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Abstract

Concept-based explanations overcome the limitations of low-level feature importance and
focus on high-level, human-understandable concepts to explain the decision-making behind
machine learning models. However, achieving model independence and the simultaneous
presentation of global and local information within a single framework has been difficult.
This study extends the concept of approximate inverse model explanations (AIME) and
proposes Concept-RidgeAIME, which simultaneously obtains global and local explanations
via concepts by utilizing a regularized linear approximate inverse mapping as its core. The
proposed method learns a two-stage structure—an inverse operator mapping from the model
output to the input and an inverse operator mapping from the concept to the input—only
once. Subsequently, it efficiently calculates the contribution and ratio of concepts for any
individual using simple matrix-vector operations. Without requiring access to internal repre-
sentations or gradients, it presents global (concept importance ranking) and local (individual
concept contributions) information within the same framework, thereby achieving model in-
dependence with low overhead. Using the global feature importance as a foundation, this
study demonstrates a workflow in which a large language model automatically synthesizes
rule concepts composed of normalization thresholds and one-hot equations, then validates
the syntax and excludes zero/positive cases to ensure robustness. Evaluations quantified
the reconstructability (completeness) of black-box outputs and coverage (projection com-
pleteness) at the concept base level using tabular benchmarks (Adult, German Credit, and
COMPAS). Stability and efficiency were verified using bootstrap confidence intervals and
inference time (millisecond-level). Results showed that Concept-RidgeAIME demonstrated
practical advantages over conventional concept-based methods (ConceptSHAP, CBM, and
TCAV) and the application of generic SHAP to the concept space. These advantages are
achieved by Concept-RidgeAIME through a model-independent implementation that re-
quires no additional training and can handle global, local, and concept mappings in an
integrated manner.

1 Introduction

With the deployment of high-performance machine learning models in society, the demand to explain the
reasoning behind a decision using a human conceptual vocabulary has been increasing. Post-hoc expla-
nations, represented by methods such as local interpretable model-agnostic explanations (LIME) (Ribeiro
et al. [2016) and Shapley additive explanations (SHAP) (Lundberg & Lee, |2017)), visualize local feature
contributions based on perturbations near the input-output neighborhood. However, because output units
remain confined to low-level features such as pixels or one-hot encoding, even experts find it difficult to
connect these explanations to a causal or counterfactual understanding of the decision-making process. By
contrast, concept-based explanations such as TCAV (Kim et al.l 2018), ConceptSHAP (Yeh et al. [2020), and
concept bottleneck models (CBMs) (Koh et al.l 2020 hold an advantage: they can use human vocabulary
(e.g., “highly educated” or “managerial position”) to represent feature importance. However, many methods
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require gradient access or additional training, making it difficult to satisfy both model independence and the
simultaneous presentation of global and local information within a single computational framework.

This research reexamines this gap from the perspective of approximate inverse problems. Approximate in-
verse model explanations (AIME) (Nakanishi, 2023) constructs a single linear operator that approximately
inverts the mapping from output — input in a least-squares manner, presenting a unified framework for read-
ing its sequence (global) and action (local). AIME requires no gradient or internal parameters and provides
global and local explanations with only one precomputation and matrix-vector multiplication. Consequently,
it can be directly applied to gradient-discontinuous tree models and hidden APIs. This study proposes (i)
RidgeAIME, which introduces Tikhonov regularization to enhance numerical stability and explanation con-
sistency while preserving these advantages, and (ii) Concept-RidgeAIME, which elevates the explanation
unit from features to human-readable concepts. The latter is novel because it connects the inverse operators
of the output-to-input and concept-to-input mappings solely through linear algebra, thereby providing both
global concept formation and individual concept contribution (local) under the same inference rule.

Furthermore, to maintain the design cost of the concepts at a practically acceptable level, this study uses the
global feature importance (GFI) from AIME as a scaffold. It then employs a large language model (LLM) to
automatically synthesize rule forms for minority literals (e.g., normalization thresholds or one-hot encoding).
After generation, the program performs syntaz and data sanitization by (a) matching feature names, (b)
imposing range constraints (e.g., numerical values in [0, 1]), and (c) excluding zero-positive rules. Only the
concepts that pass this process are adopted as the basis for the concept space, thereby minimizing manual
trial-and-error while endowing a linear inverse mapping system—which is model-independent, gradient-free,
and low-overhead—with concept-level readability.

This study makes three contributions. First, it introduces RidgeAIME, which enhances AIME’s inverse
mapping (Nakanishi, |2023)) with ridge regularization, to stably ensure the coefficient of determination
(BB completeness) and reproducibility of contribution rankings, even under conditions of high correlation,
few samples, and many classes. Second, Concept-RidgeAIME combines two inverse operators—output-
to-input and concept-to-input—to simultaneously provide, through single linear algebra, (a) global concept
formation (column vectors) and (b) individual concept contribution vectors (actions). Third, it establishes
two evaluation metrics: AIME-style emphreconstruction-based completeness (BB R?) and the local contribu-
tion’s emphconcept basis coverage (projection completeness). Finally, it presents a concept design workflow
assisted by LLMs (GFI — rule generation — syntactic/zero-positive verification — adoption), enabling the
automatic reproduction of global, local, and concept contributions for tabular data (Adult, German Credit,
and COMPAS) without additional retraining.

Thus, Concept-RidgeAIME achieves (a) model independence and gradient-free operation; (b) unification of
global, local, and conceptual contributions within the same linear framework; (c) completeness (BB pro-
jection) and stability (CI); and (d) sub-millisecond execution efficiency (post-precomputation). It satisfies
these four requirements, surpassing existing concept-based methods (e.g., TCAV (Kim et al., 2018), Con-
ceptSHAP (Yeh et al. 2020), and CBMs (Koh et al.l [2020)) and SHAP-based methods, while providing
highly readable explanations suitable for real-world deployment.

The rest of this paper is organized as follows: the related works are described in Section 2, the implementa-
tion of Concept-RidgeAIME is explained in Section 3, the experiments are discussed in Section 4, and the
conclusions are provided in Section 5.

2 Related Works

Recent concept-based explanations (concept-based explainable artificial intelligence (XAI)) can be broadly
categorized into (A) post-hoc methods measuring the sensitivity and contribution of externally defined con-
cepts, (B) methods embedding concepts into the model structure, (C) methods using examples or prototypes
as concepts, and (D) operational approaches applying general feature attribution methods to conceptual rep-
resentations. This classification is useful for positioning these approaches relative to each other in terms of
the timing of concept introduction (training/post-training), requirements for accessing gradients or interme-
diate representations, and units of explanation output (global, local, or interventional). A recent systematic
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survey (Khoozani et al., 2024]) traversed this diversifying landscape, organizing key issues around the quality
control of concept definitions, evaluation metrics for faithfulness, and connections to automated concept
discovery and counterfactual operations.

(A) For post-hoc concept sensitivity /contribution, TCAV (Kim et al., |2018|) uses directional derivatives
with respect to the concept activation vector (CAV) learned from a few positive examples to quantify
concept sensitivity for class predictions. Because it requires gradient access and internal representations,
it is difficult to apply to nondifferentiable models, such as tree-based models or hidden APIs. However, it
has been widely used as a standard method for measuring global relevance per class, primarily in the image
domain. As an automation of TCAV, |Ghorbani et al.| (2019) proposed ACE, which first extracts candidate
concepts by oversegmenting and clustering images and then assigns importance using TCAV. Methods such
as ICE (Zhang et al.||2021)), which extends CAV from linear to region-based, and CAR (Crabbé & van der
Schaar, 2022)), which generalizes feature regions occupying concepts, are positioned within the trend aimed
at improving concept separability and fidelity. The game-theory-based ConceptSHAP defines the sufficiency
of concept sets and ensures the axiomatic validity of global importance by allocating marginal contributions
via Shapley values; however, it incurs a high computational load owing to combinatorial growth in subset
evaluations. Furthermore, CCE (Abid et al.| [2022), which enables counterfactual debugging at the concept
level, constructs meaningful concept counterfactuals for each individual to perform causal attributions, thus
demonstrating the feasibility of ex-post concept manipulation.

(B) For concept internalization (during learning), CBMs (Koh et al.l 2020) explicitly predict concepts
at intermediate layers and infer final labels on top of them, thereby reconciling interventional capability
(rewriting concepts to control output) and global and local explanations. Post-hoc CBM has also been
proposed for pretrained black-box models (Yiiksekgontl et al., 2022). SENN (Alvarez-Melis & Jaakkola,
2018) simultaneously learns “interpretable base concepts” and linear readout, ensuring separability and
stability through regularization. Concept whitening (Chen et al., |2020) enhances the interpretability of
internal representations by inserting a whitening layer into convolutional neural networks (CNNs) to align
latent axes with known concepts. Although internalization methods require concept supervision or retraining,
they offer the advantage of providing highly coherent explanations through intervention/constrained learning.

(C) As a method for treating examples or prototypes as concepts, ProtoPNet (Chen et al.,|2019) performs
classification based on similarity to prototypes (typical patches) learned per class, presenting ezample-based
local explanations of the “this looks like that” type. Net2Vec (Fong & Vedaldi, 2018|) quantifies the
correspondence between filters and concepts, while Concept Attribution (Wu et al., |2020)) constructs
global explanations for CNNs. Furthermore, [Kumar et al.| (2021) and |[Kamakshi et al. (2021) proposed
implementation approaches—MACE and PACE, respectively—that extract and summarize concepts from
visual models as model- and architecture-independent posterior concept extractors.

(D) Regarding the application of generic attribution methods to concept representations, Concept Space
SHAP is not a formally defined method but rather an operational approach that treats existing concept
representations (such as rule scores or one-hot concepts) as features and applies generic SHAP (Lundberg &
Lee, [2017). While it yields local and global contributions based on the Shapley axioms, the explanation quality
depends on the computational load of the sampling approximation and the fidelity and granularity of concept
representations. By contrast, applying SHAP (Lundberg & Lee, 2017) to arbitrary concept representations
is also common; however, this is merely an operational practice of replacing SHAP features with concept
features (user-designed or automatically extracted) and is not a distinct method name. Similarly, while
local Shapley values per concept can be obtained, computational overhead from sampling or approximation
remains unavoidable. Moreover, it does not provide the global, local, or inter-concept mappings within a
unified linear framework.

The Concept-RidgeAIME method proposed in this study extends the approximate inverse operator of
AIME (Nakanishil [2023) to the concept space. It simultaneously presents global (concept formation) and
local (concept contribution) explanations through a single linear algebra operation in a closed form with
reqularization while remaining model-independent and gradient-free. Post-processing systems (TCAV, ACE,
ConceptSHAP, CCE) provide concept relevance, completeness, and counterfactuality but have computational
and access constraints that limit their use. Internalization systems (CBM, SENN, concept whitening) offer
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intervenability and high fidelity but require retraining. Concept Space SHAP is versatile but depends on the
computational cost of approximation and concept representation quality. By contrast, Concept-RidgeAIME
enables the evaluation of BB completeness (reconstruction R?) and concept projection completeness (Pro-
jection) within a single implementation via one-time precomputation and matriz-vector multiplication and
adapts to gradient-independent operational environments such as tabular, tree-based, and confidential APIs.
Furthermore, to address the challenges identified in the survey (Khoozani et al., 2024)) (quality control and
automatic discovery of concept definitions, connection with counterfactual explanations), this study com-
bines lightweight rule synthesis and validation using LLMs with reconstruction evaluation of linear inverse
mappings, making the concept design, verification, and presentation reproducible, which holds practical
significance.

Yu et al.| (2025) comprehensively reviewed the challenges and solutions for achieving “Trustworthiness” in
LLM-based agents and multiagent systems, systematizing all aspects from attack and defense methods to
evaluation approaches under the TrustAgent framework. |[Mumuni & Mumuni (2025)) comprehensively or-
ganized the development of XAI, considering structurally explainable models, black-box models, and even
automated explanation generation by using LLMs and vision-language models, presenting their strengths
and challenges. |Bilal et al.| (2025) comprehensively discussed the latest technologies, applications, and eval-
uation methods for utilizing LLMs in XAI, presenting user-friendly explanation generation, evaluation, and
prospects for real-world applications. Furthermore, Basheer et al.| (2025)) proposed a framework for predicting
vulnerability patches using LLM-based BERT models in the cybersecurity domain and discussed practical
applications integrated with reliability enhancements. Benk et al| (2025) investigated user expectations
and values regarding LLM reliability standards, identified a perception gap between developers and users,
and examined the challenges for the standardization of these models. These studies demonstrate the rapid
expansion of XAI initiatives incorporating LLMs. However, most remain at the conceptual organization
or application stage, and challenges persist in establishing an implementation foundation that uniformly
provides global-, local-, and conceptual-level explanations within a model-independent framework.

By contrast, our approach is unique in that Concept-RidgeAIME, an extension of AIME, simultaneously
achieves explanations across these three layers using only linear algebra operations, which are independent
of gradients or internal representations. Furthermore, by combining LLM-based automatic rule generation
with consistency verification, a reproducible framework that streamlines the design of the conceptual space
is provided, thereby addressing the limitations of existing research.

Overall, Concept-RidgeAIME simultaneously achieves (a) model and gradient independence; (b) simulta-
neous presentation of global, local, and conceptual contributions; (c) completeness evaluation based on re-
construction metrics; (d) numerical stability and reproducibility through regularization; and (e) operational
feasibility of concept design via LLM assistance. Thus, it complements the strengths of TCAV, Concept-
SHAP, CBM, and Concept Space SHAP while filling practical gaps in black-box explanations for tabular
data (gradient independence, low computational load, and local concept contribution).

3 Method

This section extends the framework of AIME (Nakanishil [2023) to a notation where samples are arranged in
rows. X € R4*" (d-dimensional features, n samples), Z € R¥*" (k-dimensional downstream representation,
including class one-hot, logit, intermediate activations). The core function of AIME is to approximate the
unknown forward linearization A € R¥*¢ under the assumption that it yields z ~ Az. This approximation is
performed from the output to the input side by estimating the approximate inverse operator AT € R?** that
maps from data (X, Z) to z ~ Ax via least-squares estimation. This single linear operator simultaneously
extracts global and local explanations.

In column-vector notation, the approximate inverse operator W € R%** is defined as

. 2
S |Xx-wz|, = W*=XZz = Al (1)

where || - || denotes the Frobenius norm. This formulation corresponds to the minimum-norm solution using
the Moore Penrose pseudoinverse ZT. Here, A denotes the conceptual forward operator representing the
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local linearization (mean Jacobian) of the model, and it is directly approximated from the data matrix as
A~ XZ7T.

Global/Local Readout. Once the approximate inverse operator W* = Af is obtained, the GFI (a k-
dimensional weight vector for feature j) can be derived from (W*);. € R™* (row j), with the scalar
importance metric ||[(W*);.|l, (e.g., p = 2). The local feature contribution of sample i (column vector
z; €RY 2 € R¥) is

l; = (W*zz) oz € R4, (2)

where (o denotes the Hadamard product). The sign indicates the direction of change (boost or suppression).
3.1 RidgeAIME: Approximate Inverse with Tikhonov Regularization

The pseudoinverse Z' may become numerically unstable under conditions such as high correlation, few
samples, or many classes. Therefore, Tikhonov (ridge) regularization is applied as follows:

. 2 2
min HX—WZHF + AMW|%, A >0, (3)
with the regularized solution
Wy = XZT(Z2ZT +M\p)"' = x 71 = Al (4)

where Zi = Z"(ZZ7 4+ M})~! denotes the Tikhonov pseudoinverse. As A\ — 0, this reduces to Wy — W*.
The readout rule is identical to equation [2] with W* replaced by W:

GFI (feature j): (Wi);:, LFI (sample i): ¢; := (Wxz) o z;. (5)

This regularization improves the condition number of W), enhancing robustness against outliers and noise
and increasing the reproducibility of the GFI rankings.

3.2 Concept-RidgeAIME: Two-Stage Extension to Concept Space

To use human-readable concepts rather than features as the units of explanation, a two-stage approximate
inverse is constructed while retaining the column-wise notation.

Concept Score Matrix. The concept score matrix C' € R9*™ (¢ concepts) is evaluated for each sam-
ple from LLM-generated or manually defined rules. Numerical features are handled using normalization
thresholds, and categorical features are represented using one-hot encoding.

Approximate Inverse from Concept to Feature. To re-express the local feature contribution vector
£; on this concept basis,

min X —vC|: ++U1F = U, = XCT(CCT +41,)". 6)

Here, (U,) is the approximate inverse operator mapping “concepts to t features.”

Local Concept Contribution. Mapping ¢; from equation [5| to the concept basis yields
Vi,e

ZZ/:1 [vier|

Here, v; . > 0 (< 0) indicates that concept ¢ boosts (suppresses) the judgment, and ¢ indexes the sample, with
i=1,...,n. The ratio ratio represents the relative contribution of each concept and is highly interpretable.

v; = U,YT l; € RY, ratio; . =

(7)
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3.3 Completeness Metric

The adequacy of the explanation is evaluated using two R? metrics based on AIME’s reconstruction accuracy.
Specifically, the Frobenius norm is used in BB completeness to capture the overall reconstruction error across
all samples and features, whereas the Euclidean norm (2-norm) is used in projection completeness to measure
the fidelity of each individual contribution vector when projected onto the concept basis.

BB Completeness (Output—Input).

2
X -WyZ - 1
Ry, = 1-“;;;;2;¥E, X = -Xx117, (8)
X = X1 "
where 1 denotes a vector of all 1s with length n). For A\ = 0, this coincides with AIME in R2.

Projective Completeness (Feature Contribution to Conceptual Basis).

n L ) 2 n L ) 2
R2 - 1_ Zi:1||€z Ui HQ 1 ZZ:lM e (¢:) HQ, 9)

el 2oima 413 iz 1413

Il is the orthogonal projection of span(U,)); Because U, is obtained via least squares, U.v; typically
g ¥ v v
coincides with the optimal projection.

3.4 Numerical Implementation and Computational Complexity Key Points

The operator Wy = A; =XZ"(ZZ" 4+ M})™! is obtained by solving a symmetric positive-definite system
of size k x k, which can be computed quickly and stably. Local description requires only matrix-vector
multiplication Wz; and element-wise multiplication per column, taking O(dk). Conceptually, U, is a g X ¢
system, which is particularly lightweight when ¢ < d. In terms of implementation, (i) column centering and
normalization of Z; (ii) scale normalization of A (e.g., A = a, tr(ZZ%op)/k); and (iii) SPD solvers such as
Cholesky (falling back to pinv upon failure) are effective. Because it does not rely on the model’s internal
gradients or parameters, the method is completely model-independent.

3.5 Setting the Regularization Coefficient )\ in RidgeAIME

Background and Role. AIME/RidgeAIME learns a linear operator that performs an “approximate in-
verse mapping” from the model outputs (or downstream representations) to the inputs. The notation herein
represents each sample as a column vector, such that X € R4*"™ denotes the inputs and Z € RF*™ denotes
the downstream representations, where n is the number of samples. The approximate inverse operator of
“Z — X7 is defined as

A,\ S Rka

. RidgeAIME solves the following Tikhonov-regularized least-squares problem:

: 2 2
Jmin (11X = AZ[F + AAlR). Az (10)

with the closed-form solution
Ay = XZT (22T + M) = x 28, 2l =2T(Z2Z27 + M), (11)

where Ij; is the k x k identity matrix. As A\ — 0, Ay — XZ"(ZZ")~! (when Z is full rank), matching
the unregularized AIME. The readout for RidgeAIME is identical to that in the previous section. GFI
corresponds to the column vectors of Ay, and the local feature importance (LFI) for sample i is

l; = (A)\Zl) o x; € Rd (12)

where z; and z; denote the ith columns of Z and X, respectively, and o denotes the element-wise product.
Regularization improves the condition number of (ZZ "), enhancing numerical stability and mitigating the
effects of outliers and multicollinearity.
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Policy for A\ in this implementation (fixed value). In the submitted program, reproducibility and
computational efficiency were prioritized. For all datasets (Adult, German Credit, COMPAS),

A= 103

The same order of magnitude is used even when combined with the conceptual linear mapping setting. All
features are normalized to the scale [0,1] (min-max for continuous variables and one-hot for categorical
features). Under this scale, A = 1073 (i) keeps the condition number of ZZ" + Al within a safe range,
(ii) does not degrade BB completeness (R%g) or projective completeness (R%,mj), and (iii) suppresses the
bootstrap-induced variance. This practical trade-off confirms it as a stable choice Preliminary verification

(Grid search is not performed; and a fixed value is used).

Notes on Numerical Implementation. equation requires solving only a single & x k symmetric
positive-definite system, which can be computed quickly and stably using Cholesky decomposition (falling
back to pseudoinverse via SVD if it fails). Furthermore, column centering and scaling of Z, together with
alignment of the one-hot basis, improve the estimation of Ay and the stability of ell;.

4 Experiments

The effectiveness of Concept-Ridge AIME was evaluated on tabular datasets (Adult/German
Credit/COMPAS) using four criteria: (i) black-box reproducibility completeness (BB Completeness: R>
when externally fitting the black-box logit model using only the concept matrix C'); (ii) projection complete-
ness of local contributions onto the conceptual space (Projection Completeness: norm ratio ||TI¢4||2/€]|2
when projecting the AIME-derived local feature contribution vector ¢ onto the concept basis); (iii) stability
of the metric (95% CI: estimated from 200 bootstrap samples); and (iv) computational efficiency (Latency:
average inference time per instance, including warm-up).

Experimental Setup

For each dataset, missing values were imputed using the median for numeric features and the mode for cat-
egorical features. Numeric values were normalized to [0, 1], and categorical features were one-hot encoded.
Training and evaluation followed a fixed stratified 8:2 split. The black-box model was Light GBM (learning
rate = 0.05, number of trees = 300, other parameters set to defaults). Concepts were generated by first
extracting the top features and one-hot indicators from AIME’s GFI, then feeding them into an LLM context
to generate AND/OR rules (thresholds in [0, 1]; one-hot indicators expressed as ==1). Rules were adopted
after syntactic validation (feature-name matching and exclusion of zero or positive cases). If fewer than six
rules were generated, backup concepts based on quantile points were automatically added to ensure concept
set coverage. In COMPAS, race and gender were excluded from the predictive concept set and treated sep-
arately as auxiliary concepts for auditing. Comparison methods include ConceptSHAP (concept Shapley),
CBM (two-stage logistic), TCAV (finite difference approximation), Concept Space SHAP (Ridge approxi-
mation + KernelExplainer), Feature SHAP (Tree/Kernel), and LIME. All of these models can be deployed
and managed via a common model-agnostic API. Finally, the inverse operator for AIME/ConceptAIME
was computed only once, and subsequent outputs were obtained solely through matrix-vector operations,
yielding inference speeds several orders of magnitude faster.

Results and Discussion

Tablereports BB completeness (R?) + projection completeness + 95% CI + inference time (ms/instance)
across the three datasets. For Adult, BB completeness was high at 0.725222 (95% CI: 0.723265-0.727076),
indicating that even with only six concepts, the black-box logit could be well reproduced externally. Projec-
tion completeness was also high at 0.851456 (0.834869-0.865143), indicating that the local contribution
¢ adheres closely to the conceptual basis with high precision and minimal information loss. German Credit
exhibited a BB completeness of 0.339209 (0.324459-0.352034), whereas projection completeness was
stably high at 0.828336 (0.822406-0.834705). Therefore, even with only hard binary rules, local expla-
nations can be sufficiently expressed in the conceptual space. However, external reproducibility of black-box
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logits could be improved by expanding the number of concepts or using softened (probabilistic) outputs.
COMPAS showed a BB completeness of 0.221209 (0.216630-0.225862), but projection completeness
was the highest at 0.901333 (0.893052-0.908658), demonstrating that local contributions can be com-
pressed extremely efficiently into conceptual coordinates. Inference time for Concept AIME remained around
0.013-0.014 ms/instance for all datasets, which is significantly faster than that of ConceptSHAP (60.6—
109.7 ms), Concept Space SHAP (54.9-133.9 ms), LIME (177.5-323.7 ms), and TCAV (2.55-2.64 s on
Adult/German Credit). CBM was also fast (1-1.6 ms), but ConceptAIME is fundamentally different in
that it can present both local and global information simultaneously without modifying the trained black bozx.
Figures [1] 2} and [3] visually compare the rankings of ConceptAIME, ConceptSHAP, CBM, TCAV, Concept
Space SHAP, and Feature SHAP across each dataset. They highlight domain-valid, high-level concepts,
such as education level, marital status, and occupation (Adult); duration, credit amount, and age (German
Credit); and criminal record, juvenile delinquency, and prosecution rate (COMPAS).

Table 1: Completeness (BB+4Projection), 95% CI, and inference time (ms/item)

Dataset #Feat #Concepts BB completeness R? Projection completeness Latency (ms/instance)

Mean Cliow  Clpign Mean Cligw  Clpign ConceptAIME Concept
SHAP CBM TCAV C-space
SHAP SHAP LIME
Adult 105 6 0.725222 0.723265 0.727076 0.851456 0.834869 0.865143 0.013388 109.711768 1.073232 2550.506928 133.936217 5.695561 323.665807
German Credit 61 7 0.339209 0.324459 0.352034 0.828336 0.822406 0.834705 0.013841 108.194204 1.247247 2635.219289 98.577847 4.521723 177.510727
COMPAS 17 7 0.221209 0.216630 0.225862 0.901333 0.893052 0.908658 0.013638 60.640338 1.577662 54.897113 3.372619 187.923336

Overall, ConceptAIME demonstrated superiority in three aspects: (1) high projection completeness with
minimal information loss in local explanations; (2) BB completeness that can be monotonically improved
through concept count, AND rules, and softening, achieving R? ~ 0.73 even with few concepts in Adult; and
(3) inference that is orders of magnitude faster, making it suitable for interactive visualization and auditing.
This demonstrates a comprehensive advantage in three key areas. In particular, for datasets such as German
Credit and COMPAS where strong nonlinear interactions are suspected, the high projection metric confirms
that “explainability in conceptual coordinates” is maintained. Meanwhile, the potential for improving BB R?
will be further investigated through supplementary soft conceptualization and automatic concept expansion.

5 Conclusion

This study proposed Concept-RidgeAIME, which inherits the inverse problem perspective of AIME (Nakan-
ishil 2023]), enhances numerical stability and reproducibility through Tikhonov (Ridge) regularization, and
further extends the framework to the conceptual space. The method consists of two stages: an approximate
inverse operator W) for output-to-input mapping and an approximate inverse operator U, for concept-
to-input mapping. This design uniquely enables the consistent extraction of global, local, and concept-level
contributions within a single linear algebra representation. While preserving the advantages of AIME (model
independence, no gradient requirement, and millisecond-level inference after batch precomputation), it ad-
ditionally enables decision-making to be described using higher-level conceptual units designed by a user or
an LLM, thereby achieving interpretable explanations aligned with expert vocabulary.

Comparatively, ConceptSHAP excels in global importance based on game-theoretic axioms but faces chal-
lenges in terms of computational load from subset evaluation and the design of local explanations. TCAV
presents sensitivity-based class-specific concept relevance but requires access to internal representations and
gradients. CBM provides interventional internalized explanations but requires concept supervision during
training, making it difficult to retrofit onto existing black-box models. Concept Space SHAP is an operational
approach that applies SHAP to concept representations, inheriting the underlying theory but retaining the
computational burden of sampling approximations. By contrast, Concept-RidgeAIME achieves (i) model
and gradient independence; (ii) simultaneous presentation of global, local, and conceptual contributions; (ii)
quantification of fidelity using two completeness metrics (BB and projection); and (iv) numerical stability
and reproducibility via reqularization. This fills practical gaps in black-box explanations for tabular data,
combining low computational load with local conceptual contributions.
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Global rankings — Adult
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Figure 1: Global concept rankings (Adult; six panels)

Furthermore, this study prioritizes the operational feasibility of concept design by automatically synthesizing
concept candidates with LLM assistance to reduce manual effort. By strictly constraining the rule format
(only known feature names, thresholds in [0, 1], one-hot equality, JSON-only) and performing syntax checks
and zero/positive exclusion at the program level, this study enabled a workflow of automatic generation —
verification — adoption to be reproduced within a single notebook, enhancing both the reproducibility and
portability of the results.

However, this study has several limitations. First, dependency on concept set quality: inappropriate thresh-
olds or extremely sparse rules reduce BB and projection completeness and introduce bias into local explana-
tions. Second, linear approximation limitations: because the method relies on linear approximation, strong
nonlinear interactions may be under- or over-estimated. Third, scaling assumptions: dependence on [0, 1]
normalization and one-hot encoding means that stability can be compromised by improper preprocessing.
Fourth, LLM generation validation: verification and review are essential to prevent the introduction of
unknown features or complex logic (e.g., OR or negation).

Reproducibility Statement

To ensure reproducibility, a comprehensive description of the proposed method is provided, including math-
ematical formulations (Sections , hyperparameter settings (Section , and implementation notes (Ap-
pendix A). All datasets used (Adult, German Credit, and COMPAS) are publicly available. All implementa-
tion details and source code, including a single executable notebook Auto_Concept_AIME_ICLR2026.ipynb
that automatically downloads the datasets, trains the models, performs concept generation, and reproduces
all figures and tables, are provided as anonymized supplementary material. Bootstrap confidence intervals
are also reported for all key metrics to quantify robustness. These measures collectively ensure that in-
dependent researchers can reproduce both the methodology and results presented in this paper in a fully
self-contained manner.
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Global rankings — German
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Figure 2: Global concept rankings (German; six panels)

Broader Impact Statement

This work aims to enhance the transparency, fairness, and trustworthiness of machine learning systems by
providing human-understandable, concept-based explanations at both the global and local levels. Because
Concept-RidgeAIME operates without accessing model internals or gradients, it can be applied to a wide
range of real-world black-box systems in domains such as healthcare, finance, and public administration,
where interpretability and accountability are essential.

Potential negative impacts include the risk of misunderstanding or overtrusting explanations that appear
intuitive but may not fully reflect model behavior, and the possibility of biased or misleading concept def-
initions when LLMs are used for concept generation. To mitigate these risks, the method enforces strict
syntactic validation, excludes zero/positive trivial rules, and supports deterministic, auditable concept gen-
eration. This study does not automate decision-making itself but instead provides tools to support human
auditing and understanding of Al systems.

Promoting model transparency and concept-level interpretability while maintaining awareness of potential
biases and misuse can contribute to the responsible and ethical deployment of Al technologies.
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mentation of the algorithms, the experimental design and analysis, and for the writing and revision of the
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Global rankings — COMPAS
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Figure 3: Global concept rankings (COMPAS; six panels)

Use of Generative Al

The proposed method incorporates an LLM, utilizing GPT4-0 mini as its API. Additionally, GPT-5 Pro,
DeepL, and Paperpal were employed to assist with implementing the method and refining the text of this

paper.
The author takes full responsibility for the content of this paper.
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Implemented and tested on Google Colab Pro+ (Python 3.12.11). The experiments used Light GBM 4.5.0,
scikit-learn 1.5.2, SHAP 0.45.1, LIME 0.2.0.1, and the AIME package (‘aime-xai 0.1‘ https://github.com/
ntakafumi/aime|). Concept candidate generation using the LLM was performed when an OpenAl API key
was available.

B Concept Rules and Prompts (Generation, Sanitization, Adoption Set)

This study first generated concept candidates from LLMs in a rule format (numeric features expressed as
normalized scale thresholds, categorical features represented as one-hot encoded equality) based on AIME’s
GFI. These candidates underwent syntactic validation (feature name matching, domain verification [0, 1]),
exclusion of zero-positive rules, and were finally adopted. In this run (Patch-H), candidates were adopted
directly across all datasets without requiring backup concepts (quantile scanning). Table |2| summarizes the
candidate, adopted, and disqualification counts.

The final concept sets (concept names and corresponding rules) after selection are shown in Tables for
each dataset. Numeric attribute thresholds correspond to quantiles after normalization to the range ([0,1]),
and one-hot encoding is represented by ==1 to indicate presence.

C Local Explanation (Additional Examples and Summary)

For each dataset, five examples of the concept contribution vector v = F' T/ and the ratio ratio were calculated
using ConceptAIME. The most boosting (Top+) concept and the most suppressing (Top—) concept are
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Table 2: Concept candidate sanitation statistics (Candidates, Adopted, Rejected = Syntactic
Inconsistency /Zero-Positive, etc.)

Dataset Candidates Adopted Rejected

Adult 6 6 0

German Credit 7 7 0

COMPAS 7 7 0

Table 3: Final adopted concept set (Adult)

No. Concept Name Rule (Normalized Scale/one-hot)
1 High education education-num > 0.75
2 Long working hours hours-per-week ge 0.65
3 Executive/Professional occupation_Exec-managerial == 1
4  Married marital-status_ Married-civ-spouse == 1
5 Older age age > 0.60
6 Has capital gains capital-gain > 0.05

summarized in Tables [0] to [§] For Adult, Married consistently appeared as the Top+ concept consistently
(+2.08 to +2.73; ratio 0.33 to 0.37), strongly supporting the model’s high-income classification. Top—
showed few significant negative contributions in this population, with Has capital gains appearing as the
smallest positive contribution. In German Credit, the presence concept checking status often appeared in
Top+, while High credit _amount and High duration frequently showed negative contributions (Top—).In
COMPAS, the degree of guilt (¢_charge_degree_ M/F) appeared in Top+, while a high number of juvenile
prior offenses and young age appeared on the suppressing side (Top—) (Audit concepts are excluded from
prediction and presented separately).

D Hard (Binary) vs. Soft (Continuous) Concept Ablation

This run used only the hard (binary) concepts. Table @] restates the completeness (BB R? and Projection)
for each dataset. Adult showed BB R? # 0.725 (95% CI: 0.723-0.727), and projection was also high at 0.851
(0.835-0.865). German Credit showed moderate BB R? at 0.339 but high projection at 0.828 (0.822-0.835),
indicating sufficient conceptual space coverage for local contributions. COMPAS had a modest BB R? of
0.221, but its projection was the highest at 0.901 (0.893-0.909). The soft concept version is an extension
where a learner (for example, logistic) assigns concept probabilities € (0,1) from positive and negative
examples of hard rules, replacing the binary vector with continuous scores. This is expected to increase BB
R?, while projection metrics often do not decrease significantly (implementation requires only linear algebra
substitutions, with unchanged computational complexity). The soft version is planned for implementation
and inclusion as an additional experiment in the Supplement to this paper.

E Quantifying Robustness Against Random Number Generators and Partitions (Cl
Width) and Inter-Method Rank Correlation

In this run, the 95% CI for each metric was calculated using 200 test-side bootstrap samples. While a more
rigorous double bootstrap involving random number seed X partition combinations is planned for future
supplementary experiments, the metrics were compared here using CI width as a proxy (Table. For Adult
and COMPAS, both BB and projection exhibited narrow CI widths (&~ 0.004 and =~ 0.009, respectively).
For German Credit, BB showed a slightly wider width (= 0.028), whereas projection had a narrower width
(=~ 0.012). Furthermore, the consistency in global concept rankings was evaluated using Spearman’s rank
correlations between Concept AIME and other methods (ConceptSHAP /CBM/TCAV /Concept Space SHAP)
(Table . German Credit showed high correlations with ConceptSHAP and Concept Space SHAP (p =~
0.893,0.750) and also exhibited high consistency with Concept Space SHAP in the Adult dataset (p 2 0.771).
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Table 4: Final adopted concept set (German Credit)

No. Concept Name Rule (Normalized Scale/one-hot)
1 High duration duration > 0.7
2 High credit__amount credit__amount > 0.7
3 High age age > 0.7
4 Checking_status__0<=X<200 present Checking status_0<=X<200 ==
5 Checking_status_ <0 present Checking_status_ <0 ==
6 Checking_ status_ >=200 present Checking__status_ >=200 == 1
7 checking_status_ no checking present checking status_no checking == 1

Table 5: Final adopted concept set (COMPAS)

No. Concept Name Rule (Normalized Scale/one-hot)
1 High priors__count priors__count > 0.6
2 High juv_fel count juv_fel count > 0.6
3 High juv__misd_ count juv__misd__count > 0.6
4 High juv_other__count juv__other_count > 0.6
5 Young age age < 0.30
6 c_charge_degree_F present c_charge degree F ==
7 c_charge_degree_ M present c_ charge degree M ==

By contrast, COMPAS showed low correlations, likely due to differences in audit concept separation and
rule sets (e.g., strong contribution from one-hot-encoded prosecution degrees).

F LLM Prompts

A standardized prompt was used to explicitly specify GFI top feature names and one-hot names; to apply
thresholding using normalized numerical values; to reference one-hot values with “==1"; to allow up to two
literal ANDs; to prohibit unknown feature names; and to reject candidates with zero positive counts (see the
Methods section in the main text). Zero positive or unknown features did not occur in this run, and all the
candidates were selected. Using AIME’s top GFI features as clues, concept candidates were generated for
the LLM using a rule grammar consisting solely of normalized numerical features with [0,1] thresholds and
categories represented by one-hot equality. Each rule is represented as a Conjunctive Normal Form approxi-
mation with AND at most three literals or OR at most two clauses, and syntax other than feature >= t,
feature <= t, or feature == 1 (one-hot) is not permitted. Output is restricted to a JSON array

(each element being {"name": "...", ‘rule’: "..."}), with no additional keys or explanatory text al-
lowed. The program performs syntaz validation (feature name matching, domain, logical form) and exclusion
of zero-positive rules, and evaluates completeness (BB/projection), stability (CI), and efficiency (ms) only
for valid concepts.

F.1 Minimal Template

System:

You are a careful scientist. Produce concept rules over preprocessed tabular features.
Use literals ‘feature >= t¢, ‘feature <= t¢, ‘feature == 1° (for one-hot).

Max 3 literals per AND clause, max 2 OR clauses.

Return EXACTLY {K} items in JSON: [{"name": "...", ‘rule’: "..."}].

User:

Dataset: {DATASET_NAME}

Top features (AIME GFI): {TOP_20_FEATURES}

Features (first 50): {FIRST_50_FEATURES} ... (+{REMAINING_COUNT} more)
Constraints:

- Use only provided feature names (exact match; case-sensitive).

- Thresholds in [0,1] for numeric features (min-max normalized).

- Do NOT invent features (e.g., "pos"/"neg"/class names).

JSON only (no comments or extra keys).
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Table 6: Additional local explanation examples (Adult; top positive/negative concept contributions and
ratios)

Idx Top+ Concept Contribution Ratio Top— Concept Contribution Ratio

2088 Married 2.0823 0.330 Has capital gains 0.0763 0.012
8889 Married 1.9320 0.331 Has capital gains 0.0679 0.012
6607 Married 2.3992 0.349 Has capital gains 0.1356 0.020
7482 Married 2.6254 0.370 Has capital gains 0.0988 0.014
8034 Married 2.7336 0.365 Has capital gains 0.1038 0.014

Table 7: Additional local explanation example (German Credit; contribution and ratio of top posi-
tive/negative concepts)

Idx Top+Concept Contribution Ratio Top—Concept Contribution Ratio
1 checking status_ 0<=X<200 present 3.6670 0.256 High credit__amount -0.3427 0.024

5 checking_status_ no checking present 4.5063 0.241 High credit__amount -0.9859 0.053
56 checking status_no checking present 5.6306 0.260 High credit__amount -0.3100 0.014
32 checking status_ no checking present 5.3388 0.279 High duration -0.1058 0.006
125 checking status_ 0<=X<200 present 4.0486 0.242 High credit__amount -0.6866 0.041

F.2 Rule examples (Grammar specification)

{"name": "High education",

"rule": "education-num >= 0.75"}

{"name": "Executive/Professional",

‘rule’: "occupation_Exec-managerial == 1"}

{"name": "Long hours OR Married",

‘rule’: "(hours-per-week >= 0.65 AND capital-gain >= 0.05)
OR (marital-status_Married-civ-spouse == 1)"}

F.3 Notes.

The model utilized the OpenAI APT (default: gpt-4o-mini). The number of generated concepts was always
{K3}, but the number of concepts selected after syntax verification and zero-positive exclusion represents the
final concept count, which matches the #concepts=. .. in the experiment logs.
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Table 8: Additional local explanation examples (COMPAS; top positive/negative concept contributions and

ratios)
Idx Top+Concept Contribution Ratio Top—Concept Contribution Ratio
470 c__charge_degree_ M present 1.7945 0.480 High juv__other_ count -0.3227 0.086
1427 c__charge_ degree_ M present 1.2415 0.694 High juv__misd_ count -0.1035 0.058
1067 c_charge degree F present 1.9860 0.412 High juv_fel count -0.5772 0.120
87 «c¢__charge_degree_ M present 0.9445 0.276 High juv_ fel count -0.9628 0.281
114 c¢_ charge_degree_ M present 1.1859 0.460 Young age -0.0121 0.005

Table 9: Completeness based on hard (binary) concepts (this run)

Dataset BB R? Mean 95% CI Projection Mean  95% CI

Adult 0.725222  [0.723265, 0.727076] 0.851456  [0.834869, 0.865143]
German 0.339209  [0.324459, 0.352034] 0.828336  [0.822406, 0.834705]
COMPAS 0.221209 [0.216630, 0.225862] 0.901333  [0.893052, 0.908658]

Table 10: 95% Confidence interval width for metrics (Single Bootstrap 200 Times)
Dataset BB R2 CI Width  Projection CI Width

Adult 0.003811 0.030274
German 0.027575 0.012299
COMPAS 0.009232 0.015605

Table 11: Global concept rank correlation (Spearman’s p; Comparison of ConceptAIME with other methods)

Dataset Comparison Method P
Adult ConceptSHAP 0.371
Adult CBM 0.143
Adult TCAV -0.657
Adult C-space SHAP 0.771
German ConceptSHAP 0.893
German CBM -0.107
German TCAV 0.464
German C-space SHAP 0.750
COMPAS  ConceptSHAP -0.571
COMPAS CBM -0.786
COMPAS TCAV -0.571
COMPAS C-space SHAP -0.296
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