 583–612, Mexico City, Mexico,
 604 June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.39.
 605 URL <https://aclanthology.org/2024.findings-naacl.39/>.

606 Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
 607 pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
 608 question-answering with human feedback. *arXiv preprint arXiv:2112.09332*, 2021.

609

610 Ha-Thanh Nguyen. A brief report on lawgpt 1.0: A virtual legal assistant based on gpt-3. *arXiv*
 611 *preprint arXiv:2302.05729*, 2023.

612 Minju Park, Sojung Kim, Seunghyun Lee, Soonwoo Kwon, and Kyuseok Kim. Empowering person-
 613 alized learning through a conversation-based tutoring system with student modeling. In *Extended*
 614 *Abstracts of the CHI Conference on Human Factors in Computing Systems*, pp. 1–10, 2024.

615

616 Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
 617 Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
 618 dahai li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating large language models to master
 619 16000+ real-world APIs. In *The Twelfth International Conference on Learning Representations*,
 620 2024. URL <https://openreview.net/forum?id=dHng200Jjr>.

621

622 Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-
 623 Rong Wen. Tool learning with large language models: A survey. *Frontiers of Computer Science*,
 624 19(8):198343, 2025.

625

626 Timo Schick, Jane Dwivedi-Yu, Roberto Dessim, Roberta Raileanu, Maria Lomeli, Eric Hambro,
 627 Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
 628 teach themselves to use tools. *Advances in Neural Information Processing Systems*, 36, 2024.

629

630 Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng, Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie
 631 Ren, Suzan Verberne, and Zhaochun Ren. Learning to use tools via cooperative and interac-
 632 tive agents. pp. 10642–10657, Miami, Florida, USA, November 2024. doi: 10.18653/v1/2024.
 633 findings-emnlp.624. URL 2024.findings-emnlp.624/.

634

635 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A ques-
 636 tion answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
 637 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of*
 638 *the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long*
 639 *and Short Papers)*, pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Com-
 640 *Computational Linguistics*. doi: 10.18653/v1/N19-1421. URL <https://aclanthology.org/N19-1421/>.

641

642 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024a.

643

644 Qwen Team. Qwen2.5: A party of foundation models, September 2024b. URL <https://qwenlm.github.io/blog/qwen2.5/>.

645

646 Lei Wang, Songheng Zhang, Yun Wang, Ee-Peng Lim, and Yong Wang. LLM4Vis: Explainable
 647 visualization recommendation using ChatGPT. In Mingxuan Wang and Imed Zitouni (eds.),
 648 *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing:*
 649 *Industry Track*, pp. 675–692, Singapore, December 2023. Association for Computational Lin-
 650 *guistics*. doi: 10.18653/v1/2023.emnlp-industry.64. URL <https://aclanthology.org/2023.emnlp-industry.64/>.

648 Wei Wei, Xubin Ren, Jabin Tang, Qinyong Wang, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei Yin,
 649 and Chao Huang. Llmrec: Large language models with graph augmentation for recommendation.
 650 In *Proceedings of the 17th ACM International Conference on Web Search and Data Mining*, pp.
 651 806–815, 2024.

652 Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen
 653 Zhu, Hengshu Zhu, Qi Liu, Hui Xiong, and Enhong Chen. A survey on large language models
 654 for recommendation. *CoRR*, abs/2305.19860, 2023.

655 Yunjia Xi, Weiwen Liu, Jianghao Lin, Xiaoling Cai, Hong Zhu, Jieming Zhu, Bo Chen, Ruim-
 656 ing Tang, Weinan Zhang, and Yong Yu. Towards open-world recommendation with knowledge
 657 augmentation from large language models. In *Proceedings of the 18th ACM Conference on Rec-
 658 ommender Systems*, pp. 12–22, 2024.

659 Qiancheng Xu, Yongqi Li, Heming Xia, Fan Liu, Min Yang, and Wenjie Li. PEToolLLM: Towards
 660 personalized tool learning in large language models. In Wanxiang Che, Joyce Nabende, Ekaterina
 661 Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Computational
 662 Linguistics: ACL 2025*, pp. 21488–21503, Vienna, Austria, July 2025. Association for Compu-
 663 tational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.1107. URL
 664 <https://aclanthology.org/2025.findings-acl.1107/>.

665 Yang Xu, Yunlong Feng, Honglin Mu, Yutai Hou, Yitong Li, Xinghao Wang, Wanjun Zhong,
 666 Zhongyang Li, Dandan Tu, Qingfu Zhu, Min Zhang, and Wanxiang Che. Concise and precise
 667 context compression for tool-using language models. pp. 16430–16441, Bangkok, Thailand, Au-
 668 gust 2024. doi: 10.18653/v1/2024.findings-acl.974. URL 2024.findings-acl.974/.

669 Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica,
 670 and Joseph E. Gonzalez. Berkeley function calling leaderboard. https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html,
 671 2024.

672 Fan Yang, Zheng Chen, Ziyan Jiang, Eunah Cho, Xiaojiang Huang, and Yanbin Lu. Palr: Personal-
 673 ization aware llms for recommendation. *arXiv preprint arXiv:2305.07622*, 2023a.

674 Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. GPT4tools: Teaching
 675 large language model to use tools via self-instruction. In *Thirty-seventh Conference on Neural
 676 Information Processing Systems*, 2023b. URL <https://openreview.net/forum?id=cwjh81qmOL>.

677 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 678 React: Synergizing reasoning and acting in language models. *arXiv preprint arXiv:2210.03629*,
 679 2022.

680 Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Yongliang Shen, Ren Kan, Dongsheng Li, and
 681 Deqing Yang. Easytool: Enhancing llm-based agents with concise tool instruction. *arXiv preprint
 682 arXiv:2401.06201*, 2024.

683 Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, Weiran Yao, Juntao Tan, Thai Hoang, Liang-
 684 wei Yang, Yihao Feng, Zuxin Liu, et al. Agentohana: Design unified data and training pipeline
 685 for effective agent learning. *arXiv preprint arXiv:2402.15506*, 2024a.

686 Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
 687 Tan, Akshara Prabhakar, Haolin Chen, et al. xlam: A family of large action models to empower
 688 ai agent systems. *arXiv preprint arXiv:2409.03215*, 2024b.

689 Junjie Zhang, Ruobing Xie, Yupeng Hou, Xin Zhao, Leyu Lin, and Ji-Rong Wen. Recommendation
 690 as instruction following: A large language model empowered recommendation approach. *ACM
 691 Transactions on Information Systems*.

692 Zhehao Zhang, Ryan A Rossi, Branislav Kveton, Yijia Shao, Diyi Yang, Hamed Zamani, Franck
 693 Dernoncourt, Joe Barrow, Tong Yu, Sungchul Kim, et al. Personalization of large language mod-
 694 els: A survey. *arXiv preprint arXiv:2411.00027*, 2024c.

702 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
 703 Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. *arXiv*
 704 *preprint arXiv:2303.18223*, 2023.

706 A EXPERIMENTS

709 A.1 EVALUATION METRICS

710 We categorize the PTBench metrics according to the key competencies required in personalized
 711 tool-use scenarios as follows:

- 713 • **General Tool Use Capabilities.** This includes assessing format adherence through *Format Accu-*
 714 *racy*, selecting correct tool through *Tool Name Accuracy*, specifying valid parameter names
 715 through *Tool Parameter Accuracy*, and filling correct values through *Tool Parameter-Value Accu-*
 716 *racy*.
- 717 • **Personalized Tool Use Capabilities.** This includes (i) tool preference personalization, measured
 718 by *Platform Accuracy*, and (ii) profile-dependent query personalization, measured by the *Profile-*
 719 *related Parameter-Value Accuracy*.

720 The calculation of various metrics in PTBench are formulated as follows:

- 722 • **Format Accuracy** indicates the instruction-following ability.

$$724 \text{format_acc} = \frac{\#\text{parsable samples}}{\#\text{total}} \quad (2)$$

- 726 • **Platform Accuracy** indicates the tool preference recognition ability.

$$727 \text{platform_acc} = \frac{\#\text{correct platform samples}}{\#\text{total}} \quad (3)$$

- 729 • **Query-related Parameter-Value Accuracy** indicates the ability to extract values from query.

$$731 \text{query_param_acc} = \frac{\#\text{correct query params}}{\#\text{total query params}} \quad (4)$$

- 733 • **Profile-related Parameter-Value Accuracy** indicates the ability to extract values from profile.

$$734 \text{profile_param_acc} = \frac{\#\text{correct profile params}}{\#\text{total profile params}} \quad (5)$$

- 736 • **Tool Name Accuracy** indicates the tool selection ability.

$$738 \text{tool_name_acc} = \frac{\#\text{correct name samples}}{\#\text{total}} \quad (6)$$

- 740 • **Tool Parameter Accuracy** indicates the tool comprehension ability.

$$741 \text{tool_param_acc} = \frac{\#\text{correct param samples}}{\#\text{total}} \quad (7)$$

- 743 • **Tool Parameter-Value Accuracy** indicate the value extraction on context ability.

$$745 \text{tool_value_acc} = \frac{\#\text{correct value samples}}{\#\text{total}} \quad (8)$$

- 747 • **Overall Accuracy on Trained Users** indicate the personalized tool ability on trained users.

$$748 \text{trained_overall_acc} = \frac{\#\text{correct trained samples}}{\#\text{trained total}} \quad (9)$$

- 750 • **Overall Accuracy on Untrained Users** indicate the personalized tool selection ability on trained
 751 users.

$$752 \text{untrained_overall_acc} = \frac{\#\text{correct untrained samples}}{\#\text{untrained total}} \quad (10)$$

- 754 • **Overall Accuracy** indicate the overall personalized tool selection ability.

$$755 \text{overall_acc} = \frac{\#\text{correct samples}}{\#\text{total}} \quad (11)$$

756
 757 Table 5: Statistics of our synthesized dataset. The samples in the test set are verified by human
 758 annotators. Trained and untrained represent the user profiles present and absent in the training set,
 759 respectively. Unseen scenario represents additional data used in generalization study.

Dataset	#Scenario	#Platform	#API	#User	#Query
Train	5	15	360	74	7,096
Test(PTBench)	8	24	576	95	1,301
-Trained	5	15	360	74	474
-Untrained	5	15	360	6	609
-Unseen Scenarios	3	9	216	15	218
Total	8	21	576	95	8,397

A.2 DETAILED RESULTS

771 **Dataset statistics.** The statistics of our training and test sets are illustrated in Table 5.

772 **Detailed results on trained and untrained user sets.** The detailed results of the trained and un-
 773 trained user set on PTBench are illustrated in Table 11 and Table 12, respectively.

774 **Detailed results on three unseen scenarios.** The detailed results of unseen scenarios (lifestyle,
 775 finance, and knowledge) are illustrated in Table 6, Table 7 and Table 8, respectively.

776 Table 6: Models performance results on lifestyle scenario. Bold represents the best result.

Model	Format	Platform	T-name	T-param	T-value	Overall
GPT-4-turbo	98.65	41.90	94.60	70.27	20.27	4.05
Deepseek-v3	100.00	47.30	97.30	83.78	21.62	6.76
Qwen2.5-7B-Instruct	81.08	20.27	72.97	21.62	4.05	1.35
Llama-3.1-8B-Instruct	97.30	39.19	93.24	64.87	10.81	2.70
Hammer2.1-7b	91.89	25.67	87.84	36.49	8.10	2.70
xLAM-7b-r	97.30	28.38	95.95	44.59	8.11	2.70
Ours	100.00	63.51	97.30	82.43	27.03	14.86

787 Table 7: Models performance results on finance scenario. Bold represents the best result.

Model	Format	Platform	T-name	T-param	T-value	Overall
GPT-4-turbo	90.48	40.48	76.19	54.76	21.43	7.14
Deepseek-v3	100.00	54.76	90.48	80.95	23.81	11.90
Qwen2.5-7B-Instruct	83.33	30.95	54.76	21.43	7.14	4.76
Llama-3.1-8B-Instruct	90.48	33.33	59.52	47.62	4.76	2.38
Hammer2.1-7b	92.86	38.10	80.95	38.10	7.14	7.14
xLAM-7b-r	100.00	26.19	90.48	35.71	11.90	7.14
Ours	100.00	73.81	90.48	80.95	21.43	16.67

A.3 ADDITIONAL ANALYSIS ON RELATED WORKS.

801 **Comparison with Existing Personalized Tool Benchmarks.** We compare our benchmark with
 802 existing personalized tool-use benchmarks, such as ETAPP (Hao et al., 2025) and ToolSpec-
 803 trum (Cheng et al., 2025). Despite the concurrency, our benchmark maintains several substantive
 804 advantages in terms of scale, personalization coverage, and profile design , which is shown in 9:

805

- 806 **• Broader coverage:** We include substantially more domains and tools.
- 807 **• Comprehensive personalization definition:** We jointly define personalization in both tool selec-
 808 tion and parameter completion.

810 Table 8: Models performance results on knowledge scenario. Bold represents the best result.
811

812 Model	813 Format	814 Platform	815 T-name	816 T-param	817 T-value	818 Overall
GPT-4-turbo	87.38	34.95	63.11	44.66	12.62	5.83
Deepseek-v3	87.38	43.69	77.67	70.87	17.48	6.80
Qwen2.5-7B-Instruct	85.29	33.33	52.94	27.45	2.94	0.98
Llama-3.1-8B-Instruct	94.12	23.53	59.80	45.10	10.78	1.96
Hammer2.1-7b	96.08	36.27	63.73	37.25	11.76	4.90
xLAM-7b-r	99.02	25.49	71.57	41.18	11.76	2.94
Ours	100.00	80.39	82.35	68.63	27.45	21.57

820

821

822 • **More realistic profile design:** Instead of using basic features + implicit preferences (where im-
823 plicit preferences are directly provided), we structure profiles as basic features + user history. This
824 design is closer to real-world settings, where users' implicit preferences (e.g., price sensitivity) are
825 not explicitly written but must be inferred from behavioral history. This strengthens the practical
826 value of our data synthesis pipeline.

827

828 Table 9: Comparison among personalized tool-use benchmarks.
829

830 Benchmarks	831 #Tools	832 #Users	833 #Samples	834 Tool P.	835 Param P.	836 User Traj
ETAPP	35	16	800	✓	✗	✗
ToolSpectrum	42	158	1000	✓	✓	✗
Ours	360	85	1301	✓	✓	✓

837 **Generalization on other personalized tool benchmarks.** To further investigate whether our
838 method generalizes beyond our proposed benchmark PTBench, we additionally evaluate the models
839 on two other personalized tool-use benchmarks: ACEBench (Chen et al., 2025) and ToolSpectrum
840 (Cheng et al., 2025). In addition to general-purpose model Qwen2.5-7B-Instruct, we also include
841 PEToolLLM (Xu et al., 2025) as strong personalized tool-use baselines, ensuring a fair and com-
842 prehensive comparison. The results are presented in Table 10. From the results, it is clear that our
843 model achieves consistent and robust improvements across all three benchmarks, demonstrating not
844 only its capability in general personalized tool invocation but also its effectiveness in handling di-
845 verse tool-use patterns. These observations collectively show that our synthesized data and training
846 strategy enable the model to generalize well across multiple personalized tool-use benchmarks.

847

848 Table 10: Performance on various personalized tool benchmarks. Bold represents the best result.
849

850 Model	851 ACEBench	852 ToolSpectrum	853 PTBench
Qwen2.5-7B-Instruct	0.58	0.1759	0.0738
PETool-sft	0.34	0.1648	0.0433
PETool-sft-dpo	0.10	0.0133	0.0130
Ours	0.66	0.1782	0.2678

854
855

B HUMAN-IN-THE-LOOP VERIFICATION

856 In the human verification stage, we adopt a systematic evaluation and refinement protocol consisting
857 of three main steps.

861

B.1 DESIGNING EVALUATION CRITERIA

862 • **Query Reasonableness:** Ensures that queries include all required parameters, align with user
863 profiles, and exclude meaningless characters.

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

- **Platform Consistency:** Checks whether the platform preference implied in the query is consistent with the answer. If no explicit platform is specified, historical preferences from the user profile are used for verification.
- **Tool Invocation Accuracy:** Verifies that the invoked tool appropriately addresses the query and that its parameters are correctly specified.

B.2 HUMAN ANNOTATION AND REFINEMENT

A human annotator reviews queries, answers, and tool invocations against the above criteria, making necessary corrections to ensure overall data quality.

A second annotator categorizes tool invocation parameters into two groups:

- **Query-dependent Parameters:** Explicitly provided in the user query.
- **Profile-dependent Parameters:** Not directly mentioned in the query but inferable from the user profile.

This classification enables a fine-grained evaluation of accuracy on different parameters.

C EXAMPLES

To enhance the understanding of the proposed personalized tool invocation, we illustrate an example in Figure 7.

918 Table 11: Comparison with baseline models on trained users in PTBench. **Bold** and underline
 919 represent the best and the 2nd best results.
 920

921 Type	922 Model	923 Format	924 Preference		925 Param Value		926 Tool Invocation			927 Overall
			928 Platform	929 Query	930 Profile	931 T-name	932 T-param	933 T-value		
928 API	GPT-4-turbo	929 0.9831	0.5569	930 0.7927	0.7080	931 0.9325	0.7869	932 0.3502	0.1834	
	GPT-4o	0.8840	0.4157	0.6520	0.6164	0.8143	0.6941	0.2637	0.1350	
	Deepseek-v3	0.8903	0.5043	0.6868	0.6508	0.8376	0.7617	0.3059	0.1708	
	Deepseek-r1	0.8376	0.4958	0.6112	0.6317	0.7637	0.6604	0.2574	0.1477	
	Qwen-max	0.6941	0.4430	0.5083	0.5162	0.6393	0.5358	0.2152	0.1456	
	Claude-3.5-sonnet	0.9662	0.5822	0.7519	0.6794	0.7152	0.6498	0.2236	0.1329	
932 OSS	DeepSeek-R1-Distill-Llama-8B	0.6203	0.2891	0.3495	0.3111	0.4958	0.3925	0.1013	0.0485	
	DeepSeek-R1-Distill-Qwen-7B	0.6013	0.1519	0.2148	0.0954	0.3503	0.1941	0.0147	0.0042	
	Qwen2.5-7B-Instruct	0.7827	0.3882	0.5900	0.4447	0.6856	0.5612	0.1772	0.0717	
	Llama-3.1-8B-Instruct	0.8819	0.3797	0.6384	0.5439	0.8039	0.6498	0.2236	0.0929	
	Mistral-7B-Instruct-v0.3	0.8713	0.4198	0.5522	0.4113	0.6645	0.3734	0.1477	0.0674	
	Hammer2.1-7b	0.9641	0.3650	0.7126	0.5468	0.8439	0.6582	0.2257	0.0739	
	ToolACE-8B	0.4114	0.1709	0.3147	0.2061	0.3987	0.2721	0.0865	0.0338	
	Watt-tool-8B	0.3966	0.2405	0.2708	0.2156	0.3586	0.2510	0.0992	0.0591	
	xLAM-7b-r	0.9641	0.3586	0.6732	0.5315	0.8881	0.6329	0.2194	0.0696	
	Ours	0.9662	0.7826	<u>0.7791</u>	0.7653	0.9409	0.8628	<u>0.3333</u>	0.2701	

933 Table 12: Comparison with baseline models on untrained users in PTBench. **Bold** and underline
 934 represent the best and the 2nd best results.
 935

936 Type	937 Model	938 Format	939 Preference		940 Param Value		941 Tool Invocation			942 Overall
			943 Platform	944 Query	945 Profile	946 T-name	947 T-param	948 T-value		
945 API	GPT-4-turbo	946 0.9737	0.5419	947 0.8266	0.6637	948 0.9064	0.7586	949 0.3531	0.1856	
	GPT-4o	0.9146	0.4746	0.7596	0.6057	0.8391	0.7028	0.3054	0.1708	
	Deepseek-v3	0.9245	0.5468	0.7629	0.6343	0.8522	0.7455	0.3104	0.1757	
	Deepseek-r1	0.8062	0.4712	0.6443	0.5403	0.7175	0.6059	0.2660	0.1494	
	Qwen-max	0.8276	0.5353	0.6828	0.5658	0.7635	0.6207	0.2496	0.1707	
	Claude-3.5-sonnet	0.9704	0.5829	0.8046	0.6275	0.7077	0.6404	0.2397	0.1395	
950 OSS	DeepSeek-R1-Distill-Llama-8B	0.6601	0.3120	0.4061	0.2935	0.5173	0.3695	0.0953	0.0394	
	DeepSeek-R1-Distill-Qwen-7B	0.6158	0.1429	0.2481	0.1106	0.3777	0.2250	0.0279	0.0066	
	Qwen2.5-7B-Instruct	0.7882	0.3727	0.6301	0.3943	0.6815	0.5287	0.1889	0.0755	
	Llama-3.1-8B-Instruct	0.8900	0.4253	0.6839	0.4906	0.7964	0.6059	0.2052	0.0985	
	Mistral-7B-Instruct-v0.3	0.8489	0.3678	0.5653	0.3416	0.6584	0.3448	0.1429	0.0559	
	Hammer2.1-7b	0.9655	0.3629	0.7420	0.5094	0.8374	0.6109	0.2266	0.0689	
	ToolACE-8B	0.3974	0.1659	0.3392	0.2039	0.3810	0.2562	0.0936	0.0378	
	Watt-tool-8B	0.3580	0.2184	0.2722	0.1859	0.3268	0.2003	0.0706	0.0411	
	xLAM-7b-r	0.9442	0.3054	0.6839	0.4695	0.8538	0.5632	0.2233	0.0771	
951 Ours		0.9507	0.7028	0.8035	0.7096	0.9112	0.8030	<u>0.3481</u>	0.2660	

952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

```

972 [SYSTEM]
973 You are given a user profile:
974 {
975     "basic_features": {
976         "username": "WineTraveler38",
977         ...
978     }
979     "user_history": {
980         "shopping": [
981             {
982                 "platform": "MegaMart",
983                 "action": "Purchased a selection of premium imported wines"
984             }
985         ]
986     }
987 }
988 Here is some platforms under the scenario:
989 [
990     {
991         "name": "MegaMart",
992         "profile": {
993             "product range": "A wide-ranging product from various categories."
994             ...
995         }
996     }
997     ...
998 ]
999 Here is some APIs under the platforms:
1000 [
1001     {
1002         'type': 'function',
1003         'function': {
1004             'name': 'registerUser',
1005             'description': 'Registers a new user in the application.',
1006             'parameters': {
1007                 'type': 'object',
1008                 'properties': {
1009                     'username': {
1010                         'type': 'string',
1011                         'description': '\"User\'s chosen username.\"'
1012                     },
1013                     ...
1014                 },
1015                 'required': ['username', 'password', 'email']
1016             },
1017             'response': {
1018                 'type': 'object',
1019                 'properties': {
1020                     'success': {
1021                         'type': 'boolean',
1022                         'description': 'Status of registration.'
1023                     },
1024                     ...
1025                 }
1026             }
1027         },
1028         ...
1029     }
1030     ...
1031 ]
1032 The user will give you a query. Based on the profile, try to solve the query by using the platforms and APIs. The platform you choose
1033 should fit the user profile or the needs of the user's query. All the necessary information are provided in the user profile. DO NOT
1034 ask the user for further information. You should respond in the format of {platform:[func1(param1.name = param1.value, param2...),
1035 func2...]} No other text MUST be included.
1036
1037 [USER]
1038 Could you please register an account for me using my username, password and email address, and setting my home location to my
1039 place of residence? I prefer not to receive any marketing emails.
1040
1041 [ASSISTANT]
1042 {
1043     MegaMart:[
1044         registerUser(
1045             username='WineTraveler38', password='strongpassword123!',
1046             email='jeanlucbordeaux@email.com', preferredLanguage='French',
1047             marketingConsent=False, homeLocation='Paris, France'
1048         )
1049     ]
1050 }

```

Figure 7: Illustration of personalized tool invocation task. The blue part is the expected output.