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Abstract

In this work we consider generic Gaussian Multi-index models, in which the labels
only depend on the (Gaussian) d-dimensional inputs through their projection onto
a low-dimensional » = O4(1) subspace, and we study efficient agnostic estimation
procedures for this hidden subspace. We introduce the generative leap exponent, a
natural extension of the generative exponent from|Damian et al.|[2024] to the multi-
index setting. We show that a sample complexity of n = @(dlv’“*/ %) is necessary
in the class of algorithms captured by the Low-Degree-Polynomial framework;
and also sufficient, by giving a sequential estimation procedure based on a spectral
U-statistic over appropriate Hermite tensors.

1 Introduction

We consider learning Gaussian multi-index models:

Definition 1. We say that (X,Y) follows a Gaussian multi-index model with index v if X ~
N(0, 1) := ~yq and there exists a subspace U* € G(r,d) such that the conditional law P[Y'| X] only
depends on the orthogonal projection Py« X.

A Gaussian multi-index model can be thus specified by choosing a basis W* of U™ (ie, an element of
the Stiefel manifold S(r, d)), and the law P of (Z,Y) € P(R” x R)[[] where Z = (W*)T X. The
subspace U™ is referred as the index space.

Given a joint distribution P of (Z,Y"), a natural statistical task associated with such a model is to
plant a subspace W*, uniformly drawn from the Haar measure of S(r, d), and draw n iid samples
from the multi-index distribution Py« p parametrized by W* and P. Our task will be then to recover
U* = span[W*] given these samples. We note that this task is only well-posed when the ‘intrinsic’
dimension of the model is r, namely that P does not admit a factorization P = ~,. ® Pg, where
Ps(zs,y) is the marginal of P over a subspace of R” x R of dimension < r + 1 that includes the
last coordinate. We will assume this property from now on.

We place ourselves in the setting where r = O4(1), and consider the high-dimensional regime. Since
the dimensionality of S(r, d) is of order rd, one expects that a brute-force estimation procedure
that fits Pp yy, over a suitable e-net of {W;}; C S(r,d) requires O(de™?) samples to estimate the
index space up to accuracy €. Our main motivation is to understand this question from the lens of
computational-statistical gaps: how many samples are needed, as a function of d, P, to produce an

Lor, more precisely, the conditional law PZ of Y'|Z, since the marginal of Z is ;..
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estimate of the planted subspace using polynomial-time algorithms, as opposed to using brute-force?
This question enjoys a large literature, spanning high-dimensional statistics and learning theory,
starting from the inverse regression methods from [Li| [1991]] and beyond Xial [2008], | Xia et al.| [[2002]],
Hristache et al.| [2001]], Cook and Li| [2002]], Cook| [2000], |Vempala| [2010], |Klivans et al.| [2008],
Mossel et al.| [2003]], [Daniely et al.|[2025]] (see also |Bruna and Hsul [2025]] for a recent survey),
where efficient algorithms have been developed for specific instances. Multi-index models are an
appealing semiparametric model, and provide arguably the simplest instance of linear feature learning,
in the sense that the index space provides an adapted low-dimensional representation to perform
high-dimensional learning. Some notorious examples include

* (noisy) Gaussian parity: Y|Z 4 Esign[Zy - Zy ... Zy], with Pl = 1] =n, P = 1] =
1 — n independent of Z and n < 1/2.

* Gaussian staircase functions: Y |Z 4 01(Z1) + ¢2(Z1,Z2) + ... + ¢ (Z4, ..., Z).
o Intersection of r half-spaces: Y |Z L) H;:1 1(11;'—Z > o) — 1.

s Low-rank shallow neural network: Y|Z = a " p(VTZ) + & for some a € RMV ¢
R™M 5 :R — R, additive noise ¢ independent of Z.

* Polynomials: Y|Z = q(Z) where ¢ is a polynomial.

Focusing on the Gaussian setting, several works, starting from |Dudeja and Hsu! [2018]], Ben Arous
et al|[2021] and followed by |Abbe et al.|[2021] [2023], Bietti et al.| [2022]], [Damian et al.| [2022]],
Ba et al.|[2022], Dandi et al.| [2024a] have built a harmonic analysis framework to analyze a large
class of algorithms, including stochastic gradient descent over NN architectures, leading to sample
complexities of the form n = ©(d¥), where k is an explicit exponent associated with a certain
harmonic expansion of P. In particular, |Damian et al.| [2024]], focusing on Single-Index models
(where r = 1), identified the generative exponent k* = k*(P) (see Section as the fundamental
quantity driving the sample complexity, in the sense that n = @(dl\/k*/ 2) is both necessary and
sufficient in the class of algorithms implemented by SQ (Statistical Queries) and Low-Degree
Polynomials. In essence, the generative exponent arises from an expansion of the inverse regression
of Z given Y, as put forward in the original |Li| [[1991]. [Lee et al.|[2024], |Arnaboldi et al.| [2024],
Dandi et al.| [2024b] showed that SGD with reused samples can learn single index models dependent
on the generative exponent, instead of the information exponent.

In this work, we extend this notion of generative exponent to the general multi-index setting. As
already pointed out in the literature |Abbe et al.| [2023]], Bietti et al.| [2025], |Troiani et al.| [2024]],
Diakonikolas et al.|[2025b]], the general » > 1 setting gives rise to important new phenomena not
present in the single-index case. In particular, gradient-based learning exhibits a sequential behavior
in the form of saddle-to-saddle dynamics, where the index space is revealed incrementally along
specific subspaces, with different timescales associated with each step. Moreover, such incremental
alignment requires solving a semi-parametric problem, where both the subspace and the link function
need to be estimated jointly. We overcome these additional challenges by identifying a suitable
generalization of the generative exponent, the leap generative exponent k* (see Definition 3)), arising
from a ‘canonical’ orthogonal decomposition of the index space, the leap decomposition (see Section
2.

We first show that this exponent provides a computational lower bound of n = O(d*"/?) under the
Low-degree polynomial (LDP) framework, by extending the previously established lower bound in
the single-index setting Damian et al.| [2024]] to an appropriate detection task that is dominated by
the index estimation task (Theorem |1)). Next, and more importantly, we provide an algorithm that
sequentially estimates the index space along the leap decomposition from the spectrum of a novel
kernel U -statistic (see Eq ). This algorithm recovers the index space as soon as n 2 d*" /2, thus
matching the LDP lower bound, and, crucially, it does not require prior knowledge of the multi-index
model P (Theorem [3). We complement these general results by several case studies that give novel
guarantees on specific multi-index models, such as general ReLU networks or Gaussian Parities; see
Section E} Taken together, our results therefore provide the correct, sharp dimension dependence
for any (Gaussian) multi-index model. In particular, as soon as k* > 2, they provide evidence of a
computational-to-statistical gap at the polynomial scale.



Related Works |Chen and Meka[2020] show that any polynomial multi-index model can be learned
with n 2 d samples via an iterated filtered PCA algorithm. (Chen et al.|[2022] extended this to the
case of multi-index models with ReLLU activation with a similar algorithm. As we will show in
Section the generative exponent satisfies k* < 2, so our algorithm also requires only n = d.

Gradient descent on two-layer networks has been extensively studied [Bietti et al., [2025, |Ren and Lee,
2024} Ren et al.,2025| [Damian et al.| 2022| |Abbe et al.| 2023]], these papers typically require at least
n = 6(dV! ’ ~1), where [* is the information exponent [Arous et al., 2021]], an upper bound of the
generative exponent. |Abbe et al.|[2023]] provide a similar definition of leap exponent but tailored to
the information exponent, and thus larger than the generative leap exponent. In the setting of sparse
juntas, Joshi et al.|[2024]] showed that by changing the loss function from square loss to another
loss, gradient queries learn with complexity governed by the SQ-exponent, which is analagous to the
generative exponent but restricted to juntas. [Troiani et al.| [2024]] characterize the generative leap
exponent for leaps < 2. Defilippis et al.| [2025], KovaceviC et al.| [2025] give spectral estimators for
the special case when the subspace is fully identified in the first leap of generative exponent < 2. See
Section 2] for further discussion.

Tensor PCA. In the context of Tensor PCA, Montanari and Richard|[2014] proposed the Tensor
PCA model and presented several algorithms including tensor unfolding. |[Zheng and Tomioka) [2015]
proposed a rectangular unfolding algorithm closely related to a single step of our algorithm, and
showed it attain the conjectured optimal sample complexity of n = G(dlv’“*/ 2). Dudeja and Hsu
[2021]] provided statistical query lower bounds for the symmetric and asymmetric Tensor PCA
model, and |[Hopkins et al.| [2015} 2017]] gave the corresponding lower bound in the low-degree / SOS
models. Dudeja and Hsu| [2024] provided a comprehensive study of communication lower bounds and
efficient algorithms for Tensor PCA and the related problem of Non-Gaussian Component Analysis.
Arous et al.|[2024] initiated the study of stochastic gradient descent over the Stiefel manifold for the
multi-spike Tensor PCA model, showing a time complexity of d'V*"~! where k* is the order of the
tensor (analogous to the generative exponent).

Chen et al.|[2020] show that deep neural networks can simulate unfolding-like algorithms and learn
multi-index functions with n = @(d““/ 2]) where £ is the degree of the polynomial approximation to
the groundtruth function. This method requires that the groundtruth is close to a polynomial.

Vempala [2010], Klivans et al.| [2024]] provides the current best known result for learning intersection
of k-halfspaces in d-dimensions with n = ©(d). [Vempala and Xiao|[2012] provide a moment-based
algorithm for learning multi-index models when the first leap learns all relevant variables.

While this work was being finalized, we became aware of |Diakonikolas et al.| [2025bjal], which
introduces a similar estimation procedure based on subspace conditioning. They define the class of
m-well-behaved multi-index models. For the special case of single index models with generative
exponent k£*, Diakonikolas et al.|[2025b]][ Appendix D.2] and Diakonikolas et al.|[2025a][ Appendix
C.3.2] show m = k*; we believe a similar equivalence holds also for multi-index models. However
the proposed algorithm requires sample complexity n. = d°*") even in the realizable setting, whereas
the algorithm of |Damian et al.| [2024] and this work, require only n = @(dk*/ 2) and apply when y is
either continuous or discrete. On the other hand, Diakonikolas et al.| [2025bjal] algorithms aim for
agnostic PAC learning, not just recovery of the subspace, and thus are able to explicitly characterize
the dependence in the hidden constant C'(P) in n > C'(P)d"V*"/2. By building an explicit piecewise
constant discretization in the subspace, they explicitly characterize the dependence on 7, €, and
Lipschitz parameters. We expect that our subspace recovery algorithm can be combined with a
discretization algorithm to attain similar guarantees, but with improved dependence on d. We also
study several examples of the leap generative exponents in Section [3including piecewise linear
functions (deep ReL.U Networks with bias) and general deep neural networks with r-dimensional first
hidden layer, improving upon previous results specific to multi-index polynomials and homogeneous
piecewise linear functions [Chen and Mekal[2020],/Chen et al.| [2022].
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u € R, S(r,d) is the Stiefiel manifold of r x d orthogonal matrices, and G(r, d) is the Grassman

manifold, obtained by quotienting S(r, d) by r-dimensional basis transformations. For two subspaces

Notation h;, denotes the normalized k-th Hermite tensor, defined as hy (u) :=




T C T', we write T" \ T as the orthogonal complement of 7" in 7”. For two subspaces T, T" we
define their distance d(7',7") to be ||l — 7 ||, , where Il is the orthogonal projection onto 7".

Paper outline. Section 2]recalls the generative exponent for single-index models and shows how
to generalize the definition to multi-index models via the leap generative exponent, and discuss the
relation to the leap information exponent. Section [3| gives the main computational lower bound result
which shows that in the low-degree polynomial framework the multi-index model with leap generative
exponent k* requires n > Q(dk*/ 2). Section@ gives our main algorithm, an iterative spectral method
based on a Hermite Kernel U-statistic, that recovers the subspace with the optimal sample complexity.
Finally in Section[5] we study the leap generative exponents of several function classes including
piecewise linear functions and general neural networks with r-dimensional first hidden layer.

2 The Leap Decomposition

Preliminaries: The Generative Exponent for Single-Index Models We start by recalling the
generative exponent for single-index models Damian et al.|[2024]). Given (Z,Y") drawn from a joint
distribution P € P(R x R) with first marginal equal to a Gaussian, and such that P # v; ® P, we
define for each integer k > 1, ¢, := E[h(2)|Y] € L?*(P,), and k* = inf{k; ||Ck||z2p,) > 0}
Equivalently, k* is the smallest integer k such that there exists a measurable function 7 : R — R and
a mean-zero k-th degree polynomial g such that E[7 (Y )q(Z)] # 0. The main takeaway from Damian
et al.|[2024] is that n = @(dk*/ 2V1) is both necessary (under the SQ and the LDP frameworks) and
sufficient for recovery of the planted direction

Subspace Filtration and Leap exponents: We begin by generalizing the coefficients {(j } from
[Damian et al.,|2024]]. The key novel ingredient is the notion of subspace filtration, capturing the
sequential nature of the multi-index estimation, and which appears in several existing multi-index
estimation procedures Abbe et al.| [2022] [2023]], Bietti et al.| [2025]], |IDiakonikolas et al.| [2025b]].
In essence, we now need to extend the expectations (i, which were conditional on the label y, to
conditional expectations on an ‘augmented label’ that includes all the previously estimated directions
of the index space. More formally, let S € G(r/, ) be a subspace, and for z € R" let zg € S denote

the orthogonal projection of z onto S. We write g := (zg,y) € R and zg := zg. € R,

For any S € G(r/, r), we then define:
Ch,s = Blhy(Zs)|Vs] € LR, (S7)%F, Py, ) ,
A(S) = Ey, [Ce.s(Ys) ® Ces(Ys)] € (ST)®2, AL(S) = EYS[HCk,S(YS)Hzﬂ .

Intuitively, these tensors capture whether there is any information “of order k” that can be captured,
given knowledge of the subspace S. When S = () and r = 1, these definitions reduce to those in
Damian et al.|[2024]]. Finally, we note that these definitions only depend on the joint distribution P of
(Z,Y) and are independent of the choice of W*.

Given a subspace S, we define the associated null distribution Pg by:
dPs[Z,Y] = dP[Zs]dP[Zs,Y] .

Under Pg, (Y, Zg) and Z¢ have the same marginals as under P, but are independent. The label

transformations (j, appear as the Hermite coefficients of the density ratio %:

Lemma 1 (Density Ratio expansion). We have the following formal expansion in L*(Pg):
dpP _
—1Z,Y]= Z (hi(Zs), (Y3 Zs)) -

dPs k>0

This implies the following decomposition of x?(P||Ps), whenever this divergence exists:
Lemma 2 (Mutual Information Expansion). If x*(P||Ps) < oo, x*(P||Ps) = X_,51 AZ(S).

2and also to learn the target, by performing a subsequent dimension-free non-parametric regression.



Notice that while y?(P||Ps) may be infinite in some cases, e.g. in deterministic models where
Y = o(Z), the quantities A (S) are well-defined for all k, since (.5 € L*(Py,) E} Given this
expansion, we can immediately define the leap k(.S) of a subset S:

Definition 2 (Generative Leap relative to S). k(S) is the smallest k > 1 such that \2(S) > 0.

Note that k(S) < oo so long as P # Pg.

The Leap Decomposition: We will define the flag F = {§ = Sy € S1 € --- € S, = R"}
inductively as follows. Given a subspace S;, ¢ > 0, we define k; 11 := k(S;) and S; ;1 by:

Siy1:=95; P span[AkHl (Sl)] (1)
Here, we have defined the span of a symmetric tensor 7 € (R")®* as span(7) =
span[Mat,. -1 [T]] where Mat,. ,.«—:[T] denotes T reshaped as an 7 x r*~! matrix.
Definition 3 (Generative Leap Exponent). Let k;, i = 1,..., L be defined as above. The generative
leap exponent is defined as k* := max; k;.
We now verify that the Leap decomposition is well-defined, and give a variational representation.
Definition 4. Given two subspaces S C T, we define the relative leap k(S,T) of a subspace S

towards T as

k(S,T) == inf{k; T\ S C @ <pspan(Ap (S))} . @)

In words, the relative leap measures the order of the Hermite tensor needed to ‘reach’ the subspace T'
from conditional expectations over y and zg. Observe that we can relate the leaps k(.S) and k(S,T')
as k’(S) = infT;SgT ]{J(S, T)

Proposition 1 (Variational Characterization of Leap Generative Exponent). The leap decomposition
terminates in a finite number of steps L < r. Moreover, we have

k= inf k(R;, R; . 3
f:{@:]l%rolc---cw}ln?x ( J J+1) 3)

Finally, k* is invariant to rotation: if P = (U @ 1d) 4P where U € O, is any rotation of the model,

we have k*(P) = k*(P).

Relationship with Information Leap Exponent Finally, we relate the generative leap exponent to
the information leap exponent, first introduced in|Abbe et al.|[2023]] (referred to as IsoLeap in the
setting of Gaussian input data); see also|[Bietti et al.|[2025]] and |Dandi et al.|[2024a]]. Let us first recall
its definition in our context. For any S € G(r/, r), we define:

G5 = E[Yhi(Zs)|Zs] € LR (5)%,Pyy)

Ak(S) := Ez4[Ch,5(Zs) @ Cr5(Zs)] € (S1)F2F, Xi(S) := Bz {Hé’“S(ZS)Hi] '

By analogy with Definition [2} we define I(.5) to be the smallest & such that S\i(S ) > 0. Equipped
with this object, the information leap exponent is recovered as follows.

Definition 5 (Information Leap Exponent, Abbe et al.| [2023]], Bietti et al.[[2025]). T~he inforn}ation

leap exponent of the multi-index model P is given by l*~:= max; l; , where l;11 = 1(S;) and (S;); is
defined recursively by Sy = () and S .1 = S; @ span[A;,_, (S;)].

Let us now relate the Information Leap exponent to the generative leap. We start with a direct
generalization of [Damian et al., 2024, Prop 2.6]:

Proposition 2 (Generative and Information Exponents relative to subspaces). For any subspace S,

K(S)PI = it U(S)[1d: © T)4P). @

In particular we have k(S) < I(S) for any subspace S.

3one can explicitly control ||C|| ; see Lemma



In words, the generative exponent relative to a subspace S is the largest k such that
Ep[T (y,25)q(25+)] = 0 for any measurable function 7 and any polynomial ¢ of degree < k.
This provides a useful characterization, as illustrated in the examples of SectionE}

As expected, the generative leap is upper bounded by the information leap:

Proposition 3 (Relationship with Leap Information Exponent). We have k* < [*.

Proofs of these results are deferred to Appendix

3 Computational Lower Bounds in the Low-Degree Polynomial Class

Let us first establish a computational lower bound for the estimation of a multi-index model. Following
Damian et al.|[2024], and relying on the fact that detecting planted structure is a necessary byproduct
of estimating the index space, we instantiate a hypothesis testing adapted to the leap decomposition.

Given P and its associated leap decomposition , we consider S the subspace of dimension r
associated with the generative leap, ie k* = k(S). Let § = (Sz,y) be the effective label, with
y € R+t W = STW* the planted subspace associated with S, and z = Wtz € R4~ the
effective input. Viewing P as the joint distribution of (S z, #), we define P; as the marginal over .

Note that g < r by definition. We consider the following detection problem, conditional on W':

* Hi : there is a planted model of dimension 7 > 7 using P as link function and y as label.
Specifically, (z,§) ~ Ey; Py, where Py, (y|2) = P(y|W " ).
* H : there is only planted structure up to dimension r¢; i.e., (Z,4) ~ Py := Yg—r, ® Py.
By considering the likelihood ratio R = ggé and its orthogonal projection R<p in L?(Hp) onto
polynomials of degree at most D, one can assess the ability of low-degree polynomials to solve this
hypothesis testing problem Bandeira et al.|[2022]], Hopkins| [2018]. Specifically, if || R<p|| 2 (m,) =

1+ 04(1), then no degree-D polynomial f in the input samples can weakly separate Hy from H;, ie
satisfy max{Varg[f], Var1 [f]} = O(| Eo[f] — E1[f]|?) as d — oo [Bandeira et al., 2022} Proposition
6.2].

Theorem 1 (Weak separation lower bound). Consider d > max(r,k*), D = O(log(d)?), and
n = O(d*" /?=7) for any v > 0. Then IR<pllz2Hy) = 1 + 0a(1).

In other words, any degree-D polynomial test needs n > Q(dk*/ 2) samples to weakly detect H
from H. Polynomial tests of degree w(log d) are considered a powerful step towards ruling out all
noise-tolerant polynomial-time algorithms Bandeira et al.| [2022], Kunisky et al.|[2019]]. The proof
can be found in Appendix [C|

This low-degree lower bound extends the previous LDP lower-bound from the single-index setting
Damian et al.|[2024]). In that single-index setting, this LDP lower bound agrees with a SQ lower bound
of n = ©(d" /?) samples. While it is possible to translate our LDP lower bounds to SQ lower bounds,
eg via|Brennan et al.| [2021]], we note that there is a fundamental distinction arising in the multi-index
setting, stemming from the inherent inability to perform certain spectral tasks in SQ. Dudeja and Hsu
[2021]] illustrated this mismatch in the setting of Tensor PCA, where asymmetric structures (such as
the ones faced by multi-index model estimation) incur in additional dimension-factors. That said,
some SQ lower bounds are known for the multi-index setting. Joshi et al.| [2024] establishes SQ lower
bounds for the number of queries of order © (d*" ), and [Diakonikolas et al.|[2025bla] obtains sample
complexity lower bounds of order ©(d*"/?) (where the generative leap is replaced by the equivalent
m in their notation), thus matching our LDP lower bounds.

4 Upper Bound via Hermite Kernel U-Statistic

We begin by describing a spectral estimator that works for a single leap. To motivate it, recall that the
spectral estimator for single index models inDamian et al.|[2024] began by estimating the tensor:

T = EX7Y [T(Y)h}c(.ﬁ)]



For a suitable label transformation 7, the true expectation is proportional to (w*)®¥, so estimating
w™ is similar to a single-spike tensor PCA problem. For this problem, the partial trace estimator is an
effective way to estimate w*. This estimator consists in repeatedly contracting indices T <+ T'[I]
until you are left with a vector whose expectation is w* or a matrix whose expectation is w* (w*) .
However, this trick does not work in the multi-index setting. For example, consider Gaussian k-parity:
y = sign(zy - - - 2 ). For this problem, we can compute the population mean of an order & estimator%

T =E[Yho(X)] = (2)"* Vi Sym(w! @ - @ w}).

Thus, this behaves like a symmetric multi-spike tensor PCA problem. For this problem, note that
because the {w}} are mutually orthogonal, T'[I] = 0 so taking any partial traces of this tensor
will fail to produce a consistent estimator. For standard tensor PCA, this can be solved by tensor
unfolding Montanari and Richard|[2014]. For example, Zheng and Tomioka|[2015]] showed it was
sufficient to unfold 7T into a d X d*~! matrix and compute the left singular vectors. Explicitly if
A= Mat(dqu)[T] denotes T reshaped as a d x d*~! matrix, then you can perform a spectral

decomposition of AAT € R?*? and the top eigenvectors will recover the hidden directions.

Returning to the multi-index setting, this would motivate the following estimator. Given n samples
{(zi, i)}, we define the embedding ¢, the flattened tensor ® and the matrix estimator M,, by:

¢(x) = Matg g1y [y (2)] ZT yi)d(z;) € R M = 0T € RIXC,

We can then perform a spectral decomposmon of M,,. Note that this is exactly equivalent to estimating
the tensor 2 3" | T (y;)hy,(x;), unfolding it into a d x d*~! matrix, and computlng its left singular

vectors. However, this strategy cannot achieve the optimal threshold of n 2> d*% because the “diagonal”
terms dominate the matrix and destroy the concentration. More specifically, we can expand M, as:

My = = S T T)o() ()T

o S T Pow)ola) T+ 3 T ()60l

i£j
(I) (I1)

For this estimator, one can show that the spikes in E M,, get lost in the bulk of the eigenvalues

corresponding to () unless n = Vst , which falls short of the optimal threshold Vs, To
improve this estimator, we therefore 1solate the second term (I1):
Un = gy 2 T T ()0(z)0(a,)
175]

This is an order 2 matrix U-statistic which only sums over the disjoint pairs ¢ # j. As a result the
expectation is preserved: EU, = E®E & and we prove that U,, does concentrate to its expectation
in operator norm with n > d*/ samples (Theorem [2)).

However, it is not true in general that a single label transformation 7 is enough for E U, to span the
entire space when there are multiple leaps i.e. it may be necessary to use a label transformation 7;
to estimate the first direction w7 and 75 to estimate w3. Rather than computing the top eigenvector
of this matrix U-statistic for each label transformation 7;, we could simply add them together into
TY)=[T(Y),...,Tn(Y)] € R™ and form an aggregate matrix:

U, = Z¢ xz < (yz) T(y7)>
L#J

Because 7 only enters the U-statistic through inner products, we can use the kernel trick and replace
it with a general PSD kernel K:

Up=——tr Z¢% K (yi,y5) » (5)
#J

*We note that because the labels lie in {0, 1} for Gaussian parity, applying a label transformation is equivalent
to an affine transformation of 7" and therefore cannot help estimate the hidden directions.



Algorithm 1: A Single Leap

Input: dataset D = {(z;, y;) }i=1, moment k, recovery dimension s, PSD Kernel K
¢i — Matdxdk71 [hk(l,‘z)} fortr=1,...,n

Un A n(nl—l) Z'L;é] (bq,(b;rK(y“ y])

[S,V] « eig(Un)

Output: span[vy, . .., U]

which reduces to the above setting by taking K (v;,y;) = (7 (i), T (y;)). However, by allowing
more general kernels K which correspond to “infinite” embedding vectors 7, this allows to automati-
cally average over an “infinite number” of label transformations. We will show that this allows us to

learn the subspace corresponding to the next leap with the optimal sample complexity of n = ds
without any knowledge of the multi-index model P. To begin, we prove the following lemma which
controls the expectation of this matrix U-statistic:

Lemma 3. If K is integrally strictly positive deﬁnite,E] there exist ¢(P, K), C(P, K) > 0 independent
of d such that if S := (U*) "span|[Ay| denotes the subspace corresponding to the next leap then

(P, K)llg < EU, =< C(P, K)I.

We note that commonly used kernels like the RBF kernel automatically satisfy the assumption in
Lemma [3] This implies that if we could estimate the span of E U,,, we could recover the next leap.
To estimate the span, we use the following theorem which bounds U,, — E U, in operator norm:
Theorem 2 (Concentration of U-Statistic). Let K be a PSD kernel with K (y,y) < 1 for all y. Then
ifn 2y d*/? /e + dr¥ /€2, we have that |U,, — E Unll,, < €with probability at least 1 — exp(—d°)
for an absolute constant ¢ > 0.

As a corollary, by Davis-Kahan we can recover the subspace up to error ¢ with n > d*/2 /e 4 d />
samples where the hidden constant is independent of d and depends only on the multi-index model P:

€

Corollary 1 (Subspace Recovery). For any multi-index model P, there exists a constant C(P, K
independent of d such that if n > C(P, K) [dk/z + 6%} then the output S C R? of Algorithm

satisfies d(S, (U*)T span[Ax]) < € with probability at least 1 — exp(—d€) for an absolute constant
c>0.

4.1 TIterating over Leaps

Once we have recovered an partial subspace .S, which we hope is approximately contained in
span[(U*) "], we need to continue this process to take the next leap. We can consider the augmented
label Ys = (Y, IIsx). Then X, Y again form a multi-index model with hidden dimension at most r
so we can repeat our matrix U-statistic estimator from the previous section. Note that the kernel K

now maps RISI+1 x RIS+1 — R, We will denote the resulting kernel by U\>:

! ] Z¢i¢]TK([yi,Hin]’ [y, Is;]).
=1

U — -
n(n —1

n

We can directly apply Corollary [I] to show that for any subspace S, we can recover the span of
(U*)T Ax(S) up to error e with n > d*/? /e + d/€* samples. We will now control the accumulation
of errors to show that we can recover the full multi-index model with n > C/(P, K)d*"/? /e samples:
Lemma 4. If the kernel K is L-Lipschitz, then there exists a constant C (P, K) such that the map
S > EUS is C(P, K) L-Lipschitz in operator norm.

A common example of a Lipschitz kernel is the RBF kernel which is 1/o-Lipschitz. Therefore if we
run this estimator starting with the wrong subspace S with d(.S, .S) < e, then the span of our estimator

*We say that K is integrally strictly positive definite if for all finite non-zero signed Borel measures s,
J K (z,y)du(x)du(y) > 0. We remark that many commonly used kernels, including the RBF and Laplacian
kernels, satisfy this assumption [Sriperumbudur et al., 2010].



Algorithm 2: Iterating over Leaps

Input: dataset D = {(zi, y;) }i=1, moments {k; };~, subspace dimensions {s; };~, Kernels { K; };~,
S+ 0
fori=1,...,mdo
Draw |n/m] fresh samples D; from D
y « [y, sz] € RIS for (z,y) € D;
S + S Algorithm[[[D; ki, s:,K:)
end
QOutput: S

can only change by C'(P, K) Le. By iterating this argument, Theoremimplies that Algorithm |2 will
succeed in recovering span[U* '] up to error € given n > d*"/2 /e 4 d/€? samples:
Theorem 3 (Main Result). For any multi-index model P, there exists a constant C (P, K) independent

of d such that if n > C(P,K) {dk:m + e%} then the output S C R? of Algorithm |2| satisfies

d(S,span[(U*)"]) < e with probability at least 1 — exp(—d©) for some ¢ = c(k*) > 0.

Remark 4. Our main upper bound, Algorithm requires knowledge of the sizes of each leap {k;}
and the dimension of each leap {s;}. However, these restrictions can be easily lifted, in the spirit
of Dudeja and Hsu| [2018)]. Using the guarantee in Theorem 2} we could start with k = 1 for each
leap and increase k until we detect outlier eigenvalues outside of the \/d*/2 /n-bulk. However, for
simplicity we have written the algorithm assuming knowledge of both {k;} and {s;}.

Our Algorithm 2]is thus a streamlined version of a subspace conditioned spectral method. While it
shares similarities with recent methods in the literature (Chen and Mekal [2020], |Chen et al.| [2022],
Diakonikolas et al.| [2025blal], [Troiani et al.[[2024]], it crucially relies on a U-statistic in order to
reach the optimal sample complexity of d* /2. An additional feature of our algorithm — that to our
knowledge is novel in the literature — is the use of a generic kernel over the already discovered labels,
which eliminates the need to perform successive non-parametric regressions during the subspace
recovery. At the technical level, the concentration of the U-statistic is a priori challenging due to the
heavy tails of the associated Hermite tensors; this is addressed using Gaussian universality results
from Brailovskaya and van Handel |Brailovskaya and van Handel| [2024]], with a dedicated analysis in
the setting where k* < 2 to avoid spurious log-factors.

5 Case Studies

We conclude this article by computing the generative leap exponent of representative multi-index
models. For some of these models our upper and lower bounds recover known results in the literature,
but some are new. For simplicity, we focus here on noiseless models where Y|Z = ¢(Z) for a given
link function o : R” — R. Proofs for this section can be found in Appendix [E}

5.1 Polynomial and Threshold Functions

We start by computing the generative leap for ‘classic’ multi-index classes given by parities, intersec-
tion of half-spaces and polynomials.

Proposition 4 (Generative Leaps for representative models). We have:
(i) r-Gaussian Parity has k* = 1* = r.
(ii) Staircase Parity functions have k* < [* =1,
(iii) Intersection of halfspaces have k* < 2,
(iv) Polynomials have k* < 2.

For r-Gaussian parity, we thus obtain an efficient learning algorithm that requires n = @(d’"/ 2
samples (which is optimal within the LDP class), and is to the best of our knowledge the first resul

SThe agnostic improper learning algorithm of |Chen et al[2020] can potentially attain 7 = @(d”/ 21 ) since
the information exponent is 7, this implies that there is a degree r polynomial with non-trivial correlation with



that succeeds with ©(d"/?) samples. The sample complexity of learning intersection of half-spaces is
thus linear in dimension: this was known since [Vempala| [2010], Diakonikolas et al.| [2017], |Klivans
et al.|[2024]], and for polynomials the same conclusion was established in (Chen and Mekal [2020].
We emphasize that while our results do capture the correct dependency in d, they are not fine-grained
enough to provide the correct dependencies in r.

5.2 Piecewise Linear Functions

Piecewise linear continuous functions, in part motivated by ReLU architectures, have been extensively
studied in the context of Gaussian Multi-index models |Chen et al.| [2022] 2023]],|Diakonikolas and
Kane|[2024]]. When o is 1-homogeneous, as in bias-free ReLLU networks, it is not hard to see that
k* < 2, by considering diverging level sets {z;|o(z)| > A} with A — oo. Here we extend this result
to the general piece-wise linear setting, including arbitrary ReLU networks with non-zero biases.

Proposition 5 (Generative Leap for Piecewise Linear Functions). If o is continuous and piece-wise
linear then k* (o) < 2.

The proof exploits the analytic properties of Hermite functions, i.e. functions of the form f(z) =
p(2)7(z). As an immediate corollary, our Algorithm from Section[4]learns arbitrary ReLU networks
low-rank arbitrary ReLU networks in the proportional regime n = O(d): This improves the result
of |(Chen et al.|[2022] by allowing biases. Once the subspace is recovered, one could ‘upgrade’ to
PAC learning the model using a standard non-parametric method, by regressing over the covariates
z = STz. This would incur in an additional sample complexity with potentially exponential
dependencies in r and %, but, importantly, independent of d.

5.3 Generative Leap under Linear Transformations

An important feature of the generative leap exponent is that the statement “k*(P) < k" is an ‘open’
property, meaning that one should expect the leap exponent to be preserved or reduced by slightly
perturbing the distribution P. We formalize this intuition in the following result which shows that for
almost all weight matrices, the generative leap is < 2.

Proposition 6 (Generative Leap under linear transformations). Let o(z) : R™ — R € L?(y,), 0 # C,
and let M. denote the set of v X r real matrices.

(i) For © € M,, define yo = (0" 2). Then (z,ye) ~ Pg satisfies k*(Pg) < 2 for every ©,
except possibly for a set of r2-dimensional Lebesgue measure zero,

(ii) Assume that (z,0(z)) ~ P has a single leap with generative exponent k*. LetT' : D C
R® — M, be any analytic map such that I, € Im(T") and T'(0) is invertible for all 6 € D.
For 0 € D, define yg = o(T'(0) " 2). Then (2,yg) ~ Py satisfies k*(Pg) < k* for every 0,
except possibly for a set of s-dimensional Lebesgue measure zero.

5.4 Shallow Neural Networks

Finally, we study two layer neural networks of the form o(z) = >_, p;(z - ;). When the 0; are
orthogonal, estimating the index space requires estimating each neuron, and k* (o) = k*(p):
Proposition 7 (Generative Leap for Orthogonal Weights). Let y = Z;Zl a;jp(z;). Then k* > k*(p).
Moreover, if all moments of p(Z) exist, then k* = k*(p).

We can extend this result to almost all networks with unit norm, linearly independent columns:
Corollary 2 (Non-orthogonal, invertible weights). Let yy = >-'_, a; p(v] 2) with ||v;]| = 1. Then
k*v < k*(p) for all V, except possibly for a set of r(r — 1)-dimensional measure 0.

An interesting question left for future work is whether this uniform control of the generative exponent
by k*(p) for any V' could be extended to general link functions; in other words whether the exclusion
of these zero-measure sets is necessary in Proposition [f]

the r-Gaussian parity. Thus|Chen et al.|[2020] can be used to get error better than random guessing, but not
vanishing error.

10



References

E. Abbe, E. Boix-Adsera, M. S. Brennan, G. Bresler, and D. Nagaraj. The staircase property: How
hierarchical structure can guide deep learning. Advances in Neural Information Processing Systems,
34:26989-27002, 2021.

E. Abbe, E. B. Adsera, and T. Misiakiewicz. The merged-staircase property: a necessary and
nearly sufficient condition for sgd learning of sparse functions on two-layer neural networks. In
Conference on Learning Theory, pages 4782-4887. PMLR, 2022.

E. Abbe, E. B. Adsera, and T. Misiakiewicz. Sgd learning on neural networks: leap complexity and
saddle-to-saddle dynamics. In The Thirty Sixth Annual Conference on Learning Theory, pages
2552-2623. PMLR, 2023.

L. Arnaboldi, Y. Dandi, F. Krzakala, L. Pesce, and L. Stephan. Repetita iuvant: Data repetition
allows sgd to learn high-dimensional multi-index functions, 2024. URL https://arxiv.org/
abs/2405.15459.

G. B. Arous, R. Gheissari, and A. Jagannath. Online stochastic gradient descent on non-convex losses
from high-dimensional inference. Journal of Machine Learning Research, 22(106):1-51, 2021.

G. B. Arous, C. Gerbelot, and V. Piccolo. Stochastic gradient descent in high dimensions for
multi-spiked tensor pca, 2024. URL https://arxiv.org/abs/2410.18162,

J. Ba, M. A. Erdogdu, T. Suzuki, Z. Wang, D. Wu, and G. Yang. High-dimensional asymptotics of fea-
ture learning: How one gradient step improves the representation. arXiv preprint arXiv:2205.01445,
2022.

A. S. Bandeira, A. El Alaoui, S. Hopkins, T. Schramm, A. S. Wein, and 1. Zadik. The franz-
parisi criterion and computational trade-offs in high dimensional statistics. Advances in Neural
Information Processing Systems, 35:33831-33844, 2022.

A. S. Bandeira, M. T. Boedihardjo, and R. van Handel. Matrix concentration inequalities and
free probability. Inventiones mathematicae, 234(1):419—-487, June 2023. ISSN 1432-1297. doi:
10.1007/s00222-023-01204-6. URL http://dx.doi.org/10.1007/s00222-023-01204-6.

G. Ben Arous, R. Gheissari, and A. Jagannath. Online stochastic gradient descent on non-convex
losses from high-dimensional inference. Journal of Machine Learning Research (JMLR), 22:
106-1, 2021.

A. Bietti, J. Bruna, C. Sanford, and M. J. Song. Learning single-index models with shallow neural
networks. Advances in neural information processing systems, 35:9768-9783, 2022.

A. Bietti, J. Bruna, and L. Pillaud-Vivien. On learning gaussian multi-index models with gradient
flow. Communications in Pure and Applied Mathematics, 2025.

T. Brailovskaya and R. van Handel. Universality and sharp matrix concentration inequalities.
Geometric and Functional Analysis, 34(6):1734-1838, 2024.

M. Brennan, G. Bresler, S. Hopkins, J. Li, and T. Schramm. Statistical query algorithms and
low-degree tests are almost equivalent. In Conference on Learning Theory, 2021.

J. Bruna and D. Hsu. Survey on algorithms for multi-index models. arXiv preprint arXiv:2504.05426,
2025.

M. Chen, Y. Bai, J. D. Lee, T. Zhao, H. Wang, C. Xiong, and R. Socher. Towards understanding hier-
archical learning: Benefits of neural representations. Advances in Neural Information Processing
Systems, 2020.

S. Chen and R. Meka. Learning polynomials in few relevant dimensions. In Conference on Learning
Theory, pages 1161-1227. PMLR, 2020.

S. Chen, A. R. Klivans, and R. Meka. Learning deep relu networks is fixed-parameter tractable. In
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 696-707.
IEEE, 2022.

11


https://arxiv.org/abs/2405.15459
https://arxiv.org/abs/2405.15459
https://arxiv.org/abs/2410.18162
http://dx.doi.org/10.1007/s00222-023-01204-6

S. Chen, Z. Dou, S. Goel, A. Klivans, and R. Meka. Learning narrow one-hidden-layer relu networks.
In The Thirty Sixth Annual Conference on Learning Theory, pages 5580-5614. PMLR, 2023.

R. D. Cook. SAVE: a method for dimension reduction and graphics in regression. Communications
in Statistics - Theory and Methods, 29(9-10):2109-2121, 2000.

R. D. Cook and B. Li. Dimension reduction for conditional mean in regression. The Annals of
Statistics, 30(2):455-474, 2002.

A. Damian, J. Lee, and M. Soltanolkotabi. Neural networks can learn representations with gradient
descent. In Conference on Learning Theory, 2022.

A. Damian, E. Nichani, R. Ge, and J. D. Lee. Smoothing the landscape boosts the signal for sgd:
Optimal sample complexity for learning single index models. Advances in Neural Information
Processing Systems, 36:752-784, 2023.

A. Damian, L. Pillaud-Vivien, J. Lee, and J. Bruna. Computational-statistical gaps in gaussian single-
index models. In The Thirty Seventh Annual Conference on Learning Theory, pages 1262—1262.
PMLR, 2024.

Y. Dandi, F. Krzakala, B. Loureiro, L. Pesce, and L. Stephan. How two-layer neural networks learn,
one (giant) step at a time. Journal of Machine Learning Research, 25(349):1-65, 2024a.

Y. Dandi, E. Troiani, L. Arnaboldi, L. Pesce, L. Zdeborova, and F. Krzakala. The benefits of reusing
batches for gradient descent in two-layer networks: breaking the curse of information and leap
exponents. In Proceedings of the 41st International Conference on Machine Learning, pages
9991-10016, 2024b.

A. Daniely, I. Mehalel, and E. Mossel. Online learning of neural networks. arXiv preprint
arXiv:2505.09167, 2025.

V. H. de la Pefia and E. Giné. Decoupling of U-Statistics and U-Processes, pages 97-152. Springer
New York, New York, NY, 1999. ISBN 978-1-4612-0537-1. doi: 10.1007/978-1-4612-0537-1_3.
URL https://doi.org/10.1007/978-1-4612-0537-1_3|

L. Defilippis, Y. Dandi, P. Mergny, F. Krzakala, and B. Loureiro. Optimal spectral transitions in
high-dimensional multi-index models. arXiv preprint arXiv:2502.02545, 2025.

I. Diakonikolas and D. M. Kane. Efficiently learning one-hidden-layer relu networks via schur
polynomials. In The Thirty Seventh Annual Conference on Learning Theory, pages 1364—1378.
PMLR, 2024.

I. Diakonikolas, D. M. Kane, and A. Stewart. Learning geometric concepts with nasty noise, 2017.
URL https://arxiv.org/abs/1707.01242,

I. Diakonikolas, G. Iakovidis, D. M. Kane, and L. Ren. Algorithms and sq lower bounds for robustly
learning real-valued multi-index models, 2025a. URL https://arxiv.org/abs/2505.21475,

I. Diakonikolas, G. Iakovidis, D. M. Kane, and N. Zarifis. Robust learning of multi-index models via
iterative subspace approximation, 2025b. URL https://arxiv.org/abs/2502.09525|

R. Dudeja and D. Hsu. Learning single-index models in gaussian space. In Thirty-First Annual
Conference on Learning Theory, 2018.

R. Dudeja and D. Hsu. Statistical query lower bounds for tensor pca. Journal of Machine Learning
Research, 22(83):1-51, 2021.

R. Dudeja and D. Hsu. Statistical-computational trade-offs in tensor PCA and related problems via
communication complexity. The Annals of Statistics, 52(1):131-156, 2024.

S. Hopkins. Statistical inference and the sum of squares method. PhD thesis, Cornell University,
2018.

S. B. Hopkins, J. Shi, and D. Steurer. Tensor principal component analysis via sum-of-square proofs.
In Conference on Learning Theory, pages 956—1006. PMLR, 2015.

12


https://doi.org/10.1007/978-1-4612-0537-1_3
https://arxiv.org/abs/1707.01242
https://arxiv.org/abs/2505.21475
https://arxiv.org/abs/2502.09525

S. B. Hopkins, P. K. Kothari, A. Potechin, P. Raghavendra, T. Schramm, and D. Steurer. The power
of sum-of-squares for detecting hidden structures. In 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), pages 720-731. IEEE, 2017.

M. Hristache, A. Juditsky, J. Polzehl, and V. Spokoiny. Structure adaptive approach for dimension
reduction. The Annals of Statistics, 29(6):1537-1566, 2001.

N. Joshi, T. Misiakiewicz, and N. Srebro. On the complexity of learning sparse functions with
statistical and gradient queries. Advances in Neural Information Processing Systems, 37:103198-
103241, 2024.

A. Klivans, K. Stavropoulos, and A. Vasilyan. Learning intersections of halfspaces with distribution
shift: Improved algorithms and sq lower bounds. In The Thirty Seventh Annual Conference on
Learning Theory, pages 2944-2978. PMLR, 2024.

A. R. Klivans, R. O’Donnell, and R. A. Servedio. Learning geometric concepts via gaussian surface
area. In 49th Annual IEEE Symposium on Foundations of Computer Science, pages 541-550, 2008.

F. Kovacevié¢, Y. Zhang, and M. Mondelli. Spectral estimators for multi-index models: Precise
asymptotics and optimal weak recovery. arXiv preprint arXiv:2502.01583, 2025.

D. Kunisky, A. S. Wein, and A. S. Bandeira. Notes on computational hardness of hypothesis testing:
Predictions using the low-degree likelihood ratio. arXiv preprint arXiv:1907.11636, 2019.

J. D. Lee, K. Oko, T. Suzuki, and D. Wu. Neural network learns low-dimensional polynomials with
sgd near the information-theoretic limit. Advances in Neural Information Processing Systems, 37:
58716-58756, 2024.

K.-C. Li. Sliced inverse regression for dimension reduction. Journal of the American Statistical
Association, 86(414):316-327, 1991.

B. Mityagin. The zero set of a real analytic function. arXiv preprint arXiv:1512.07276, 2015.

A. Montanari and E. Richard. A statistical model for tensor pca. Advances in neural information
processing systems, 27, 2014.

E. Mossel, R. O’Donnell, and R. P. Servedio. Learning juntas. In Proceedings of the thirty-fifth
annual ACM symposium on Theory of computing, pages 206-212, 2003.

Y. Ren and J. D. Lee. Learning orthogonal multi-index models: A fine-grained information exponent
analysis. arXiv preprint arXiv:2410.09678, 2024.

Y. Ren, E. Nichani, D. Wu, and J. D. Lee. Emergence and scaling laws in sgd learning of shallow
neural networks. arXiv preprint arXiv:2504.19983, 2025.

B. K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Scholkopf, and G. R. G. Lanckriet. Hilbert Space
Embeddings and Metrics on Probability Measures. Journal of Machine Learning Research (JMLR),
11:1517-1561, 2010.

E. Troiani, Y. Dandi, L. Defilippis, L. Zdeborov4, B. Loureiro, and F. Krzakala. Fundamental limits
of weak learnability in high-dimensional multi-index models, 2024. URL https://arxiv.org/
abs/2405.15480.

S. S. Vempala. Learning convex concepts from gaussian distributions with pca. In 51st Annual IEEE
Symposium on Foundations of Computer Science, pages 124130, 2010.

S. S. Vempala and Y. Xiao. Structure from local optima: Learning subspace juntas via higher order
pca, 2012. URL https://arxiv.org/abs/1108.3329,

Y. Xia. A multiple-index model and dimension reduction. Journal of the American Statistical
Association, 103(484):1631-1640, 2008.

Y. Xia, H. Tong, W. K. Li, and L.-X. Zhu. An adaptive estimation of dimension reduction space.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 64(3):363—410, 2002.

Q. Zheng and R. Tomioka. Interpolating convex and non-convex tensor decompositions via the
subspace norm. Advances in Neural Information Processing Systems, 28, 2015.

13


https://arxiv.org/abs/2405.15480
https://arxiv.org/abs/2405.15480
https://arxiv.org/abs/1108.3329

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We define the generative leap in Definition[3] We prove a sample complexity
lower bound in Theorem [I|and we prove a matching upper bound in Theorem 3]

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix [A]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The proof of Theorem [I]can be found in Appendix [C] The proof of Theorem 3]
can be found in Appendix D]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: This paper does not contain experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: This paper does not provide experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: This paper does not provide experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: This paper does not provide experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: This paper does not provide experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This research conforms to the NeurIPS code of ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is purely theoretical and is focused on understanding the fundamental
limitations of learning with synthetic Gaussian data.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We are not releasing data or models.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We do not use any original assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We did not conduct any crowdsourcing experiments or research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper did not use LLMs as any important, original, or non-standard
component.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Conclusions

In this work, we have extended the generative exponent £* to the general class of Gaussian multi-index
models, and established a tight sample complexity n = ®(dk*/ 2ALY for learning their associated
index space under no prior knowledge of the link function. We provide a lower bound based on
the low-degree polynomial framework, and a matching upper bound obtained with a novel spectral
method that incrementally reveals directions of the index space from a kernel U-statistic. The resulting
upper bound recovers and extends several dedicated estimation procedures for specific families of
multi-index models, such as ReLU networks or intersection of half-spaces.

There are several avenues for future work. First, this paper focuses on the simple setting of isotropic
Gaussian data. Extending both the information leap and generative leap to more complicated data
distributions is left to future work. Next, we focus on deriving estimators that work with minimal
information about the multi-index model P, and which succeed with the optimal sample complexity
in the ambient dimension d. As a result, our sample complexity guarantees scale with constants C'(P)
which could potentially be exponentially large in the hidden dimension 7. Finally, we focus primarily
on subspace estimation, as it is a requirement for full end-to-end learning.

B Proofs of Section

Proof of LemmaE] This is a direct generalization of [Damian et al.,[2024] Lemma D.1]. The k-th
Hermite expansion of the likelihood ratio, viewed as a function of the label Y, is directly

Be, | oo (Zs, Ve)ln(Z6)IYs| = Belhs(Zo)lYs] = Gus ©®

and thus, in L?(Pg), we have
dP

—(Zs,¥Ys) = g Z8) - 7
dPs (25, Us) Zk:@k,s(ys),thQ (M

|

Proof of Lemma[2] By orthogonality of Hermite polynomials:
dpP
CPIPS) = B, | o X YP| ~1= T By [latvi 29)] = ¥ A
E>1 E>1
|

Proof of Proposition[l] The first statement follows immediately from the definition. To prove 3| we
need to show that k* < max; k(R;, R;;1) for any flag 7. Let S the subspace associated with the
generative leap k*, and let j' be the largest index such that Rj C S.

20


https://neurips.cc/Conferences/2025/LLM

We claim that for any k and any pair of subspaces T C T’, we have span(Ax(T)) C T/ &
span(Ay(7")). Indeed, writing Y’ € T"as Y’ = (Y,Y) withY € Tand Y € T’ \ T, we have
Cor(Y) = Ey G (Y,Y) when restricted to (77)* (a subset of 7). Now, suppose towards contra-
diction that kj; = k(R;/, Rjr41) < k*. Since Rj» C S, we have span(A(R;)) € S @ span(A(S))
for k < kj,. But from the definition of k* we have span(A(S)) = () for k& < k;,, which implies that
Rj 41 C S, which is a contradiction.

Finally, we verify that the generative leap is invariant to rotation by observing that Ay, are covariant
to rotations, and therefore their associated spans preserve the same dimensions for all k.

Proof of Proposition[2] The proof is an extension of [Damian et al.,[2024] Prop 2.6].
To prove k(S)[P] < infrerz(p,,) {(S)[(Id. ® T,)#P] , consider k < k(S) and any T € L%(Py).
We have

E[T(Y, Zs)hy(Zs)|Zs| = By (EB[T(Y, Zs)hi(Zs)|Y, Zs]) = Ey (T (Ys)Ck,s(Ys)) =0, (8)

since (i,s = 0. To prove k(S)[P] > infrepzp,, 1(S)[(Ids ® T5)4P] , consider T = (Ci(s),5)s
where 3 is a multiindex such that (((s),5)s 7 0 (this 3 must exist by definition of k(.5)). We verify
that

E(T(Y)Hp(Z)) = Ey [T(Y)(Cris),5)8(Y)] ©)
=Ey [|(Cr(s),5)s(Y)*] >0, (10)
which shows that 5 k(s),s 7 0 for the model with label transformation 7. |

Proof of Proposition[5] Consider the flag F = {0, Si,...,8; = R"} associated with the leap

information exponent. We claim that k(S;, S;41) < I(S;) for all j € [J], or equivalently that
span(A1.(S;)) C span(Ax(S;))

for k < Z(S’j). Indeed, observe that §k75 = Ey[Y (k5] As a consequence, from Propositionwe
have that k* < max; [(S;) = I*.
[ |

C Proofs of Section

Proof of Theorem|l} Let Ry, := % denote the likelihood ratio conditioned on . We begin by

computing the full likelihood ratio:

) i _Ey [H?:l Py (24, yil]
R(( 17y1)7""( nayn)) - H?Zl]P’[xl}]P’[yl]

HRW(Iiayi)‘|~

Then by Lemmal[I] we can expand this as

n

R=Ey |[T|D (@) ha(WTz;))

i=1 \ k>0

We will isolate the low degree part with respect to {Z1, ..., Z,}, which we denote by R<p. To
compute this, we need to switch the product and the summation:

R=Ey |>. Y (H(Cki(ﬂi)vhki(WTfi»)

p=0ki1+...+k,=p \i=1
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We note that each term on the right hand side is a polynomial in Z1, ..., Z, of degree p which is
orthogonal to all polynomials of degree less than p. Therefore R<p is given by:

Rep=Ey > (H(Cki(yi)vhki(WTmi»)

p=0ki+...+kn=p \i=1
We can now use the orthogonality property of Hermite polynomials to compute the norms with
respect to the null distribution Py. If if W', W' are independent draws from the prior on W then:

[ D n
HRSDHiﬂ(PO) = EVV,W/ Z Z (H E]P’o <Ck1 (gl) ® Clﬁ (gz)a hkz (WTEZ) ® hki((W,)le)>>

p=0ki+...+k,=p \i=1

D n
= EVV,W/ Z Z <H<E[qu ® Cki]a E[hkl(W—rfl) ® hkz((W/)Ti.l)D)

| P=0k1+...+kn=p \i=1
For a pair ., 3 of operators where ¥ is PSD, observe that

(S, 2)] < TH{Z}HIZ lop
thus

D n
IR<plZae) < B |22 3 ( NE [l 07 72) @ B, () 2] ])
p=0ki+...+k,=p \i=1

Now, let M = W W’ € R™". We have the following control on the Hermite correlation term:

Lemma 5.
[Eb VT @ b (V)T | = 0l (a1

Let z be a random variable with distribution ||/ T 1W’||, where W, W’ are drawn independently from
the uniform prior on W, and let P<p be the projection operator onto polynomials of degree at most
D in z. Note that z is subgaussian satisfying P (b\/g <z< a\/g) <1-—c¢b— Ere*a2/4 for

explicit constants ¢, ¢,; see eg [Bietti et al., 2025, Lemma 3.14]. Then we can upper bound the
above expression as:
n

IR <l ey <Bx |Pen | | 322"
k>0

By linearity of expectation and of the projection operator P< p, we can expand this using the binomial
theorem:
J
2 n
IR<pll72m0) < ( ) E|Pp || D AA
i>o M E>k*

We can further upper bound this expression by using that A\Z < (”271) (Lemma . Plugging this
in for k > k* gives:

LD/k" | I

n _
”RSD”iP(]P’O) -1 § Z <]> E, PgD Z Lr—1,k
j=1

k>k*

9
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where the last line follows from Lemma @ Finally, since z is ©(y/1/d)-subgaussian, we have
E[7M] S (Jk*/d)F /2.

Now, if n = O(d*" /?~7) with v > 0 and D = O((log d)?), we have

[D/k"]
||R§D||iz(p0) 1< ( )[ k‘* (r— 1)( k‘*/d)]k /2}

< nD/k*k* r—1)D/k* (D/d)D/2
::k*(Tfl)D/k*(l))D/Q(n}/k*d—l/Q)D
=o04(1) .

Proof of Lemma] Let M € R%" " be the matrix representation of E[hy, (W z) @ hy, ((W’ )T 7).
Let H, C L*(R", 7) be the space spanned by harmonics of degree k. Observe that for f, feHp

f= Z|ﬁ|fk C/ghg ZW\ kCﬁhﬁ with cg = <f, h5> cg = <f h5> we have
CTMC:<PWf7PW’f>’Yd ) (12)

where Py f(z) = f(W Tx). We deduce that M is the ‘averaging operator’ A from [Bietti et al.,
2025, Definition 1.1], restricted at harmonic k. From the SVD of M = U AV'T, we have [Bietti et al.}
2025], Corollary 2.8] that

M= Y NHyU)® Hp(V), (13)
|81=k

with A% = I1; A?j. We thus conclude that || M]||o, = A

max

= [[M]]*. =

Lemma 6. Let z = |[W W'||op, where W, W' are drawn iid from the Haar measure of S(r,d).
Then, for 1,1 < d/4, we have

E, [#(1 - z)ﬂ SE.[#] . (14)

Proof. The proof is adapted from [Damian et al., 2023, Lemma 26] to the r > 1 setting. From [Bietti
et al., 2025, Eq (197)], the joint distribution of singular values 0 < A\, < A1 --- < Ay of M is
given by

Pra(i,. o) = Z [JOF =) I =)@ D210 <A, <2 < <1), (19)

i<j i=1
with Z,4 = G2 LU we haye
E (zl(l - z)—f) - /)\ll(l A1) pra(My o A dA - A, (16)
From A\; < 1 we have 1 — A2 < 2(1 — Aq) so (1 — A\p) =0 < 2/(1 — A2)~L, thus
E (zl(l - z)—f) < 2l~//\ll(1 A a(My o A dA -, 17)
=2! Zrd /)\l [T =) ] —AZ)d=2r=1=2D/290 < AL << Ay < 1Ddg .. dA,
1<J =1
(18)
7 -
= ol A [ 19
vl (19)
where % is the largest singular value of M = W W’ with W, W’ € S(r,d — 2]). For d > 1, we
thus conclude that E (zl(l — z)’l) <E.[7Y. |
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D Proofs of Section@

Lemma 3. If K is integrally strictly positive deﬁnite,[] there exist ¢(P, K),C(P, K) > 0 independent
of d such that if S := (U*) "span|[Ay| denotes the subspace corresponding to the next leap then

(P, K)IIs < EU, =< C(P, K)Ilg.

Proof. Let KC be the kernel operator:
(K)(y) =Ey [K(Y,y)f(y)].
Using that (E[hy,(X)|Y],v®%) = ((x(Y),u®*) where u = U*v € R", we have that for any v:

v'E Myv = UTE[Mat(Lk,U [Ck(Y)] Mat(l,k,l) [Ck(Y/)]TK(K Y’)] U
= (G () [u], Kk (-)[ul) -
First, because K (y,y) < 1 we have that |||, < 1 so this is upper bounded by

Ey |G (V) [l® < A3 flull*

Therefore EM,, < C(P,K)Ilg with C(P,K) = A?. Next, let v € S with |lv|| = 1 so that
Ce(Y)[v] # 0 € L?(P,). Then because K is injective we have that

e(v) = (G ()[v], K () [v]) > 0.

Therefore by compactness, if C'(P, K') denotes the minimum value of ¢(v) over the unit vectors in
S, we have that C'(P, K') > 0. In addition we have that E M,, = C(P, K')IIs which completes the
proof. |

Theorem 2 (Concentration of U-Statistic). Let K be a PSD kernel with K (y,y) < 1 for all y. Then
ifn 2y d*/? /e + dr¥ /€2, we have that |U,, — E Unll,, < € with probability at least 1 — exp(—d°)
for an absolute constant ¢ > 0.

Proof. The cases k = 1,2 are deffered to Proposition[§]so we will assume that £ > 2. Note that by
the standard decoupling argument ([de la Pena and Giné, |1999, Theorem 3.4.1]), it suffices to control
the tails of the decoupled U-statistic:

M, = Zqﬁ )" K (yi, )
27'5]
where { (2}, y})}7, are an i.i.d. copy of {(z;,y;)}7_;. We will begin by applying Corollary [3| with

respect to the randomness in {(x;, y;) }7;, treating the replicas {(z7, y;)}?_, as fixed. Define

V(Y

3

DE(Y,y))
J#i
so that
1
z z Zz
ST -5

where Z; = ¢(z;)V/(y;)T. Then:

||Z||Op_||Z\|F—Z<¢ Tea, VI(Y) ).

a,b=1

"We say that K is integrally strictly positive definite if for all finite non-zero signed Borel measures (i,
J K (z,y)du(x)du(y) > 0. We remark that many commonly used kernels, including the RBF and Laplacian
kernels, satisfy this assumption [Sriperumbudur et al., 2010].
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Taking p/2 norms and using Lemma|§| gives for p > rlogr:

2
112,

2
7
1z, o

M=

[t ew vy’

2
1 p/

>
Il

a7

2
p

[
M=

[{¢(X)Tea, Vi (Y)Tes)|

a,b=1

d
2
Sert 2 Ve el s,

a,b=1

<phd? ||V )]

0;02

Next we will compute 0, (Z;):

0o(Z)' = s E[(¢"uV(M)0)] S IV

lull=llvll=1

op 4

by the same argument as above. Therefore applying Corollary gives that if ¢ = % > ﬁ then
for p < d°,

d

124, — E M, o\

s [ivieo
p

op

Now let E’ denote the expectation with respect to the replicas {(z%, y/)}™ ;. Then by Corollary
1/p 1

P d 2p\% [d

€ —sup (By B V(Y ”) <

) V= o (2 M) B

VY (Y)llo, < B VOO + (VY (Y) —EV/ (V)] -

op —

acell

op

('E U~ VI, S sup (E

Now we decompose:

Because |K (Y, y;)| < 1, we can use Lemma and a standard symmetrization argument to show that

the second term has p-norms bounded by O(1/max(d, d*~1)/n) for p < d°. For the first term we
have

B V; ()|, < 1B V()| = By GV VK (YY) 5 < /By [l (Y1 7] < 2.

Combining everything and applying Markov’s inequality gives that with probability at least 1 —
poly(n)e=%,

k—1 k/2
|Un —EU,| <lrk/2+ me‘x(dd)] d<dn+7~k/2\/z.

op ~ n nN

Proposition 8. If k < 2 and n > d, we have with probability at least 1 — 2ne~¢,

[d
|Un = EUn|l,, <772/~
n

Proof. We can use [de la Penia and Giné}, 1999, Theorem 3.4.1] to reduce the problem to concentrating:

o 1 T o
Mn T TL(TL _ 1) ;¢z¢] K(yuyj)'
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where D' = {(z},y})}~, are an iid. copy of D = {(z;,y;)},. If we define V/(y) :=
L >4 95K (y,y}), we can rewrite this as:

M, =~ Z@ Vi)

Now let R be a truncation radius to be chosen later and let p; := 1 Vi wo| <R Then define:
Y], <

Zh2 xl 1

First, we have that for any unit vectors u, v and any p > r2,

Ep [(uT ¢V () o)) " < (2p — 1) (T +T2p> ! Ep[(uTV; (y:)Tv)*pi] % < Rp.

Therefore the summands in UTE’U are subexponential so by Bernstein’s inequality we have that
with probability at least 1 — ¢ over the randomness in D,

log(2/9) 1og<2/6>].

‘uT[Mn - IE]’\\/[/n]v’ <R

n n

We can now union bound over a 1/4-net of S%~! to get that with probability at least 1 — & over D,

d + log(2/0) i d+ 108(2/5)] _

|3,

n n

Taking § = e~°? and using n > d gives that with probability at least 1 — e~°?,

\/E
—
Next, note that for any fixed unit vectors u, v (possibly degenerate if k = 1), uTgb;»vK (y,y;)is a

sub-exponential random variable so by Bernstein’s inequality we have with probability at least 1 — ¢
over the randomness in {(z}, y;)},

|37,

log(2/9) | log(2/0)

[T (V] () ~ BV ())o] S /25 .

~

Taking a union bound over a 1/4-net of S?~! gives that with probability at least 1 — & over the
randomness in D/,

Vi (y) —EV/)| d +log(2/9) N d +log(2/6)

op ~

n n
In addition, as in the proof of Theorem we have that |[EV/(y)|,, < /2 Therefore if we take

R = Cr*/? for a sufficiently large constant C, we have that with probability at least 1 — e—°?

that [|V;(Y)][,, < R. Therefore with probability at least 1 — ne=°d, M, = M,,. Furthermore, if
1 —ne~°? > 0 so that the theorem is not vacuous,

T[EJ\AI;fEMn}vfiZE ul' oV (i) v(1 = pi)]

1 n n
< D ELWT oV ()02 Y PV (i)l > B (Cauchy)
i=1 i=1
< ’I“k/26_Cd/2
k/2
< (ne=° < 1)
n
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Putting everything together gives that with probability at least 1 — 2ne=°,

d
”Mn - EMTLHOP 5 Tk/Z\/7'
n

Lemma 4. If the kernel K is L-Lipschitz, then there exists a constant C (P, K) such that the map
S - EUY is C(P, K) L-Lipschitz in operator norm.

Proof. Let Z(Y; X) := Mat(y 1) [k (Y; Xs@s)]. Then,
HIE U —EUS) H — |Exy Z(Y; X)Z(Y'; X)TE(Y, X)|
F
where

E(Y’X) = K((Y7 XS)? (Y/a ng)) - K((K XS’)a (Y’,Xé/))
Note that

E(Y, X) < L\/IIXs — Xo/|® + |X5 — X5 |1* < 2d(S, 8") L max(|| X ||, | X])).
Then by Holder’s inequality,
! 2
|[EUS —EUE| <Mz X011 1B X,
< 2(3r)k\/rLd(S, S
<p r**1Ld(S,Ss).

Theorem 3 (Main Result). For any multi-index model P, there exists a constant C (P, K) independent
of d such that if n > C(P,K) {dkem + e%} then the output S C R? of Algorithm |2| satisfies

d(S,span[(U*)"]) < e with probability at least 1 — exp(—d©) for some ¢ = c(k*) > 0.

Proof. Recall the leap decomposition F = {# = S§ C S} C --- C ST = R"}. We will prove by
induction that for any € > 0, there exists a constant C'(P, K) such that the output S; of Algorithm
at step 4 satisfies d(S;, (U*)T'S¥) with high probability whenever

dk/? d]

+

€ €2

n>C(P,K) {
Note that for ¢ = 1 the result is implied directly by Corollary [T} Now assume the result for i > 1. By
Lemma[3]
EUY S = o(P, KT eyrs,., .
In addition we have by Theorem 2]

/2
HUr(LSL) _EU?S,Si) gk ﬂ_’_rk/Q g
op n n
Finally by Lemma 4]
HIE USi —EUTSH| < bt x L ox d(Sy, (UF)TSE).
op

Putting it all together we have that:

dk/2

|uo —Bu S| s S+ rk/Z\/z+ UL d(S;, (U)TS)).

In addition, by the induction hypothesis, d(S;, (U*)TS¥) < C(P, K) [dIZQ + rk/2 \/g] . Therefore,

d

T gx Jdk/2
|us) —Eu | < oK) [ — k2 /2

n n

and the result again follows from the Davis-Kahan inequality. |
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D.1 Auxiliary Lemmas for Concentration

We will start with this simple inequality on the Frobenius norm of a Hermite tensor:
Lemma 7. [|hy,(X)| < [|1X]* + d/4

Proof. We will use the identity:

1 .
hy(X) = ﬁEsz(o,zd)[(X +iW)®F.

Therefore,
1

(XI5 = Bz [(X +i2) - (X +iZ'))"]

1
Bz |(IXI* -2 -2/ +iX - (2+2)}|
Sk—l
<
=
Sk IXIP* + a2 4 X"

Sk IX P+ a2,

(IXI% + Bz (1Z- 21 + BozllX - (2 + 2]

We can use this to concentrate sums of Y .-, ¢;¢(x;) in operator norm:

Lemma 8. There exists an absolute constant Cy, such that if n = d**¢ with ¢ > 0 and for any
constants c¢; with |¢;| < 1 and p = d° where ¢ = min(1, ¢/4),

E Hi;c@(m

p 1P

k—1
< max(d, d )

n

op

Proof. Note that for k = 1, 2 this follows from the standard bounds for a Gaussian covariance matrix
(k = 2) and the norm of a Gaussian vector (k = 1). Therefore we will assume k > 2. We will begin
by computing o, (¢):

7.(9)= o El(u’60)’) = B fveclhn (X)), veclu @0])* < 1.

Next, ||6]|,, < |6l <t | X[ + d*/%. Therefore the p-norms of |6, are bounded by d*/2 for

op —
any p < d. Plugging this into Lemma [I2] gives that for p < d,
dk-1 1/3 dk/2
() ot
n n

1< dk—1 dk/2
= cidlx) < + ( )
ni:l

p

n n
Plugging in p = d° gives that the second and third terms are dominated by the first which completes
the proof. ]

1/3

op

We will also use the following simple lemma:

Lemma 9. Letr (X,Y) follow a Gaussian multi-index model with hidden dimension r. Then for any
k-tensor-valued random variable F(Y'),

0O, < o= 0 (") T NIFWI L,

Proof. Without loss of generality we can assume p is even. Now (hy(X), f(Y))? is a polynomial of
degree kp in X. Therefore by Lemma|l15}

E (i (X), F(Y))” < \/E 0. P (") < - 1)"'2"\/ (") mr ip@ol.
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Taking pth roots gives:

0 O, < o= 0 (7Y T NIEWI L,
]

Lemma 10 (Gaussian hypercontractivity). Let f be a polynomial of degree k and let X ~ N (0, I4).
Then forp > 2,

Ex[|f(XOPPP7 < (p — )P Ex[f(X)?].

Lemma 11. Let X,Y be random variables with ||Y]|,, < Bp"/? for
. 1 ||X|2)>
p = min 2,'log< .
( k X1l

E[XY] < | Xl - B - (ep)*/.

Then,

For any mean zero random matrix Y we define:

o(Y) := max (HE[YYTH 99 E[YTY]Hz) v

0.,(Y):= sup E[(u'Yv)}
llull=[lv]|=1

For non-centered matrices, we define 0(Y) :=o(Y —EY)and 0. (Y) := 0, (Y —EY).
We will rely on the following simple corollary of [Brailovskaya and van Handel, 2024}, Theorem 2.6]:

Lemma 12. LetY = Z?Zl Z; where Z; are mean zero independent random matrices. Assume that
foralli, P[|| Z;|| > R] < 0. Then there exists an absolute constant C' such that for any t > 0, with
probability at least 1 — nd — de™ ¢,

IV < Clo(v) + o (V )2 + RY3o (Y )2/ + Re].

Proof. Define Z; := Zi1)z,),<r and let Y := 3" | Z;. Then,

o(Y)=n%0(2) <n*?0(Z) = o(Y)

and similarly for o,. In addition, by definition, HZH < R. Therefore, by [Brailovskaya and van

Handell 2024, Theorem 2.6] and [Bandeira et al., 2023, Lemma 4.10], there exists a constant C' such
that for any ¢ > 0, with probability at least 1 — de™¢,

Hf/ — ]EY/H < C{a(y) b o (V)2 1 RY3a (V23215 1 Re].

Next, note that

HEY—EY

‘Z]E[ZillZi|2>R] < ZU*(Zi)\/S < 0. (Y)Vnd,

op ‘

Now if § > 1/n, then 1 —nd < 0 so the result is trivially true. Otherwise, || EY —EY|,, < 0.(Y).
Finally, as Y = Y on the event that max; || Z;|| < R, a union bound completes the proof. |

We will use the following simple lemmas about o, 0:
Lemma 13. For any random matrix A € R%*%, 0(A)? < max(d, s)o.(A)>2.
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Proof. Without loss of generality we can assume E[A] = 0. Expanding the definition gives:
o(A)? = max (||[E[AAT]||,||E[AT A]).

First,

HE[AAT]H = sup Ev' AATv] = sup E {HATWHZ} = sup ZE [(e] ATv)?] < so.(A)*.

llvll=1 llvl=1 lvll=13=1

Performing the same calculation for AT in place of A gives that |E[AAT]|| < do.(A)?. Combining
these inequalities gives the desired result. ]

Corollary 3. LetY = % Zfil Z; where Z; € R¥? are mean zero independent random matrices.
Assume that for some R, k, || Z; Hop < Rt*/? with probability at least 1 — e~ for all t > 0. Then if

n = d"*<with e > 0 and ¢ = min(1, 55), then for all p < d°,

1/p R d
p < — —
E [||Y||Op} < C'max (U*(Z), d) ~

where C'is an absolute constant.

Proof. First by a union bound, we have that max; || Z;||, < Rt* with probability at least 1 — ne~".
Substituting this and Lemmainto Lemma gives that with probability at least 1 — 2ne =%,

k/2y\ 1/3 1/3 Eyy
/d+t+(dt/) (d) s, A8 ]
n n n n

We can factorize this by pulling out the /d/n and using n > d**e:

R\ [d TEEE S S
Y] < Cmax (a*(Z),d>\/;l1+d1/2+ 7 + |

‘We can convert this to an p-norm bound for p > logn

||| < Cmax (U*(Z), 5)

R\ [d]| pY? pT  pit
P l/p < _ —
Y1 < Omas (.20, 0) [ 2 P P
Now if p = d° where ¢ = min(1, %_M) then the error terms are all less than 1 so we are done. W

Lemma 14. For any p > 2,

Gl < (0= DF(F7Y) < (0= D).

Proof. By Jensen’s inequality and Gaussian hypercontractivity we have
2
NIEHew(2)Y]llpl, < EllHew(2)[5]"?
< (p - D E|Hex(2)|I7

:(p_1)kk!(r+:_1).

Dividing by k! to revert to the normalized Hermite polynomials {h; } completes the proof. |

We will now bound the low-degree density ratio between the joint distribution of (X, Y") and the null
distribution Py := Px ® Py:

Lemma 15. Let Py := Px ® Py be the null distribution and let P<p denote the orthogonal
projection onto polynomials in X of degree at most D. Then:

D

pgﬁﬁyxnzmymmgww
and
HPSD(;?E;) zS (rtD)
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Proof. Note that the density ratio is invariant to X conditioned on Z so we can Hermite expand
directly in Z:
dP

Eo {hk(Z) Py

[X,Y] ’Y] [hk(Z)‘Y] — ()

which implies that the Hermite coefficients of % in Z are given by (. For the second equality, we

have by Lemma|[T4}
r+k— r+D
ZEIICk > (= (7))
k=0

oo ()

E Proofs of Section

Proof of Propositiond] We write y = o(z) to denote the deterministic link functions above.

1. LetS = {z € R";0(z) = +1}. Letk < rand consider E[hy(2)|z € S] = 2E[hy(2)1(z €
S)]. Any coordinate of this tensor corresponds to a multivariate Hermite polynomial
hg,(z1) ... hg, (%), with B1 + - -- + B, = k. Since k < r, there must exist a coordinate
j st Bj = 0. By noting that E,, 1(z € S) = 1l and E._,[hg, (21) ... hg,(2)] = 0, we
conclude that E[hy(2)1(z € S)] = 0 whenever k < r, and analogously for R" \ S. Finally,
we easily verify that E[o(2)z122 . .. 2] > 0, which shows that I* = r and hence k* = r.

2. This follows directly from k* < [*.

3. Define K as the intersection of the half-spaces, determined by normals v, ..., vys. From
the assumption that P is a r-dimensional multi-index model, V' = [v; ... v),] has rank 7.
Any unit norm vector u € span(V) thus satisfies max; |v; - u| > € > 0 for some € > 0.
Let Yy = E[z2 7|2 € K] — E[z|z € K]E[z|z € K] T be the covariance conditional on K.
From [Klivans et al.} 2024, Lemma B1], [Vempala, 2010, Lemma 4.7], for any u as above it
holds that v ' ¥ u < 1, which implies that span(A;) & span(Az) =

4. The argument appears already in |(Chen and Mekal[2020], but we reproduce it here in our

language for completeness.

We will use induction over the leaps. Suppose first S = (), and consider the level sets
By = {z;]y| > A}. Since y = o(z) is continuous and lim, ,, |o(rz)| = oo for any z, for
any R > 0 there exists A such that B, does not contain the ball centered at 0 of radius R.
Thus

Ti(E[ZZ"|Z € B,)]) = E[|Z|*|Z € B,] > R?,

so if R > r we must have E[hy(Z)|Z € B,] # 0, and hence Ay # 0.
Let us now iterate over leaps. Let .S be the span of As. We now consider the sets
B)\,n,S = {ES; ‘yl > A, ||ZS|| < 7]} - Sl :

By now viewing o(z) = o(Zg, zs) as a polynomial in Zg, we again argue that for any
R > 0 there exists A such that B) ,, s does not contain a ball of radius R, and therefore we
can identify another direction using the previous argument. Iterating this procedure until .S
spans the whole R” shows that £* < 2.

Proof of Proposition[5] Suppose towards contradiction that k* > 2. Then for any g € L,%y we have
E[g(c(z))H2(2)] = 0. Applying the coarea formula we obtain

_ ha(:11(2) o,
0= [ o) ( L e >> ay, 20)
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where HF is the k-dimensional Hausdorff measure. Since this must be true for any measurable g, we
conclude that

_ hy(2)7(2) o) et B
L(y) ._/0 oy VoG 22T g (2) =0 P, —ae. 1)

We write 0(2) = Y. per (V2 + br) - 1(z € R), where R are the different linear regions.

Caser = 1: Suppose first that there exists § and € > 0 such that the level sets o~ (u) contain no
critical points for u € (§ — €, § + €). The level sets 0~ *(u) are discrete, and we claim that we can
represent them as

oM (u) = {t; + 0i(u — 9)} , where o7 (y) = {t:}iez
and 0; = 1/0’(t;) # 0 have alternating sign. We thus have, for u € (§ — ¢, 5 + ¢€),
=D [6ilha(ti + 6i(u— )y (ti + 6i(u—17)) . (22)
i€T

Let us integrate this quantity twice now. Using the fact that (hy_17y)" = —hg7y, we have

L(u) = / L) (23)
=—yngn 0 (t; + 0;(u — )y (ti + 0i(u — 7)) + C (24)
€T

F(u) = / L) (25)
—Zselgn )0, (i 4+ 0;(u — 7)) + Clu — G +¢) + C (26)

i€l
=Y 10 At + 0w =) + Clu—g+e) +C. 7

i€l

From L(u) = 0 a.e. on (3 = €) we have L(u) = 0 for all u € (7 = €), leading to
S 10T Yt + 0i(u—5) = —Clu—g+e) —C,Vue (je). (28)
i€T

Since all terms are analytic, we must have this equality for all u, which implies C' = C = 0, but this

is a contradiction, since the LHS is a sum of positive terms.

Case » > 1 We can represent a piece-wise linear continuous function in terms of a simplex
triangulation, and the values of the function at its vertices. Consider M = sup,{c(z)} the maximum
of o, attained at a discrete set of global maxima. Now, let us start decreasing the level set until we
reach another vertex, to say M’. We will study the family of level sets o~ (y) for y € [M’, M]. We
reparametrize y as y = M + u(M’ — M), so this family can now be indexed with u € [0, 1].

For € S"landt € R, let E(0,t) := {2;0" z = t} denote a hyperplane normal to 6 and passing at
distance ¢ to the origin. We can then write

o~ (u) = ©perSr(u) |

where Sg(u) = E(vr/|vr|, [|[vrllu + br) N R, and where R is the subset of linear regions crossed
by these level sets. Note that by construction this family R does not depend on .

For u € (e,1 — ¢), and for each R € R, we have the following homotecy representation of the level
set regions:

Sr(u)={2=zr+u(z —zr);z € Sp(1)}. (29)

Here, xr denotes a local maximum of o, which is also a vertex of the corresponding simplex region
R. Consider now £(u) := Tr{L(u)}. By introducing the local change of variables Z = Uy, (z) :=
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xr + u(z — xR) for each region, we have

Llu)= 3 0 [ (el =) @0
ReR Sr(u)

=u" ZGR/S " (HxR +u(z — zg)||* — r) Y(xr +u(z —xzR))dz, 3D
R R

where O = ||V (2)|| 7! for 2 € R. Observe that £ is analytic in R, since it is a linear combination
of products of analytic functions. By assumption we have that £(u) = 0 for u € (0, 1), which
implies that £ should vanish everywhere. But for  sufficiently large, observe that £(u) is a sum of
strictly positive terms, which is a contradiction.

This shows that Ay # 0. Let S = span(Az), and write z = (25, Z), § = (zs,y). We can now again
suppose towards contradiction that for any g € L?(P;) we have E[g(c(2), 25)H2(Z)] = 0. Defining

7~ 1(y) := {z;0(zs, %) = y}, applying again the coarea formula leads to

. Ha(2)7(2) 10|51
Ls(y) = / 2R g () =0 Py —ae. (32)
a=1(y) Va2 Y
The piece-wise linear, continuous structure is still preserved in &, and therefore by iteratively applying
the previous argument shows that all directions will be captured with generative leaps of at most
k* <2.

Proof of Proposition[/] Leto(z) = 3_; a;p(z;). By definition, we have that (i) forany 7 : R — R

and any polynomial ¢ of degree < k*(p), E[T (p(2;))q(2;)] = 0, and (ii) there exist a transformation
((y) such that E[C(p(2;)) I+ () (25)] # 0

Let us first show that k* > k*(p). Suppose towards contradiction that we had a measurable U
and multi-indices (81, . .., 8;) with | 3] < k*(p) such that E[/(c(2))Hg(z)] # 0. Then, denoting
Hp(z) = Hg_,(2—;)hg,(zj), we have

E, [Ez—j (U(O'(Z))Hﬁ_j (Z—j)) hﬁj(zj)] #0 (33)

E., (B, QU [ ajy;+ > ajp(zr) | Ha_(2—5) p hg,(z)| #0 (34)
3'#5

E, [Ty, (20)] # 0. (33)

where we defined the label transformation 7;(y) := E, {M(ajy +D s aj,p(zj/)} . We have thus

reached a contradiction. Observe that the same argument also applies if one replaces o(z) by
a(z) = F(p(z1),...,p(z)) for arbitrary F'.

Let us now show k* < k*(p) := k* »- We focus on a Hermite moment along a single variable, say 2,
given by hy+ (21). Lety = p(z1) and n = ay? > j>1a;p(25), so y and n are independent. We will
find a measurable function U/ such that

Bz, [U(p(21) + )i, (21)] # 0. (36)

We will consider a Fourier atom for I of the form 2(t) = e'*! for an appropriately chosen frequency
é . For that purpose, let us first reproduce an argument from [Damian et al., 2024, Theorem 5.2]. By
[Damian et al., 2024, Lemma F.2] there exists g : R — [—1, 1] such that E[g(Y") A+, (Z)] # 0. We
consider gr(y) := g(y)1},<r. For R sufficiently large, we claim that E[gr(Y)hi-(Z)] # 0. We
have that

Elgr(Y)hi (Z)] = Elg(Y )i (2)]] = [Elg(Y)hi+ (Z)11)2 ]|
VE[g(Y)?hi (Z)2P[]Y] > R]

< VE[Y?|/R? 37

IN
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which vanishes as R — oo. Therefore for sufficiently large R we have E[gr(Y )hy«(Z)] # 0. Now
gr € L*(R) N L?(R). Let us consider its Fourier representation gg(y) = [ gr(£)e®Yd¢. Then

Elgr(Y)hy- (2)] = / iR () B[S hye (Z))dE | (38)

which shows that there must exist & such that Ep[e**0Y hy.(Z)] # 0. Moreover, observe that
€ EpleY hp« (2)] := (&) is || p||*-Lipschitz, since

W/ (€)] = |E[iY e hy+ (Z)]] < VE[Y2|E[G(Y)?] < E[Y?] = [p]?, (39)
so we can define € > 0 and 6 > 0 such that [¢)(£)| > d forall £ € (§y — €, &0 + €).

Now, let us evaluate (36) with the Fourier atom. We have

Eevn [Ulp(z1) + i (21)] = ey [ €00 0n, ()] (40)
—E,, {eiép(zl)ilk*p(zl)] E,[¢%"] 41)
= (&) - (&), (42)

where ¢, (¢) = E,[e""¢] is the characteristic function of 7. Assume, towards contradiction, that
@y(&) = 0forall § € (§ — ¢,&o + €). By definition, we have that ¢, (&) = [];_, §-¢(5&), where
©(€) = E[e%r(®)] is the characteristic function of p(z). We thus deduce that ((£) must vanish on an
interval £ € I C (& — €,&o + €). Since all the moments E[y*] exist by assumption, this means that

VEéel,meN, 0= (&) =Ep,[(iy)"e™]. (43)

In particular, given any f € L?(P,), with expansion f(y) = >, aqi(y), where {qgx}x is an
orthonormal basis of polynomials, we deduce from that E[f(y)e'¢¥] = 0 for any f, which would
mean that e = 0 in L?(P,), which is a contradiction. We have thus shown that there must exist
€ € (& — €& + €) where both o (€) and ¥ (€) are non-zero, proving .

This shows that [Ax+]s, # 0. Applying the same reasoning to z;, j € [r] thus shows that [Ay+] g, # 0.
On the other hand, if we consider § with |3] = k* but 8 not of the form 8 = (0, ..,k*,0,...,0),
applying again shows that [Ay+]s = 0, ie Ay~ is diagonal. We conclude that span(Ag«) = R”
and thus that k* < k*(p).

Lemma 16 (Truncated and Fourier Label Transformations, [Damian et al.,[2024, Theorem 5.2]). Let
P € P(R x R) with P, =y and let k* = k*(P). Then there exists Ro,&o, €0 > 0 and §y > 0, and

label transformations Tg, 7~'g of the form Tr(y) = g(y)1y|<r and 7~2(y) = €'Y such that
[Ep [TR(Y ) (2)]] = b, and [Bp [Te(Y)hes (2)] | = 6o
for R > Ry and € — & < €.

As the Shallow NN becomes more overparametrised (and thus less well-conditioned), the generative
leap is no longer ‘related’ to k*(p). Indeed, provided p is not a polynomial, we can use the shallow
NN to approximate any desired link function & with prescribed generative leap exponent. Since the
generative exponent is characterized as the first non-zero of an expansion, k£*(5) < £ is an open
property, meaning it is stable to small perturbations of . This directly leads to the following:
Proposition 9 (Generative Leap under Universal Approximation). For any non-polynomial p and
any integer £ > 1, there exists a shallow neural network of the form y = ij:l ajp(vaz +b;) such
that (Z,Y) ~ P has generative leap exponent k*(P) < £.

Proof of Proposition[9] By Proposition[7} we can reduce ourselves to the univariate case. We first
verify that, given o : R — R, there exists € > 0 such that if

lo =5l <e (44)
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then k*(5) < k*(0) = k*.

From Lemma (16} we can use a sinusoid label transformation ¢(y) = cos(£y) for £ that depends on o
such that E[¢(o(2))hg«(2)] = C # 0.

It suffices to verify that E[¢(c(2))hg«(2)] # 0. Let a(z) = o(z) — &(2). Indeed, since ¢ is
&-Lipschitz, we have

Vz, ¢(6(2) = d(o(2)) +a(2), (45)

with |a(2)| < £|a(z)]. Thus
[E[¢(5(2))he= (2)] — Elp(0(2)) b= (2)]] = [E[a(2)h- (2)]] (46)
< llallz < &lllalllz = &llo = allz 47)

soif e < C'/€ we have k*(6) < k*(0).

Finally, using a standard universal approximation theorem, e.g using the integral representation
o(z) = / cp(az +b)dv(a,b,c) = E(qp ey [cp(az + b)] (48)
R3

for v € P(IR?), we can obtain ¢ satisfying by doing a Monte-Carlo approximation.
|

Proposition 6 (Generative Leap under linear transformations). Let o(z) : R” — R € L?(,), 0 # C,
and let M. denote the set of v X r real matrices.

(i) For © € M,, define yo = o(©"2). Then (2,ye) ~ Peg satisfies k*(Po) < 2 for every 6,
except possibly for a set of r2-dimensional Lebesgue measure zero,

(ii) Assume that (z,0(z)) ~ P has a single leap with generative exponent k*. LetT' : D C
R® — M, be any analytic map such that I,, € Im(T") and T'(0) is invertible for all 6 € D.
For 0 € D, define yg = o(I'(0) " 2). Then (2,yg) ~ Py satisfies k*(Pg) < k* for every 0,
except possibly for a set of s-dimensional Lebesgue measure zero.

Proof. We will again exploit analytic properties. Let us first prove (i).

Let us consider a threshold function of the form T'(y) = 1(a; < y < a2), and its associated level
set @ = {z; 1 < o(z) < ay}. Suppose first that we can pick oy, cy such that € is compact. Then
we have 2 C By(R), the ball of radius R, for some R > 0.

For M € R"™", consider the function

d(M) = det [M (/ 2z Tem37 M Mzdz) MT — (/ e_ézTMTMZdz) I} . (49)
Q Q

Let us now consider X = ©T0O = VA2V T and Z~N (0,33). Observe that if © is invertible and
#(O©71) £ 0, then

det[Ay(Po)] = det [E[(22T — I)T(yeo)]]
=det [E[(zz" —1)1(07z € Q)]]
= det [(@T) YELZZ2T1(Z e Q)]0 —Ey[1(Z € Q)]IT]

= det[O]" det [(@T)_1 (/Q zzTe_észlzdz) (S (/Q e‘éZTEIZdz) Ir}
= det[0]"¢((© ")), (50)

showing that det[A2(Pg)] # 0, and thus k*(Pg) < 2.

Let us now argue that ¢ is analytic in R"*". Indeed, the determinant is analytic, and composi-
tions preserve the analytic property, so it suffices to check that the functions M +— ¢,(M) =
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Jo em2% M Mz and M — ¢p(M) = Jo zizge~ 2% MMz are analytic. Since € is compact,
we have that

’5‘3%

3317 (M)‘ SRR, (51)

for any multi-index 3, and analogously for the terms ¢y,.

Now, observe that ¢(0) = ([, dz)" # 0, which implies that ¢ cannot be identically zero. From
Mityagin| [[2015]] we then deduce that ¢ can only vanish on a set of measure 0.

Let us now extend this argument to the setting where €2 is not compact. For any € > 0, we claim that
¢(M) is analyticin S = {M € R"™*"; \pin (M) > €}. Indeed, now ¢ is infinitely differentiable in
S, and its components ¢, ¢ satisfy

9" ¢q
oMP

<M>] < |Bne2ol-r 52)

and similarly for ¢;. Since now we have ¢(0) = oo, for ¢ small enough we must have ¢(M) = 0 for
some M € S, which implies again that ¢ cannot be identically zero. It can therefore only vanish on a
set of measure zero inside S, for any € > 0.

Let us now prove part (ii) by adapting the previous argument. Since here we are assuming a single leap,
there exists a tensor-valued label transformation 7' € L?(R, (R")®*"; P,) such that det [FTF] #0,
where

F = Mat, 1 [E[T(0(Z))hy (2)]] - (53)

For © € R™*" let us now define

P(O) :=det [F(O)F(0)T] , with (54)
F(©) = Mat,. (-1 [E[T(0(0" Z))hg (2)]] (55)
Using again X =070 = VA2V, and Z~N (0,3), we can rewrite this last expectation as
F(8) = Mat, e+ [EZ[T(0(2))hi- (071 2)]] (56)
= C|Z|V/?Mat, (e U T(o(2))hy (O 1z)e—27 @O 2q, ) (57)

We argue again that F'(0) is analytic in the domain {©; X > €I,.} for any € > 0, since it is a linear
combination of products of analytic functions. This implies that ¢)(©) is also analytic in this domain.
Finally, since the parametrization 6 — T'(0) is analytic by assumption, we deduce that¢) = ¢ o I" is
also analytic. We know that 1 is not identically zero, therefore we conclude that it can only vanish on
a set of s-dimensional Lebesgue measure zero.
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