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Abstract

Diffusion models (DMs) have achieved significant success in generative modeling,
but their iterative denoising process is computationally expensive. Training-free
samplers, such as DPM-Solver, accelerate this process through gradient estimation-
based numerical iterations. However, the mechanisms behind this acceleration
remain insufficiently understood. In this paper, we demonstrate gradient estimation-
based iterations enhance the denoising process by effectively reducing the con-
ditional entropy of reverse transition distribution. Building on this analysis, we
introduce streamlined denoising iterations for DMs that optimize conditional en-
tropy in score-integral estimation to improve the denoising iterations. Experiments
on benchmark pre-trained models validate our theoretical insights, demonstrat-
ing that numerical iterations based on conditional entropy reduction improve the
reverse denoising diffusion process of DMs. The code will be available.

1 Introduction

It is well established that diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2021b) have achieved significant success across various generative tasks, including image
synthesis and editing (Dhariwal & Nichol, 2021; Meng et al., 2022), text-to-image synthesis (Ramesh
et al., 2022), voice synthesis (Chen et al., 2021), and video generation (Ho et al., 2022). DMs consist
of a forward diffusion process and a reverse denoising diffusion process. In the forward process,
Gaussian noise is progressively injected into the data, perturbing the data distribution to collapse
towards a standard Gaussian distribution by increasing conditional entropy. During training, the
neural network is tasked with learning to reverse this process by minimizing the loss between the
predicted and injected noise. Once the model is well-trained, high-quality samples can be synthesized
by simulating the reverse-time denoising process associated with the forward noise-adding process.

However, a key limitation of DMs is the slow sequential nature of their iterative denoising process
(Song et al., 2021a). To overcome this, training-free methods aim to accelerate denoising process by
efficient numerical iterative algorithms without requiring additional training or costly optimization.
Many of these methods focus on reformulating the denoising process as the solution of an ODE,
allowing for accelerated sampling through numerical techniques. Such examples include PNDM (Liu
et al., 2022), EDM Karras et al. (2022), DPM-Solver (Lu et al., 2022a), DEIS (Zhang & Chen, 2023),
UniPC (Zhao et al., 2024), and DPM-Solver-v3 (Zheng et al., 2023a).

Despite the success of these numerical discretization techniques, the underlying mechanisms driving
their acceleration remain inadequately understood. In particular, the reasons why iterations with
similar orders of convergence result in varying levels of acceleration are not well explored. To address
this gap, we reexamine the principles driving the accelerated denoising process. Our conditional
entropy-based analysis reveals that effective iterations systematically reduce the conditional entropy
of denoising transition distributions at each step, thereby directly contributing to a faster denois-
ing process. This insight clarifies the mechanisms of gradient-based acceleration and provides a
foundation for designing efficient denoising algorithms. Our main contributions are as follows:

• We introduce a novel perspective on entropy reduction in denoising diffusion of DMs,
demonstrating that gradient estimation-based iterations significantly accelerate the denois-
ing process by effectively reducing conditional entropy. Our theoretical analysis further
reveals that denoising iterations using data-prediction parameterization are more effective
than those using noise-prediction parameterization in minimizing conditional entropy.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) DPM-Solver++2m. (b) DPM-Solver-v3-2m. (c) Algorithm 1 (2m).

Figure 1: Random samples from Stable-Diffusion Rombach et al. (2022) with a classifier-free
guidance scale 7.5, using 10 number of function evaluations (NFE) and text prompt “A beautiful
castle beside a waterfall in the woods, by Josef Thoma, matte painting, trending on artstation HQ”.

• Building on our theoretical insights, we propose a denoising iteration method focused on
efficient reducing conditional entropy in DMs. Unlike existing training-free methods, our
approach improves the denoising process by lowering variance-driven conditional entropy
during gradient-based iterations, which provides a simple yet effective improvement.
• Experiments on benchmark pre-trained models in both pixel and latent spaces validate our

theoretical insights and demonstrate that our proposed method not only matches but often
improves the reverse denoising diffusion process in DMs.

2 Background
Diffusion models (DMs) define a Markov sequence {xt}t∈[0,T ] in the forward process, starting with
x0, where x0 ∈ R

d is drawn from the clean data distribution q0(x0). This sequence is pushed forward
with increasing entropy until it approaches a standard Gaussian distribution via the transition kernel:
qt (xt | x0) = N

(
xt;αtx0, σ

2
t I

)
, where σt are smooth monotonic scalar functions w.r.t t. In DMs,

αt and σt are called as the noise schedules, α2
t /σ

2
t is called the signal-to-noise ratio (SNR) function.

This transition kernel can be reformulated as the equivalent stochastic differential equation (SDE):

dxt = f (t)xt dt + g(t)dωt, x0 ∼ q0 (x0) , (2.1)

where ωt denotes a standard Wiener process, f (t) := d logαt
dt , g2(t) := dσ2

t
dt − 2 d logαt

dt σ2
t (Kingma et al.,

2021). The reverse-time SDE of above forward diffusion process can be written as:

dxt =
[
f (t)xt − g2(t)∇x log qt (xt)

]
dt + g(t)dωt, xT ∼ qT (xT ) , (2.2)

where ωt represents another standard Wiener process. In score-based models (Song et al., 2021b),
the diffusion (or probability flow) ordinary differential equation (ODE) used for efficient sampling is
derived from the Fokker-Planck evolution equation of the probability density function as follows:

dxt

dt
= f (t)xt −

1
2

g2(t)∇x log qt (xt) , (2.3)

where the marginal distribution qt (xt) of xt is equivalent to that of xt in the SDE presented by Eq.
(2.2). To train DMs, following the practiced in DDPM Ho et al. (2020), a neural network ϵθ (xt, t) is
parameterized to predict the noise ϵ by minimizing the expectation of mean squared error as follows:

Ex0∼q0(x0), ϵ∼N(0,I), t∼U(0,T )

[
w(t) ∥ϵθ (αtx0 + σtϵ, t) − ϵ∥22

]
, (2.4)

where α2
t +σ

2
t = 1, w(t) is a weighting function that depneds on the evolution time t. By substituting the

trained noise prediction model ϵθ (xt, t) with the scaled score function: −σt∇x log qt (xt), sampling
from DMs can be formulated by solving the diffusion ODE from T to 0 Song et al. (2021b):

dxt

dt
= f (t)xt +

g2(t)
2σt

ϵθ (xt, t) , xT ∼ N
(
0, σ̂2I

)
. (2.5)
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With a different parameterization, the data prediction model xθ (xt, t) satisfies: xθ (xt, t) = (xt −

σtϵθ (xt, t))/αt (Kingma et al., 2021). This results in an equivalent ODE-based diffusion process:

dxt

dt
=

(
f (t) +

g2(t)
2σ2

t

)
xt − αt

g2(t)
2σ2

t
xθ (xt, t) . (2.6)

3 Conditional Entropy Reduction as a Catalyst for Denoising Diffusion
By applying the variation-of-constants formula (Hale & Lunel, 2013) to ODEs (2.5) and (2.6), then

xt = e
∫ t

s f (r)dr
(∫ t

s
h1(r)ϵθ (xr, r) dr + xs

)
,xt = eh2(t)

(
−

∫ t

s
e−h2(r)αrg2(r)

2σ2
r

xθ (xr, r) dr + xs

)
, (3.1)

where h1(r) := e−
∫ r

s f (z)dz g2(r)
2σr

, h2(r) :=
∫ r

s f (z) + g2(z)
2σ2

z
dz, and xs represents the given initial value.

Subsequently, this two diffusion ODEs have a unified semi-linear solution formula.
Remark 1 Let the noise-prediction and data-prediction diffusion ODEs be defined by equations (2.5)
and (2.6), respectively. A unified semi-linear solution formula for both ODEs is then given by:

f (xt) − f (xs) =
∫ κ(t)

κ(s)
dθ

(
xψ(τ), ψ(τ)

)
dτ, (3.2)

where ψ (κ(t)) := t, {f (xt) := xt/αt, κ(t) := σt/αt} when dθ represents the noise prediction model
and {f (xt) := xt/σt, κ(t) := αt/σt} when dθ represents the data prediction model.

For brevity, we refer to Eq. (3.2) as the score-integral process, as the denoiser dθ
(
xψ(τ), ψ(τ)

)
is often

trained to approximate the score function. Note that the semi-linear nature of diffusion ODEs can
potentially reduce the sampling error of DMs Lu et al. (2022a;b); Zhang & Chen (2023). Unless
otherwise specified, the following discussion defaults to noise prediction models.

3.1 Denoising Iterations Formulated by Score-integral Estimation

Denote hti := κ(ti−1)− κ(ti), ι(xti−1 ) :=
∫ κ(ti−1)
κ(ti)

dθ
(
xψ(τ), ψ(τ)

)
dτ and d(k)

θ

(
xψ(τ), ψ(τ)

)
:= dkdθ(xψ(τ),ψ(τ))

d τk

as k-th order total derivative of dθ
(
xψ(τ), ψ(τ)

)
w.r.t. τ. The Taylor expansion of dθ

(
xti−1 , ti−1

)
at τti is

dθ
(
xti−1 , ti−1

)
= dθ

(
xti , ti

)
+

n∑
k=1

hk
ti

k!
d(k)
θ

(
xti , ti

)
+ O(hn+1

ti ). (3.3)

Substituting this Taylor expansion into Eq. (3.2) to approximate ι(xti−1 ) yields:

ι̃(xti−1 ) = htidθ
(
xti , ti

)
+

n∑
k=1

hk+1
ti

(k + 1)!
d(k)
θ

(
xti , ti

)
+ O(hn+2

ti ). (3.4)

Beyond the transformations within the solving space, this Taylor-based approximation establishes a
generalized numerical iterative framework for solving the score-integral in DMs. For instance, when
n = 1, the truncated Taylor approximation reduces to the well-known DDIM iterative algorithm Song
et al. (2021a), as follows:

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
. (3.5)

where x̃ is obtained by the definition of f (x̃). Due to the lack of derivative information, higher-
order algorithms can only be formulated by evaluating the derivatives. A widely used technique for
evaluating derivatives is the finite difference (FD) method, which approximates d(k)

θ (·, ·) as follows
(k ≥ 1):

d(k)
θ (xt, t) =

d(k−1)
θ (xs, s) − d(k−1)

θ (xt, t)

ĥt
+ O(ĥt). (3.6)

Thus, a gradient estimation-based iteration can be obtained by truncating all higher-order derivatives:

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti

2
Fθ(si, ti), (3.7)

where Fθ(si, ti) := dθ(x̃si ,si)−dθ(x̃ti ,ti)
ĥti

, ĥti := κ(si) − κ(ti), ĥti , 0 and it is often satisfied that ĥti/hti ≤ 1.
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3.2 Conditional Entropy Reduction in Denoising Iterations
Iterative Uncertainty Reduction: Theoretical Insights. The semi-linear solution formula in
Remark 1 provides a structured theoretical framework for analyzing the denoising diffusion process.
By iteratively solving this formula, DMs refine noisy latent states closer to the data distribution.
From an information-theoretic perspective, each iteration progressively reduces uncertainty from
intermediate representations by leveraging the structured denoising mechanism. This uncertainty
reduction can be formalized through the concept of mutual information between consecutive states
Jaynes (1957):

Ip(xti ;xti+1 ) = Hp(xti ) − Hp(xti |xti+1 ), (3.8)
where Hp(xti ) is the entropy of state xti , and Hp(xti |xti+1 ) is the conditional entropy of xti given xti+1 .
The conditional entropy Hp(xti |xti+1 ) quantifies the uncertainty in xti after incorporating information
from the subsequent state xti+1 . A lower Hp(xti |xti+1 ) indicates that the method effectively utilizes
information from xti+1 to refine the estimate of xti , driving the estimate of xti closer to the target
data distribution. Practically, this conditional entropy reduction aligns with the goal of minimizing
reconstruction error during denoising, improving the quality of generated samples. This theoretical
insight not only elucidates the uncertainty reduction mechanism but also provides an optimization
criterion for improving the denoising process.
Conditional Entropy in Gaussian Approximations. In practical implementations of DMs Ho
et al. (2020); Song et al. (2021b), the reverse transition distribution p(xti |xti+1 ,x0) is commonly
approximated as a Gaussian distribution under the Markov assumption. For brevity, p(xti |xti+1 ,x0) is
often abbreviated as p(xti |xti+1 ). Then, this reverse transition distribution can be expressed as

p(xti |xti+1 ) := p(xti |xti+1 ,x0) ≈ N(µti ,Σti ), (3.9)
where µti and Σti are derived using Bayes’ rule from the forward diffusion process. This Gaussian
approximation is widely used for simplifying model training and theoretical analysis, despite potential
deviations at extreme steps, as noted in prior works Song et al. (2021b); Luo (2022); Bao et al. (2022);
Karras et al. (2022). Under this approximation, the conditional entropy Hp(xti |xti+1 ) simplifies to

Hp(xti |xti+1 ) ≈
d
2

(log 2π + 1) +
1
2

log |Var(xti |xti+1 )|, (3.10)

where d is the dimensionality of x, and Var(xti |xti+1 ) is the conditional variance. This expression
provides a tractable framework for analyzing conditional entropy reduction during the denoising
iteration, as it establishes a direct relationship between conditional entropy and the variance. Note
that the conditional entropy Hp(xti |xti+1 ) is intrinsically tied to the conditional variance Var(xti |xti+1 ):

Hp(xti |xti+1 ) ∝ log |Var(xti |xti+1 )|. (3.11)
Thus, Eq. (3.11) suggests that minimizing variance directly optimizes conditional entropy reduction.
Variance-Driven Conditional Entropy Reduction in Gradient-Based Iterations. Building on the
established relationship between conditional variance and entropy, we derive several analytical results
that provide insights into the conditional entropy reduction achieved by gradient-based denoising
iterations. For instance, under suitable conditions, our analysis suggests that gradient estimation-based
iterations (Eq. (3.7)) can effectively drive significant reductions in conditional entropy.
To simplify the analysis, we assume that the estimated noise ϵθ(·) at different timesteps is independent.
While the forward process has the Markov property, our assumption mainly stems from practical
considerations in training. Specifically, the training objective of Eq. (2.4) in DDPMs Ho et al. (2020)
minimizes the mean squared error at each timestep independently, which aligns with this assumption.
Although adopting a parameter-sharing setting across timesteps in the noise prediction model may
involve a compromise on the assumption of independence, prior works Song et al. (2021a) indicate
that these dependencies have minimal impact on model performance. This makes the independence
assumption Ho et al. (2020) a reasonable and practical surrogate for theoretical analysis.
Under this independence assumption, we derive the Proposition 3.1, with the proof in Appendix B.1.
Proposition 3.1 The gradient-based denoising iteration in Eq. (3.7) tends to reduce conditional

entropy more efficiently than the first-order iteration in Eq. (3.5) when
hti

ĥti
∈

[
1, 4·Var(ϵθ(x̃ti ,ti)

Var(ϵθ(x̃si ,si)+Var(ϵθ(x̃ti ,ti)

]
.

Intuitively, this result reveals that gradient-based denoising iterations can achieve greater reductions
in uncertainty compared to first-order methods when the step-size ratio is properly chosen. As the
reverse process in DMs aims to estimate p(xt |xt+1,x0) Ho et al. (2020); Luo (2022), we examine
Var(ϵθ(x̃t, t) | x0) to capture the model’s uncertainty in noise prediction conditioned on the clean data.
For brevity, we denote this variance as Var(dθ(x̃t, t)) throughout the paper. Based on this consideration,
we can establish the practical interval for Proposition 3.1 using the prior-like conditional variance.
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Proposition 3.2 In the forward process of DMs, the clean data at each step can be expressed by
x0 = xt/αt − σt/αtϵ. If we assume that Var(ϵθ(x̃t, t)) ∝ σ2

t /α
2
t to quantify the extent of deviation

from the clean data. Under this prior-like assumption, we obtain
Var(ϵθ(x̃si ,si))
Var(ϵθ(x̃ti ,ti))

=
SNR(ti)
SNR(si)

. Then, the

relative condition of conditional entropy reduction in Propostion 3.1 is hti/ĥti ∈
[
1, 4 SNR(si)

SNR(ti)+SNR(si)

]
.

Additionally, interpreting the denoising numerical iterative mechanisms through the lens of condi-
tional entropy reduction offers deeper insights into accelerated denoising diffusion solvers, such as
the widely recognized accelerated iterations in DPM-Solver Lu et al. (2022a) and EDM Karras et al.
(2022). Building on this insight, we present the following proposition, with details in Appendix B.2.
Proposition 3.3 The exponential integrator-based iterations in DPM-Solver and the Heun iterations
in EDM can be interpreted as specific instances of accelerated denoising mechanisms driven by
conditional entropy reduction, thereby distinguishing them from conventional gradient-based methods.
Finally, based on our comprehensive analysis of the differences in conditional entropy reduction
between denoising iterations using data-prediction and noise-prediction parameterization, we derive
the following conclusion. The detailed proof is provided in Appendix B.4.
Proposition 3.4 Assuming that the injected noise at different time steps in DM is mutually inde-
pendent, denoising iterations using data-prediction parameterization are more effective at reducing
conditional entropy than those using noise-prediction parameterization in a well-trained DM.
Proposition 3.4 highlights the key advantage of data-prediction:it directly aligns with the target
distribution x0, bypassing the intermediate noise-to-data mapping ϵt 7→ xt 7→ x0, which can
accumulate errors, especially in late timesteps with high noise variance (or few-step sampling). By
minimizing conditional entropy more effectively, data-prediction reduces uncertainty in x0 without
relying on intermediate transformations. Nonetheless, this advantage is contingent on the training
quality. If the model struggles to accurately predict x0, noise-prediction parameterization, which
treats timesteps more uniformly, may perform better in practice.
In summary, the perspective of conditional entropy reduction deepens our understanding of denoising
mechanisms in diffusion model sampling, while the variance-driven approach provides valuable
insights into the design of efficient denoising algorithms.

4 Variance-Driven Efficient Conditional Entropy Reduction Iteration
In this section, we elucidate the approach for improving both single-step and multi-step numerical
iterations through conditional entropy reduction. Building on prior-like model variance assumptions,
we derive several efficient iteration rules for conditional entropy reduction and establish the conver-
gence orders of these iterations. Finally, we further optimize these iteration rules by refining the
conditional variance with the actual state differences observed during the iterative process.

4.1 Single-step Iteration with Conditional Entropy Reduction
One key insight is that the model parameter ϵθ

(
x̃si , si

)
can be further leveraged to enhance gradient

estimation-based iteration, as observed in Eq. (3.7) and supported by conditional entropy analysis,
without additional model parameters. Formally, the improvement iteration can be defined as follows:

f (x̃ti−1 ) = f (x̃ti ) + hti
(
γidθ

(
x̃si , si

)
+ (1 − γi)dθ

(
x̃ti , ti

))
+

h2
ti

2
Fθ(si, ti), (4.1)

where γi ∈ (0, 1]. This improved iteration shares the same limit state as the vanilla gradient estimation-
based denoising iteration in Eq. (3.7) when si → ti. For convenience, we refer to the standard gradient
estimation-based iteration as the FD-based iteration. In the analysis of conditional entropy, we can
compare the different components of Eq. (3.7) and Eq. (4.1). Therefore, the variance of the key
distinct components in each conditional distribution is as follows:

Varp1 = h2
ti ·Var(ϵθ(x̃ti , ti)), Varp2 (γi) = h2

ti

(
γ2

i · Var(ϵθ(x̃si , si)) + (1 − γi)2 · Var(ϵθ(x̃ti , ti))
)
. (4.2)

Then, the difference in conditional entropy between the two gradient estimation-based iterations is

∆H(p) =
1
2

log
Varp2 (γi)

Varp1

=
1
2

log
(
1 − 2γi + γ

2
i + γ

2
i

Var(ϵθ(x̃si , si))
Var(ϵθ(x̃ti , ti))

)
. (4.3)

Due to γi ∈ (0, 1] and SNR(ti) ≤ SNR(si), ∆H(p) ≤ 0 consistently holds under the assumption that
Var(ϵθ(x̃t, t)) ∝ σ2

t /α
2
t . Therefore, this improved iteration can more efficiently reduce conditional

entropy compared to the vanilla iteration by using subsequent model parameters in lower-variance
regions as guidance. Consequently, based on ∆H(p) ≤ 0, we have the following proposition.

5
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(a) Single-step Iteration on CIFAR-10 (Discrete)
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(b) Single-step Iteration on CelebA-64 (Discrete)

Figure 2: Comparisons of FID ↓ computed by RE-based and FD-based iterations demonstrate that
efficient entropy reduction consistently enhances image quality across various ablation scenarios.

10 steps 15 steps 20 steps

DDIM

FD-
based

RE-
based

Figure 3: Samples were generated from a pre-trained DM on the ImageNet 256×256 dataset using
noise-prediction parameterization with 10-20 single-step iterations. The sample results indicate that
RE-based iterations can improve sample quality by reducing the conditional variance.

Proposition 4.1 The iteration specified in Eq. (4.1) consistently achieves a more efficient reduction
in conditional entropy than the FD-based iteration. Then, an efficient improvement interval for γi

is recommended as
[

SNR(ti)
SNR(ti)+SNR(si)

, max{2·SNR(ti), SNR(si)}
SNR(ti)+SNR(si)

]
. For clarity, we identify this iteration that

enhances denoising efficiency by reducing conditional entropy as the RE-based iteration.
Accordingly, Proposition 4.1 demonstrates that the RE-based iteration can consistently surpass the
FD-based iteration in reducing conditional entropy. In the following, we provide the convergence
guarantees in Theorem 4.1 for the RE-based iteration, the proof is provided in Appendix C.2.
Theorem 4.1 If dθ (xt, t) satisfies Assumption C.1, the RE-based iteration constitutes a globally
convergent second-order iterative algorithm.
Consequently, although the RE-based iteration in Eq. (4.1) shares the same order of convergence as
the FD-based iteration, the primary distinction between the RE-based and FD-based iterations lies in
their handling of conditional variance, which improves the denoising diffusion process by enabling
more efficient conditional entropy reduction with the same model parameters.

4.2 Multi-step Iteration with Conditional Entropy Reduction
This section focuses on the multi-step iteration with a step size determined by the two adjacent time
points. Our discussion focuses on the conditional entropy reduction in multi-step iterations that
leverage data-prediction parameterization, as this approach has demonstrated its superiority through
our theoretical result presented in Proposition 3.4 and the empirical evidence from the earlier study in
Lu et al. (2022b). The difference analysis of multi-step iterations is provided in Appendix B.3.
Formally, the iteration with a step size determined by two adjoint time points can be written as:

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti

2
Bθ(ti, ti+1), (4.4)

6
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where Bθ(ti, ti+1) :=
dθ(x̃ti ,ti)−dθ(x̃ti+1 ,ti+1)

hti+1
. In this iteration, the step size |hti | is smaller than the step size

|hti − hti+1 | used in gradient estimation-based iterations for the single-step case. As smaller step sizes
reduce conditional entropy according to Eq. (3.10), the iteration in Eq. (4.4) offers greater potential
for improving the denoising process compared to single-step counterparts.
A straightforward improvement of the iteration in Eq. (4.4) can be formulated as follows:

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti

2
Bθ(ti, li), (4.5)

where dθ
(
x̃li , li

)
= ζidθ

(
x̃ti , ti

)
+ (1 − ζi)dθ

(
x̃ti+1 , ti+1

)
represents a linear interpolation of the model

parameters between times ti and ti+1. Similarly, the implicit improvement approach is as follows:

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti

2
Bθ(si, ti), (4.6)

where dθ
(
x̃si , si

)
= ζidθ

(
x̃ti−1 , ti−1

)
+ (1 − ζi)dθ

(
x̃ti , ti

)
. Note that both iterations can be unified as

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti

2
ζiB̄θ(ti; ui), (4.7)

where B̄θ(ti; ui) = Bθ(si, ti) when ui = si, and B̄θ(ti; ui) = Bθ(ti, li) when ui = li. Similar to the case of
single-step iterations, the following conditional entropy relation also holds for multi-step iterations.
Remark 2 The improved multi-step iterations in Eq. (4.7) reduce the conditional entropy of the
vanilla multi-step iterations in Eq. (4.4) by leveraging model parameters from low-variance regions.

However, a key question arises: how should ζi and ĥti be determined? In the data prediction model,
dθ

(
x̃ti , ti

)
is designed to directly predict the clean data x0 from the intermediate noisy data x̃ti . Since

x̃ti is perturbed by Gaussian noise with a standard deviation σti , σti reflects the amount of noise
present at time step ti. Then, for the interpolation of dθ

(
x̃si , si

)
, we have the following proposition.

Proposition 4.2 If assume that Var
(
dθ

(
x̃ti , ti

))
∝ σ2

ti , the minimizing variance can be achieved when

ζi =
σ2

ti−1

σ2
ti
+σ2

ti−1
for dθ

(
x̃si , si

)
. For dθ

(
x̃li , li

)
, the optimal choice of lower variance is ζi =

σ2
ti

σ2
ti
+σ2

ti+1
.

One key insight is that we can further improve the denoising iteration in Eq. (4.4) with gradient
estimation by incorporating Bθ(ti, si) and Bθ(si, ti) as follows:

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti

2
(ηiBθ(si, ti) + (1 − ηi)Bθ(ti, li)) . (4.8)

In Eq. (4.8), ηi determines the variance of the gradient term. From the perspective of conditional
entropy reduction, we can reduce this variance by establishing an optimization objective that measures
the differences between the corresponding states. Thus, in the next section, we will discuss the
optimized ηi and ζi based on the actual state differences observed during the iterative process.

4.3 Improving RE-based Iterations with Actual State Differences
In the previous sections, we derived the RE-based numerical iteration to reduce conditional entropy,
grounded in the model’s prior-like variance. In this section, the RE-based iteration is further optimized
by refining the model variance with the actual state differences observed during the iterative process.
Improving ζi with Evolution State Differences. Our goal is to refine ζi in the RE-based it-
eration. What follows is the optimized ζi by formulating an optimization objective. Denote
G(ζi) := ζidθ

(
x̃si , si

)
+ (1 − ζi)dθ

(
x̃ti , ti

)
, where ζi ∈ (0, 1]. On one hand, we can rewrite the

RE-based iteration as

f (x̃ti ) = f (x̃ti−1 ) − htiG(ζi) −
h2

ti

2
Fθ(si, ti). (4.9)

Notice that x̃ti in Eq. (4.9) is determined by ζi. On the other hand, we can consider x̃ti−1 as a starting
point and perform a inverse iterative from ti−1 to ti to approximate x̃ti . The inverse iterative formula is

f (xs) − f (xt) =
∫ κ(s)

κ(t)
dθ

(
xψ(τ), ψ(τ)

)
dτ. (4.10)

Similar to the score-integral iteration in Eq. (3.7), this inverse integral can be estimated by

∆̃reverse
ti = −htidθ

(
x̃ti−1 , ti−1

)
+

h2
ti

2
Fθ(si, ti−1). (4.11)
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Based on equations (4.10) and (4.11), we obtain a new estimation x̂ti for the state xti as follows:

f (x̂ti ) = f (x̃ti−1 ) − htidθ
(
x̃ti−1 , ti−1

)
+

h2
ti

2
Fθ(si, ti−1). (4.12)

Drawing inspiration from equations (4.9) and (4.12), we can determine ζi by minimizing the differ-
ences between two estimations. Then, the optimization objective for ζi is defined as follows:

min
ζi∈(0,1]

L1(ζi) :=
∥∥∥(x̃ti − xti ) + (x̂ti − xti )

∥∥∥
F , (4.13)

Directly solving this objective is challenging, as xti is unknown in practice. Fortunately, there exists
an tractable error upper bound (EUB) for L1(ζi). Specifically, denote L1s(ζi) := ∥x̃ti + x̂ti∥F , we have

L1(ζi) =
∥∥∥x̃ti + x̂ti − 2xti

∥∥∥
F ≤

∥∥∥x̃ti + x̂ti

∥∥∥
F +

∥∥∥2xti

∥∥∥
F = L1s(ζi) +

∥∥∥2xti

∥∥∥
F , (4.14)

where ∥2xti∥F can be viewed as a specific regularization term. Since ∥2xti∥F is independent of the
target ζi, we can optimize the vanilla L1(ζi) by minimizing L1s(ζi) according to Eq. (4.14). Then,
the optimized ζi can be obtained by solving minL1s(ζi) with a small regularization using x̃ti . For

example, denote P(x̃p
ti−1

) := x̂ti +
σti
σti−1

x̃p
ti−1
− σti

h2
ti
2 Fθ(si, ti), where x̃p

ti−1
can be obtained by prior

RE-based iteration. Then, the simplified optimization objective L1s(ζi) can be rewritten as:

L1s(ζi) =
∥∥∥P(x̃p

ti−1
) − σti htiG(ζi)

∥∥∥
F . (4.15)

Practical Considerations. In practice, the constraints on ζi can hinder its computational efficiency. To
address this, we adopt an optimization-guided streamlined approach for determining ζi. Specifically,
we observe that the optimization objective admits a closed-form solution, as presented in Lemma
4.1, when the constraints on ζi are relaxed. These constraints are then satisfied by applying an
activation function to map the closed-form solutions. This optimization-driven streamlined approach
not only captures the actual differences in states during the iterative process, but also circumvents the
computational cost of solving constrained optimization problems iteratively Boyd et al. (2011).

Algorithm 1 Denoising Diffusion Sampling by Variance-Driven Conditional Entropy Reduction.

Require: initial value xT , time schedule {ti}Ni=0, model dθ.
1: x̃tN ← xT , hti ← κ(ti−1) − κ(ti)
2: for i← N to 1 do
3: f (x̃ti ) ← f (x̃ti+1 ) + hti+1dθ

(
x̃ti+1 , ti+1

)
4: ζi = rihti , where ri is used to balance the prior-like variance, such as the log-SNR ratio.

5: f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti
2 Bθ(ti, li)

6: ηi = Sigmoid
(
|η∗i |

)
, where η∗i is computed using Eq. (4.19).

7: Bθ(ti)←
ηi
2 Bθ(si, ti) +

(
1 − ηi

2

)
Bθ(ti, li)

8: ζi = Sigmoid
(
|ζ∗i | − µ

)
, where µ is the shift parameter, and ζ∗i is computed using Eq. (4.16).

9: f (x̃ti−1 )← f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti
2 ζiBθ(ti)

10: end for
return : x̃0.

Lemma 4.1 The minimizing problem min
ζi
L2

1s(ζi) possesses the following closed-form solution:

ζ∗i = −
vecT (Di)vec(P̃i)

σti hti vecT (Di)vec(Di)
, (4.16)

where P̃i := P(x̃p
ti−1

) − σti htixθ
(
x̃ti , ti

)
, Di := xθ

(
x̃si , si

)
− xθ

(
x̃ti , ti

)
, and vec(·) denotes the vector-

ization operation. The proof details can be found in Appendix C.3.

Improving ηi with Balanced Difference Techniques. Our goal is to refine the RE-based iteration by
optimize ηi with the available information at current step. Denote ∆̃g

ti = ηiFθ(ti−1, ti)+(1−ηi)Fθ(ti+1, ti).
We can define the estimation error of derivative at point τti as E(ti−1, ti) := Fθ(ti−1, ti) − d

(1)
θ

(
xti , ti

)
.

For balancing the estimation errors, we formulate the following optimization objective:

min
ηi∈(0,1]

L2(ηi) := ∥ηiE(ti−1, ti) + (1 − ηi)E(ti+1, ti)∥F . (4.17)
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We can rewrite L2(ηi) as L2(ηi) =
∥∥∥∆̃g

ti − d
(1)
θ

(
xti , ti

)∥∥∥
F . Denote L2s(ηi) := ∥∆̃g

ti∥F . Then, we have

L2(ηi) =
∥∥∥∆̃g

ti − ϵ
(1)
θ

(
xti , ti

)∥∥∥
F ≤ L2s(ηi) +

∥∥∥d(1)
θ

(
xti , ti

)∥∥∥
F , (4.18)

where d(1)
θ

(
xti , ti

)
can be regarded as a specific regularization term independent of the target ηi. The

optimized ηi can be obtained by minimizing the tractable EUB term L2s(ηi). Similarly, for practical
considerations, we employ optimization-guided streamlined approach for determining ηi. We first
calculate the closed-form solution outlined in Lemma 4.2. The refined ηi is then obtained by mapping
these solutions into the constrained space using an activation function, such as the Sigmoid function.
Lemma 4.2 The minimizing problem min

ηi
L2

2s(ηi) possesses the following closed-form solution:

η∗i = −
vecT (F̃i)vec(Fθ(ti+1, ti))

vecT (F̃i)vec(F̃i)
, (4.19)

where F̃i := Fθ(ti+1, ti) − Fθ(ti−1, ti). The proof process is similar to that of Lemma 4.1.
Consequently, by integrating the optimized ζi and ηi into the iterations of Eq. (4.8), we obtain
the refined RE iterations. Algorithm 1 outlines this improved iteration process, which exhibits
second-order global convergence, and the proof details are provided in Appendix C.4.

5 Experiments
In this section, we experimentally validate our approach in both single-step and multi-step scenarios,
demonstrating that variance-driven conditional entropy reduction improves the denoising process
of pre-trained diffusion model in both pixel and latent spaces. This method effectively extends
the capabilities of existing training-free ODE samplers without incurring additional computational
overhead. We compare Algorithm 1 against the baseline methods on Stable Diffusion, as illustrated
in Figure 1. More implementation details and additional results are provided in Appendix D.

5.1 Single-step Iterations
In the single-step iterations, we adopt DPM-Solver Lu et al. (2022a) as our baseline, focusing
on denoising iterations based on noise prediction parameterization. Each step of the single-step
mechanism only requires information from the starting point and prior to the endpoint. To ensure
variance reduction in each step, we configure the step size ratio ri following the effective interval
defined in Proposition 4.1 and γi as specified in Proposition 3.2. As a specific instance of RE-
based iterations (Proposition 3.3), DPM-Solver has demonstrated its effectiveness over traditional
gradient-based iterations. We further validate RE-based iterations through experiments on CIFAR-10
Krizhevsky (2009), CelebA 64 Liu et al. (2015), and ImageNet 256 Deng et al. (2009), comparing
them against solvers such as DDPM Ho et al. (2020), DDIM Song et al. (2021a), and Analytic-DDPM
Bao et al. (2022). Results (Figures 2, 3, and 1) consistently show improved performance due to
improved variance reduction. On CIFAR-10, the RE-based iteration achieves a 3.15 FID with only
84 NFEs, surpassing DDPM’s Ho et al. (2020) 3.17 FID with 1000 NFEs, improving quality while
realizing approximately 10× acceleration. Additional comparisons are provided in Figure 4.

5.2 Multi-step Iterations
In the multi-step iterations, we primarily adopt DPM-Solver++ Lu et al. (2022b) as our baseline,
focusing on denoising iterations based on data-prediction parameterization. Leveraging the multi-
step mechanism enables us to utilize marginally more model information compared to single-step
approaches. This allows us to optimize conditional variance through actual state differences, thereby
circumventing the limitations imposed by prior-like variance assumptions. To demonstrate the
effectiveness of efficient conditional entropy reduction in improving the denoising process of DMs,
we propose Algorithm 1, which improves denoising diffusion sampling by leveraging the variance-
driven approach aimed at minimizing actual state differences. Notably, DPM-Solver-v3 Zheng
et al. (2023b) recently introduced a novel optimization-based parameterization scheme, distinct from
data-prediction and noise-prediction parameterizations, achieving impressive sampling performance,
particularly on CIFAR-10. Therefore, we adopt DPM-Solver-v3 as our baseline method for CIFAR-10
experiments, considering its demonstrated advantages in optimized parameterization on this dataset.
We evaluated the RE-based iterations against widely-recognized benchmark solvers, including
DPM-Solver++ Lu et al. (2022b), DEIS Zhang & Chen (2023), UniPC Zhao et al. (2024), and DPM-
Solver-v3 Zheng et al. (2023a) on both CIFAR-10 and ImageNet 256 datasets. The experimental
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results (Tables 3, 2) demonstrate that the variance-driven conditional entropy reduction consistently
improves sampling performance. Furthermore, we validated the effectiveness of our approach on
pre-trained models in the latent space, such as Stable Diffusion, with results illustrated in Figure 1.

12 15 20 5050 66 84 100 200 1000
NFE

2.7

3.15

4

5

6

7

8

FI
D

DDPM
Analytic-DDPM
DDIM
Analytic-DDIM
DPM-solver-2
DPM-so1ver-3
F-PNDM
ERA-Solver
RE-based-2 (ours)
RE-based-3 (ours)

Figure 4: Comparisons of FID ↓ for single-step
RE iterations on discrete DMs in CIFAR-10.

Discrete Continuous Cond. EDM
3.17 2.55 1.79

DDPM Hybrid PC EDM
3.26 2.64 1.79

F-PNDM DPM-Solver-v3 Heun’s 2nd
3.15 2.41 1.76

RE-based RE-based RE-based

Table 1: The comparison for the performance lim-
its of sampling methods on CIFAR-10 Krizhevsky
(2009) indicates that RE-based iterations can fur-
ther improve the denoising process.

Table 2: Quantitative results of the gradient estimation-based denoising iterations on ImageNet-256
Deng et al. (2009). We report the FID ↓ evaluated on 10k samples for various NFEs.

Method Model NFE
5 6 8 10 12 15 20

DPM-Solver++
Guided-Diffusion

15.69 11.65 9.06 8.29 7.94 7.70 7.48
UniPC

(s = 2)
15.03 11.30 9.07 8.36 8.01 7.71 7.47

DPM-Solver-v3 14.92 11.13 8.98 8.14 7.93 7.70 7.42
RE-based 13.98 10.98 8.84 8.14 7.79 7.48 7.25

Table 3: Quantitative results of the gradient estimation-based denoising iterations on CIFAR10. We
report the FID ↓ evaluated on 50k samples for the different NFEs. We directly borrow the results of
reported in the original paper of other methods.

Method Model NFE
5 6 8 10 12 15 20

DEIS 15.37 \ \ 4.17 \ 3.37 2.86
DPM-Solver++

ScoreSDE
28.53 13.48 5.34 4.01 4.04 3.32 2.90

UniPC 23.71 10.41 5.16 3.93 3.88 3.05 2.73
DPM-Solver-v3 12.76 7.40 3.94 3.40 3.24 2.91 2.71
RE-based 13.54 8.56 4.11 3.38 3.22 2.76 2.42
Heun’s 2nd 320.80 103.86 39.66 16.57 7.59 4.76 2.51
DPM-Solver++

EDM
24.54 11.85 4.36 2.91 2.45 2.17 2.05

UniPC 23.52 11.10 3.86 2.85 2.38 2.08 2.01
DPM-Solver-v3 12.21 8.56 3.50 2.51 2.24 2.10 2.02
RE-based 11.82 8.30 3.46 2.48 2.21 2.07 2.01

Conclusions
In this paper, we introduce a novel framework that leverages variance-driven conditional entropy
reduction to improve the sampling performance of pre-trained diffusion model without the need for
retraining. Our theoretical analysis establishes that minimizing conditional entropy in the reverse
process of diffusion models leads to more accurate and efficient denoising, which provides a principled
foundation for optimizing this process. Building on these insights, we propose a Reduced Entropy
(RE) approach for sampling of diffusion models, which improves the denoising process through
efficient conditional variance minimization. Our method achieves state-of-the-art performance across
multiple benchmark training-free methods, demonstrating promising improvements in both sampling
speed and generation quality. While our approach yields promising results in image generation tasks,
the full potential of conditional entropy reduction-based sampling methods remains to be explored.
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