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Abstract

The upcoming facilities like the Vera C. Rubin
Observatory will provide extremely deep photom-
etry of thousands of star clusters to the edge of the
Galaxy and beyond, which will require adequate
tools for automatic analysis, capable of perform-
ing tasks such as the characterization of a star
cluster through the analysis of color-magnitude
diagrams (CMDs). The latter are essentially point
clouds in N-dimensional space, with the number
of dimensions corresponding to the photometric
bands employed. In this context, machine learn-
ing techniques suitable for tabular data are not im-
mediately applicable to CMDs because the num-
ber of stars included in a given CMD is variable,
and equivariance for permutations is required. To
address this issue without introducing ad-hoc ma-
nipulations that would require human oversight,
here we present a new CMD featurization pro-
cedure that summarizes a CMD by means of a
quadtree-like structure through iterative partitions
of the color-magnitude plane, extracting a fixed
number of meaningful features of the relevant
subregion from any given CMD. The present ap-
proach is robust to photometric noise and contami-
nation and it shows that a simple linear regression
on our features predicts distance modulus (metal-
licity) with a scatter of 0.33 dex (0.16 dex) in
cross-validation.
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1. Introduction
The photometric study of stellar populations typically relies
on point-spread-function fitting to measure magnitudes in
relevant bands. These are then combined to derive color-
magnitude diagrams (CMDs) which are used to reconstruct
stellar population characteristics. By comparing theoretical
stellar evolutionary tracks and isochrones with the location
of CMD landmarks (in terms of color and magnitude) such
as the Red Clump, Horizontal Branch, turn-off, etc. we
can estimate the age, metallicity, reddening, and distance in
resolved Open Clusters (OCs) and Globular Clusters (GCs;
e.g. Cassisi & Salaris, 2013). Properties, such as the
width of the evolutionary sequences or turn-off broadening,
measure binary fraction or dispersion in age, metallicity,
and rotational velocity (e.g. Milone et al., 2012).

Currently, the highest quality CMDs are derived from Hub-
ble Space Telescope (HST) photometry which, however,
was far limited to very small sections of the clusters given
the small field of view (FOV; 2x2 arcmin) and WFC3 –
HST’s most advanced camera– that has a magnitude limit
of up to V∼25.5. On the other hand, the upcoming facility
Vera C. Rubin Observatory will have a FOV of 9.6 square de-
grees and a magnitude limit of 27.5 in the r band over most
of the southern hemisphere. Then, it is expected to yield
accurate turn-off photometry of all star clusters in its survey
volume out to the edge of the Milky Way (MW). Alongside
opportunities, the volume of data (roughly 20 TB/night) col-
lected will bring extraordinary challenges in data handling,
and developing new approaches to reduction and analysis
strategies.

In particular, the most common approaches to studying
CMDs of stellar clusters are optimized for much smaller
datasets and hence samples of stars which generally require
a high degree of human intervention in parsing and exam-
ining the data. These present substantial drawbacks: high
latency on large datasets, some subjectivity in the CMD
landmark definitions, and in turn on properties measure-
ment, in the outlier treatment, etc. The latter issue has been
recently addressed by several authors by using a Bayesian
approach (Bailer-Jones, 2011), however, it does not fully re-
move the need to define the location of CMD landmarks and
it is time-demanding. Other techniques have been proved,
such as the ASteCa package (Perren, 2015), nevertheless,
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it is not time-efficient and it presents problems handling
CMDs with differential reddening.

In this context, we present a new method for calculating a
set of numeric features from a given CMD with the main
goals of speed and robustness to deviations from ideal con-
ditions. Our approach is based on recursively partitioning
the CMD plane splitting the relevant coordinate -color or
magnitude- at its median. This bears a close similarity with
the computation of a quadtree data structure. It can be easily
extended to higher dimensions -for instance in the case of
multi-band photometry.

1.1. State of the art

CMDs are the result of extracting photometric information
from images. The latter can in principle be directly fed
into a convolutional neural network (see e.g. Chardin &
Bianchini, 2021), but CMDs have superior interpretability
for astronomers and fit well into established data-analysis
pipelines. Arguably, the first widely adopted architecture
able to deal with point cloud data with the characteristics
of the typical CMD is the deep set architecture (Zaheer
et al., 2017). Looking for citations to this paper within the
Astronomy Library at the Harvard abstract service returns
a grand total of nine papers (on Wed, Jun 14, 2023). All
of these are in cosmology, except for van Groeningen et al.
(2023), which applies to membership determination in OCs
using Gaia DR3 data (Gaia Collaboration et al., 2022). In
general, deep sets and other deep learning approaches, such
as graph neural networks (see Wu et al., 2021, for a review)
are not built from the ground up for interpretability. It is
thus understandable that astronomers look for interpretable
featurization of CMDs; nonetheless, to be useful, these
must be computed efficiently and without ad-hoc human
interventions.

2. Data
As a benchmark for our featurization approach, we selected
the photometric sample from the HST Treasury GO10775
“An ACS Survey of Galactic Globular Cluster” (Sarajedini
et al., 2007), in its release through the database from the
HST Treasury Program GO 13297 (Piotto et al., 2015). For
details of the observations and data reduction, we refer the
interested reader to Nardiello et al. (2018). We retrieved
photometric catalogs in the ACS F606W and F814W bands
for a total of 56 GCs, with [Fe/H] ranging from ∼ −2.3
to ∼ −0.3 dex, distance modulus (DM) (m-M)V from 12.3
to 17.6 mag and reddening E(B-V) from negligible to ∼
0.7mag. To minimize the field contamination we considered
as a cluster member, stars with a membership probability
higher than 0.95 (based on Nardiello et al., 2018).

Algorithm 1 Median split
Input: x,y,k
Output: Median Value

1: m← median(x);
2: if k > 0 then
3: m1← f(y[x < m], x[x < m], k − 1)
4: m2← f(y[x ≥ m], x[x ≥ m], k − 1)
5: returnedV als← [m, m1, m2];
6: return returnedV als
7: else
8: return m

3. Method
To convert CMDs into a fixed set of features, we calculate
the median color and then split the CMD into two parts
based on this median. Our featurization approach is ren-
dered in pseudocode in algorithm 1 and illustrated visually
in Fig. 1. For each resulting half, we repeat the process and
calculate the median magnitude. This process is repeated
recursively –by the function f– until a desired level (fixed
by the user) of detail is reached. Because each split divides
the number of points by two, increasing the depth may yield
features that depend on the colors and magnitudes of just
a few stars. Thus the depth of the recursion, k, should
be set with the total number of stars in the CMD in mind,
which may range from 102 to 105 for OCs and GCs, respec-
tively. It is worth noticing that the recursion depth defines
the dimensionality of the feature vector which in the present
analysis ranges from 2 to 7. Then, the features have a fixed
size avoiding the variable size of point clouds.

The median calculation drives the time complexity of the
algorithm once the depth of the recursion is set. The median
can be found by sorting in O(N logN) or using special-
ized algorithms such as quickselect or median of medians
which reach O(N) in the typical case but with a worst
case of O(N2) (Blum et al., 1973). The sampling error
of the median decreases as 1/

√
N , similarly to that of the

mean, under the assumption of normality, even though with
a slightly larger constant of ≈ 5/4. However, a great advan-
tage of computing medians is that they are robust to outliers,
having a breaking point of 0.5. Outliers due to contamina-
tion, blending, and photometric errors are commonplace in
CMDs, making our featurization procedure particularly suit-
able for this application. In the following, we run a series of
empirical tests to corroborate this theoretical expectation.

4. Results
• Speed: We tested this empirically on a low-

performance machine -an early 2015 MacBook Air.
The algorithm was implemented as a recursive func-
tion in R (version 3.5.1), an interpreted language not
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Figure 1. Graphical illustration of our feature extraction procedure on the CMD of NGC 104. From the top left to bottom right the depth
increases from 3 to 9. The lines represent the medians and are extended to the range of the data in each leaf of the quadtree. They are
labeled with the respective depth in the top left panel: for instance, the vertical line labeled 1 corresponds to the median color of the CMD,
the two horizontal lines labeled 2 correspond to the median magnitudes of the stars to the left and to the right of the line labeled 1, etc.
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Figure 2. Wall time required to compute our features as a function
of the number of stars in the CMD (in units of 1000 stars), with
an R implementation as a recursive function on an early 2015
Macbook Air. Black, green, and blue symbols correspond to runs
with a depth of 3, 5, and 7 respectively. The superimposed solid
lines represent a linear regression to each group.

optimized for performance. We also note in passing
that the process of computing our features can be easily
parallelized, because after each split we have two 2D
point clouds that can be processed independently from
each other; however, the code we used for the test was
not parallelized, and run serially on one core only. To
this end, we consider a random point cloud containing
up to 105 stars. The scaling appears linear in the num-
ber of stars (See Fig. 2), taking about 0.186± 0.008,
0.32 ± 0.02, and 0.44 ± 0.02 µs per thousand stars
processed for a tree of depth 3, 5, and 7 respectively.
This suggests that our features could be calculated in
real-time at the end of a pipeline that processes raw
data into CMDs, adding little overhead.

• Robustness to contamination: We measure the effects
of contamination by foreground stars on our features
by taking the one CMD of the sample (NGC 104) and
adding contaminants in varying proportions. We use
trilegal (e.g., Vanhollebeke et al., 2009) to model
MW contamination in the direction of NGC 104 for
this purpose. In this test, we analyze the effect on the
color and magnitude medians calculated after adding
a fraction of contaminants corresponding to 1%, 5%,
10%, and 20% on our features using a quadtree of
depth 5 (see Fig. 3 and Fig. 4). The results show

that low to moderate contamination levels disrupt only
a subset of features, leaving the others intact. The
disrupted features correspond to deeper levels of the
quadtree, where the median has been calculated on a
limited number of stars. Given that the breakpoint of
the median corresponds to 50% of the data, even in
the worst-case scenario where an adversary can place
contaminants arbitrarily, N/2k+1 contaminants are re-
quired to affect a median at depth k (having defined
k = 0 as the root of the tree containing the whole
CMD) because such a median is calculated on N/2k

stars. We thus expect a contamination level of at least
100/25 ≈ 3.1% to be required to affect a single feature.
Our test empirically demonstrates this, where contam-
ination at 1% essentially does not affect our features,
and contamination at 5% makes one color median and
one magnitude median deviate, with the other features
essentially unaffected.

• Robustness to photometric error: We added artificial
photometric error to the CMD of NGC 104 to mimic
the observational ones.

• Reddening and differential reddening: Since our fea-
tures are the color and magnitude medians on relevant
rectangular patches in the CMD plane –in the presence
of a constant reddening– they respond to this rigid
translation with a constant shift. For instance, for a
reddening of E(B-V)=0.1, the reddening vector in the
V, B-V plane would be (0.1, 0.31), so the color and
magnitude features will be increased by 0.1 and 0.31,
respectively. For differential reddening by adding ran-
dom Gaussian noise to the modulus of the reddening
vector while keeping its direction constant. Because
our features are medians on the N stars that fall in
the relevant quadrant, their sampling error is related to
the individual error on stellar magnitudes and colors
as σf = c σi√

N
assuming that the individual error is

normal, with c ≈ 5/4. Since the branching of the tree
at depth k calculates the median color or magnitude of
M/2k stars where M is the total number of stars in the
CMD, even at k = 6 which is the maximum value we
considered, N ≈ 16 even if M = 103. This reduces
the error by more than a factor of 3, and most points
fall within the one-sigma.

• Dimensionality reduction of a set of GC CMDs: We
performed t-SNE analysis on our features with a tree of
depth 3 on a sample of 56 GCs. Fig. 5 shows the t-SNE
plot which displays a visually compelling structure that
suggests a meaningful distribution of the data points in
the feature space1, with similar-looking CMDs often

1Note, however, that the appearance of the plot depends on
t-SNE hyperparameter perplexity, which was set to 3 in our case,
purposefully singling out small groups of similar CMDs.
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Figure 3. Effect on our color features of adding artificial contamination to the CMD of NGC 104, from the top left to the bottom right 1%,
5%, 10%, and 20% respectively.
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Figure 4. Effect on our magnitude features of adding artificial contamination to the CMD of NGC 104, from the top left to the bottom
right 1%, 5%, 10%, and 20% respectively.
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appearing near each other.

• Supervised regression on a set of GC CMDs: We cal-
culated our features with a tree of depth 3 on a sample
of 56 GCs, resulting in 7 features for each GC. We
trained a simple linear regression model. Fig. 6 shows
the predicted [Fe/H] (left panel) and DM (left panel)
on our data set, evaluating its performance in terms of
rms error in leave-one-out cross-validation. Even with
a simple model the scatter in predicted metallicity is
0.16 dex and in distance modulus 0.33 mag.

Figure 5. Outcome of t-SNE applied to quadtree feature space for
our sample of 56 CMDs. Each CMD is plotted centered on the
t-SNE coordinates on the plane. Similar CMDs appear to cluster
together.

5. Discussion and conclusions
Astronomy has recently seen a progressive increase in ma-
chine learning applications, driven by the availability of
tools and the sheer volume of data. While the use of
deep learning tools for the analysis of images and spec-
tra is now commonplace, point cloud data is lagging behind.
While point-cloud deep learning approaches (e.g. Guo et al.,
2020) can be tailored to astronomical data, astronomers
doubtlessly find value in extracting tabular features from
point clouds, as in the case of color-magnitude diagrams.
For this application, no out-of-the-box solution is available
at present. In this work, we presented a featurization ap-
proach that is fast to compute, effective in concisely describ-
ing the data, and robust to photometric error and outliers. We

demonstrated these properties empirically on actual astro-
nomical data and articulated their theoretical underpinning
where applicable. This technique overcomes the problems
present in the methods used in astronomy for this kind of
analysis such as the time-consuming and data handling.
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