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ABSTRACT

In the standard transformer architecture, increasing model parameters leads to lin-
ear growth in computational cost and activation memory. To address this issue, we
propose a novel Infinite Parameter Large Language Model (IP-LLM) architecture
that decouples model size from computational cost and device memory.
Existing large language models are all fixed-parameter models, while human
knowledge is infinite and expands daily. Finite parameters are inherently lim-
ited in their capacity to accommodate this boundless knowledge. Our IP-LLM
architecture can potentially accommodate infinite knowledge, resolving this issue
and laying the foundation for realizing a truly omniscient and omnipotent artificial
general intelligence in the future.
Our architecture achieves performance comparable to MOE (Clark et al., 2022)
while requiring significantly less memory.

1 INTRODUCTION

The emergence of Large Language Models (LLMs) has fundamentally transformed the landscape
of natural language processing, demonstrating exceptional performance across a wide range of real-
world applications (OpenAI, 2023; Chowdhery et al., 2023).

However, contemporary Large Language Models possess fixed parameter sizes, resulting in static
knowledge upon completion of training. In contrast, human knowledge continuously expands, ren-
dering models that require millions of dollars for training obsolete in a relatively short period, which
is a considerable waste of resources.

Updating knowledge in fixed-parameter Large Language Models poses significant challenges due
to catastrophic forgetting (De Lange et al., 2021), often resulting in a decline in their original
general capabilities (Cheng et al., 2023; Dong et al., 2023). This necessitates a methodology that
enables large models to retain previously acquired knowledge while simultaneously facilitating the
continuous learning of new information.

Scaling laws for neural language models show the power of scaling (Kaplan et al., 2020; Hoffmann
et al., 2022): increasing the number of parameters, amount of training data, or the computational
budget has proven to be a reliable way to improve model performance. However, there is a linear
relationship between computational footprint, as measured by FLOPs and device memory consump-
tion, and parameter count.

To address these challenges, we propose a novel Infinite-Parameter Large Language Model (IP-
LLM) architecture. Unlike traditional fixed-parameter models, IP-LLM cleverly decouples the rela-
tionship between the model parameter scale and the linear cost of computation and device memory.
Our core strategy is to divide the model parameters into multiple independent experts, with each
expert responsible for storing knowledge in a specific category. During inference, IP-LLM only
loads the experts relevant to the current task, significantly reducing computation costs and memory
consumption.

Specifically, IP-LLM employs a routing-based dynamic parameter selection mechanism. This mech-
anism first determines the category of the input text based on its content and context. Then, IP-LLM
loads only the expert parameters corresponding to the relevant category for computation, while
experts unrelated to the current task remain unloaded. This dynamic parameter loading approach
enables the model to effectively handle an infinite amount of knowledge without being constrained
by memory and computational resources. This is conceptually similar to the Mixture of Experts
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(MoE) approach, but our method is more efficient as it leverages the large model’s language un-
derstanding capabilities to perform routing, rather than relying on only a subset of parameters as in
MoE, thereby improving routing accuracy. Additionally, we adopt a staged pretraining strategy, first
pretraining basic language knowledge, then training domain-specific knowledge, and reducing the
total parameter count by sharing parameters.

Through this design, IP-LLM enables the realization of an ”infinite-parameter” large language
model, while requiring only minimal inference memory and computational cost.

The model architecture is shown in Figure 1 . To validate the feasibility of this architecture, we
partitioned the data into 22 categories and designed a 24B-parameter model. The model comprises
24.5 billion parameters, of which 7.2 billion are dedicated to the base component, 0.7 billion to
the routing component, and the remaining 16.6 billion are distributed across 22 distinct categories.
During inference, only the 7.2B base, 0.75B router, and the parameters for a single data category
(0.75B) are loaded into memory, totaling 8.7B.

This represents a 65% reduction in both inference memory and computational cost compared to a
fixed 24.5B parameter model.

Compared to an MoE model with 24.5B parameters and 22 experts, the inference memory consump-
tion is significantly reduced.

Figure 1: Parameters A, B, C, and D store knowledge for different categories. When reasoning about
Category A problems, only parameter A needs to be loaded into memory, eliminating the need to
load all parameters.

This paper makes the following contributions:

• Inspired by the routing mechanism of MoE, this paper proposes a novel approach that
leverages all model parameters for routing, instead of a subset, significantly enhancing
routing accuracy.
The method involves first utilizing prompt words to enable the model to predict and classify
the input text into a specific domain, followed by inference using parameters specialized
for that domain.

• We proposes a segmented pretraining framework, separating the pretraining process into
two phases. The first phase emphasizes the acquisition of foundational linguistic knowl-
edge, including lexical, grammatical, and syntactic elements, as well as basic world knowl-
edge. The second phase then focuses on learning knowledge built upon this linguistic
foundation.

• We propose a novel infinite-parameter large language model capable of lifelong learning
without catastrophic forgetting, by strategically training new knowledge onto fresh param-
eters.
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• This innovation results in a drastic reduction in both training cost and inference memory
consumption for the large language model. We observe a significant decrease in training
cost, while inference memory consumption is lowered by approximately 65%.

2 RELATED WORK

2.1 CATASTROPHIC FORGETTING

Preventing catastrophic forgetting during training remains a classic challenge in deep learning. Since
2018, numerous studies have explored strategies to mitigate this issue for Large Language Models
(LLMs). For instance, (Yang et al., 2024) introduced a self-distillation method that addresses the
distribution gap between task datasets and LLMs, effectively reducing catastrophic forgetting while
maintaining general capabilities.

In empirical investigation, (Luo et al., 2024) revealed that as the scale of Large Language Models
(LLMs) increases during continual instruction tuning, the incidence of catastrophic forgetting be-
comes more pronounced. They suggested that employing general instruction tuning could alleviate
this challenge.

(Hsieh et al., 2023) introduced a novel approach for training smaller models, demonstrating that
these models can outperform LLMs with less training data by utilizing rationales extracted from
LLMs as additional supervision. Furthermore, (Wang et al., 2023b) demonstrated O-LoRA, a
method designed to mitigate catastrophic forgetting by learning new tasks in orthogonal subspaces,
thereby minimizing interference with previously acquired knowledge.

2.2 MIXTURE OF EXPERTS

Several recent works (Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al., 2022; Zhou et al.,
2022) have adopted the Mixture-of-Experts (MoE) architecture to decouple computational cost from
parameter count.

(Geva et al., 2021; Dai et al., 2022) argue that feedforward (FFW) layers store factual knowledge
.These layers constitute approximately two-thirds of the total parameters in a transformer architec-
ture. The Mixture-of-Experts (MOE) architecture deviates from the traditional single dense feedfor-
ward network (FFW) by utilizing a set of sparsely activated expert modules, frequently implemented
as FFWs.

(Clark et al., 2022) investigated the scaling properties of MoE language models, demonstrating that
increasing the number of experts can effectively enhance performance without incurring additional
inference costs. However, their experiments revealed that the efficiency gains offered by MoEs
plateau after reaching a particular model size.

More recently, (Krajewski et al., 2024) identified that this plateauing phenomenon was a conse-
quence of using a fixed number of training tokens. Their findings demonstrate that when the number
of training tokens is optimized for computational efficiency, MoEs consistently outperform dense
models in terms of FLOPs (floating-point operations) per parameter. Furthermore, they introduced
granularity, the number of active experts, as a novel scaling dimension. Their empirical studies
revealed that employing higher granularity leads to improved performance.

2.3 PROGRESSIVE LEARNING

The concept of progressive training has attracted significant attention for its potential to expedite the
training of large-scale models in both computer vision (Zhang et al., 2023) and natural language
processing (NLP) (Yao et al., 2023; Li et al., 2023).

A stacking technique that successively doubles model depth was proposed by (Gong et al., 2019).
Enhancing this approach, CompoundGrow (Gu et al., 2020) integrates Feed-Forward Network ex-
pansion into its scheduling framework. Moreover, (Shen et al., 2022) introduced a method that
supports the expansion of hidden sizes in a staged manner. Notably, both Bert2BERT (Chen et al.,
2021) and LiGO (Wang et al., 2023a) are designed to accommodate all dimensions of growth.
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2.4 LIFELONG LEARNING / CONTINUAL LEARNING USING MOE

(Chen et al., 2023) proposed using MoE (Mixture of Experts) for lifelong learning in large language
models (LLMs), referred to as ”Lifelong MoE.” However, it has limitations: it can only mitigate
catastrophic forgetting but cannot prevent it entirely. Moreover, adding new experts may lead to
performance degradation in routing for old tasks. The innovations of ”IP-LLM” lie in the following
aspects:

Infinite Parameter Model Architecture : IP-LLM introduces the concept of infinite parameters
by grouping parameters and using on-demand loading. During inference, only the required param-
eters are loaded, theoretically surpassing the limitations of model size. While Lifelong MoE also
expands the model by adding experts, its total parameters remain finite.

On-Demand Parameter Loading : A core innovation of IP-LLM is its on-demand parameter
loading mechanism. The model’s parameters are divided into multiple groups, with each group
corresponding to a specific type of knowledge or domain. During inference, only the parameter
groups relevant to the current task are loaded, significantly reducing memory usage. Although
Lifelong MoE also utilizes a subset of experts during inference, it requires all experts to be loaded
into GPU memory, limiting parameter scalability.

Improvements in Pretraining : IP-LLM introduces a staged pretraining framework. It first learns
fundamental language knowledge (e.g., vocabulary, grammar), then trains parameters on different
data categories separately, and finally integrates them. This approach helps reduce the parameter
size of individual experts.

Avoiding catastrophic forgetting : Adding new experts can be done without modifying the pa-
rameters of existing experts, thereby preventing catastrophic forgetting.

2.5 OTHER RESEARCH

The Branch-Train-Merge (BTM) (Li et al., 2022) method decomposes large language models
(LLMs) into multiple independent expert models, which are trained in parallel and then merged
for inference. The main goal is to accelerate training. There are two merging approaches: **En-
semble**, where all models are run and their results are weighted and averaged, leading to high
inference costs; and **Parameter Averaging**, where the parameters of all expert models (ELMs)
are weighted and averaged before running, reducing inference costs but leading to worse perfor-
mance.

The downside is that the merging process often leads to performance degradation. Using different
weights for different ELM models can alleviate this issue, but selecting the optimal weights still
depends on the specific task and dataset, which is cumbersome.

Branch-Train-MiX (BTX) (Sukhbaatar et al., 2024) is an improvement of BTM, where the merging
process is changed to turn ELMs into experts in an MoE model, adding a token-level routing mech-
anism and then fine-tuning. However, the drawback is that averaging parameters across different
layers of the ELMs can lead to performance degradation, making it unstable. After merging into
MoE, the parameter size increases significantly, requiring much more memory.

BTM, BTX, and IP-LLM differ significantly, mainly in the following aspects:

Difference in Objectives : The primary aim of BTM and BTX is to improve training speed.
In contrast, the main goal of IP-LLM is to achieve an infinitely large model, dynamically adding
parameters, avoiding catastrophic forgetting when learning new domain knowledge, and requiring
minimal retraining.

Architectural Differences : In BTM and BTX, the parameters of different ELM models are inde-
pendent, with no shared parameters, leading to inefficient use of parameters.
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In IP-LLM, different experts share most parameters, with common parameters for general language
skills and basic knowledge, and only a small set of domain-specific parameters differing, making it
highly efficient.

After training, BTM and BTX require merging, which can cause unpredictable performance losses.
In contrast, IP-LLM does not require merging and avoids such performance loss.

Routing Differences : IP-LLM uses the language understanding ability of large language models
for routing, rather than relying on just a few simple layers of neural networks, resulting in much
higher accuracy.

3 TASK DEFINITION

3.1 THE TRANSFORMER BLOCK

The transformer block yields an output y for an input x, as articulated by the following equations.
It is structured with a multi-head self-attention (MHSA) mechanism, followed by a position-wise
feed-forward network (FFN) that integrates residual connections and utilizes a Swish-Gated Linear
Unit (SwiGLU) operation.

x′ = x+ MHSA(RMSNorm(x))

y = x′ + FFN(RMSNorm(x′))
(1)

The multi-head self-attention (MHSA) operation constitutes a critical component of the transformer
architecture and is defined as follows. The input x has a dimension of n×d, with n representing the
sequence length and d denoting the hidden size. The output y retains the same dimensionality as the
input x.

MHSA(Q,K, V ) = Concat(head1, . . . , headh)WO (2)

where Q, K, and V represent the query, key, and value matrices, respectively, and WO denotes the
output weight matrix, which is applied without bias.Each head is computed as follows:

headi = Attention(xWQ
i , xWK

i , xWV
i )

Attention(Qi,Ki, Vi) = Softmax
(
QiK

T
i√

dk

)
Vi

(3)

where the corresponding weight matrices for the i-th head are denoted as WQ
i , WK

i , and WV
i .

The SwiGLU activation function, which is defined as follows, is utilized in the FFN block of the
transformer block:

SiLU(x) = x⊗ σ(x)

SwiGLU(x,W, V ) = SiLU(xW )⊗ (xV )

FFN(x) = SwiGLU(x,W1,W2)W3

(4)

where W1, W2, and W3 are the weight matrices without bias,⊗ denotes element-wise multiplication
.

3.2 ROUTING MECHANISM

Our model utilizes a mechanism for selective parameter loading during inference, enabling success-
ful reasoning even under memory constraints. Only a small subset of parameters is required to be
retained in memory.

We define a given model f that comprises three sets of specified models fbase,frouter, many expert
models( fA,fB ,fC ,fD ,fE ...) and a set of input-output pairs (x, y). we can define this process as:
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x′ = fbase(xi) (5)

fbase represents the inference process of the parameters in the base part. The input x is subject to
parsing via the fbase

R = frouter(x
′) (6)

frouter represents the inference process of the parameters in the routing part. After passing through
the frouter, we obtain R, which signifies the category to which the input belongs.

f(xi) =



fA(x
′) if R = TokenA

fB(x
′) if R = TokenB

fC(x
′) if R = TokenC

fD(x′) if R = TokenD

fE(x
′) if R = TokenE

...

x′ if R ∈ other

(7)

fA represents the inference process of the parameters that encode domain knowledge from A.fB and
fC follow the same pattern. Based on the determined category, it select corresponding parameters
for inference.

3.3 KNOWLEDGE UPDATING

For traditional fixed-parameter models, if you need to add knowledge in a specific category, it in-
evitably causes a decrease in the performance of knowledge in other categories . However, our
model can enhance the performance of a specific category without affecting the performance of
other categories. Because in our model, knowledge from different categories is stored in different
parameters, they don’t affect each other. When there is a need to update knowledge in a specific
category, such as category B, only fB needs to be adjusted. Parameters for other categories do not
need to be changed, and it won’t affect the performance of other categories. If the knowledge in cat-
egory b increases significantly, additional parameters can be added to fB , and fB can be retrained.
Parameters for other categories do not need to be modified.

3.4 LEARNING KNOWLEDGE IN A NEW CATEGORY

The routing token set is open. When we need to generalize to unseen categories, we only need to
add a set of parameters fY and a routing token TokenY. Then, train this set of parameters with the
new knowledge and retrain the router using the labels of both the new and old knowledge.

R = fnew
router(x

′) (8)

f(xi) =



fA(x
′) if R = TokenA

fB(x
′) if R = TokenB

fC(x
′) if R = TokenC

fD(x′) if R = TokenD

fE(x
′) if R = TokenE

...

fY (x
′) if R = TokenY

...

x′ if R ∈ other

(9)
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3.5 GENERALIZE TO INFINITELY MANY CATEGORIES

When a large number of categories are added, if the routing accuracy decreases, it can be ensured
by appropriately increasing the parameter capacity of frouter and retraining it.

4 TRAINING STRATEGY

Training data The data is filtered from open-source datasets, including The Pile, Skypile, Re-
finedWeb, RedPajama and common crawl, as well as some synthetic data.Approximately 1 trillion
tokens in total.

The dataset is comprised of two distinct components. The first part focuses on training a base
model, emphasizing foundational linguistic knowledge including vocabulary, grammar, syntax, and
basic world knowledge. The second part consists of domain-specific knowledge, used to train the
router and specialized parameters for each domain.

base model As a first step,in consideration of computational resource constraints, we employ
the Qwen1.5-beta-7B-Chat (Bai et al., 2023) model ,a pre-trained language model with strong
performance in various tasks,as the base model.

Expert layer Subsequently, we replicate the last transformer layer of the base model four times
and append these four transformer layers to the end of the base model’s last transformer layer. We
then mix domain-specific data and general data in a defined proportion to train the parameters of
these four layers, thereby facilitating the acquisition of specialized knowledge, while the remaining
parameters are kept frozen.

routing layer After training, the new four transformer layers replace the previous four layers, and
the process is repeated for other domains.

Finally, we add four transformer layers after the last transformer layer of the base model to serve
as a router. This router is trained using a dataset composed of all domain-specific data, where each
data point is labeled with its corresponding domain.

5 EXPERIMENTS

5.1 DATASETS

For evaluation, we use the few-shot performance on multiple benchmarks that test different skills:

Popular aggregated results:MMLU (Hendrycks et al., 2020) (5-shot) and C-Eval (Huang et al.,
2024) (5-shot)

Math: GSM8K (Cobbe et al., 2021) (8-shot) with maj@8 and MATH (Hendrycks et al., 2021)
(4-shot) with maj@4

The evaluation results (as shown in Figure 2) indicate that our trained model demonstrates per-
formance comparable to the dense model. However, both the training cost and inference cost are
significantly reduced.

5.2 COMPARISON WITH MOE

IP-LLM and MoE share the concept of expert networks but differ in several key aspects:

ROUTING MECHANISM:

IP-LLM uses the base model for general language understanding in conjunction with routing pa-
rameters, resulting in a significantly larger total parameter size compared to MoE, which typically
uses only a small subset of parameters. This leads to higher routing accuracy in IP-LLM and more
efficient utilization of the model’s existing parameters.MoE performs routing at every layer of the

7
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Figure 2: Comparison.

transforms, while IP-LLM only performs routing once during sentence generation, until the predic-
tion is complete.

For example,the routing mechanism in IP-LLM 24B utilizes a 7.2B base model and a 0.7B router,
amounting to a total of 7.9B parameters, which accounts for approximately 33% of the total 24B
parameters. In contrast, the MOE architecture only adds a few fully connected layers before the
expert layers as its router. Based on our calculations, the routing parameter size of Mixtral 8x7B is
less than 1B, significantly smaller than that of our model. Therefore, in theory, the routing precision
of our IP-LLM model is far superior to that of MOE.

KNOWLEDGE UPDATING:

IP-LLM enables incremental learning of new knowledge by adding new parameter blocks, requiring
only the training of new parameters and the router. In contrast, MoE generally requires retraining
the entire model. This makes IP-LLM more adaptable to evolving environments and knowledge.
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MEMORY EFFICIENCY:

During inference, MoE requires loading all parameters into memory, while IP-LLM only loads a
subset of parameters, making it more memory-efficient than MoE.

COMPUTATIONAL EFFICIENCY

Both MoE and IP-LLM involve only a subset of parameters in computation. The actual computa-
tional efficiency depends on the number of experts and the proportion of expert parameters to the
total parameters. When the total amount of expert parameters and the number of experts are the
same, MoE requires activating at least two experts and averaging their outputs during computation,
which leads to computational waste. In contrast, IP-LLM only needs to activate a single expert,
making its computational efficiency higher.

5.3 ABLATION STUDY

5.3.1 ROUTING STRATEGY

Routing at each Transformer layer : In MOE, the routing strategy selects a route at each Trans-
former layer, which makes it impossible to predict which expert should be loaded before inference.
As a result, all experts need to be loaded into memory. Given the small memory size of current
devices, this clearly cannot support an infinitely large model.

Routing at each token prediction : Before inference, it is possible to predict which expert to
load. This allows only the specified expert to be loaded into memory, without the need to load all
parameters, enabling models with parameters far larger than the available memory. However, the
performance is significantly slowed down due to switching experts for each token.

Routing at the start of each inference task : Suppose a task requires predicting 100 tokens.
Routing is only performed once before the first token, after which the expert is switched, and the
same expert is used for predicting the following 100 tokens. This reduces the routing overhead and
expert switching costs to a minimum, making it suitable for infinitely large models.

5.3.2 NUMBER OF LAYERS

The number of layers for each category’s parameters depends on the amount of knowledge contained
in that category. The more categories there are, the less knowledge each category contains, and thus,
fewer parameters are required for each category.

5.3.3 BASE MODEL

The more knowledge the base model contains, the fewer parameters the experts need, but the infer-
ence cost increases. In the extreme case, where the base model contains all knowledge, the experts’
parameters are zero, resulting in the highest inference cost.

The base model should aim to contain shared knowledge required across all domains. Reducing the
amount of knowledge in the base model increases the number of parameters required by the experts,
but decreases the inference cost.

6 CONCLUSION

In this paper, we introduce a novel architecture for large language models that offers significant
advantages in terms of reduced device memory requirements for both training and inference, while
also enabling the model to learn new knowledge without catastrophic forgetting.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 LIMITATIONS

In this work, we did not train the base model from scratch due to computational constraints. Training
the base model from scratch might further enhance performance. We will address the issue of multi-
domain knowledge fusion in a subsequent paper.
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