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Abstract

Visual data such as images and videos are typically modeled as discretizations
of inherently continuous, multidimensional signals. Existing continuous-signal
models attempt to exploit this fact by modeling the underlying signals of visual
(e.g., image) data directly. However, these models have not yet been able to achieve
competitive performance on practical vision tasks such as large-scale image and
video classification. Building on a recent line of work on deep state space models
(SSMs), we propose S4ND, a new multidimensional SSM layer that extends the
continuous-signal modeling ability of SSMs to multidimensional data including
images and videos. We show that S4ND can model large-scale visual data in
1D, 2D, and 3D as continuous multidimensional signals and demonstrates strong
performance by simply swapping Conv2D and self-attention layers with S4ND
layers in existing state-of-the-art models. On ImageNet-1k, S4ND exceeds the
performance of a Vision Transformer baseline by 1.5% when training with a 1D
sequence of patches, and matches ConvNeXt when modeling images in 2D. For
videos, S4ND improves on an inflated 3D ConvNeXt in activity classification
on HMDB-51 by 4%. S4ND implicitly learns global, continuous convolutional
kernels that are resolution invariant by construction, providing an inductive bias
that enables generalization across multiple resolutions. By developing a simple
bandlimiting modification to S4 to overcome aliasing, S4ND achieves strong zero-
shot (unseen at training time) resolution performance, outperforming a baseline
Conv2D by 40% on CIFAR-10 when trained on 8 ⇥ 8 and tested on 32 ⇥ 32
images. When trained with progressive resizing, S4ND comes within ⇠ 1% of a
high-resolution model while training 22% faster.

1 Introduction

Modeling visual data such as images and videos is a canonical problem in deep learning. In the last
few years, many modern deep learning backbones that achieve strong performance on benchmarks
like ImageNet [53] have been proposed. These backbones are diverse, and include 1D sequence
models such as the Vision Transformer (ViT) [13], which treats images as sequences of patches, and
2D and 3D models that use local convolutions over images and videos (ConvNets) [37, 25, 56, 58,
60, 42, 24, 32, 49, 64, 15].

A commonality among modern vision models capable of achieving state-of-the-art (SotA) perfor-
mance is that they treat visual data as discrete pixels rather than continuous-signals. However, images
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Figure 1: (S4ND.) (Parameters in red.) (Top) S4ND can be viewed as a depthwise convolution that maps a
multidimensional input (black) to output (green) through a continuous convolution kernel (blue). (Bottom Left)
The kernel can be interpreted as a linear combination (controlled by C) of basis functions (controlled by A,B)
with flexible width (controlled by step size �). For structured C, the kernel can further factored as a low-rank
tensor product of 1D kernels, and can be interpreted as independent S4 transformations on each dimension.
(Bottom Right) Choosing A,B appropriately yields Fourier basis functions with controllable frequencies. To
avoid aliasing in the final discrete kernels, the coefficients of C corresponding to high frequencies can simply be
masked out.

and videos are discretizations of multidimensional and naturally continuous signals, sampled at
a fixed rate in the spatial and temporal dimensions. Ideally, we would want approaches that are
capable of recognizing this distinction between data and signal, and directly model the underlying
continuous-signals. This would give them capabilities like the ability to adapt the model to data
sampled at different resolutions.

A natural approach to building such models is to parameterize and learn continuous convolutional
kernels, which can then be sampled differently for data at different resolutions [16, 50, 54, 20, 21].
Among these, deep state space models (SSM) [20], in particular S4 [21], have achieved SotA results
in modeling sequence data derived from continuous-signals, such as audio [17]. However, a key
limitation of SSMs is that they were developed for 1D signals, and cannot directly be applied to visual
data derived from multidimensional “ND” signals. Given that 1D SSMs outperform other continuous
modeling solutions for sequence data [21], and have had preliminary success on image [21] and
video classification [31], we hypothesize that they may be well suited to modeling visual data when
appropriately generalized to the setting of multidimensional signals.

Our main contribution is S4ND, a new deep learning layer that extends S4 to multidimensional
signals. The key idea is to turn the standard SSM (a 1D ODE) into a multidimensional PDE governed
by an independent SSM per dimension. By adding additional structure to this ND SSM, we show
that it is equivalent to an ND continuous convolution that can be factored into a separate 1D SSM
convolution per dimension. This results in a model that is efficient and easy to implement, using the
standard 1D S4 layer as a black box. Furthermore, it can be controlled by S4’s parameterization,
allowing it to model both long-range dependencies, or finite windows with a learnable window size
that generalize conventional local convolutions [22].

We show that S4ND can be used as a drop-in replacement in strong modern vision architectures while
matching or improving performance in 1D, 2D, and 3D. With minimal change to the training proce-
dure, replacing the self-attention in ViT with S4-1D improves top-1 accuracy by 1.5%, and replacing
the convolution layers in a 2D ConvNeXt backbone [42] with S4-2D preserves its performance on
ImageNet-1k [10]. Simply inflating (temporally) this pretrained S4-2D-ConvNeXt backbone to 3D
improves video activity classification results on HMDB-51 [38] by 4 points over the pretrained 3D
ConvNeXt baseline. Notably, we use S4ND as global kernels that span the entire input shape, which
enable it to have global context (both spatially and temporally) in every layer of a network.

Additionally, we propose a low-pass bandlimiting modification to S4 that encourages the learned
convolutional kernels to be smooth. While S4ND can be used at any resolution, performance suffers
when moving between resolutions due to aliasing artifacts in the kernel, an issue also noted by prior
work on continuous models [50]. While S4 was capable of transferring between different resolutions
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on audio data [21], visual data presents a greater challenge due to the scale-invariant properties of
images in space and time [52], as sampled images with more distant objects are more likely to contain
power at frequencies above the Nyquist cutoff frequency. Motivated by this, we propose a simple
criteria that masks out frequencies in the S4ND kernel that lie above the Nyquist cutoff frequency.

The continuous-signal modeling capabilities of S4ND open the door to new training recipes, such
as the ability to train and test at different resolutions. On the standard CIFAR-10 [36] and Celeb-A
[43] datasets, S4ND degrades by as little as 1.3% when upsampling from low- to high-resolution
data (e.g. 128⇥ 128 ! 160⇥ 160), and can be used to facilitate progressive resizing to speed up
training by 22% with ⇠ 1% drop in final accuracy compared to training at the high resolution alone.
We also validate that our new bandlimiting method is critical to these capabilities, with ablations
showing absolute performance degradation of up to 20%+ without it.

2 Related Work

Image Classification. There is a long line of work in image classification, with much of the 2010s
dominated by ConvNet backbones [37, 25, 56, 58, 60]. Recently, Transformer backbones, such as
ViT [13], have achieved SotA performance on images using self-attention over a sequence of 1D
patches [40, 39, 62, 71, 12]. Their scaling behavior in both model and dataset training size is believed
to give them an inherent advantage over ConvNets [13], even with minimal inductive bias. Liu et al.
[42] introduce ConvNeXt, which modernizes the standard ResNet architecture [25] using modern
training techniques, matching the performance of Transformers on image classification. We select a
backbone in the 1D and 2D settings, ViT and ConvNeXt, to convert into continuous-signal models by
replacing the multi-headed self-attention layers in ViT and the standard Conv2D layers in ConvNeXt
with S4ND layers, boosting or maintaining their top-1 accuracy on large-scale image classification.

S4 & Video Classification. To handle the long-range dependancies inherent in videos, [31] used
1D S4 for video classification on the Long-form Video Understanding dataset [67]. They first
applied a Transformer to each frame to obtain a sequence of patch embeddings for each video
frame independently, followed by a standard 1D S4 to model across the concatenated sequence of
patches. This is akin to previous methods that learned spatial and temporal information separately
[33], for example using ConvNets on single frames, followed by an LSTM [27] to aggregate tem-
poral information. In contrast, modern video architectures such as 3D ConvNets and Transformers
[24, 32, 49, 64, 15, 35, 41, 67, 2, 1] show stronger results when learning spatiotemporal features
simultaneously, which the generalization of S4ND into multidimensions now enables us to do.

Continuous-signal Models. Visual data are discretizations of naturally continuous signals that
possess extensive structure in the joint distribution of spatial frequencies, including the properties of
scale and translation invariance. For example, an object in an image generates correlations between
lower and higher frequencies that arises in part from phase alignment at edges [47]. As an object
changes distances in the image, these correlations remain the same but the frequencies shift. This
relationship can potentially be learned from a coarsely sampled image and then applied at higher
frequency at higher resolution.

A number of continuous-signal models have been proposed for the visual domain to learn these
inductive biases, and have led to additional desirable properties and capabilities. A classic example
of continuous-signal driven processing is the fast Fourier transform, which is routinely used for
filtering and data consistency in computational and medical imaging [11]. Neural Radiance Fields
(NeRF) represents a static scene as a continuous function, allowing them to render scenes smoothly
from multiple viewpoints [45]. CKConv [51] learns a continuous representation to create kernels of
arbitrary size for several data types including images, with additional benefits such as the ability to
handle irregularly sampled data. FlexConv [50] extends this work with a learned kernel size, and
show that images can be trained at low resolution and tested at high resolution if the aliasing problem
is addressed. S4 [21] increased abilities to model long-range dependancies using continuous kernels,
allowing SSMs to achieve SotA on sequential CIFAR [36]. However, these methods including 1D
S4 have been applied to relatively low dimensional data, e.g., time series, and small image datasets.
S4ND is the first continuous-signal model applied to high dimensional visual data with the ability to
maintain SotA performance on large-scale image and video classification.

Progressive Resizing. Training times for large-scale image classification can be quite long, a
trend that is exacerbated by the emergence of foundation models [4]. A number of strategies have
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emerged for reducing overall training time. Fix-Res [61] trains entirely at a lower resolution, and
then fine-tunes at the higher test resolution to speed up training in a two-stage process. Mix-and-
Match [28] randomly samples low and high resolutions during training in an interleaved manner. An
effective method to reduce training time on images is to utilize progressive resizing. This involves
training at a lower resolution and gradually upsampling in stages. For instance, fastai [14] utilized
progressive resizing to train an ImageNet in under 4 hours. EfficientNetV2 [60] coupled resizing with
a progressively regularization schedule, increasing the regularization as well to maintain accuracy. In
EfficientNetV2 and other described approaches, the models eventually train on the final test resolution.
As a continuous-signal model, we demonstrate that S4ND is naturally suited to progressive resizing,
while being able to generalize to unseen resolutions at test time.

3 Preliminaries

State space models. S4 investigated state space models, which are linear time-invariant systems that
map signals u(t) 7! y(t) and can be represented either as a linear ODE (equation (1)) or convolution
(equation (2)). Its parameters are A 2 N⇥N and B,C 2 N for a state size N .

x0(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(1)

K(t) = CetAB

y(t) = (K ⇤ u)(t)
(2)

Basis functions. For the clearest intuition, we think of the convolution kernel as a linear combination
(controlled by C) of basis kernels Kn(t) (controlled by A,B)

K(t) =
N�1X

k=0

CkKk(t) Kn(t) = (etAB)n (3)

Discretization. The SSM (1) is defined over a continuous-time axis and produces continuous-time
convolution kernels (2)(3). Given a discrete input sequence u0, u1, . . . sampled uniformly from an
underlying signal u(t) at a step size � (i.e. uk = u(k�)), the kernel can be sampled to match the rate
of the input. Note that instead of directly sampling the kernel, standard discretization rules should be
applied to minimize the error from the discrete to the continuous-time kernel [21]. For inputs given at
different resolutions, the model can then simply change its � value to compute the kernel at different
resolutions.

We note that the step size � does not have to be exactly equal to a “true sampling rate” of the
underlying signal, but only the relative rate matters. Concretely, the discrete-time kernel depends
only on the product �A and �B, and S4 learns separate parameters �,A,B.

S4. S4 is a special SSM with prescribed (A,B) matrices that define well-behaved basis functions,
and an algorithm that allows the convolution kernel to be computed efficiently. Variants of S4
exist that define different basis functions, such as simple diagonal SSMs [23], or one that defines
truncated Fourier functions Kn(t) = sin(2⇡nt) ([0, 1]) [22] (Fig. 1). These versions of S4
have easy-to-interpret basis functions that will allow us to control the frequencies in the kernel
(Section 4.2).

4 Method

We describe the proposed S4ND model for the 2D case only, for ease of notation and presentation.
The results extend readily to general dimensions; full statements and proofs for the general case are in
Appendix A. Section 4.1 describes the multidimensional S4ND layer, and Section 4.2 describes our
simple modification to restrict frequencies in the kernels. Fig. 1 illustrates the complete S4ND layer.

4.1 S4ND

We begin by generalizing the (linear time-invariant) SSM (1) to higher dimensions. Notation-
ally, we denote the individual time axes with superscripts in parentheses. Let u = u(t(1), t(2))
and y = y(t(1), t(2)) be the input and output which are signals 2 ! , and x =
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(x(1)(t(1), t(2)), x(2)(t(1), t(2))) 2 N(1)⇥N(2)

be the SSM state of dimension N (1) ⇥N (2), where
x(⌧) : 2 ! N(⌧)

.
Definition 1 (Multidimensional SSM). Given parameters A(⌧) 2 N(⌧)⇥N(⌧)

, B(⌧) 2 N(⌧)⇥1
,

C 2 N(1)⇥N(2)

, the 2D SSM is the map u 7! y defined by the linear PDE with initial condition

x(0, 0) = 0 :

@

@t(1)
x(t(1), t(2)) = (A(1)x(1)(t(1), t(2)), x(2)(t(1), t(2))) +B(1)u(t(1), t(2))

@

@t(2)
x(t(1), t(2)) = (x(1)(t(1), t(2)),A(2)x(2)(t(1), t(2))) +B(2)u(t(1), t(2))

y(t(1), t(2)) = hC, x(t(1), t(2))i

(4)

Note that Definition 1 differs from the usual notion of multidimensional SSM, which is simply a
map from u(t) 2 n 7! y(t) 2 m for higher-dimensional n,m > 1 but still with 1 time axis.
However, Definition 1 is a map from u(t1, t2) 2 1 7! y(t1, t2) 2 1 for scalar input/outputs
but over multiple time axes. When thinking of the input u(t(1), t(2)) as a function over a 2D grid,
Definition 1 can be thought of as a simple linear PDE that just runs a standard 1D SSM over each
axis independently.

Analogous to equation (2), the 2D SSM can also be viewed as a multidimensional convolution.
Theorem 1. (4) is a time-invariant system that is equivalent to a 2D convolution y = K ⇤ u by the

kernel

K(t(1), t(2)) = hC, (et
(1)A(1)

B(1))⌦ (et
(2)A(2)

B(2))i (5)

This kernel is a linear combination of the N (1) ⇥ N (2)
basis kernels {K(1)

n(1)(t
(1)) ⌦K(1)

n(2)(t
(2)) :

n(1) 2 [N (1)], n(2) 2 [N (2)]} where K(⌧)
are the standard 1D SSM kernels (3) for each axis .

However, a limitation of this general form is that the number of basis functions N (1) ⇥N (2) ⇥ . . .
grows exponentially in the dimension, increasing the parameter count (of C) and overall computation
dramatically. This can be mitigated by factoring C as a low-rank tensor.

Corollary 4.1. Suppose that C 2 N(1)⇥N(2)

is a low-rank tensor C =
Pr

i=1 C
(1)
i ⌦C(2)

i where

each C(⌧)
i 2 N(⌧)

. Then the kernel (5) also factors as a tensor product of 1D kernels

K(t(1), t(2)) =
rX

i=1

K(1)
i (t(1))⌦K(2)

i (t(2)) :=
rX

i=1

(C(1)
i et

(2)A(1)

B(1))⌦ (C(2)
i et

(2)A(2)

B(2))

In our experiments, we choose C as a rank-1 tensor, but the rank can be freely adjusted to tradeoff
parameters and computation for expressivity. Using the equivalence between (1) and (2), Corol-
lary 4.1 also has the simple interpretion as defining an independent 1D SSM along each axis of the
multidimensional input.

4.2 Resolution Change and Bandlimiting

SSMs in 1D have shown strong performance in the audio domain, and can nearly preserve full
accuracy when tested zero-shot on inputs sampled at very different frequencies [21]. This capability
relies simply on scaling � by the relative change in frequencies (i.e., if the input resolution is doubled,
halve the SSM’s � parameter). However, sampling rates in the spatial domain are often much lower
than temporally, leading to potential aliasing when changing resolutions. A standard technique to
avoid aliasing is to apply a low-pass filter to remove frequencies above the Nyquist cutoff frequency.

For example, when A is diagonal with n-th element an, each basis function has simple form
Kn(t) = etanBn. Note that the frequencies are mainly controlled by the imaginary part of an. We
propose the following simple method: for any n such that an ·� < 1

2↵, mask out the corresponding
coefficient of the linear combination Cn (equation (3)). Here ↵ is a hyperparameter that controls
the cutoff; theoretically, ↵ = 1.0 corresponds to the Nyquist cutoff if the basis functions are pure
sinusoids. However, due to the decay e<(an) arising from the real part as well as approximations
arising from using finite-state SSMs, ↵ often has to be set lower empirically.
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Figure 2: (Flowchart of S4ND for images: 2D example.) S4ND can process images as 2D inputs by initializing
an SSM per spatial dimension x and y of the input. Two independent S4 kernels are then instantiated that span
the entire input lengths of each dimension (e.g., 224 as shown above). Computing an outer product of the two
1D kernels produces a global convolutional kernel (e.g., 224x224). This global kernel can replace standard local
Conv2D layers where ever they are used, such as ResNet or ConvNeXt blocks. A similar procedure can be done
in 3D (with 3 S4 kernels) to create 3D global kernels for videos.

5 Experiments

We evaluate S4ND on large-scale image classification in Section 5.1 in the 1D and 2D settings,
followed by activity classification in videos in Section 5.2 in the 3D setting, where using S4ND as
a drop-in replacement for standard deep learning layers matches or improves performance in all
settings. In Section 5.3, we performed controlled ablations to highlight the benefits of S4ND as a
continuous-signal model in images.

5.1 S4ND in 1D & 2D: Large-scale Image Classification

First, we show that S4ND is a drop-in replacement for existing visual modeling layers such as 1D
self-attention and 2D local convolutions, with no degradation in top-1 performance when used in
modern backbones such as ViT [13] and ConvNeXt [42] on ImageNet-1k [10].

Table 1: (Performance on image classification.) Top-1 test
accuracy benchmarks for images in the 1D and 2D settings.
ConvNeXt-M, for “micro”, is a reduced model size for Celeb-A,
while “-ISO” is an isotropic S4ND backbone [21].

MODEL DATASET PARAMS ACC

ViT-B ImageNet 88.0M 78.9
S4ND-ViT-B ImageNet 88.8M 80.4
ConvNeXt-T ImageNet 28.4M 82.1
S4ND-ConvNeXt-T ImageNet 30.0M 82.2
Conv2D-ISO CIFAR-10 2.2M 93.7
S4ND-ISO CIFAR-10 5.3M 94.1
ConvNeXt-M Celeb-A 9.2M 91.0
S4ND-ConvNeXt-M Celeb-A 9.6M 91.3

Baselines and Methodology. We con-
sider large-scale image classification on
the ImageNet-1k dataset, which consists
of 1000 classes and 1.3M images. We
start with two strong baselines: ViT-B
(base, 88M parameters) for processing im-
ages in the 1D setting and ConvNeXt-T
(tiny, 28.4M) in the 2D setting. (We omit
the postfix “B” and “T” for brevity). More
recent works using Transformers on im-
ages have surpassed ViT, but we focus
on the original ViT model to highlight
specifically the drop-in capability and per-
formance difference in self-attention vs.
S4ND layers. We first swap the self-
attention layers in ViT with S4ND lay-
ers, and call this model S4ND-ViT. No-
tably, we simplify ViT by removing the
positional encodings, as S4ND does not
require injecting this inductive bias. Similarly, we swap the local Conv2D layers in the ConvNeXt
blocks with S4ND layers, which we call S4ND-ConvNeXt, a model with global context at each layer.
Both S4ND variants result in similar parameter counts compared to their baseline models.

Training. For all ImageNet models, we train from scratch with no outside data and adopt the
training procedure from [62, 69], which uses the AdamW optimizer [44] for 300 epochs, cosine decay
learning rate, weight decay 0.05, and aggressive data augmentations including RandAugment [7],
Mixup [72], and AugMix [26]. We add RepeatAug [29] for ConvNeXt and S4ND-ConvNeXt. The
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initial learning rate for ViT (and S4ND-ViT) is 0.001, while for ConvNeXt (and S4ND-ConvNeXt) it
is 0.004. See Appendix B.1 for additional training procedure details.

Results. Table 1 shows top-1 accuracy results for each model on ImageNet. After reproducing
the baselines, S4ND-ViT was able to moderately boost performance by +1.5% over ViT, while
S4ND-ConvNeXt matched the original ConvNeXt’s performance. This indicates that S4ND is a
strong primitive that can replace self-attention and standard 2D convolutions in practical image
settings with large-scale data.

5.2 S4ND in 3D: Video Classification

Next, we demonstrate the flexible capabilities of S4ND in settings involving pretraining and even
higher-dimensional signals. We use the activity recognition dataset HMDB-51 [38] which involves
classifying videos in 51 activity classes.

Baselines and Methodology. Prior work demonstrated that 2D CNNs (e.g. pretrained on ImageNet)
can be adapted to 3D models by 2D to 3D kernel inflation (I3D [5]), in which the 2D kernels are
repeated temporally N times and normalized by 1/N . Our baseline, which we call ConvNeXt-I3D,
uses the 2D ConvNeXt pretrained on ImageNet (Section 5.1) with I3D inflation. Notably, utilizing
S4ND in 3D enables global context temporally as well. We additionally test the more modern
spatial-temporal separated 3D convolution used by S3D [68] and R(2+1)D [65], which factor the 3D
convolution kernel as the outer product of a 2D (spatial) by 1D (temporal) kernel. Because of its
flexible factored form (Section 4.1), S4ND automatically has these inflation capabilities. We inflate
the pretrained S4ND-ConvNeXt simply by loading the pretrained 2D model weights for the spatial
dimensions, and initializing the temporal kernel parameters A(3),B(3),C(3) from scratch. We note
that this model is essentially identical to the baseline ConvNeXt-S3D except that each component of
the factored kernels use standard 1D S4 layers instead of 1D local convolutions. Finally, by varying
the initialization of these parameters, we can investigate additional factors affecting model training;
in particular, we also run an ablation on the kernel timescales �.

Training. Our training procedure is minimal, using only RGB frames (no optical flow). We sample
clips of 2 seconds with 30 total frames at 224 ⇥ 224, followed by applying RandAugment; we
performed a small sweep of the RandAugment magnitude for each model. All models are trained
with learning rate 0.0001 and weight decay 0.2. Additional details are included in Appendix B.2.

Table 2: (HMDB-51 Activity Recognition with ImageNet-pretrained models.) (Left) Top-1 accuracy with 2D
to 3SD kernel inflation. (Right) Ablation of initial temporal kernel lengths, controlled by S4’s � parameter.

PARAMS FLOW RGB

Inception-I3D 25.0M 61.9 49.8

ConvNeXt-I3D 28.5M - 58.1
ConvNeXt-S3D 27.9M - 58.6
S4ND-ConvNeXt-3D 31.4M - 62.1

INIT. LENGTH ACC

20.0 53.74
4.0 58.33
2.0 60.30
1.0 62.07

Results. Results are presented in Table 2. Our baselines are much stronger than prior work in
this setting, 8% top-1 accuracy higher than the original I3D model in the RGB frames only setting,
and confirming that separable kernels (S3D) perform at least as well as standard inflation (+0.53%).
S4ND-ConvNeXt-3D improves over the baseline ConvNeXt-I3D by +4.0% with no difference in
models other than using a temporal S4 kernel. This even exceeds the performance of I3D when
trained on optical flow.

Finally, we show how S4ND’s parameters can control for factors such as the kernel length (Table 2).
Note that our temporal kernels K3(t3) are always full length (30 frames in this case), while standard
convolution kernels are shorter temporally and require setting the width of each layer manually as a
hyperparameter [68]. S4 layers have a parameter � that can be interpreted such that 1

� is the expected
length of the kernel. By simply adjusting this hyperparameter, S4ND can be essentially initialized
with length-1 temporal kernels that can automatically learn to cover the whole temporal length if
needed. We hypothesize that this contributes to S4ND’s improved performance over baselines.
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Table 3: (Settings for continuous capabilities experiments.) Datasets and resolutions used for continuous
capabilities experiments, as well as the model backbones used are summarized.

DATASET CLASSES RESOLUTION BACKBONE

base mid low

CIFAR-10 10 32⇥ 32 16⇥ 16 (2⇥) 8⇥ 8 (4⇥) Isotropic
Celeb-A 40 multilabel 160⇥ 160 128⇥ 128 (1.25⇥) 64⇥ 64 (2.50⇥) ConvNeXt

Table 4: Zero-Shot Resolution Change. Results for models trained on one resolution (one of low / mid / base),
and zero-shot tested on another. Results are averaged over 2 random seeds.

RESOLUTION CIFAR-10 CELEB-A
TRAIN TEST S4ND CONV2D FLEXNET-16 S4ND CONV2D

base base 93.10± 0.22 91.9± 0.2 92.2± 0.1 91.75± 0.00 91.44± 0.03

mid mid 88.80± 0.12 87.2± 0.1 86.5± 2.0 91.63± 0.04 91.09± 0.08
mid base 88.77± 0.03 73.1± 0.3 82.7± 2.0 90.14± 0.38 80.52± 0.08

low low 78.17± 0.13 76.0± 0.2 - 90.95± 0.02 90.37± 0.04
low mid 78.86± 0.22 57.4± 0.3 - 84.44± 1.04 80.45± 0.11
low base 73.71± 0.47 33.1± 1.3 - 84.73± 0.54 80.59± 0.14

5.3 Continuous-signal Capabilities for Images

Figure 3: (CIFAR-10 zero-shot comparison.) When
trained and tested on the same resolutions, all models
have similar performance (with S4ND slightly better).
But, when trained and tested on different resolutions
(the zero-shot setting), S4ND significantly outperforms
Conv2D and FlexNet.

Images are often collected at varied resolutions,
even with the same hardware, so it is desirable
that models generalize to data sampled at differ-
ent resolutions. We show that S4ND inherits this
capability as a continuous-signal model, with
strong zero-shot performance when changing
resolutions, and the ability to train with progres-
sively resized multi-resolution data. We perform
an ablation to show that our proposed bandlim-
iting modification is critical to achieving strong
performance when changing resolutions.

Setup. We focus on image classification on
2D benchmark datasets: a dataset with low-
resolution images (CIFAR-10) and one with
higher-resolution images (Celeb-A). For each
dataset, we specify a base image resolution
(base), and two lower resolutions (mid, low),
summarized in Table 3. To highlight that
S4ND’s continuous capabilities are independent
of backbone, we experiment with 2 different
2D backbones: an isotropic, fixed-width model
backbone on CIFAR-10 [36] and a small Con-
vNeXt backbone on Celeb-A [43]. For each
backbone, we compare S4ND’s performance to Conv2D layers as a standard, widely used baseline.
Additional details can be found in Appendix B.3.

We first verify that S4ND achieves comparable test classification performance with baseline Conv2D
models. Table 4 and Fig. 3 show that we exceed the performance of Conv2D on both tasks, with
S4ND improving over Conv2D models by 0.4% on CIFAR-10 and 0.3% on Celeb-A.

Zero-Shot Resolution Change. We train S4ND and Conv2D models at either low or mid resolution,
and test them at the base resolution for each dataset. We also compare to FlexConv [50] on CIFAR-
10, which is the current SotA for zero-shot resolution change. Compared to training and testing
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at the base resolution, we expect that Conv2D should degrade more strongly than S4ND, since it
cannot adapt its kernel appropriately to the changed resolution. Table 4 and Fig. 3 show that S4ND
outperforms Conv2D on mid ! base by 15+ points and low ! base by 40+ points on CIFAR-10,
and 9+ points and 3+ points on Celeb-A. In fact, S4ND yields better performance on low ! base
(a more difficult task) than Conv2D does from mid! base (an easier task), improving by 1.1% on
CIFAR-10 and 3% on Celeb-A. Compared to FlexConv on CIFAR-10 mid! base, S4ND improves
zero-shot performance by 5+ points, setting a new SotA.

Progressively Resized Training. We provide an exploration of training with progressive resizing [14,
60] i.e. training in multiple stages at different resolutions. The only change we make from standard
training is to reset the learning rate scheduler at the beginning of each stage (details in Appendix B.3).
We compare S4ND and the Conv2D baseline with progressive resizing in Table 5.

For CIFAR-10, we train with a low ! base, 80� 20 epoch schedule, and perform within ⇠ 1% of
an S4ND model trained with base resolution data while speeding up training by 21.8%. We note that
Conv2D attains much higher speedups as a consequence of highly optimized implementations, which
we discuss in more detail in Section 6. For Celeb-A, we explore flexibly combining the benefits of
both progressive resizing and zero-shot testing, training with a low !mid, 16� 4 epoch schedule
that uses no base data. We outperform Conv2D by 7.5%+, and attain large speedups of 50%+ over
training at the base resolution.

Table 5: (Progressive resizing results.) Validation performance for progressively resized training at base
resolution, and speedup compared to training at base resolution on CIFAR-10 and Celeb-A. We use a 80� 20
and 16� 4 schedule for CIFAR-10 and Celeb-A, and also report performance training only at base resolution.

DATASET MODEL EPOCH SCHEDULE TRAIN RESOLUTION VAL @ BASE RES. SPEEDUP (STEP TIME)

CIFAR-10 Conv2D - base 91.90% 0%
S4ND - base 93.40% 0%

Conv2D 80� 20 low! base 90.94% 51.7%
S4ND 80� 20 low! base 92.32% 21.8%

CelebA Conv2D - base 91.44% 0%
S4ND - base 91.75% 0%

Conv2D 16� 4 low! mid 80.89% 76.7%
S4ND 16� 4 low! mid 88.57% 57.3%

Figure 4: (Bandlimiting ablation.) Zero-shot performance training
at 8⇥ 8 and evaluating at 32⇥ 32. Train performance is high for
large enough values of ↵ � 0.5, but validation performance goes
down as aliasing occurs in the kernel. Both train and validation
drop for lower values of ↵, as it limits the expressivity of the kernel.

(a) ↵ = 0.4
16⇥ 16 kernel

(b) ↵ = 0.4
4⇥ 4 kernel

(c) ↵ = 1
16⇥ 16 kernel

(d) ↵ = 1
4⇥ 4 kernel

Figure 5: (Effect of bandlimiting on
learned kernels.) Bandlimiting signifi-
cantly increases the smoothness of the
kernels when resizing resolutions.

Effect of Bandlimiting. Bandlimiting in S4ND is critical to generalization at different resolutions.
We analyze the effect of the bandlimiting parameter ↵ on CIFAR-10 performance when doing zero-
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shot resolution change. We additionally vary the choice of basis function Kn(t) used in the SSM.
Fig. 4 shows that zero-shot performance on base degrades for larger values of ↵, i.e. for cutoffs
that do not remove high frequencies that violate the Nyquist cutoff. As we would expect, this holds
regardless of the choice of basis function. In Fig. 5, we visualize learned kernels with and without
bandlimiting, showing that bandlimiting improves smoothness. Appendix B.3 includes additional
experiments that analyze ↵ on Celeb-A, and when doing progressively resized training.

6 Discussion

Summary. We introduced S4ND, a multidimensional extension of S4 that models visual data
as continuous valued signals. S4ND is the first continuous model that matches SotA baselines on
large-scale 1D and 2D image classification on ImageNet-1k, as well as outperforming a strong
pretrained model in a 3D video classification setting. As a continuous-signal model, S4ND inherits
useful properties that are absent from standard visual modeling approaches, such as zero-shot testing
on unseen resolutions without a significant performance drop.

Limitations. A limitation of S4ND is its training speed in high dimensions. In the 1D image setting,
S4ND-ViT has similar training speed to ViT; however, in the 2D setting, the S4ND-ConvNeXt was
2⇥ slower than the baseline ConvNeXt. We remark that vanilla local convolutions have been heavily
optimized for years, and we expect that layers such as S4ND can be substantially sped up with more
optimized implementations. Our core computational primitives accounting for 65% of our runtime
(FFT, pointwise operations, inverse FFT) are all bottlenecked by reading from and writing to GPU
memory [57]. With a more optimized implementation that fuses these operations [9] (i.e., loading the
input once from GPU memory, perform all operations, then write result back to GPU memory), we
expect to speed these up by 2-3⇥. Further discussion can be found in Appendix C.

Future work. We presented a first step in using continuous-signal models in images and videos, and
believe this opens the door to new capabilities and directions. For example, recent video benchmark
datasets are significantly larger than the HMDB-51 dataset used in our experiments [34, 18, 8, 46, 55],
and can be explored. In addition, we demonstrated capabilities in zero-shot resolution spatially,
but even less work has been done on zero-shot testing temporally. This opens up an exciting new
direction of work that could allow models to be agnostic to different video sampling rates as well,
capable of testing on higher unseen sampling rates, or irregular (non-uniform) sampling rates. As
models become larger and combine multiple modalities, S4ND shows strong promise in being able
to better model underlying continuous-signals and create new capabilities across visual data, audio,
time-series (e.g., wearable sensors, health data), and beyond.
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state-space models. arXiv preprint arXiv:2202.09729, 2022.

[18] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne
Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag,
et al. The” something something” video database for learning and evaluating visual common
sense. In Proceedings of the IEEE international conference on computer vision, pages 5842–
5850, 2017.

[19] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent
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information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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