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ABSTRACT

Scientific hypothesis generation is fundamental to advancing molecular biology
and protein science. This study presents a novel AI-driven multi-agent framework
that integrates Retrieval-Augmented Generation (RAG) with structured experi-
mental data for automated hypothesis generation and validation. The methodol-
ogy employs scientific literature retrieval, structured dataset analysis, and multi-
agent evaluation, ensuring that generated hypotheses are scientifically rigorous
and experimentally testable. The framework consists of three key phases: (1)
Hypothesis Generation, where insights from literature and structured data are
synthesized using large language models; (2) Multi-Agent Evaluation through
Chain of Thoughts (CoT) mechanism, where hypotheses are assessed for inter-
nal consistency, feasibility analysis, novelty assessment, scientific impact, and
scalability/generalizability; and (3) Final Selection and Validation, where high-
scoring hypotheses undergo refinement using protein-specialized agents and are
linked to experimental validation strategies such as molecular dynamics simula-
tions, site-directed mutagenesis, and structural characterization. Results demon-
strate the system’s ability to generate novel, high-impact hypotheses in protein sta-
bility, enzyme catalysis, ligand interactions, and biomolecular interactions, with
broad applications in drug discovery, synthetic biology, and protein engineering.
The study highlights the potential of AI-driven hypothesis generation in acceler-
ating scientific discovery by integrating machine learning, structured data analy-
sis, and multi-agent validation into research workflows. Our code is available at
https://github.com/adibgpt/ProteinHypothesis.

1 INTRODUCTION

Hypothesis generation serves as the foundation of scientific inquiry, guiding researchers in formu-
lating testable predictions that drive innovation and the expansion of knowledge across disciplines.
Historically, this process has relied on human intuition, manual literature reviews, and structured
methodologies based on logical reasoning and domain expertise. While these conventional ap-
proaches have led to groundbreaking discoveries, they are increasingly constrained by the limita-
tions of human cognition, the exponential growth of scientific literature, and the rising complex-
ity of interdisciplinary research. Scientists today face significant challenges in synthesizing vast
amounts of information, identifying meaningful research gaps, and formulating hypotheses that in-
tegrate insights from multiple fields (Chai et al., 2024) (Abdel-Rehim et al., 2024). The limitations
of traditional hypothesis generation methods are particularly evident in data-intensive disciplines
such as biomedicine, astronomy, and computational sciences, where vast datasets and complex re-
lationships make manual exploration impractical (Tong et al., 2024) (Ishikawa, 2024). As the sci-
entific landscape grows more intricate, there is a critical need for automated and scalable methods
to facilitate hypothesis generation. The advent of artificial intelligence (AI), and more specifically,
Large Language Models (LLMs), has introduced a transformative approach to scientific reasoning.
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LLMs possess the ability to process extensive corpora of structured and unstructured data, extract
latent patterns, and propose novel hypotheses with a breadth and depth beyond human capacity.
These models, trained on diverse datasets, allow for the systematic generation of testable ideas,
thereby reducing cognitive biases, mitigating information overload, and enhancing the efficiency of
hypothesis-driven research (Takagi et al., 2023) (Pelletier et al., 2024). The emergence of AI-driven
methodologies has redefined the research workflow by augmenting human intuition with computa-
tional power, enabling a more comprehensive exploration of scientific possibilities (Xiong et al.,
2024) (Zhou et al., 2024). The integration of LLMs into scientific discovery has marked a paradigm
shift from manual knowledge synthesis to AI-assisted, data-driven hypothesis generation. Unlike
traditional heuristic-based approaches, LLMs leverage advanced reasoning techniques, retrieval-
augmented knowledge synthesis, and structured workflows to generate hypotheses across diverse
domains. Models such as GPT-4, BioGPT, SciBERT, and PMC-LLaMA have been instrumental in
formulating novel research questions in fields ranging from biomedicine to materials science (Tak-
agi et al., 2023). These models analyze vast knowledge repositories, incorporate real-time literature
retrieval, and dynamically adapt to evolving research trends, allowing for continuous hypothesis
refinement and optimization (Hu et al., 2024). One of the key innovations that have enhanced
LLM-based hypothesis generation is Retrieval-Augmented Generation (RAG), which allows mod-
els to retrieve relevant scientific literature before generating hypotheses. This approach ensures that
AI-generated hypotheses are contextually grounded in existing research, thereby increasing their
validity and scientific relevance (Sybrandt et al., 2020) (Skarlinski et al., 2024). Additionally,
multi-agent collaboration frameworks have been developed to simulate human-like brainstorming
sessions, where different AI agents assume specialized roles such as hypothesis ideation, critique,
and validation. These multi-agent systems, exemplified by ResearchAgent and The AI Scientist, en-
hance the robustness of AI-generated hypotheses by incorporating diverse reasoning strategies and
iterative feedback loops (Park et al., 2024). The effectiveness of LLM-driven hypothesis generation
is further amplified by iterative refinement frameworks, which involve a continuous cycle of hy-
pothesis formation, evaluation, and improvement. Systems like Nova, ResearchAgent, and The AI
Scientist utilize dynamic feedback mechanisms to assess the plausibility and novelty of hypotheses,
refining them through multiple iterations before presenting them as viable research questions (Jamil
et al., 2023) (Hu et al., 2024) (Lu et al., 2024). These iterative methodologies play a crucial role in
mitigating common challenges associated with LLM-generated outputs, such as logical inconsisten-
cies and speculative reasoning, ensuring that hypotheses align with domain-specific knowledge and
empirical evidence (Ciucă et al., 2023) (Li et al., 2024).

The impact of LLM-driven hypothesis generation extends across multiple scientific domains, revo-
lutionizing research in biomedicine, materials science, artificial intelligence, and the social sciences.
In biomedical research, LLMs have been leveraged to propose new drug-target interactions, suggest
therapeutic mechanisms, and uncover potential biomarkers for diseases such as cancer and neurode-
generative disorders (Qi et al., 2023) (Tadiparthi et al., 2024) (Sybrandt et al., 2020). Domain-
specific models such as BioBERT and PMC-LLaMA enhance biomedical hypothesis generation by
integrating curated datasets from PubMed, enabling AI systems to generate hypotheses that align
with cutting-edge research (Zhou et al., 2024). In the field of materials science, AI-powered tools
such as MOOSE-Chem and Nova facilitate the discovery of novel chemical compounds, optimize
material properties, and predict interactions within molecular systems (Wang et al., 2024) (Liu
et al., 2024) (Yang et al., 2024). These models utilize high-throughput screening and machine
learning techniques to systematically explore vast chemical spaces, accelerating the development of
advanced materials for energy storage, semiconductors, and sustainable manufacturing (Hu et al.,
2024) (Park et al., 2024). Beyond the hard sciences, hypothesis generation has also been transformed
in the social sciences and linguistics. Systems such as SciHypo and ResearchAgent have been ap-
plied to behavioral research, policy analysis, and linguistic studies, enabling the formulation of
hypotheses on human behavior, economic trends, and language evolution (Ishikawa, 2024) (Koneru
et al., 2023) (Bersenev et al., 2024). Despite their remarkable potential, LLM-driven hypothesis
generation systems face several challenges. One of the primary concerns is hallucination, where
LLMs generate speculative or unverifiable hypotheses that lack empirical grounding (Xiong et al.,
2024) (Pelletier et al., 2024) (Jamil et al., 2023). Another significant limitation is bias in training
data, which can lead to skewed insights (Proebsting & Poliak, 2024). Computational efficiency
and scalability remain significant hurdles (Qi et al., 2024) (Yang et al., 2024) (Bersenev et al.,
2024). Finally, ethical considerations, transparency, and reproducibility must be addressed to ensure
AI-generated hypotheses align with scientific integrity (Park et al., 2024).
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The current work distinguishes itself from existing AI-driven hypothesis generation approaches
by introducing a three-phase multi-agent evaluation system that refines and experimentally val-
idates hypotheses, rather than relying on single-stage generation. Unlike previous methods fo-
cused on biomedical and general scientific domains, the utilized approach in this study uniquely
integrates structured physics-based data, particularly in protein science. A key innovation is the
protein-specialized multi-agent framework, which leverages domain-specific agents (e.g., BioAgent,
StrucAgent, EvoAgent, DrugAgent) to ensure biochemical, structural, and evolutionary relevance.
Unlike prior heuristic-based models, this system employs Chain-of-Thought (CoT) reasoning for
systematic hypothesis refinement, assessing internal consistency, feasibility, novelty, scientific im-
pact, and scalability at multiple levels. Furthermore, this investigation explicitly links AI-generated
hypotheses to experimental validation, incorporating techniques such as molecular dynamics simu-
lations, site-directed mutagenesis, cryo-EM, and biophysical assays, enabling real-world applicabil-
ity. Finally, the cross-disciplinary adaptability of this approach extends beyond biomedical research
to drug discovery, protein engineering, synthetic biology, and biomolecular interactions, advancing
AI-driven scientific inquiry with greater reliability, testability, and domain specificity.

2 PROPOSED APPROACH

The proposed system for scientific hypothesis generation integrates Retrieval-Augmented Genera-
tion (RAG), structured data embedding, and a multi-agent Large Language Model (LLM) pipeline.
Through a series of automated and semi-automated steps, the framework gathers relevant litera-
ture, processes experimental data, creates rich vector embeddings, and formulates initial hypotheses.
These hypotheses are then refined in multiple stages by specialized AI agents, with the ultimate aim
of producing scientifically grounded and experimentally testable conclusions.

2.1 RETRIEVAL OF SCIENTIFIC LITERATURE AND STRUCTURED EXPERIMENTAL DATA

In the first phase, the system collects domain-relevant knowledge from two primary sources involv-
ing online repositories (e.g., arXiv) and structured experimental datasets (e.g., CSV files). This
unified pool of raw information serves as the foundation for RAG-based hypothesis generation. The
overall schematic of RAG system is illuminated in Figure 1.

Literature 
Documents

Query ArXiv API

Download PDFs

Extract Metadata

Preprocess Text Split into 
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Documents 
Embedding
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Figure 1: RAG system workflow for scientific document and experimental data retrieval.

2.1.1 LITERATURE RETRIEVAL AND PREPROCESSING

The pipeline queries large online repositories such as arXiv (Appendix A1.1) using domain-specific
keywords (e.g., “Protein Science,” “Protein Folding”) and retrieves metadata—titles, abstracts, and
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download links—through parsing tools. Where feasible, full-text PDFs are also retrieved, ensuring
that all relevant content is available. Before embedding, raw text undergoes a cleaning and tokeniza-
tion process to remove artifacts (e.g., HTML tags, excessive whitespace). At this stage, key ideas or
segments can be stored in JSON for future reference, enabling quicker lookups or version control.

2.1.2 EXPERIMENTAL DATA RETRIEVAL AND PREPARATION

Experimental data, often in CSV format, is loaded via utility modules such as LangChain’s
CSVLoader. This data may describe protein sequences, protein properties, or other domain-specific
protein science metrics (Appendix A1.2). Relevant features (e.g., structural attributes, numeric mea-
surements) are then extracted, and missing data is handled either by imputation or exclusion, depend-
ing on scientific requirements. If desired, the processed dataset can be saved to JSON, facilitating
cross-referencing and logging.

2.1.3 DOCUMENT AND DATA EMBEDDINGS

Once gathered, both textual documents and experimental datasets are transformed into high-
dimensional embeddings. In practice:

• Chunking and Splitting: Long documents are divided into context-preserving segments
using a tool like ’RecursiveCharacterTextSplitter’, ensuring each segment remains self-
contained and interpretable.

• Vector Embeddings: Textual chunks may be embedded with ’SentenceTransformers’,
while structured data (after feature extraction) can leverage embeddings such as ’Google-
GenerativeAIEmbeddings’.

• FAISS Vector DB: All resulting vectors are stored in ’FAISS’ (Facebook AI Similarity
Search), which supports fast similarity lookups across the combined literature-data space.

2.1.4 RETRIEVAL-AUGMENTED GENERATION (RAG)

With the unified repository in place, the system can respond to hypothesis-generation requests by
querying FAISS for textual and structured data vectors relevant to the protein topic. The retrieved
segments—rich in empirical and theoretical context—are passed to LLMs (GPT-4o and Gemini-1.5
Flash), which generate an initial set of hypotheses following a structured template that includes:

1. Background Insight from Literature
2. Pattern Identified from Structured Data
3. Novel Hypothesis Proposal
4. Experimental Validation Strategy

This ensures every hypothesis originates from robust, data-backed premises.

2.2 MULTI-AGENT EVALUATION AND HYPOTHESIS REFINEMENT

After the RAG module produces an initial set of hypotheses, the system enters multiple phases
of evaluation and refinement. Each phase involves a distinct configuration of LLM agents that
scrutinize or enhance the hypotheses, and the corresponding schematic is depicted in Figure 2.

2.2.1 INITIAL TO REFINED HYPOTHESES

This process includes two consecutive phases regarding the hypothesis generation as follows:

• Phase 1: Generates a preliminary hypothesis list from the retrieved literature and experi-
mental data. These are stored in a minimal form, awaiting further validation.

• Phase 2: A “General Multi-Agent LLM” refines each hypothesis by clarifying assump-
tions, improving experimental designs, and suggesting complementary data references.
The outcome is a more coherent and feasible hypothesis set. Five utilized general-purpose
agents are namely Internal Consistency agent, Feasibility Analysis agent, Novelty Assess-
ment agent, Scientific Impact agent, and Scalability/Generalizability agent.
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Figure 2: Chain of Multi-agent LLM systems workflow for three consecutive phases.

2.2.2 AGENT SCORING AND SPECIALIZED VALIDATION

This part of the hypothesis generation process pertains to rigorous refinement using specialized
protein agents as discussed below:

• Phase 3: twelve Domain-focused protein agents (e.g., BioAgent, MolAgent, EvoAgent)
evaluate each refined hypothesis according to criteria such as molecular stability, functional
relevance, or potential for therapeutic applications. Each agent assigns a numerical score
(often 1–3) on different aspects. Hypotheses failing to meet threshold scores in any major
category are flagged for reprocessing, while those satisfying all criteria proceed to final
selection.

2.2.3 CHAIN-OF-THOUGHT (COT) REASONING.

Throughout the multi-agent review, Chain-of-Thought reasoning is used to trace each hypothesis’s
logical underpinnings. Agents or the system itself may detect contradictions, missing arguments,
or alignments with known theories. This iterative, transparent reasoning process ensures that each
hypothesis matures into a thoroughly vetted, testable proposition. Top-scoring hypotheses emerging
from Phase 3 are designated as final and saved—along with evaluation logs, references, and code
snippets—in JSON for reproducibility.

3 RESULTS AND DISCUSSION

The integration of RAG-Multi-Agent LLM system with structured physics-based datasets and sci-
entific literature retrieval presents a novel approach for hypothesis generation. The results obtained
from the scientific literature analysis and the structured experimental datasets provide complemen-
tary insights that collectively enhance the quality of generated hypotheses. In this section, we pro-
vide a detailed discussion of the extracted findings, emphasizing their relevance, reliability, and
impact on hypothesis-driven research.

3.1 ANALYSIS OF RAG-BASED LITERATURE RETRIEVAL

The RAG-based literature retrieval methodology provides a structured approach for extracting sci-
entific insights from peer-reviewed studies, enabling evidence-driven hypothesis generation. By
systematically analyzing research, it identifies dominant trends, recurring themes, and inconsisten-
cies in molecular biology and protein science, reinforcing established knowledge while uncovering
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research gaps. A clear example of this methodology in action is illustrated in Figure 3, which
showcases how the RAG system processes scientific literature retrieval. The Figure 3 highlights the
structured query-response approach used to summarize key elements of a paper, including title, ab-
stract, main hypothesis, and summary of results. This process ensures that the extracted insights are
scientifically rigorous, thematically categorized, and directly relevant to hypothesis development.
Key findings from RAG-based literature retrieval reveal several recurring themes:

• Protein Stability and Folding – Molecular interactions govern protein folding pathways
and stability, making this a central topic in structural biology.

• Computational Approaches – Graph neural networks (GNNs) and transformer-based
models play a crucial role in protein structure prediction, while computational studies pro-
vide insights into phase behaviors and crystallization dynamics.

• Protein-Ligand Interactions – Research highlights how small molecules modulate protein
activity, emphasizing the role of conserved structural motifs in binding mechanisms.

• Evolutionary Adaptations – Studies demonstrate that protein sequences evolve while pre-
serving core functions, underscoring the significance of conserved motifs in evolutionary
biology.

Beyond trend identification, RAG-based retrieval effectively detects contradictions across studies.
For instance, conflicting findings regarding mutation-induced protein stability emphasize the need
for context-aware hypotheses that account for variables like pH, temperature, and cofactor availabil-
ity. The example in Figure 3 further illustrates this by presenting how RAG systematically processes
diverse research sources to uncover nuanced scientific debates. This methodology accelerates ad-
vancements in protein science, structural biology, drug discovery, and synthetic biology, reinforcing
the transformative role of AI-driven literature analysis in modern research.

3.2 ANALYSIS OF PHYSICS-BASED DATASET INSIGHTS

The input file consolidates physics-based dataset insights, complementing literature-driven analysis
by revealing key relationships between sequence, structure, and function in proteins. A clear exam-
ple of this structured data retrieval process is illustrated in Figure 4, which demonstrates how the
RAG system processes experimental data to extract meaningful insights. The Figure 4 highlights the
step-by-step breakdown of column names, descriptive sentence construction, and summary extrac-
tion, showcasing how structured data can be systematically analyzed and contextualized to support
hypothesis generation. A major finding is that secondary structure predictions align with specific
sequence motifs (e.g., alpha-helices and beta-sheets), clarifying functional roles such as enzymatic
catalysis and ligand binding. For instance, the protein "3my2 A-P0ADV9" exhibits predicted he-
lices (H) and loops (L) at multiple labeled positions, reinforcing the link between folding patterns
and biological function. The structured query-response methodology demonstrated in Figure 4 illus-
trates how computational tools facilitate precise functional annotation from sequence data. Several
structural motifs correlate with functional traits:

• Hydrophobic cores contribute to protein stability.
• Catalytic-site motifs highlight key enzymatic mechanisms.
• Conserved secondary structures suggest evolutionary constraints, guiding mechanistic

hypotheses.

By analyzing "foldseek seq" and "label" columns, researchers can identify shared features
that aid in experimental validation, supporting mutagenesis studies and advanced simulations. The
structured approach illustrated in Figure 4 ensures that such insights are systematically extracted
and articulated, reinforcing computational predictions with biological relevance. A strong corre-
lation exists between functional labels and structural features, such as metal ion-binding sites in
flexible loop regions, which influence ion coordination. This allows for testable hypotheses, such
as modifying loop residues to assess changes in binding affinity. Finally, the dataset highlights the
variable functional importance of repeated motifs—some are highly conserved and essential, while
others show variability with minimal functional impact. As demonstrated in Figure 4, structured data
retrieval helps distinguish critical motifs from neutral variations, ensuring that hypothesis generation
is precise, data-driven, and experimentally testable.
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Summarize the main idea and key results of each paper using the provided excerpts and metadata. Include:
1. **Title** 
2. **Abstract** (if available)
3. **Main idea and hypothesis**: It should clearly state the hypothesis which the paper is written based on it accordingly.
4. **Summary of Results**: Key findings, conclusions, or implications. Provide clear and concise summaries for each paper.

RAG Query

Here's a summary of the main idea and key results of each paper, based on the provided text:
1. **Title:** Looped liquid-liquid coexistence in protein crystallization
2. **Abstract:**  In view of the notorious complexity of protein-protein interactions, simplified models of proteins treated as 
patchy particles offer a promising strategy to obtain insight into the mechanism of crystallization.  The authors report liquid-liquid 
phase separation (LLPS) with a highly asymmetric coexistence region in a computational model of rubredoxin with real molecular 
shape. The coexistence region terminates in both an upper (UCST) and a lower (LCST) critical solution temperature, and the 
complex molecular shape explains the closed-loop behavior of the LLPS.
3. **Main idea and hypothesis:** The main idea is to investigate the role of molecular shape in the phase behavior of proteins 
during crystallization, using a more realistic patchy particle model of rubredoxin. The hypothesis is that realistic molecular shape 
significantly influences the phase behavior, leading to a more complex liquid-liquid phase separation (LLPS) than observed in 
simpler models.
4. **Summary of Results:** The simulations revealed a metastable liquid-liquid transition with a highly asymmetric, looped, and 
reentrant coexistence curve, terminating in both UCST and LCST.  The authors linked this complex behavior to the protein's 
asymmetric shape, specifically the reduction in rotational degrees of freedom upon forming contacts.  They also found enhanced 
crystal yield near the metastable coexistence region, suggesting the high-density liquid phase plays a role in nucleation.  A 
mutation that prevented the formation of prenucleation motifs eliminated the LLPS, indicating the high-density liquid is a 
nucleation precursor.  Analysis of surface tension further supported the role of the metastable LLPS in enhancing nucleation.       

Response

Figure 3: An example of RAG system output for scientific literature retrieval.

Analyze the provided CSV file and generate a detailed description of each row by extracting and summarizing its features in a 
continuous sentence. For each row:
1. Identify and list the column names and their corresponding values.
2. Present the features in the row in a seamless sentence structure, describing the relationship or context between them.
3. Provide a summary statement based on the data, capturing notable insights, patterns, or potential interpretations.

RAG Query

Here's an analysis of the provided data, presented as requested:
**Row 1:**
1. **Column Names and Values:** `name: 3my2_A-P0ADV9`, `aa_seq: 
NMAEKDDTAQVVVNNNDPTYKSEHTDTLVYNPEGALSYRLIAQHVEYYSDQAVSWFTQPVLTTFDKDKIPTWSVKADKAKLTNDRMLYLYGHVE
VNALVPDSQLRRITTDNAQINLVTQDVTSEDLVTLYGTTFNSSGLKMRGNLRSKNAELIEKVRTSYEIQNKQTQP`, `foldseek_seq: 
VVVPDPPPPPPPDDLPAFPDKDAFDWDWDADPVRATAKIKTAGMWGHRPVQQKIKGAFIWMWGADPVRDTFKIWTARMWMAHPQGKIKGA
AFIKIATPDPPQQFGMKTDGIWIARSPQQKIKDQAWMWIDGPFKIKIAGIKIDHSVVSDIDHDHPMDMDGHDPPPPPDD`, `ss8_seq: 
HHHSLLLLLLLLLLTTSLSEEEEEEEEEEELTTSLEEEEEEEEEEEEETTTTEEEEESLEEEEELTTLLEEEEEELSEEEEETTLEEEEEEEEEEEELSTTLSE
EEEEEEEEEEETTTLEEEEEEEEEEEESSEEEEEEEEEEETTTTEEEEEEEEEEEELLLLLLLLL`, `label: 26,56,160,174,241,267.
2. **Descriptive Sentence:** The protein sequence 3my2_A-P0ADV9, characterized by its amino acid sequence (aa_seq),  exhibits 
predicted secondary structure elements (ss8_seq) largely composed of helices (H) and loops (L) as suggested by its Foldseek 
sequence (foldseek_seq), and is associated with specific label positions (26,56,160,174,241,267) indicating potential functional 
sites or domains.
3. **Summary:** This row represents a protein with a potentially complex structure containing both helical and loop regions, 
suggesting a diverse functional role indicated by the multiple label positions.

Response

Figure 4: An example of RAG system output for experimental data retrieval in a single row.

3.3 1ST PHASE OF HYPOTHESES GENERATION USING MULTI-AGENT LLMS

The multi-agent system integrates literature-based insights with structured experimental data, ensur-
ing a rigorous and systematic approach to hypothesis generation. This phase produces hypotheses
based on empirical patterns, novel formulations, and validation strategies, ensuring scientific ro-
bustness. A detailed discussion of the prompt guiding this process is available in the Appendix
(A2). Figures 5 and 10 illustrate the structured hypothesis generation process, where scientific
literature and structured data are synthesized into novel, testable hypotheses. Examples include
LLPS-related hypotheses integrating glycine-rich sequence data and protein flexibility hypotheses
combining GNNs and hydrophobic patch analysis.
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➢ Hypothesis (1):
1. **Background Insight from Literature**: The study on liquid-liquid phase separation (LLPS) in proteins highlights the role of complex 
molecular shapes in influencing phase behavior, particularly in crystallization processes.
2. **Pattern Identified from Structured Data**: Analysis of protein sequences reveals a recurring presence of glycine-rich regions in proteins 
with high-density liquid phases, often associated with LLPS.
3. **Novel Hypothesis**: Glycine-rich regions in proteins contribute to the formation of high-density liquid phases, facilitating nucleation and 
crystallization processes. These regions may enhance flexibility, allowing proteins to adopt conformations conducive to LLPS.
4. **Experimental Validation Strategy**: Conduct mutagenesis studies to replace glycine residues with alanine in proteins known to undergo 
LLPS. Use molecular dynamics simulations to assess changes in phase behavior and crystallization efficiency.
➢ Hypothesis (2):
1. **Background Insight from Literature**: Graph neural networks (GNNs) have been shown to effectively predict protein flexibility by capturing 
atomic-level interactions.
2. **Pattern Identified from Structured Data**: Proteins with high flexibility predictions often contain conserved hydrophobic patches in their 
foldseek sequences, suggesting a role in dynamic conformational changes.
3. **Novel Hypothesis**: Conserved hydrophobic patches contribute to protein flexibility by facilitating transient hydrophobic interactions that 
stabilize different conformational states, enhancing functional adaptability.
4. **Experimental Validation Strategy**: Use site-directed mutagenesis to alter hydrophobic residues in flexible proteins and perform NMR 
spectroscopy to observe changes in dynamic behavior and flexibility.
➢ Hypothesis (3):
1. **Background Insight from Literature**: The investigation of protein interaction networks suggests that centrality measures can predict 

essential proteins for cell viability.
2. **Pattern Identified from Structured Data**: Proteins with conserved secondary structure motifs, such as α-helices, often show high label 
counts, indicating potential functional diversity.
3. **Novel Hypothesis**: The conserved α-helices in proteins with high label counts contribute to their centrality in protein interaction 
networks, predicting their essentiality for cell viability. These motifs could be targets for network analysis.
4. **Experimental Validation Strategy**: Use network analysis to identify central proteins with conserved α-helices and validate their 
essentiality with gene knockout experiments and viability assays.

Generated  Hypothesis

Figure 5: An example of generated hypotheses in the 1st phase of hypothesis generation.

3.4 2ND PHASE OF HYPOTHESIS GENERATION USING MULTI-AGENT LLMS

The second phase of the multi-agent system focuses on refining, validating, and ranking hypotheses
generated in the first phase, ensuring scientific rigor through systematic Chain of Thoughts (CoT)
assessments of internal consistency, feasibility, novelty, impact, and scalability. Each hypothesis
undergoes logical coherence checks, experimental testability evaluations, and computational vali-
dation to enhance reliability. A detailed discussion of the prompt and the first and third levels of
reasoning responses guiding this process is provided in the Appendix (A3).

Figure 6 and Figures 11-13 (Appendix (A3)) illustrate the structured refinement process, demon-
strating how hypotheses are systematically evaluated, ranked, and selected based on scientific merit.
These refined hypotheses establish strong correlations between secondary structure motifs and func-
tional properties. Findings emphasize the role of α-helices in stabilizing interactions, β-strands in
cold-adapted proteins, hydrophobic patches in protein aggregation, and aromatic residues in struc-
tural stabilization. Additionally, β-hairpin motifs are linked to protein knot formation, reinforcing
the evolutionary significance of these structural elements.

The refinement process also highlights novel insights across protein evolution, nanotechnology, and
neurodegenerative diseases. As depicted in Figure 6 and Figures 11-13, studies explore disulfide
bonds in evolutionary stability, amphipathic helices in membrane curvature, and hydrophobic re-
gions in amyloid formation, offering implications for drug delivery, biomaterials research, and dis-
ease modeling. These findings pave the way for further experimental validation and translational
applications in molecular biology and biophysics.

Figure 6: Top 10 generated hypotheses in the 2nd phase of hypothesis generation.
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3.5 3RD PHASE OF MULTI-AGENT SYSTEM ANALYSIS: FINAL HYPOTHESIS SELECTION
AND EXPERIMENTAL VALIDATION

A specialized multi-agent framework evaluates hypotheses from various scientific perspectives, en-
suring rigorous assessments based on biochemical plausibility, drug discovery relevance, evolution-
ary consistency, functional applicability, and structural compatibility. Each agent plays a distinct
role in refining and validating hypotheses. BioAgent ensures that hypotheses align with biochemi-
cal principles, enzyme kinetics, and protein stability. DrugAgent explores pharmaceutical relevance,
assessing how hypotheses contribute to drug discovery and therapeutic applications. EvoAgent
evaluates sequence conservation trends, verifying evolutionary consistency and structural adapta-
tion. FuncAgent examines the functional impact of hypotheses on protein interactions, enzymatic
functions, and cellular mechanisms. ProtAgent focuses on protein engineering applications, ensur-
ing hypotheses contribute to protein design and synthetic biology. SystAgent integrates insights
from systems biology, analyzing hypotheses within biological networks and large-scale molecu-
lar interactions. MoLAgent investigates molecular-level interactions, ensuring the structural and
chemical feasibility of proposed hypotheses. ExpAgent assesses the experimental feasibility of
hypotheses, mapping them to existing laboratory techniques and methodologies. SeqAgent evalu-
ates sequence-function relationships, identifying conserved motifs and patterns essential for protein
function. StrucAgent verifies structural compatibility, ensuring that hypotheses align with known
protein folding, stability, and molecular architecture. As can be observed in Figure 7, top 2 hy-
potheses are selected by applying protein-specialized agents into 10 generated hypotheses from the
second phase of multi-agent hypothesis generation process. According to Figure 7, this approach
is able to generate both ”More General” and ”More Specific” hypotheses referring to ’Hypothesis
1’ and ’Hypothesis 2’, respectively. Accordingly, the ’Hypothesis 1’ mainly focuses on general as-
pects of proteins and how they influence on protein interactions, stability, and function, while the
’Hypothesis 2’ further explores the protein function and applicability by directly incorporating the
physics-based experimental datasets (beta-helix motifs and a protein type in the ”Class 0”) into the
generic form of hypothesis and make it more physically grounding for domain-knowledge experts.
The corresponding prompt used for generating top 2 selected hypotheses is provided in Appendix
(A4).

Figure 7: Top 2 selected hypotheses in the 3rd phase of hypothesis generation.

4 CONCLUSION

This study presents a novel AI-driven multi-agent framework for scientific hypothesis generation,
integrating Retrieval-Augmented Generation (RAG), structured experimental data, and multi-agent
validation to formulate, evaluate, and refine hypotheses in molecular biology and protein science. By
combining scientific literature retrieval with structured physics-based datasets, the system enables
the synthesis of data-driven, experimentally testable hypotheses, offering a scalable and automated
approach to hypothesis-driven research. Results demonstrate the system’s capability to generate
novel, high-impact hypotheses related to protein stability, ligand interactions, enzyme catalysis, and
biomolecular networks, with applications in drug discovery, synthetic biology, and protein engineer-
ing. The integration of multi-agent AI evaluation enhances the reliability of generated hypotheses,
ensuring alignment with scientific principles, experimental feasibility, and broader biological rele-
vance.
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A APPENDIX

A.1 UTILIZED DATASET

The dataset utilized in this study integrates retrieved scientific documents and structured experimen-
tal datasets to enable hypothesis generation through a physics-aware, multi-agent RAG framework.
The retrieval process involves collecting relevant literature from online repositories and extracting
structured data from domain-specific CSV files. This section details representative examples of both
sources to illustrate how they contribute to AI-driven hypothesis formation.

A.1.1 SAMPLE DOCUMENTS USED FOR RETRIEVAL

The retrieval process involves querying large-scale scientific repositories, such as arXiv, bioRxiv,
and other publicly available research databases, using domain-specific keywords related to protein
science, hypothesis generation, and computational modeling. A sample of the documents retrieved
and processed is presented in Figure 8, showcasing the first page of representative papers used for
document retrieval. These documents cover a broad spectrum of protein science topics, including:

• Protein adsorption mechanisms – Understanding how proteins interact with surfaces and
their role in biomolecular interactions.

• Protein-protein interactome refinement – Using gene expression data to analyze func-
tional relationships between proteins.

• Protein hypernetworks – A logic-based framework for understanding dependencies and
perturbations in protein interaction networks.

• Protein folding and molecular dynamics – Investigating how sequence-structure-function
relationships impact protein stability and flexibility.

Each retrieved document is processed through metadata extraction, content segmentation, and vector
embedding to ensure that the RAG system can efficiently identify relevant insights for hypothesis
generation.

Single-molecule imaging of protein adsorption mechanisms to surfaces

Shannon Kian Zareh and Y. M. Wang

Department of Physics, Washington University in St. Louis, St. Louis, MO, 63130

Mailing address: 244 Compton Hall, 1 Brookings Dr., St. Louis, MO, 63130

Corresponding author: Y. M. Wang; Address: 244 Compton Hall, 1 Brookings Dr., St. Louis, MO, 63130

Office phone: 314-935-7478

Keywords: Single-protein adsorption detection, irreversible and reversible protein adsorption kinetics

Abstract

Protein-surface interactions cause the desirable effect of controlled protein adsorption onto biode-
vices as well as the undesirable effect of protein fouling. The key to controlling protein-surface ad-
sorptions is to identify and quantify the main adsorption mechanisms: adsorptions that occur (1) while
depositing a protein solution onto dry surfaces and (2) after the deposition onto wet surfaces. Bulk
measurements cannot reveal the dynamic protein adsorption pathways and thus cannot differentiate be-
tween the two adsorption mechanisms. We imaged the interactions of single streptavidin molecules with
hydrophobic fused-silica surfaces in real-time. We observed both adsorbed proteins on surfaces and
diffusing proteins near surfaces and analyzed their adsorption kinetics. Our analysis shows that the pro-
tein solution deposition process is the primary mechanism of streptavidin adsorption onto surfaces at the
sub-nanomolar to nanomolar protein concentrations. Furthermore, we found that hydrophilic fused-silica
surfaces can prevent the adsorption of streptavidin molecules.

INTRODUCTION

Controlled surface adsorption of proteins is important for devices such as protein-based biosensors and
protein microarrays, but on the other hand, uncontrolled accumulation of proteins onto surfaces causes unde-
sirable protein fouling (Zydney and Ho, 2003; Gray, 2004; Latour, 2005). In addition, when protein-surface
contact is involved in a physical process, controlling protein-surface adsorption is necessary to ensure min-
imal perturbation to protein concentration and characteristics in solution. For these reasons, it is necessary
to identify and quantify mechanisms responsible for protein adsorption to surfaces.

The first step in most protein-based biological studies and applications involves introducing a protein
solution to a device (e.g., a pipette tip, a transfer tube, a glass slide, etc.). It is known that proteins can
dissolve in water as well as accumulate at the air-water interface (Mackie et al., 1999; de Jongh et al., 2004;
Deng et al., 2006; Yano et al., 2009). When these proteins encounter a device surface, some adsorb during
the protein-solution deposition process while others adsorb after the surface is wet. These adsorptions are
the result of electrostatic, van der Waals, and hydration interactions between proteins and surfaces (Squires
et al., 2008). While most studies focused on surface adsorptions of the dissolved proteins after deposition
(Vasina et al., 2009), the effects of the deposition process on protein-surface adsorption are not clear.

In order to precisely identify and quantify mechanisms responsible for protein-surface adsorptions, we
investigate the adsorption process of individual proteins by single molecule fluorescence imaging. Prior
studies of protein-surface interactions mainly used bulk ensemble measurements, in which the concentra-
tions of all adsorbed proteins were measured and thus adsorptions due to different mechanisms could not
be differentiated (Sapsford and Ligler, 2004; Tsapikouni and Missirlis, 2008). In our study, we used To-
tal Internal Reflection Fluorescence (TIRF) microscopy imaging method to record the interplay of a single
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Refining the Protein-Protein Interactome Using
Gene Expression Data

Sira Sriswasdi1 and Shane T. Jensen2

Abstract

Proteins interact with other proteins within biological pathways, form-
ing connected subgraphs in the protein-protein interactome (PPI). Proteins
are often involved in multiple biological pathways which complicates in-
terpretation of interactions between proteins. Gene expression data can
assist our inference since genes within a particular pathway tend to have
more correlated expression patterns than genes from distinct pathways.
We provide an algorithm that uses gene expression information to remove
inter-pathway protein-protein interactions, thereby simplifying the struc-
ture of the protein-protein interactome. This refined topology permits eas-
ier interpretation and greater biological coherence of multiple biological
pathways simultaneously.

1 Introduction

The protein-protein interactome (PPI) is a large graph where proteins are nodes

and edges between these nodes represent all known interactions between pro-

teins. In cases where proteins interact in order to drive a particular biological

process, the connected nodes of a PPI can represent an entire biological path-

way. However, inferring a biological pathway from the PPI is complicated by

the fact that many proteins are involved in multiple biological functions. Thus,

a connected subgraph of the PPI must be viewed as a mixture of smaller graphs

1Genomics and Computational Biology Graduate Group, University of Pennsylvania
sirasris@mail.med.upenn.edu

2Department of Statistics, The Wharton School, University of Pennsylvania
stjensen@wharton.upenn.edu
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Protein Hypernetworks: a Logic Framework for Interaction Dependencies and Perturbation Effects
in Protein Networks

Johnannes Köster∗† Eli Zamir†‡ Sven Rahmann∗‡

Inofficial Preprint, October 25, 2021

Motivation: Protein interactions are fundamental building blocks
of biochemical reaction systems underlying cellular functions. The
complexity and functionality of such systems emerge not from the
protein interactions themselves but from the dependencies between
these interactions. Therefore, a comprehensive approach for inte-
grating and using information about such dependencies is required.

Results: We present an approach for endowing protein networks
with interaction dependencies using propositional logic, thereby
obtaining protein hypernetworks. First we demonstrate how this
framework straightforwardly improves the prediction of protein
complexes. Next we show that modeling protein perturbations
in hypernetworks, rather than in networks, allows to better infer
the functional necessity of proteins for yeast. Furthermore, hyper-
networks improve the prediction of synthetic lethal interactions in
yeast, indicating their capability to capture high-order functional
relations between proteins.

Conclusion: Protein hypernetworks are a consistent formal frame-
work for modeling dependencies between protein interactions within
protein networks. First applications of protein hypernetworks on
the yeast interactome indicate their value for inferring functional
features of complex biochemical systems.

Availability: Data and software is publicly available at
http://www.rahmannlab.de/research/hypernetworks.

Contact: Eli.Zamir@mpi-dortmund.mpg.de,
Sven.Rahmann@tu-dortmund.de

1 Introduction

A fundamental challenge in systems biology is understanding how
cellular functions emerge from the collective action of interacting
proteins. Ultimately such understanding could be achieved through
a complete quantitative biochemical description of the system, in-
cluding the concentrations and spatial distribution of all involved
proteins and the kinetic constants of their interactions (Hughey
et al., 2010; Kholodenko, 2006). However, despite the progress
in technologies for measuring these parameters in cells, completing
such a description for large intracellular biochemical systems is still
beyond reach. In a complementary front, high-throughput protein-
protein interaction (PPI) detection techniques, including yeast two-
hybrid and mass spectrometry (Walther and Mann, 2010; Parrish
et al., 2006), can provide static snapshots of complete interactomes,
as demonstrated with several model organisms. The obtained in-
formation is typically modeled as networks – simple graphs with
nodes and edges corresponding to the proteins and their interac-
tions, respectively. However, such a data structure cannot represent
information about how protein interactions depend on each other.

A key mechanism generating interaction dependencies is allosteric
regulation, in which a protein undergoes conformational change
upon one interaction which affects its other interactions (Laskowski
et al., 2009). Another common type of interaction dependencies
is mutual exclusiveness arising from steric hindrance that prevents

∗Bioinformatics for High-Throughput Technologies, Algorithm Engineer-
ing, Computer Science 11, TU Dortmund, Germany
†Max Planck Institute of Molecular Physiology, Dortmund, Germany
‡to whom correspondence should be addressed

proteins from binding simultaneously to too close or identical pro-
tein domains. Protein interaction dependencies determine the prop-
erties of biochemical systems, and therefore it is essential to compre-
hensively consider them. Importantly, vast information about inter-
action dependencies can be already obtained through database min-
ing, and can be further expanded by high-throughput experimental
approaches (see Discussion). However, a comprehensive approach
to integrate this knowledge for getting a better understanding of
large biochemical systems is still required.

Recent studies indicate that considering mutual exclusiveness be-
tween interactions improves the quality of protein complex predic-
tion in yeast (Ozawa et al., 2010; Jung et al., 2010). Here, we further
expand and generalize this potential by enabling on one hand the
integration of diverse types of interaction dependencies and on the
other hand the exploration of different aspects of the system. We
use propositional logic to model interaction constraints, and provide
a flexible framework for their system-wise representation, called pro-
tein hypernetworks (Section 2). Next, we show how to mine hyper-
networks for useful information, exemplified here as improving the
quality of protein complex prediction (Section 3). Furthermore, our
approach allows ranking the importance of each protein in a bio-
chemical system based not only on its interactions but also on their
dependencies. We demonstrate that such considerations help pre-
dicting which proteins are essential for yeast viability (Section 4).
Finally, we discuss how our approach synergizes with current ef-
forts to obtain system-level understanding of complex biochemical
systems.

2 Modeling Approach

2.1 Protein Hypernetworks

A protein network is commonly described as an undirected graph
(P, I) with a vertex p ∈ P for each protein and an undirected edge
{p, p′} ∈ I for each possible interaction. We first develop an ap-
proach for incorporating interaction dependencies into this descrip-
tion, using propositional logic formulas.

The propositional logic Prop(Q) is the set of all propositional logic
formulas over the propositions Q (the atomic units of the logic).
This is the smallest set of formulas such that q itself is a formula
for all q ∈ Q and that is closed under the following operations: For
φ, φ′ ∈ Prop(Q), all of ¬φ, φ∧φ′, φ∨φ′, and φ⇒ φ′ are in Prop(Q)
as well. The operators ¬,∧,∨,⇒ have the usual semantics “not”,
“and”, “or”, and “implies”, respectively. Note that the implication
φ ⇒ φ′ is equivalent to (¬φ ∨ φ′). As propositions Q, we use both
proteins P and interactions I, so Q := P ∪ I. A constraint is a
formula with a particular structure over these propositions.

Definition 1 (Constraint). A constraint is a propositional logic
formula of the form q ⇒ ψ with q ∈ P ∪ I and ψ ∈ Prop(P ∪ I).
With C(P ∪ I) ⊆ Prop(P ∪ I) we denote the set of all constraints.

A constraint q ⇒ ψ restricts the satisfiability of q by the satis-
fiability of ψ. In other words: if q is satisfied, then the same has
to hold for ψ. A constraint q ⇒ ψ is equivalent to the disjunc-
tion ¬q ∨ ψ. We call the disjunct ¬q the default or inactive case
for the obvious reason that if q is not true, then ψ does not need
to be satisfied. For example (see Fig. 1a), the dependency of an
interaction i on an allosteric effect due to a scaffold interaction j
can be formulated by the constraint i ⇒ j. Mutual exclusiveness
of two interactions i, j ∈ I can be modelled by the two constraints
i⇒ ¬j and j ⇒ ¬i. The usage of propositional logic allows also to
define constraints of higher order: An interaction i could be either
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Protein Inference and Protein Quantification: Two Sides of the

Same Coin

Ting Huang, Peijun Zhu, Zengyou He∗

School of Software, Dalian University of Technology, Dalian, China
thuang0703@gmail.com, zhupeijun@outlook.com, zyhe@dlut.edu.cn

Abstract

Motivation: In mass spectrometry-based shotgun proteomics, protein quantification and pro-
tein identification are two major computational problems. To quantify the protein abundance,
a list of proteins must be firstly inferred from the sample. Then the relative or absolute protein
abundance is estimated with quantification methods, such as spectral counting. Until now, re-
searchers have been dealing with these two processes separately. In fact, they are two sides of
same coin in the sense that truly present proteins are those proteins with non-zero abundances.
Then, one interesting question is if we regard the protein inference problem as a special protein
quantification problem, is it possible to achieve better protein inference performance?

Contribution: In this paper, we investigate the feasibility of using protein quantification meth-
ods to solve the protein inference problem. Protein inference is to determine whether each
candidate protein is present in the sample or not. Protein quantification is to calculate the
abundance of each protein. Naturally, the absent proteins should have zero abundances. Thus,
we argue that the protein inference problem can be viewed as a special case of protein quan-
tification problem: present proteins are those proteins with non-zero abundances. Based on
this idea, our paper tries to use three very simple protein quantification methods to solve the
protein inference problem effectively.

Results : The experimental results on six datasets show that these three methods are competi-
tive with previous protein inference algorithms. This demonstrates that it is plausible to take
the protein inference problem as a special case of protein quantification, which opens the door
of devising more effective protein inference algorithms from a quantification perspective.

Availability: The source code of our methods is available at: http://code.google.com/p/protein-inference/

Key words: Shotgun proteomics, protein inference, protein quantification, spectral counting,
linear programming.

∗Corresponding author
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Local search on protein residue networks 
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Abstract 

Self-avoiding random walks were performed on protein residue networks. Compared with protein residue 
networks with randomized links, the probability of a walk being successful is lower and the length of 
successful walks shorter in (non-randomized) protein residue networks. Fewer successful walks and 
shorter successful walks point to higher communication specificity between protein residues, a 
conceivably favourable attribute for proteins to have. The use of random walks instead of shortest paths 
also produced lower node centrality, lower edge betweeness and lower edge load for (non-randomized) 
protein residue networks than in their respective randomized counterparts. The implications of these 
properties for protein residue networks are discussed in terms of communication congestion and network 
vulnerability. The randomized protein residue networks have lower network clustering than the (non-
randomized) protein residue networks. Hence, our findings also shed light on a hitherto neglected aspect: 
the importance of high network clustering in protein residue networks. High clustering increases 
navigability of a network for local search and the combination of a local search process on a highly 
clustered small-world network topology such as protein residue networks reduces communication 
congestion and network vulnerability. 

  

1. Introduction 

Protein residue networks represent protein macro-molecules as graphs. The nodes of a protein residue 

network (PRN) represent the amino acid molecules of a protein and the edges denote node pairs which are 

within some Euclidean distance from each other. PRNs are small-world networks, i.e. they are heavily 

clustered at the local level, but have inter-nodal ties that effectuate short diameter and average path 

lengths at the global level [1]. Short average path length is believed to be an important topological feature 

to facilitate interaction cooperativity crucial for rapid and correct protein folding [2, 3, 4]. Less has been 

said however about the role of high clustering in PRNs. 

The small-world property of protein residue networks was previously established with the shortest 

path algorithm which is a global search. However, the average path length (geodesic or chemical 

distance) of a network is not always a determining factor in network communications [5, 6]. In this 

research, we investigate decentralized search on PRNs by taking self-avoiding random walks (SARWs) 

on them. SARWs were previously shown to be the most effective local search strategy on several 

different network topologies [7]. SARWs were used by Kleinberg to demonstrate that not all small-worlds 

are equal from a local search perspective (we note that his result does not depend on the condition of self-

avoidance) [8]. Kleinberg’s result highlights the importance of contextual clustering, i.e. the existence of 

meaningful local structure, in the navigability of small-worlds. Since we are motivated in part to 

understand why PRNs have a high level of clustering, the use of SARWs is a reasonable fit. 

 

Protein folding tames chaos

Kelin Xia1 Guo-Wei Wei1,2,3 ∗
1 Department of Mathematics

Michigan State University, MI 48824, USA
2 Department of Electrical and Computer Engineering

Michigan State University, MI 48824, USA
3 Department of Biochemistry and Molecular Biology

Michigan State University, MI 48824, USA

May 26, 2022

Abstract

Protein folding produces characteristic and functional three-dimensional structures from
unfolded polypeptides or disordered coils. The emergence of extraordinary complexity in
the protein folding process poses astonishing challenges to theoretical modeling and com-
puter simulations. The present work introduces molecular nonlinear dynamics (MND), or
molecular chaotic dynamics, as a theoretical framework for describing and analyzing pro-
tein folding. We unveil the existence of intrinsically low dimensional manifolds (ILDMs) in
the chaotic dynamics of folded proteins. Additionally, we reveal that the transition from
disordered to ordered conformations in protein folding increases the transverse stability of
the ILDM. Stated differently, protein folding reduces the chaoticity of the nonlinear dynam-
ical system, and a folded protein has the best ability to tame chaos. Additionally, we bring
to light the connection between the ILDM stability and the thermodynamic stability, which
enables us to quantify the disorderliness and relative energies of folded, misfolded and un-
folded protein states. Finally, we exploit chaos for protein flexibility analysis and develop a
robust chaotic algorithm for the prediction of Debye - Waller factors, or temperature factors,
of protein structures.

Anfinsen’s dogma of sequence-structure-function,1 in which a protein’s function depends
on its uniquely folded three-dimensional (3D) structure and its structure is determined by the
amino acid sequence, is challenged due to the discovery that many partially folded or in-
trinsically unstructured proteins remain functional despite of the lack of uniquely folded 3D
structures.2–5 Kinetically and thermodynamically regulated competing pathways, including
disordered aggregation, degradation, folding and unfolding, convert linear chains of amino
acids translated from sequences of mRNA into degraded fragments, protofibrils, amyliod-like
fribrils, amyliods, intrinsically disordered proteins, partially disordered proteins, and folded

∗Address correspondences to Guo-Wei Wei. E-mail:wei@math.msu.edu
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Stochastic Ratchet Mechanisms for Replacement of Proteins Bound to DNA

S. Cocco1, J.F. Marko2, R. Monasson3
1 Laboratoire de Physique Statistique de l’Ecole Normale Supérieure,

CNRS & Université P.&M. Curie, Paris, France
2 Department of Molecular Biosciences and Department of Physics and Astronomy,

Northwestern University, Evanston, Illinois 60208
3 Laboratoire de Physique Théorique de l’Ecole Normale Supérieure,

CNRS & Université P.&M. Curie, Paris, France

Experiments indicate that unbinding rates of proteins from DNA can depend on the concentration
of proteins in nearby solution. Here we present a theory of multi-step replacement of DNA-bound
proteins by solution-phase proteins. For four different kinetic scenarios we calculate the depen-
dence of protein unbinding and replacement rates on solution protein concentration. We find (1)
strong effects of progressive ‘rezipping’ of the solution-phase protein onto DNA sites liberated by
‘unzipping’ of the originally bound protein; (2) that a model in which solution-phase proteins bind
non-specifically to DNA can describe experiments on exchanges between the non specific DNA-
binding proteins Fis-Fis and Fis-HU; (3) that a binding specific model describes experiments on the
exchange of CueR proteins on specific binding sites.

Recent single-molecule experiments have revealed that
exchange processes between proteins bound to DNA and
proteins in solution can occur at rates in excess of sponta-
neous dissociation, increasing with protein solution con-
centration [1–4]. This effect is likely important to deter-
mining rates of turnover of proteins in vivo, where protein
concentrations may be very high, and to understanding
regulation of DNA transcription, replication, repair and
packaging. Canonical models of protein-DNA interac-
tions generally assume unbinding pathways dependent on
a single rate-limiting step characteristic of the interaction
of one protein molecule with its DNA substrate [5], and
cannot explain this effect. In this paper, we introduce ki-
netic models aimed at describing the multi-step dynamics
of bio-macromolecule interactions [6, 7]. This addition
leads naturally to concentration-dependent competition
between bound and ‘invading’ molecules for substrate,
and concentration-dependent replacement processes.

In [1] a single DNA was stretched out, and spontaneous
dissociation of fluorescently-labeled Fis (a bacterial chro-
mosomal organization protein) was observed to be slow
(about 90% of initially bound protein remained bound
for 30 minutes). However, when non-fluorescent protein
solution (either Fis or another DNA-binding protein, e.g.,
HU) was added, the fluorescent protein unbound rapidly
(solution-phase Fis at 50 nM leads to 50% dissociation
after 3 minutes). The concentration dependence is de-
scribed by a replacement (exchange) rate constant R ≃
6 104M−1s−1 and R ≃ 2.7 103M−1s−1 for Fis-Fis and
HU-Fis replacement. Ref. [2] studied a copper-ion (Cu+)
dependent transcription factor, CueR, which exists in a
Cu+-bound (CueR+) and a Cu+-free (CueR−) conforma-
tions. Both conformations compete for a specific bind-
ing site to regulate genes protecting cells from copper-
induced stress. Spontaneous dissociation of CueR+ at a
rate koff = 0.5 s−1 was sped up by CueR− in solution,
with replacement rate R ≃ 2.8 107 M−1s−1 (Fig. 4 of [2]).
In Ref. [3] it has been shown that fluorescently-labeled
polymerases in solution are recruited close to the repli-

cation fork, at a solution-concentration-dependent rate,
and replace the DNA synthesizing polymerase at rate
kexc ≃ 0.018 s−1.

These experiments show that off-rates of proteins from
DNA can depend on solution-phase concentrations of
proteins competing for the same DNA. Here we describe
a ‘stochastic ratchet’ model of this competition. We
propose that, due to thermal fluctuations, part of the
bound protein releases from DNA, allowing a solution-
phase protein to take its place. Rebinding of the released
binding domain cannot occur because it requires ther-
mal opening of the newly bound protein. Iterating this
for a series of binding interactions allows gradual replace-
ment. Through this process a solution-phase protein can
replace a bound one far faster than if complete dissoci-
ation of the initially bound protein was required for its
replacement. Here, we introduce four distinct models of
kinetic pathways for protein replacement. We then com-
pute concentration-dependent dissociation rates to deter-
mine which pathways best describe specific experiments.

Kinetic schemes for the four models are shown in
Fig. 1. We assume that binding of proteins to the DNA
occurs by at most N ‘units’ (N = 3 in Fig. 1). Units
bind to putative anchoring sites; values of N and bond
energy ǫ will be discussed below. Each model contains
two unbinding pathways: a spontaneous unbinding path-
way where the units of the bound protein dissociate one
after the other with rate ρ = e−ǫ (states T1, ..., TN to
the left of each box in Fig. 1), and a replacement pathway
(right) where the bound protein is replaced by invading
proteins (states R1, ..., RN ). In the Non-Specific (NS)
pathways, the invading protein may bind on each site left
unoccupied by the bound protein, while in the Specific
(S) pathways, binding occurs only from one extremity
of the bound protein. In the Zipping models (Z) the
invader, once attached to DNA, binds adjacent sites suc-
cessively (zips) as they are released by the bound protein.
In the Non-Zipping (NZ) model (top left panel, Fig. 1),
when one bound unit of the protein detaches, this site is

PGR: A Graph Repository of Protein 3D-Structures

Wajdi Dhifli1, Abdoulaye Baniré Diallo1,*

1 Computer Science department, University of Quebec at Montreal,
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* diallo.abdoulaye@uqam.ca

Abstract

Graph theory and graph mining constitute rich fields of computational techniques to
study the structures, topologies and properties of graphs. These techniques constitute a
good asset in bioinformatics if there exist efficient methods for transforming biological
data into graphs. In this paper, we present Protein Graph Repository (PGR), a novel
database of protein 3D-structures transformed into graphs allowing the use of the large
repertoire of graph theory techniques in protein mining. This repository contains graph
representations of all currently known protein 3D-structures described in the Protein
Data Bank (PDB). PGR also provides an efficient online converter of protein
3D-structures into graphs, biological and graph-based description, pre-computed protein
graph attributes and statistics, visualization of each protein graph, as well as
graph-based protein similarity search tool. Such repository presents an enrichment of
existing online databases that will help bridging the gap between graph mining and
protein structure analysis. PGR data and features are unique and not included in any
other protein database. The repository is available at http://wjdi.bioinfo.uqam.ca/.

Introduction

The advances in computational and biological techniques of protein studies have yielded
enormous online databases. However, the complexity of protein structure requires
adequate bioinformatics methods to mine these databases. The principles of graph
theory have been adopted to investigate organic molecules [1] and proteins [2–4]. The
tertiary structure captures homology between proteins that are distantly related in
evolution. With the availability of more protein 3D-structures due to techniques such as
X-ray crystallography, increasing efforts have been devoted to directly deal with them.
A crucial step in the computational study of protein structures is to look for a
convenient representation of their spatial conformations. The PDB format [5] represents
the standard computer analyzable format that is used in online databases for
representing macromolecular structures. Extensions of the PDB format have been
proposed in the literature mainly mmCIF and PDBML/XML file formats [6]. The PDB
format and its extensions mainly consist on spatial coordinates of atoms composing the
considered macromolecule besides its biological description and experimental details
with which it was obtained. Such representation prevent a direct use of the large
repertoire of available data mining and graph theory tools to study protein structures.
A possible representation of protein 3D-structure can be a graph of interconnected
amino acids. Figure 1 shows a real world example of the human hemoglobin protein and
its corresponding graph. The graph representation preserves the overall structure and

Copyright ©2015, All rights reserved. 1/9
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Abstract

While most studies emphasize on certain aspects of Pathogen-Host Interactions (PHI), such as the
preferential attachment of bacteria or virus to its human receptor homolog, studies have attempted to
methodically classify interactions among pathogenic proteins and their host proteins. Here we have ana-
lyzed 182 pathogens from The Pathogen-Host Interaction Search Tool (PHISTO) [1] and could identify
the proteins/protein coding genes that act on both virus and bacteria. Importantly there were few pro-
teins viz. P53 (Tumor protein p53), NFKB1 (Nuclear factor of kappa light polypeptide gene enhancer in
B-cells 1), GBLP (Guanine nucleotide-binding protein subunit beta-2-like-1), TOX4 (TOX high mobility
group box family member 4), PDIA1 (Protein disulfide-isomerase precursor), MHY9 (Myosin 9), RAC1
(Ras-related C3 botulinum toxin substrate 1), CCAR2 (Cell cycle and apoptosis regulator protein 2)
and ILF3 (Interleukin enhancer binding factor 3) that were more susceptible to both bacterial and viral
pathogens. Identification of such important interacting proteins (IIPs) can elicit significant insights for
better understanding the molecular mechanisms of such pathogens that interact with the human host.

1 Introduction

Pathogen-Host Interactions (PHI) are interactions that take place between pathogens (e.g. virus, bacteria,
etc.) and their host (e.g. humans, plants). Pathogen-Host Interactions can be illustrated on a single-cell
level (individual encounters of pathogen and host), on a molecular level (e.g. pathogenic protein binds
to receptor on human cell), at the level of an organism (e.g. virus infects host), or on the population level
(pathogen infections affecting a human population). Interactions among host and pathogen protein networks
are called pathogen-host interactomes and investigating them may allow us to apprehend and be aware of
the functioning of the host immune system and these important interacting proteins (IIPs) present in the
host cell could be utilized as potential drug targets [2]. We have analyzed 3,905 interactions (edges) from
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Bilayer-thickness-mediated interactions between integral membrane proteins

Osman Kahraman,1 Peter D. Koch,2 William S. Klug,3 and Christoph A. Haselwandter1
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Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid
bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown
that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-
mediated interactions between integral membrane proteins, and large-scale organization of integral
membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory
of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured
by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and
bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilay-
ers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic
and numerical methodology for the solution of the equilibrium elastic equations associated with
protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-
mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and
relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins
with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for
non-cylindrical protein shapes. We complement these analytic solutions, and assess their accuracy,
by developing both finite element and finite difference numerical solution schemes. We provide error
estimates of our numerical solution schemes and systematically assess their convergence properties.
Taken together, the work presented here puts into place an analytic and numerical framework which
allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for
the complicated protein shapes suggested by structural biology and at the small protein separations
most relevant for the crowded membrane environments provided by living cells.

PACS numbers: 87.15.kt, 87.16.D-, 87.16.Vy, 87.15.A-

I. INTRODUCTION

In many cell types, cell membranes are composed [1] of
a diverse array of lipids, organized as a lipid bilayer, and
membrane proteins, which play a central role in most cel-
lular processes. Membrane proteins are rigid compared to
the surrounding lipid bilayer [2–5]. Thus, the lipid bilayer
typically deforms to accommodate membrane proteins
and, in particular, the bilayer hydrophobic thickness is
compressed or expanded compared to the preferred bi-
layer thickness in the absence of membrane proteins [2–
9]. Distinct conformations of a membrane protein gen-
erally yield distinct energy costs of protein-induced lipid
bilayer deformations. As a result, the lipid bilayer can
serve as a “splint” stabilizing certain protein conforma-
tions [5] and thereby regulate protein function [2–9]. In
agreement with this general picture, experiments have
revealed [10–17] that, across the kingdoms of life, cen-
tral biological functions of integral membrane proteins
such as ion exchange and signaling are regulated by the
mechanical properties of the surrounding lipid bilayer,
with the hydrophobic regions of membrane proteins cou-
pling to the hydrophobic regions of lipid bilayers [18–20].
In particular, elastic bilayer thickness deformations have
been found [2–9] to regulate the functions of a diverse
range of integral membrane proteins.

Cell membranes are crowded with membrane proteins

[3, 21–23], with a typical mean center-to-center distance
d ≈ 10 nm between neighboring proteins [7]. As a result,
the elastic decay length of protein-induced lipid bilayer
thickness deformations [24–26] is comparable to the typi-
cal edge-to-edge spacing of proteins in cell membranes [7],
yielding thickness-mediated interactions between mem-
brane proteins [7, 27–30]. For the small protein sepa-
rations relevant for cell membranes, thickness-mediated
interactions between integral membrane proteins can be
> 10 kBT in magnitude [7, 31] and, depending on the hy-
drophobic thickness of neighboring membrane proteins,
be energetically favorable or unfavorable.

The lipid bilayer elasticity theory [32–34] underlying
the description of protein-induced bilayer deformations
and bilayer-mediated protein interactions has a rich and
distinguished history, dating back to the classic work of
W. Helfrich [35], P. B. Canham [36], E. A. Evans [37], and
H. W. Huang [38]. According to this classic theory, mem-
brane proteins may, in addition to thickness-mediated
interactions [31, 39–47], also interact [7, 48] via bilayer
curvature deformations [49–64] and bilayer fluctuations
[49, 61–68]. While the competition between thickness-,
curvature-, and fluctuation-mediated protein interactions
depends on the properties of the specific lipids and mem-
brane proteins under consideration, one generally ex-
pects [7, 31] that thickness-mediated protein interactions
are strong and short-ranged, and that curvature- and

ar
X

iv
:1

61
1.

00
83

6v
1 

 [
q-

bi
o.

B
M

] 
 2

 N
ov

 2
01

6

epl draft

Controlling the shape of membrane protein polyhedra

Di Li, Osman Kahraman and Christoph A. Haselwandter

Department of Physics & Astronomy and Molecular and Computational Biology Program,
Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA

PACS 87.16.D- – Membranes, bilayers, and vesicles
PACS 87.14.ep – Membrane proteins
PACS 87.15.kt – Protein-membrane interactions

Abstract – Membrane proteins and lipids can self-assemble into membrane protein polyhedral
nanoparticles (MPPNs). MPPNs have a closed spherical surface and a polyhedral protein ar-
rangement, and may offer a new route for structure determination of membrane proteins and
targeted drug delivery. We develop here a general analytic model of how MPPN self-assembly
depends on bilayer-protein interactions and lipid bilayer mechanical properties. We find that the
bilayer-protein hydrophobic thickness mismatch is a key molecular control parameter for MPPN
shape that can be used to bias MPPN self-assembly towards highly symmetric and uniform MPPN
shapes. Our results suggest strategies for optimizing MPPN shape for structural studies of mem-
brane proteins and targeted drug delivery.

Introduction. – In recent experiments [1], membrane
proteins and lipids were observed to self-assemble in an
aqueous environment into membrane protein polyhedral
nanoparticles (MPPNs)—closed lipid bilayer vesicles with
a polyhedral arrangement of membrane proteins. In par-
ticular, the mechanonsensitive channel of small conduc-
tance (MscS) [2, 3] was observed [1, 4] to predominantly
yield MPPNs with the symmetry of a snub cube, with one
MscS located at each of its 24 vertices, and a characteristic
overall radius ≈ 20 nm. Through their well-defined sym-
metry and characteristic size, MPPNs may [1], in addition
to potential applications as novel drug delivery carriers, of-
fer a new route for structure determination of membrane
proteins, with the membrane proteins embedded in a lipid
bilayer environment and the closed surfaces of MPPNs
supporting physiologically relevant transmembrane gradi-
ents. We have shown previously [5] that the observed sym-
metry and size of MPPNs [1] can be understood based on
the interplay of protein-induced lipid bilayer curvature de-
formations [6–8] arising [9] from the conical shape of MscS
[2,3], topological defects in protein packing necessitated by
the spherical shape of MPPNs [10], and thermal fluctua-
tions in MPPN self-assembly [10–12].

Realization of MPPNs as a novel method for membrane
protein structural analysis, as well as targeted drug deliv-
ery, requires [1] control over MPPN symmetry and size.
Current experimental approaches, however, yield a distri-
bution of different MPPN shapes [1, 5], which limits the

resolution of MPPN-based structural studies [1] and po-
tential applications of MPPNs as novel drug delivery car-
riers. To explore strategies for controlling and optimizing
MPPN shape, we generalize here our previous model of
MPPN self-assembly [5] to account for the effects of a hy-
drophobic thickness mismatch between membrane protein
and the unperturbed lipid bilayer. We provide general an-
alytic solutions for the dependence of the MPPN energy on
bilayer-protein hydrophobic thickness mismatch and, on
this basis, calculate a generalized MPPN self-assembly di-
agram. Our results suggest that, in addition to the bilayer-
protein contact angle [5], the bilayer-protein hydrophobic
thickness mismatch is a key molecular control parameter
for MPPN shape. In particular, we find that modification
of the lipid bilayer composition, or protein hydrophobic
thickness, so as to produce pronounced protein-induced
lipid bilayer thickness deformations biases the MPPN self-
assembly diagram towards highly symmetric and uniform
MPPN shapes. Our results provide general insights into
the roles of bilayer-protein interactions and lipid bilayer
mechanical properties in MPPN self-assembly, and suggest
strategies for controlling MPPN shape in experiments.

Bilayer mechanics of MPPNs. – Membrane pro-
teins are generally found to be rigid compared to lipid bi-
layer membranes, resulting in protein-induced lipid bilayer
deformations [9, 14–16]. In the standard elasticity theory
of lipid bilayers [9, 17–23], bilayer-protein interactions are
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Modular decomposition of protein structure using community detection
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As the number of solved protein structures increases, the opportunities for meta-analysis of this dataset
increase too. Protein structures are known to be formed of domains; structural and functional subunits
that are often repeated across sets of proteins. These domains generally form compact, globular regions,
and are therefore often easily identifiable by inspection, yet the problem of automatically fragmenting
the protein into these compact substructures remains computationally challenging. Existing domain clas-
sification methods focus on finding subregions of protein structure that are conserved, rather than finding
a decomposition which spans the full protein structure. However, such a decomposition would find ready
application in coarse-graining molecular dynamics, analysing the protein’s topology, in de novo protein
design and in fitting electron microscopy maps. Here, we present a tool for performing this modular
decomposition using the Infomap community detection algorithm. The protein structure is abstracted
into a network in which its amino acids are the nodes, and where the edges are generated using a simple
proximity test. Infomap can then be used to identify highly intra-connected regions of the protein. We
perform this decomposition systematically across 4000 distinct protein structures, taken from the Protein
Data Bank. The decomposition obtained correlates well with existing PFAM sequence classifications, but
has the advantage of spanning the full protein, with the potential for novel domains. The coarse-grained
network formed by the communities can also be used as a proxy for protein topology at the single-chain
level; we demonstrate that grouping these proteins by their coarse-grained network results in a function-
ally significant classification.

Keywords: community detection; protein structure; biological networks; spatial networks.

1. Introduction

All proteins are formed of chains of covalently bonded amino acids (also known as residues). The
pattern of non-covalent bonding between units of the chain is what causes the protein to fold into its
compact native structure; specifying the sequence of amino acids in a protein is sufficient to uniquely
determine its folded shape [1]. This structure then allows the protein to carry out its designated role
within the cell.

Solving a protein’s structure is costly in time and effort, yet the number of solved structures is
growing rapidly. Over 130 000 protein structures are now publicly available in the Protein Data Bank
(PDB) [2], and the size of this dataset is growing exponentially [3]. A widely-researched option for
extracting insight from this dataset involves the search for protein domains; functional or structural
subunits of a protein structure. Finding domains that are conserved between proteins helps to elucidate
the relationship between a protein’s structure and its function in the cell, and to classify the proteins into
a taxonomy based upon their common structural features. The first efforts to assign protein domains
were based upon manual expert curation [4]. In recent years, two alternative databases involving both
manual curation and computational assignment have emerged as mainstays; the CATH [5] and SCOPe
[6] databases. These databases focus on the domain as a structurally conserved unit, rather than as a

c© The Author(s) 2018. Published by Oxford University Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,

distribution, and reproduction in any medium, provided the original work is properly cited.

ar
X

iv
:1

80
9.

06
63

2v
1 

 [
q-

bi
o.

B
M

] 
 1

8 
Se

p 
20

18

ar
X

iv
:1

90
7.

03
35

1v
1 

 [
q-

bi
o.

M
N

] 
 7

 J
ul

 2
01

9
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Most amino acids are encoded by multiple synonymous codons. For an amino acid, some of its synonymous codons are used
much more rarely than others. Analyses of positions of such rare codons in protein sequences revealed that rare codons
can impact co-translational protein folding and that positions of some rare codons are evolutionary conserved. Analyses of
positions of rare codons in proteins’ 3-dimensional structures, which are richer in biochemical information than sequences
alone, might further explain the role of rare codons in protein folding. We analyze a protein set recently annotated with codon
usage information, considering non-redundant proteins with sufficient structural information. We model the proteins’ structures
as networks and study potential differences between network positions of amino acids encoded by evolutionary conserved
rare, evolutionary non-conserved rare, and commonly used codons. In 84% of the proteins, at least one of the three codon
categories occupies significantly more or less network-central positions than the other codon categories. Different protein
groups showing different codon centrality trends (i.e., different types of relationships between network positions of the three
codon categories) are enriched in different biological functions, implying the existence of a link between codon usage, protein
folding, and protein function.

1 Introduction

1.1 Motivation and related work.
The genetic code is redundant, meaning that most amino acids are encoded by more than one codon. Codons that code for the
same amino acid are called synonymous codons. For an amino acid, it is usually the case that some of its synonymous codons
encode it in the given genome relatively more commonly than the others1,2. Henceforth, intuitively, when we say “common”
codon, we mean a synonymous codon that is used frequently, and when we say “rare” codon, we mean a synonymous codon
that is used infrequently. Precise definitions depend on which computational model is used to characterize synonymous codons
as common or rare. Several such models exist3.

Rare codons are associated with lower tRNA levels, expression levels, and translational accuracy4–6. As a result, it has
been hypothesized that since common codons show efficient translation, they are more likely to be under selective pressure to
occupy important regions in protein structures. This has been supported by several prior efforts that have shown evolutionary
conservation of optimal (i.e., common) codons in structurally important regions7–9, while non-optimal (i.e., rare) codons tend
to occur in structurally disordered regions of a protein structure10.

Contrary to the view that rare codons are translationally inefficient and thus not optimal, several studies have argued
that rare codons can actually coordinate optimal co-translational protein folding of the polypeptide chain by slowing down
the translation process11–17. Because of this, and because folds (i.e., 3-dimensional (3D) structures) of orthologous proteins
are often evolutionary conserved18, recent studies have hypothesized that sequence positions of important rare codons in
orthologous proteins should also be evolutionary conserved19,20. Based on this hypothesis, Chaney et al.19 analyzed 76 fully
sequenced genomes to first identify groups of orthologous proteins. Then, in the multiple sequence alignment of proteins in
each orthologous group, Chaney et al.19 identified statistically significantly co-occuring (i.e., evolutionary conserved) rare
codon positions. Henceforth, we denote such evolutionary consered rare codons as “conserved rare” codons and the rare

Dong et al.
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Abstract

Background: Viral infections are causing significant morbidity and mortality
worldwide. Understanding the interaction patterns between a particular virus and
human proteins plays a crucial role in unveiling the underlying mechanism of viral
infection and pathogenesis. This could further help in prevention and treatment
of virus-related diseases. However, the task of predicting protein-protein
interactions between a new virus and human cells is extremely challenging due to
scarce data on virus-human interactions and fast mutation rates of most viruses.

Results: We developed a multitask transfer learning approach that exploits the
information of around 24 million protein sequences and the interaction patterns
from the human interactome to counter the problem of small training datasets.
Instead of using hand-crafted protein features, we utilize statistically rich protein
representations learned by a deep language modeling approach from a massive
source of protein sequences. Additionally, we employ an additional objective
which aims to maximize the probability of observing human protein-protein
interactions. This additional task objective acts as a regularizer and also allows to
incorporate domain knowledge to inform the virus-human protein-protein
interaction prediction model.

Conclusions: Our approach achieved competitive results on 13 benchmark
datasets and the case study for the SARS-CoV-2 virus receptor. Experimental
results show that our proposed model works effectively for both virus-human and
bacteria-human protein-protein interaction prediction tasks. We share our code
for reproducibility and future research
at https://git.l3s.uni-hannover.de/dong/multitask-transfer.

Keywords: protein-protein interaction; human PPI; virus-human PPI; multitask;
transfer learning; protein embedding

1 Introduction
Virus infections cause an enormous and ever increasing burden on healthcare sys-

tems worldwide. The ongoing COVID-19 pandemic caused by the zoonotic virus,

SARS-CoV-2, has resulted in enormous socio-economic losses [1]. Viruses infect all

life forms and require host cells to complete their replication cycle by utilizing the

host cell machinery. Virus infection involves several types of protein-protein inter-

actions (PPIs) between the virus and its host. These interactions include the initial

attachment of virus coat or envelope proteins to host membrane receptors, hijacking

of the host translation and intracellular transport machineries resulting in replica-

tion, assembly and subsequent release of virus particles [2, 3, 4]. Besides providing
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Abstract
Intrinsically disordered proteins (IDPs) and multidomain proteins with flexible linkers show a high
level of structural heterogeneity and are best described by ensembles consisting of multiple
conformations with associated thermodynamic weights. Determining conformational ensembles
usually involves integration of biophysical experiments and computational models. In this review,
we discuss current approaches to determining conformational ensembles of IDPs and
multidomain proteins, including the choice of biophysical experiments, computational models
used to sample protein conformations, models to calculate experimental observables from
protein structure, and methods to refine ensembles against experimental data. We also provide
examples of recent applications of integrative conformational ensemble determination to study
IDPs and multidomain proteins and suggest future directions for research in the field.

Introduction
Understanding how proteins carry out their biological functions and what causes them to misfunc-
tion is important from the perspective of fundamental science and to develop new therapeutics
and biotechnology. Protein dynamics and function are intimately related, andmany proteins must
modulate their shape to respond to environmental changes, accommodate binding partners, cat-
alyze reactions, convey allosteric signals, and transport ligands (Teilum et al., 2009). Therefore, an
important aim of structural biology is not only to determine static structures of proteins, but to
characterize their conformational heterogeneity and its relationship to biological function.

Here we review the approaches used to determine conformational ensembles of intrinsically
disordered proteins (IDPs) and flexible multidomain proteins, limiting ourselves to approaches
that directly integrate experimental data in the generation of the ensemble. The focus will be on
principles and examples, and this review is therefore best suited for readers who are looking for
a brief, conceptual overview of the field. For a more technical introduction we refer the reader to
previous literature (Hummer and Köfinger, 2015; Orioli et al., 2020).
Intrinsically disordered proteins and multidomain proteins
IDPs are proteins that do not fold into a well-defined structure, but rather interconvert between a
large range of very different conformations. Based on disorder predictions, intrinsically disordered
regions (IDRs) make up more than one third of eukaryotic proteins (Ward et al., 2004; Xue et al.,
2012; Oates et al., 2013; Tunyasuvunakool et al., 2021). The conformational heterogeneity of IDPs
allows for promiscuity in interaction partners, and IDPs are often involved in biological processes
such as signaling, recognition, and regulation (Wright and Dyson, 2015; Bondos et al., 2021). In
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Abstract

Protein engineering is an emerging field in biotechnology that has the potential to revolutionize various areas, such as
antibody design, drug discovery, food security, ecology, and more. However, the mutational space involved is too vast
to be handled through experimental means alone. Leveraging accumulative protein databases, machine learning (ML)
models, particularly those based on natural language processing (NLP), have considerably expedited protein engineering.
Moreover, advances in topological data analysis (TDA) and artificial intelligence-based protein structure prediction, such
as AlphaFold2, have made more powerful structure-based ML-assisted protein engineering strategies possible. This review
aims to offer a comprehensive, systematic, and indispensable set of methodological components, including TDA and NLP,
for protein engineering and to facilitate their future development.

Key words: Topological data analysis; Protein language models; Protein engineering; Deep learning and machine learning

Key points

• Machine learning and deep learning techniques are

revolutionizing protein engineering.

• Topological data analysis enables advanced structure-based

machine learning-assisted protein engineering approaches.

• Deep protein language models extract critical evolutionary

information from large-scale sequence databases.

Introduction

Protein engineering aims to design and discover proteins with

desirable functions, such as improving the phenotype of living

organisms, enhancing enzyme catalysis, and boosting antibody

efficacy [1]. It has tremendous impacts on drug discovery,

enzyme development and applications, the development of

biosensors, diagnostics, and other biotechnology, as well

as understanding the fundamental principles of the protein

structure-function relationship and achieving environmental

sustainability and diversity. Protein engineering has the

potential to continue to drive innovation and improve our lives

in the future.

Two traditional protein engineering approaches include

directed evolution [2] and rational design [3, 4]. Directed

evolution is a process used to create proteins or enzymes

with improved or novel functions [5]. The method involves

introducing mutations into the genetic code of a target

protein and screening the resulting variants for improved

function. The process is ”directed” because it is guided by

the desired outcome, such as increased activity, stability,

specificity, binding affinity, and fitness. Rational design involves

using knowledge of protein structure and function to engineer

desirable specific changes to the protein sequence and/or

structure [4, 6]. Both approaches resort to experimental

screening of astronomically large mutational space, i.e., 20N

for protein of N amino acid residues, which is expensive, time-

consuming, and intractable [7]. As a result, only a small fraction

of the mutational space can be explored experimentally even

with the most advanced high-throughput screening technology.

Recently, data-driven machine learning has emerged as a

new approach for directed evolution and protein engineering

[8, 9]. Machine learning-assisted protein engineering (MLPE)

refers to the use of machine learning models and techniques to

improve the efficiency and effectiveness of protein engineering.

MLPE not only reduces the cost and expedites the process

of protein engineering, but also optimizes the screening and

selection of protein variants [10], leading to the higher efficiency

and productivity. Specifically, by using machine learning to

analyze and predict the effects of mutations on protein function,

researchers can rapidly generate and test large numbers of

variants, which establish the protein-to-fitness map (i.e., fitness

© The Author 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:
journals.permissions@oup.com
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ABSTRACT

Motivation: Understanding the relationships between protein sequence, structure and function is
a long-standing biological challenge with manifold implications from drug design to our under-
standing of evolution. Recently, protein language models have emerged as the preferred method
for this challenge, thanks to their ability to harness large sequence databases. Yet, their reliance
on expansive sequence data and parameter sets limits their flexibility and practicality in real-world
scenarios. Concurrently, the recent surge in computationally predicted protein structures unlocks new
opportunities in protein representation learning. While promising, the computational burden carried
by such complex data still hinders widely-adopted practical applications.
Method: To address these limitations, we introduce a novel framework that enhances protein language
models by integrating protein structural data. Drawing from recent advances in graph transformers,
our approach refines the self-attention mechanisms of pretrained language transformers by integrating
structural information with structure extractor modules. This refined model, termed Protein Structure
Transformer (PST), is further pretrained on a small protein structure database, using the same masked
language modeling objective as traditional protein language models.
Results: Empirical evaluations of PST demonstrate its superior parameter efficiency relative to
protein language models, despite being pretrained on a dataset comprising only 542K structures.
Notably, PST consistently outperforms the state-of-the-art foundation model for protein sequences,
namely ESM-2, setting a new benchmark in protein function prediction. Our findings underscore the
potential of integrating structural information into protein language models, paving the way for more
effective and efficient protein modeling.
Availability: Code and pretrained models are available at https://github.com/BorgwardtLab/
PST.

Keywords protein representation learning · protein language models · self-supervised learning · graph transformers

1 Introduction

Proteins are fundamental building blocks of life, supporting an abundance of biological functions. Their functional
activities range from guiding cell division, intra/inter cellular transport, to reaction catalysis and signal transduction.
These multifaceted tasks are achieved because proteins, initially formed as linear polymer chains, undergo a transforma-
tion to self-assemble into 3D folds. The geometry and physico-chemical characteristics of these folds dictate a range of
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Protein-as-Word Pre-Training
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Abstract
We propose PROTLLM, a versatile cross-
modal large language model (LLM) for both
protein-centric and protein-language tasks.
PROTLLM features a unique dynamic protein
mounting mechanism, enabling it to handle
complex inputs where the natural language
text is interspersed with an arbitrary number
of proteins. Besides, we propose the protein-
as-word language modeling approach to train
PROTLLM. By developing a specialized pro-
tein vocabulary, we equip the model with the
capability to predict not just natural language
but also proteins from a vast pool of can-
didates. Additionally, we construct a large-
scale interleaved protein-text dataset, named
InterPT, for pre-training. This dataset com-
prehensively encompasses both (1) structured
data sources like protein annotations and (2)
unstructured data sources like biological re-
search papers, thereby endowing PROTLLM
with crucial knowledge for understanding pro-
teins. We evaluate PROTLLM on classic super-
vised protein-centric tasks and explore its novel
protein-language applications. Experimental
results demonstrate that PROTLLM not only
achieves superior performance against protein-
specialized baselines on protein-centric tasks
but also induces zero-shot and in-context learn-
ing capabilities on protein-language tasks.

1 Introduction

Understanding proteins is essential for unraveling
the mysteries of life and enabling artificial intel-
ligence systems to advance bioscience research
(Wang et al., 2023a). Thanks to the development of
deep learning techniques, neural network models
encompass extensive protein-centric applications,
such as protein-folding prediction (Jumper et al.,
2021), protein-protein interaction analysis (Li et al.,
2018; Su et al., 2023), function prediction (Zhang
et al., 2023a), etc.

*Equal contribution.
†Corresponding author.

MV_ST_KTS_KE….

Protein Encoder

MVKSTSK….

__K__S___T__….

Protein
Encoder

[Text description]

Language 
Encoder

Protein sequence modeling
(e.g., ESM)

[Text description] [Text description] [Text description]

ProtLLM

MVKSTSK…. MVKSTSK….

Paired protein-text training
(e.g., ProtST)

Protein-as-word pre-training on interleaved protein-text articles
(this work)

Figure 1: Unlike existing protein representation models
that focus on protein-text pairs or protein-only data,
PROTLLM can handle complex inputs with multiple
proteins interleaved with text, thereby learning crucial
knowledge from scientific papers and supporting diverse
downstream tasks.

Protein representation learning methods typi-
cally employ large-scale pre-training, which learns
unsupervised protein representations on massive
protein sequences with masked language model-
ing (Rives et al., 2021), or autoregressive lan-
guage modeling (Elnaggar et al., 2020). In addi-
tion to protein-centric tasks, recent studies have
attempted to extend protein models to protein-
language scenarios. ProtST (Xu et al., 2023b) inte-
grates textual information into the protein encoder
through multimodal pre-training on protein-text
pairs, achieving zero-shot text-to-protein retrieval.
Fang et al. (2023) introduces an instruction dataset
tailored for the biomolecular domain and investi-
gates how fine-tuned LLM performs on protein-
domain instruction-following tasks, such as func-
tion description generation.

Despite the success of protein representation
methods on specific tasks, developing a model that
excels in both protein-centric and protein-language
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ABSTRACT
The core challenge of de novo protein design lies in creating proteins
with specific functions or properties, guided by certain conditions.
Current models explore to generate protein using structural and
evolutionary guidance, which only provide indirect conditions con-
cerning functions and properties. However, textual annotations of
proteins, especially the annotations for protein domains, which
directly describe the protein’s high-level functionalities, properties,
and their correlation with target amino acid sequences, remain
unexplored in the context of protein design tasks. In this paper,
we propose Protein-Annotation Alignment Generation (PAAG), a
multi-modality protein design framework that integrates the textual
annotations extracted from protein database for controllable gener-
ation in sequence space. Specifically, within a multi-level alignment
module, PAAG can explicitly generate proteins containing specific
domains conditioned on the corresponding domain annotations,
and can even design novel proteins with flexible combinations of
different kinds of annotations. Our experimental results underscore
the superiority of the aligned protein representations from PAAG
over 7 prediction tasks. Furthermore, PAAG demonstrates a sig-
nificant increase in generation success rate (24.7% vs 4.7% in zinc
finger, and 54.3% vs 22.0% in the immunoglobulin domain) in com-
parison to the existingmodel.We anticipate that PAAGwill broaden

∗Work was done when Chaohao Yuan worked as an intern at Tencent AI Lab.
†Project Lead.
‡Corresponding Author.
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the horizons of protein design by leveraging the knowledge from
between textual annotation and proteins.
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1 INTRODUCTION
Protein design [33] is a crucial task for its immense potential on
drug discovery [44, 52], enzyme engineering [47], immunongineer-
ing [48] and so on. The generation of proteins with specific proper-
ties, behaviors, or functions, such as optimizing the binding affinity
to givenmolecules [18, 60] or incorporating a particular ion-binding
site [39], is known as de novo protein design. This process presents
a significant challenge due to the vast space of protein sequences
and the complexity of protein functions. Recently, machine learn-
ing models have shown profound potential for protein design. The
existing studies mostly rely on the structural [51] or evolutionary
information [1] as the guidance to design proteins. However, in
many cases, these conditions can only offer indirect guidance to-
wards the desired protein design targets to their inherent ambiguity.
For example, the same protein sequence segment can be either act
as receptors to regulate synaptic function [45] or helpers to locate
target proteins to specific subcellular locations [35].

In addition to the structural and evolutionary information, the
current protein dataset, such as Swiss-Prot [5] and UniProtKB [9],
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ABSTRACT

Motivation: Protein embedding, which represents proteins as numerical vectors, is a crucial step in
various learning-based protein annotation/classification problems, including gene ontology prediction,
protein-protein interaction prediction, and protein structure prediction. However, existing protein
embedding methods are often computationally expensive due to their large number of parameters,
which can reach millions or even billions. The growing availability of large-scale protein datasets and
the need for efficient analysis tools have created a pressing demand for efficient protein embedding
methods.
Results: We propose a novel protein embedding approach based on multi-teacher distillation
learning, which leverages the knowledge of multiple pre-trained protein embedding models to learn a
compact and informative representation of proteins. Our method achieves comparable performance to
state-of-the-art methods while significantly reducing computational costs and resource requirements.
Specifically, our approach reduces computational time by ~70% and maintains ±1.5% accuracy as
the original large models. This makes our method well-suited for large-scale protein analysis and
enables the bioinformatics community to perform protein embedding tasks more efficiently.
Availability: The source code od MTDP is available via https://github.com/KennthShang/MTDP
Contact: yannisun@cityu.edu.hk

1 Introduction

Protein characterization and annotation provide the foundational knowledge necessary to unravel the complex mech-
anisms underlying many biological processes. However, the complexity and variability of protein sequences pose
significant challenges to traditional analysis methods, which struggle to capture their intricate patterns and relationships.
Recently, deep learning-based algorithms have demonstrated remarkable success in protein data analysis, leveraging
their ability to learn complex patterns and relationships from large datasets to predict gene ontology, 2D-/3D-structure,
and protein stability [1, 2, 3]. An essential requirement for these successful applications is the representation of
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ABSTRACT

Proteins are fundamental components of biological systems and can be represented through various
modalities, including sequences, structures, and textual descriptions. Despite the advances in deep
learning and scientific large language models (LLMs) for protein research, current methodologies
predominantly focus on limited specialized tasks – often predicting one protein modality from another.
These approaches restrict the understanding and generation of multimodal protein data. In contrast,
large multimodal models have demonstrated potential capabilities in generating any-to-any content
like text, images, and videos, thus enriching user interactions across various domains. Integrating
these multimodal model technologies into protein research offers significant promise by potentially
transforming how proteins are studied. To this end, we introduce HelixProtX, a system built upon the
large multimodal model, aiming to offer a comprehensive solution to protein research by supporting
any-to-any protein modality generation. Unlike existing methods, it allows for the transformation
of any input protein modality into any desired protein modality. The experimental results affirm the
advanced capabilities of HelixProtX, not only in generating functional descriptions from amino acid
sequences but also in executing critical tasks such as designing protein sequences and structures from
textual descriptions. Preliminary findings indicate that HelixProtX consistently achieves superior
accuracy across a range of protein-related tasks, outperforming existing state-of-the-art models.
By integrating multimodal large models into protein research, HelixProtX opens new avenues for
understanding protein biology, thereby promising to accelerate scientific discovery.

Keywords Protein generation · Any-to-any generation ·Multiple modalities · Large language model

1 Introduction

Proteins are fundamental entities in the life sciences, performing diverse and crucial functions within living organisms.
They provide structural support, catalyze biochemical reactions as enzymes, and facilitate the transport and storage of
essential molecules. Additionally, proteins also play a critical role in a wide array of biological functions, involved in cell
signaling, immune response, and gene regulation. The study of proteins can be approached through multiple modalities
including amino acid sequences, three-dimensional structures, and textual descriptions – each offering unique insights
into understanding proteins from different perspectives: (1) The amino acid sequence, also referred to as the primary
structure of a protein, encodes the genetic information and is typically analyzed using sequence-based deep learning
models, such as those outlined by [1] to investigate the associations across the residues. (2) The three-dimensional
structural conformation, also known as the folded state, greatly influences a protein’s functional activities. Various
advanced structural encoders, like Geometric Vector Perceptron (GVP) [2], Protein Message-Passing Neural Network
(ProteinMPNN) [3], and Invariant Point Attention (IPA)[4], have been investigated to elucidate the complex spatial

∗Equal contributions.
†Corresponding author: Xiaomin Fang (fangxiaomin01@baidu.com) and Jingbo Zhou (zhoujingbo@baidu.com).

ar
X

iv
:2

40
7.

09
27

4v
1 

 [
cs

.L
G

] 
 1

2 
Ju

l 2
02

4

ENDOWING PROTEIN LANGUAGE MODELS WITH STRUCTURAL
KNOWLEDGE

A PREPRINT

Dexiong Chen Philip Hartout Paolo Pellizzoni Carlos Oliver

Karsten Borgwardt

Department of Machine Learning and Systems Biology
Max Planck Institute of Biochemistry

am Klopferspitz 18, 82152 Martinsried, Germany
{dchen, hartout, pellizzoni, oliver, borgwardt}@biochem.mpg.de

January 29, 2024

ABSTRACT

Motivation: Understanding the relationships between protein sequence, structure and function is
a long-standing biological challenge with manifold implications from drug design to our under-
standing of evolution. Recently, protein language models have emerged as the preferred method
for this challenge, thanks to their ability to harness large sequence databases. Yet, their reliance
on expansive sequence data and parameter sets limits their flexibility and practicality in real-world
scenarios. Concurrently, the recent surge in computationally predicted protein structures unlocks new
opportunities in protein representation learning. While promising, the computational burden carried
by such complex data still hinders widely-adopted practical applications.
Method: To address these limitations, we introduce a novel framework that enhances protein language
models by integrating protein structural data. Drawing from recent advances in graph transformers,
our approach refines the self-attention mechanisms of pretrained language transformers by integrating
structural information with structure extractor modules. This refined model, termed Protein Structure
Transformer (PST), is further pretrained on a small protein structure database, using the same masked
language modeling objective as traditional protein language models.
Results: Empirical evaluations of PST demonstrate its superior parameter efficiency relative to
protein language models, despite being pretrained on a dataset comprising only 542K structures.
Notably, PST consistently outperforms the state-of-the-art foundation model for protein sequences,
namely ESM-2, setting a new benchmark in protein function prediction. Our findings underscore the
potential of integrating structural information into protein language models, paving the way for more
effective and efficient protein modeling.
Availability: Code and pretrained models are available at https://github.com/BorgwardtLab/
PST.

Keywords protein representation learning · protein language models · self-supervised learning · graph transformers

1 Introduction

Proteins are fundamental building blocks of life, supporting an abundance of biological functions. Their functional
activities range from guiding cell division, intra/inter cellular transport, to reaction catalysis and signal transduction.
These multifaceted tasks are achieved because proteins, initially formed as linear polymer chains, undergo a transforma-
tion to self-assemble into 3D folds. The geometry and physico-chemical characteristics of these folds dictate a range of
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ABSTRACT

Self-supervised training of language models (LMs) has seen great success for
protein sequences in learning meaningful representations and for generative drug
design. Most protein LMs are based on the Transformer architecture trained on indi-
vidual proteins with short context lengths. Such protein LMs cannot extrapolate to
longer proteins and protein complexes well. They also fail to account for the under-
lying biological mechanisms carried out by biomolecular interactions and dynamics
i.e., proteins often interact with other proteins, molecules, and pathways in complex
biological systems. In this work, we propose LC-PLM based on an alternative
protein LM architecture, BiMamba-S, built off selective structured state-space
models, to learn high-quality universal protein representations at the amino acid to-
ken level using masked language modeling. We also introduce its graph-contextual
variant, LC-PLM-G, which contextualizes protein-protein interaction (PPI) graphs
for a second stage of training. LC-PLM demonstrates favorable neural scaling laws,
better length extrapolation capability, and a 7% to 34% improvement on protein
downstream tasks than Transformer-based ESM-2. LC-PLM-G further trained
within the context of PPI graphs shows promising results on protein structure
and function prediction tasks. Our study demonstrates the benefit of increasing
the context size with computationally efficient LM architecture (e.g. structured
state space models) in learning universal protein representations and incorporating
molecular interaction context contained in biological graphs.

1 INTRODUCTION

Most biological sequences are derived from genomes, which are long DNA sequences: human
chromosomes range from 50 to 300 million base pairs. The protein-coding regions, which can
be considered as the translated substrings of the genome, are relatively shorter (the majority are
< 3,000 amino acids), albeit with a few exceptions, such as Titin, composed of 34K amino acids.
The prevalent protein language models (pLMs), e.g. ESM-2 (Lin et al., 2023), choose 1024 as the
context length as it fits 97.4% of proteins. However, it does not natively support tasks that require
long-range context windows to reason over multiple related sequences, such as genomic interactions,
protein-protein interactions (PPI), protein function prediction, and 3D structure prediction of long
proteins and protein complexes. Another challenge for modeling long-range biological contexts lies

∗This work was completed while the author was an intern at Amazon
†Corresponding author
‡Huzefa Rangwala is on LOA as a Professor of Computer Science at George Mason University. This paper

describes work performed at Amazon.
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  IDENTIFYING INTERACTION SITES IN "RECALCITRANT" 
PROTEINS:  PREDICTED PROTEIN AND RNA BINDING SITES 

IN REV PROTEINS OF HIV-1 AND EIAV AGREE WITH 
EXPERIMENTAL DATA  
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1Bioinformatics and Computational Biology Graduate Program and L.H. Baker Center 
for Bioinformatics and Biological Statistics, 2Department of Computer Science, 

3Department of Biochemistry, Biophysics and Molecular Biology, 4Department of 
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Protein-protein and protein nucleic acid interactions are vitally important for a wide range of 
biological processes, including regulation of gene expression, protein synthesis, and replication 
and assembly of many viruses. We have developed machine learning approaches for predicting 
which amino acids of a protein participate in its interactions with other proteins and/or nucleic 
acids, using only the protein sequence as input.  In this paper, we describe an application of 
classifiers trained on datasets of well-characterized protein-protein and protein-RNA 
complexes for which experimental structures are available. We apply these classifiers to the 
problem of predicting protein and RNA binding sites in the sequence of a clinically important 
protein for which the structure is not known: the regulatory protein Rev, essential for the 
replication of HIV-1 and other lentiviruses.  We compare our predictions with published 
biochemical, genetic and partial structural information for HIV-1 and EIAV Rev and with our 
own published experimental mapping of RNA binding sites in EIAV Rev. The predicted and 
experimentally determined binding sites are in very good agreement. The ability to predict 
reliably the residues of a protein that directly contribute to specific binding events - without the 
requirement for structural information regarding either the protein or complexes in which it 
participates - can potentially generate new disease intervention strategies.   

                                                            
† Corresponding author 

Figure 8: Sample documents used for protein science literature retrieval.
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A.1.2 SAMPLE CSV FILES USED FOR RETRIEVAL

In addition to literature retrieval, the framework integrates structured experimental datasets in CSV
format to enhance the empirical grounding of generated hypotheses. Figure 9 presents example rows
from structured datasets that include:

• Protein sequence data – Amino acid compositions and sequence motifs relevant to sec-
ondary structure prediction.

• Structural properties – Annotations of alpha-helices, beta-strands, and loop regions de-
rived from experimental datasets.

• Functional classifications – Labels indicating biological significance, enzymatic activity,
and evolutionary conservation.

• Experimental measurements – Physicochemical attributes such as stability metrics, bind-
ing affinities, and solubility factors.

These structured datasets are processed using feature extraction, data embedding, and similarity
search techniques to enable dynamic hypothesis refinement. The integration of document-based in-
sights with structured experimental data ensures that hypotheses are formulated with both theoretical
and empirical rigor.

14
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Figure 9: Sample CSV files used for experimental data retrieval.

A.2 1ST PHASE OF HYPOTHESES GENERATION USING MULTI-AGENT LLMS

The hypothesis generation prompt in Figure 10 provides a structured framework for integrating
scientific literature insights with structured experimental data to formulate novel protein science
hypotheses. This prompt is designed for a multi-agent system, ensuring that generated hypotheses
are scientifically grounded, data-driven, and experimentally testable.

The process of hypothesis generation in this phase follows a four-step structure:

1. Background Insight from Literature – The prompt instructs the system to extract key
scientific principles, mechanisms, or trends from peer-reviewed research. This ensures that
hypothesis formation is anchored in established knowledge.

2. Pattern Identified from Structured Data – The system analyzes structured experimental
datasets to identify relevant sequence motifs, secondary structure correlations, and func-
tional site patterns. This step ensures that hypotheses are empirically supported.

3. Novel Hypothesis – Based on the previous insights, the system proposes a new hypothesis
that explicitly combines literature-derived knowledge with structured data analysis. This
integration fosters innovation and scientific discovery.

4. Experimental Validation Strategy – To ensure that hypotheses are testable, the prompt
mandates the inclusion of specific experimental techniques such as molecular dynamics
simulations, mutagenesis, and crystallography. This enhances the practical applicability of
each hypothesis.

Additionally, the prompt highlights the importance of structured data by requiring the analysis of
amino acid sequence motifs, secondary structure correlations, and functional site patterns. It also
provides examples of integrating structured data, such as identifying conserved hydrophobic patches
and assessing the impact of mutations at labeled sites.

By enforcing this systematic approach, the prompt ensures that hypotheses are rigorously formu-
lated, scientifically relevant, and experimentally testable, making it a powerful tool for AI-driven
hypothesis generation in protein science.
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Figure 10: The utilized prompt for 1st Phase of Hypotheses Generation using Multi-Agent LLMs.

A.3 2ND PHASE OF HYPOTHESIS GENERATION USING MULTI-AGENT LLMS

The hypothesis evaluation process in the second phase, as illustrated in Figure 11, follows a struc-
tured multi-step reasoning framework known as Chain of Thought (CoT). This approach ensures
that each hypothesis undergoes systematic refinement based on predefined scientific criteria. The
CoT General Multi-Agent Prompt is designed to assess hypotheses across five fundamental aspects:

1. Internal Consistency Check – This step verifies whether the hypothesis logically fol-
lows from established scientific principles and does not contradict existing biochemical
and structural knowledge.

2. Feasibility Analysis – Hypotheses are assessed for their experimental testability by deter-
mining whether existing methodologies or computational models can validate them.

3. Novelty Assessment – The prompt evaluates whether the hypothesis introduces a unique
or underexplored concept, ensuring its contribution to new scientific knowledge.

4. Scientific Impact – The broader implications of the hypothesis are examined, including
its relevance to advancing fundamental research, biomedical applications, or translational
science.

5. Scalability and Generalizability – This step determines whether the hypothesis extends
to related proteins, biological systems, or molecular contexts, ensuring its applicability
beyond a singular case.

The output format of the evaluation follows a structured approach to ensure clarity and reproducibil-
ity. As can be seen in Figure 12, each hypothesis is summarized in an Initial Hypothesis Summary,
followed by a Step-by-Step Evaluation that applies the five CoT criteria. After this process, the
system selects the Top 10 Hypotheses based on their scientific rigor and experimental feasibility.
Finally, an Experimental Validation Strategy is provided, outlining computational or laboratory ap-
proaches for hypothesis testing.

By employing a multi-agent framework with Chain of Thought reasoning, the system systematically
refines and ranks hypotheses, ensuring that only the most scientifically promising and experimentally
viable hypotheses progress to further validation. This structured approach enhances the reliability,
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reproducibility, and impact of AI-driven hypothesis generation in protein science and molecular
biology.

Figure 11: The prompt used for Chain of Thought (CoT) reasoning in the 2nd Phase of Hypothesis
Generation using Multi-Agent LLMs.

Figure 12: The 1st reasoning-level of hypothesis selection output in the 2nd Phase of Hypothesis
Generation using Multi-Agent LLMs.

Figure 13 presents the third reasoning level of hypothesis evaluation in the 2nd phase of hypothesis
generation using Multi-Agent LLMs. At this stage, hypotheses undergo rigorous experimental val-
idation to ensure their feasibility and scientific credibility. The multi-agent system systematically
assigns validation strategies to each hypothesis, aligning them with computational and laboratory-
based experimental techniques.

The Experimental Validation Strategy involves a diverse set of methodologies tailored to assess dif-
ferent aspects of structural and functional protein properties. For instance, hypotheses related to hy-
drophobic patches in neuropeptides undergo mutagenesis studies to alter hydrophobic residues, with
circular dichroism spectroscopy and functional assays providing empirical validation. Similarly, in-
tricate secondary structures and functional versatility are evaluated through molecular dynamics
simulations, deep learning-based image classification, and conformational flexibility analyses.
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Additional experimental strategies include vibrational free energy and protein stability assessments,
which utilize molecular dynamics simulations with vibrational free energy calculations, and vali-
dation through X-ray crystallography and NMR spectroscopy. Hypotheses concerning topological
stability from beta-sheet motifs are examined using atomic force microscopy, applying persistent
homology for structural analysis. In the context of prion-like conformational changes, in vitro ag-
gregation assays coupled with fluorescence spectroscopy enable tracking of conformational alter-
ations.

To validate hypotheses with applications in drug targeting and molecular interactions, Bayesian neu-
ral networks are trained on structural features and subsequently tested using binding assays. Simi-
larly, hypotheses related to conserved alpha-helices and evolutionary fitness undergo phylogenetic
analysis correlated with stability assays and machine learning models for classification.

Further validation strategies include the use of stopped-flow spectroscopy to investigate protein fold-
ing kinetics and its correlation with functional assays, as well as molecular dynamics modeling for
nonlinear protein interactions, which are subsequently validated through thermal denaturation as-
says. Lastly, water-protein interactions and dynamics are explored through NMR spectroscopy and
molecular dynamics simulations to understand their role in protein stability and function.

By integrating these diverse validation approaches, the multi-agent system ensures that each hy-
pothesis is robustly tested using both experimental and computational methods. This final step in
the evaluation process enhances the reliability of AI-driven hypothesis generation, paving the way
for empirical validation and real-world scientific applications.

Figure 13: The 3rd reasoning-level of hypothesis evaluation output in the 2nd Phase of Hypothesis
Generation using Multi-Agent LLMs.

A.4 3RD PHASE OF MULTI-AGENT SYSTEM ANALYSIS: FINAL HYPOTHESIS SELECTION
AND EXPERIMENTAL VALIDATION

Figure 14 illustrates the deployed prompt for protein-specialized Multi-Agent systems in the third
phase of hypothesis generation using Multi-Agent LLMs. This phase focuses on the final selection
and experimental validation of the most promising hypotheses, ensuring their robustness across
multiple scientific perspectives. The system employs a structured evaluation framework, where
hypotheses are assessed by specialized agents, each responsible for a distinct scientific criterion.

The Molecular Stability & Folding Agent evaluates whether the hypothesis aligns with estab-
lished principles of protein folding, stability, and aggregation. The Biochemical Plausibility Agent
ensures that the hypothesis conforms to known biochemical principles, including enzyme kinetics
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and ligand interactions. The Functional Relevance Agent assesses the biological applicability of
hypotheses, determining their significance in cellular functions.

To validate hypotheses from an evolutionary standpoint, the Evolutionary Consistency Agent
examines whether the proposed mechanisms align with evolutionary biology principles. The
Sequence-Function Relationship Agent investigates how sequence variations influence protein
function, identifying conserved motifs and their structural relevance. Similarly, the Structural
Compatibility Agent ensures that the hypothesis is consistent with known 3D protein structures.

The Experimental Validation Agent determines whether the hypothesis can be empirically tested
using available laboratory techniques, mapping it to established experimental methodologies. In
the pharmaceutical domain, the Drug Discovery & Therapeutic Potential Agent evaluates the
potential translational impact of the hypothesis for drug development and therapeutic applications.
The Protein Engineering & Synthetic Biology Agent assesses the applicability of the hypothesis
in protein design, synthetic biology, and biomolecular engineering.

Lastly, the Interaction Network & Systems Biology Agent evaluates the relevance of the hypoth-
esis in the broader context of protein interaction networks and cellular systems. Each agent returns
an evaluation score based on predefined scoring criteria, ensuring a systematic ranking of hypothe-
ses. This structured approach enables an objective and multi-faceted assessment, facilitating the
selection of hypotheses with the highest scientific merit and experimental feasibility.

By integrating these specialized assessments, the Multi-Agent system ensures that only the most
robust and scientifically viable hypotheses proceed to experimental validation. This final phase
enhances the reliability of AI-driven hypothesis generation, supporting advancements in structural
biology, drug discovery, and protein engineering.

Figure 14: The deployed prompt for protein-specialized Multi-Agent systems in the 3rd Phase of
Hypothesis Generation using Multi-Agent LLMs.
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