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ABSTRACT

Scientific hypothesis generation is fundamental to advancing molecular biology
and protein science. This study presents a novel Al-driven multi-agent framework
that integrates Retrieval-Augmented Generation (RAG) with structured experi-
mental data for automated hypothesis generation and validation. The methodol-
ogy employs scientific literature retrieval, structured dataset analysis, and multi-
agent evaluation, ensuring that generated hypotheses are scientifically rigorous
and experimentally testable. The framework consists of three key phases: (1)
Hypothesis Generation, where insights from literature and structured data are
synthesized using large language models; (2) Multi-Agent Evaluation through
Chain of Thoughts (CoT) mechanism, where hypotheses are assessed for inter-
nal consistency, feasibility analysis, novelty assessment, scientific impact, and
scalability/generalizability; and (3) Final Selection and Validation, where high-
scoring hypotheses undergo refinement using protein-specialized agents and are
linked to experimental validation strategies such as molecular dynamics simula-
tions, site-directed mutagenesis, and structural characterization. Results demon-
strate the system’s ability to generate novel, high-impact hypotheses in protein sta-
bility, enzyme catalysis, ligand interactions, and biomolecular interactions, with
broad applications in drug discovery, synthetic biology, and protein engineering.
The study highlights the potential of Al-driven hypothesis generation in acceler-
ating scientific discovery by integrating machine learning, structured data analy-
sis, and multi-agent validation into research workflows. Our code is available at
https://github.com/adibgpt/ProteinHypothesis.

1 INTRODUCTION

Hypothesis generation serves as the foundation of scientific inquiry, guiding researchers in formu-
lating testable predictions that drive innovation and the expansion of knowledge across disciplines.
Historically, this process has relied on human intuition, manual literature reviews, and structured
methodologies based on logical reasoning and domain expertise. While these conventional ap-
proaches have led to groundbreaking discoveries, they are increasingly constrained by the limita-
tions of human cognition, the exponential growth of scientific literature, and the rising complex-
ity of interdisciplinary research. Scientists today face significant challenges in synthesizing vast
amounts of information, identifying meaningful research gaps, and formulating hypotheses that in-
tegrate insights from multiple fields (Chai et al.,[2024) (Abdel-Rehim et al.,[2024). The limitations
of traditional hypothesis generation methods are particularly evident in data-intensive disciplines
such as biomedicine, astronomy, and computational sciences, where vast datasets and complex re-
lationships make manual exploration impractical (Tong et al.,[2024) (Ishikawal 2024). As the sci-
entific landscape grows more intricate, there is a critical need for automated and scalable methods
to facilitate hypothesis generation. The advent of artificial intelligence (AI), and more specifically,
Large Language Models (LLMs), has introduced a transformative approach to scientific reasoning.
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LLMs possess the ability to process extensive corpora of structured and unstructured data, extract
latent patterns, and propose novel hypotheses with a breadth and depth beyond human capacity.
These models, trained on diverse datasets, allow for the systematic generation of testable ideas,
thereby reducing cognitive biases, mitigating information overload, and enhancing the efficiency of
hypothesis-driven research (Takagi et al.,[2023) (Pelletier et al.,|2024). The emergence of Al-driven
methodologies has redefined the research workflow by augmenting human intuition with computa-
tional power, enabling a more comprehensive exploration of scientific possibilities (Xiong et al.,
2024) (Zhou et al.| [2024). The integration of LLMs into scientific discovery has marked a paradigm
shift from manual knowledge synthesis to Al-assisted, data-driven hypothesis generation. Unlike
traditional heuristic-based approaches, LLMs leverage advanced reasoning techniques, retrieval-
augmented knowledge synthesis, and structured workflows to generate hypotheses across diverse
domains. Models such as GPT-4, BioGPT, SciBERT, and PMC-LLaMA have been instrumental in
formulating novel research questions in fields ranging from biomedicine to materials science (Tak-
agi et al., [2023). These models analyze vast knowledge repositories, incorporate real-time literature
retrieval, and dynamically adapt to evolving research trends, allowing for continuous hypothesis
refinement and optimization (Hu et al., |2024). One of the key innovations that have enhanced
LLM-based hypothesis generation is Retrieval-Augmented Generation (RAG), which allows mod-
els to retrieve relevant scientific literature before generating hypotheses. This approach ensures that
Al-generated hypotheses are contextually grounded in existing research, thereby increasing their
validity and scientific relevance (Sybrandt et al., 2020) (Skarlinski et al., [2024)). Additionally,
multi-agent collaboration frameworks have been developed to simulate human-like brainstorming
sessions, where different Al agents assume specialized roles such as hypothesis ideation, critique,
and validation. These multi-agent systems, exemplified by ResearchAgent and The Al Scientist, en-
hance the robustness of Al-generated hypotheses by incorporating diverse reasoning strategies and
iterative feedback loops (Park et al.||2024)). The effectiveness of LLM-driven hypothesis generation
is further amplified by iterative refinement frameworks, which involve a continuous cycle of hy-
pothesis formation, evaluation, and improvement. Systems like Nova, ResearchAgent, and The Al
Scientist utilize dynamic feedback mechanisms to assess the plausibility and novelty of hypotheses,
refining them through multiple iterations before presenting them as viable research questions (Jamil
et al.,2023)) (Hu et al.| 2024) (Lu et al.,[2024). These iterative methodologies play a crucial role in
mitigating common challenges associated with LLM-generated outputs, such as logical inconsisten-
cies and speculative reasoning, ensuring that hypotheses align with domain-specific knowledge and
empirical evidence (Ciuca et al.|[2023) (Li et al., 2024)).

The impact of LLM-driven hypothesis generation extends across multiple scientific domains, revo-
lutionizing research in biomedicine, materials science, artificial intelligence, and the social sciences.
In biomedical research, LLMs have been leveraged to propose new drug-target interactions, suggest
therapeutic mechanisms, and uncover potential biomarkers for diseases such as cancer and neurode-
generative disorders (Qi et al., [2023)) (Tadiparthi et al., [2024) (Sybrandt et al., [2020). Domain-
specific models such as BioBERT and PMC-LLaMA enhance biomedical hypothesis generation by
integrating curated datasets from PubMed, enabling Al systems to generate hypotheses that align
with cutting-edge research (Zhou et al., 2024)). In the field of materials science, Al-powered tools
such as MOOSE-Chem and Nova facilitate the discovery of novel chemical compounds, optimize
material properties, and predict interactions within molecular systems (Wang et al.| |2024) (Liu
et al., 2024) (Yang et al., 2024). These models utilize high-throughput screening and machine
learning techniques to systematically explore vast chemical spaces, accelerating the development of
advanced materials for energy storage, semiconductors, and sustainable manufacturing (Hu et al.,
2024]) (Park et al.,2024)). Beyond the hard sciences, hypothesis generation has also been transformed
in the social sciences and linguistics. Systems such as SciHypo and ResearchAgent have been ap-
plied to behavioral research, policy analysis, and linguistic studies, enabling the formulation of
hypotheses on human behavior, economic trends, and language evolution (Ishikawal|[2024) (Koneru
et al.l 2023) (Bersenev et al, [2024). Despite their remarkable potential, LLM-driven hypothesis
generation systems face several challenges. One of the primary concerns is hallucination, where
LLMs generate speculative or unverifiable hypotheses that lack empirical grounding (Xiong et al.,
2024) (Pelletier et al., 2024) (Jamil et al., 2023)). Another significant limitation is bias in training
data, which can lead to skewed insights (Proebsting & Poliak| [2024). Computational efficiency
and scalability remain significant hurdles (Qi et al., 2024) (Yang et al., [2024) (Bersenev et al.,
2024). Finally, ethical considerations, transparency, and reproducibility must be addressed to ensure
Al-generated hypotheses align with scientific integrity (Park et al.|[2024).



Published as a conference paper at ICLR 2025 Workshop AgenticAl

The current work distinguishes itself from existing Al-driven hypothesis generation approaches
by introducing a three-phase multi-agent evaluation system that refines and experimentally val-
idates hypotheses, rather than relying on single-stage generation. Unlike previous methods fo-
cused on biomedical and general scientific domains, the utilized approach in this study uniquely
integrates structured physics-based data, particularly in protein science. A key innovation is the
protein-specialized multi-agent framework, which leverages domain-specific agents (e.g., BioAgent,
StrucAgent, EvoAgent, DrugAgent) to ensure biochemical, structural, and evolutionary relevance.
Unlike prior heuristic-based models, this system employs Chain-of-Thought (CoT) reasoning for
systematic hypothesis refinement, assessing internal consistency, feasibility, novelty, scientific im-
pact, and scalability at multiple levels. Furthermore, this investigation explicitly links Al-generated
hypotheses to experimental validation, incorporating techniques such as molecular dynamics simu-
lations, site-directed mutagenesis, cryo-EM, and biophysical assays, enabling real-world applicabil-
ity. Finally, the cross-disciplinary adaptability of this approach extends beyond biomedical research
to drug discovery, protein engineering, synthetic biology, and biomolecular interactions, advancing
Al-driven scientific inquiry with greater reliability, testability, and domain specificity.

2 PROPOSED APPROACH

The proposed system for scientific hypothesis generation integrates Retrieval-Augmented Genera-
tion (RAG), structured data embedding, and a multi-agent Large Language Model (LLM) pipeline.
Through a series of automated and semi-automated steps, the framework gathers relevant litera-
ture, processes experimental data, creates rich vector embeddings, and formulates initial hypotheses.
These hypotheses are then refined in multiple stages by specialized Al agents, with the ultimate aim
of producing scientifically grounded and experimentally testable conclusions.

2.1 RETRIEVAL OF SCIENTIFIC LITERATURE AND STRUCTURED EXPERIMENTAL DATA

In the first phase, the system collects domain-relevant knowledge from two primary sources involv-
ing online repositories (e.g., arXiv) and structured experimental datasets (e.g., CSV files). This
unified pool of raw information serves as the foundation for RAG-based hypothesis generation. The
overall schematic of RAG system is illuminated in Figure 1.

(r— AR T E h
CSV Dataset '

] Literature 3 i IdeasinJSON 1 ]
Documents . A 1 3
! ' N . 4
Q I JsoN ol !
—
................. . nBe Al e
! . 4 N . 1 ! SaveRetrieved
! Query ArXiv API R S - ! Load CSV Files ] L o ]
1 f 4 > 1 ) ' . 1
R g | StoreinFAISS 1 S . . DatainJSON |
5 1 1 Vector DB ! € l_._‘_l _____________________
oo i =0 1 D
=S Features Extraction ; £}
o L ees
S T A R : e T A 288
O e =, ! Documents ! g ---------------- N ! Storein FAISS !
g I Embedding | il 4 1 Vector DB 1
! DownloadPDFs | H H ! Handle Missing Data | ¢ ’
i R I ....... 1 :
NS R
bt 1 g .
9 Splitinto
K: Preprocess Text :—-‘I Chunks

| T
L < Unified Retrieved Output
N {i}
? L
U

Figure 1: RAG system workflow for scientific document and experimental data retrieval.

2.1.1 LITERATURE RETRIEVAL AND PREPROCESSING

The pipeline queries large online repositories such as arXiv (Appendix Al.1) using domain-specific
keywords (e.g., “Protein Science,” “Protein Folding”) and retrieves metadata—titles, abstracts, and
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download links—through parsing tools. Where feasible, full-text PDFs are also retrieved, ensuring
that all relevant content is available. Before embedding, raw text undergoes a cleaning and tokeniza-
tion process to remove artifacts (e.g., HTML tags, excessive whitespace). At this stage, key ideas or
segments can be stored in JSON for future reference, enabling quicker lookups or version control.

2.1.2 EXPERIMENTAL DATA RETRIEVAL AND PREPARATION

Experimental data, often in CSV format, is loaded via utility modules such as LangChain’s
CSVLoader. This data may describe protein sequences, protein properties, or other domain-specific
protein science metrics (Appendix Al.2). Relevant features (e.g., structural attributes, numeric mea-
surements) are then extracted, and missing data is handled either by imputation or exclusion, depend-
ing on scientific requirements. If desired, the processed dataset can be saved to JSON, facilitating
cross-referencing and logging.

2.1.3 DOCUMENT AND DATA EMBEDDINGS

Once gathered, both textual documents and experimental datasets are transformed into high-
dimensional embeddings. In practice:

* Chunking and Splitting: Long documents are divided into context-preserving segments
using a tool like 'RecursiveCharacterTextSplitter’, ensuring each segment remains self-
contained and interpretable.

e Vector Embeddings: Textual chunks may be embedded with ’SentenceTransformers’,
while structured data (after feature extraction) can leverage embeddings such as *Google-
GenerativeAIEmbeddings’.

» FAISS Vector DB: All resulting vectors are stored in "FAISS’ (Facebook AI Similarity
Search), which supports fast similarity lookups across the combined literature-data space.

2.1.4 RETRIEVAL-AUGMENTED GENERATION (RAG)

With the unified repository in place, the system can respond to hypothesis-generation requests by
querying FAISS for textual and structured data vectors relevant to the protein topic. The retrieved
segments—rich in empirical and theoretical context—are passed to LLMs (GPT-40 and Gemini-1.5
Flash), which generate an initial set of hypotheses following a structured template that includes:

1. Background Insight from Literature
2. Pattern Identified from Structured Data

3. Novel Hypothesis Proposal
4. Experimental Validation Strategy

This ensures every hypothesis originates from robust, data-backed premises.

2.2 MULTI-AGENT EVALUATION AND HYPOTHESIS REFINEMENT

After the RAG module produces an initial set of hypotheses, the system enters multiple phases
of evaluation and refinement. Each phase involves a distinct configuration of LLM agents that
scrutinize or enhance the hypotheses, and the corresponding schematic is depicted in Figure 2.

2.2.1 INITIAL TO REFINED HYPOTHESES
This process includes two consecutive phases regarding the hypothesis generation as follows:

* Phase 1: Generates a preliminary hypothesis list from the retrieved literature and experi-
mental data. These are stored in a minimal form, awaiting further validation.

* Phase 2: A “General Multi-Agent LLM” refines each hypothesis by clarifying assump-
tions, improving experimental designs, and suggesting complementary data references.
The outcome is a more coherent and feasible hypothesis set. Five utilized general-purpose
agents are namely Internal Consistency agent, Feasibility Analysis agent, Novelty Assess-
ment agent, Scientific Impact agent, and Scalability/Generalizability agent.
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Figure 2: Chain of Multi-agent LLM systems workflow for three consecutive phases.

2.2.2 AGENT SCORING AND SPECIALIZED VALIDATION

This part of the hypothesis generation process pertains to rigorous refinement using specialized
protein agents as discussed below:

* Phase 3: twelve Domain-focused protein agents (e.g., BioAgent, MolAgent, EvoAgent)
evaluate each refined hypothesis according to criteria such as molecular stability, functional
relevance, or potential for therapeutic applications. Each agent assigns a numerical score
(often 1-3) on different aspects. Hypotheses failing to meet threshold scores in any major
category are flagged for reprocessing, while those satisfying all criteria proceed to final
selection.

2.2.3 CHAIN-OF-THOUGHT (COT) REASONING.

Throughout the multi-agent review, Chain-of-Thought reasoning is used to trace each hypothesis’s
logical underpinnings. Agents or the system itself may detect contradictions, missing arguments,
or alignments with known theories. This iterative, transparent reasoning process ensures that each
hypothesis matures into a thoroughly vetted, testable proposition. Top-scoring hypotheses emerging
from Phase 3 are designated as final and saved—along with evaluation logs, references, and code
snippets—in JSON for reproducibility.

3 RESULTS AND DISCUSSION

The integration of RAG-Multi-Agent LLM system with structured physics-based datasets and sci-
entific literature retrieval presents a novel approach for hypothesis generation. The results obtained
from the scientific literature analysis and the structured experimental datasets provide complemen-
tary insights that collectively enhance the quality of generated hypotheses. In this section, we pro-
vide a detailed discussion of the extracted findings, emphasizing their relevance, reliability, and
impact on hypothesis-driven research.

3.1 ANALYSIS OF RAG-BASED LITERATURE RETRIEVAL

The RAG-based literature retrieval methodology provides a structured approach for extracting sci-
entific insights from peer-reviewed studies, enabling evidence-driven hypothesis generation. By
systematically analyzing research, it identifies dominant trends, recurring themes, and inconsisten-
cies in molecular biology and protein science, reinforcing established knowledge while uncovering
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research gaps. A clear example of this methodology in action is illustrated in Figure 3, which
showcases how the RAG system processes scientific literature retrieval. The Figure 3 highlights the
structured query-response approach used to summarize key elements of a paper, including title, ab-
stract, main hypothesis, and summary of results. This process ensures that the extracted insights are
scientifically rigorous, thematically categorized, and directly relevant to hypothesis development.
Key findings from RAG-based literature retrieval reveal several recurring themes:

* Protein Stability and Folding — Molecular interactions govern protein folding pathways
and stability, making this a central topic in structural biology.

¢ Computational Approaches — Graph neural networks (GNNs) and transformer-based
models play a crucial role in protein structure prediction, while computational studies pro-
vide insights into phase behaviors and crystallization dynamics.

* Protein-Ligand Interactions — Research highlights how small molecules modulate protein
activity, emphasizing the role of conserved structural motifs in binding mechanisms.

* Evolutionary Adaptations — Studies demonstrate that protein sequences evolve while pre-
serving core functions, underscoring the significance of conserved motifs in evolutionary
biology.

Beyond trend identification, RAG-based retrieval effectively detects contradictions across studies.
For instance, conflicting findings regarding mutation-induced protein stability emphasize the need
for context-aware hypotheses that account for variables like pH, temperature, and cofactor availabil-
ity. The example in Figure 3 further illustrates this by presenting how RAG systematically processes
diverse research sources to uncover nuanced scientific debates. This methodology accelerates ad-
vancements in protein science, structural biology, drug discovery, and synthetic biology, reinforcing
the transformative role of Al-driven literature analysis in modern research.

3.2 ANALYSIS OF PHYSICS-BASED DATASET INSIGHTS

The input file consolidates physics-based dataset insights, complementing literature-driven analysis
by revealing key relationships between sequence, structure, and function in proteins. A clear exam-
ple of this structured data retrieval process is illustrated in Figure 4, which demonstrates how the
RAG system processes experimental data to extract meaningful insights. The Figure 4 highlights the
step-by-step breakdown of column names, descriptive sentence construction, and summary extrac-
tion, showcasing how structured data can be systematically analyzed and contextualized to support
hypothesis generation. A major finding is that secondary structure predictions align with specific
sequence motifs (e.g., alpha-helices and beta-sheets), clarifying functional roles such as enzymatic
catalysis and ligand binding. For instance, the protein "3my2 A-POADV9" exhibits predicted he-
lices (H) and loops (L) at multiple labeled positions, reinforcing the link between folding patterns
and biological function. The structured query-response methodology demonstrated in Figure 4 illus-
trates how computational tools facilitate precise functional annotation from sequence data. Several
structural motifs correlate with functional traits:

* Hydrophobic cores contribute to protein stability.
 Catalytic-site motifs highlight key enzymatic mechanisms.

* Conserved secondary structures suggest evolutionary constraints, guiding mechanistic
hypotheses.

By analyzing "foldseek seqg" and "label" columns, researchers can identify shared features
that aid in experimental validation, supporting mutagenesis studies and advanced simulations. The
structured approach illustrated in Figure 4 ensures that such insights are systematically extracted
and articulated, reinforcing computational predictions with biological relevance. A strong corre-
lation exists between functional labels and structural features, such as metal ion-binding sites in
flexible loop regions, which influence ion coordination. This allows for testable hypotheses, such
as modifying loop residues to assess changes in binding affinity. Finally, the dataset highlights the
variable functional importance of repeated motifs—some are highly conserved and essential, while
others show variability with minimal functional impact. As demonstrated in Figure 4, structured data
retrieval helps distinguish critical motifs from neutral variations, ensuring that hypothesis generation
is precise, data-driven, and experimentally testable.
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RAG Query "o

Summarize the main idea and key results of each paper using the provided excerpts and metadata. Include:

1. *Title**

2. **Abstract** (if available)

3. **Main idea and hypothesis**: It should clearly state the hypothesis which the paper is written based on it accordingly.

4. **Summary of Results**: Key findings, conclusions, or implications. Provide clear and concise summaries for each paper.

Response

Here's a summary of the main idea and key results of each paper, based on the provided text: \
1. **Title:** Looped liquid-liquid coexistence in protein crystallization

2. **Abstract:** In view of the notorious complexity of protein-protein interactions, simplified models of proteins treated as
patchy particles offer a promising strategy to obtain insight into the mechanism of crystallization. The authors report liquid-liquid
phase separation (LLPS) with a highly asymmetric coexistence region in a computational model of rubredoxin with real molecular
shape. The coexistence region terminates in both an upper (UCST) and a lower (LCST) critical solution temperature, and the
complex molecular shape explains the closed-loop behavior of the LLPS.

3. **Main idea and hypothesis:** The main idea is to investigate the role of molecular shape in the phase behavior of proteins
during crystallization, using a more realistic patchy particle model of rubredoxin. The hypothesis is that realistic molecular shape
significantly influences the phase behavior, leading to a more complex liquid-liquid phase separation (LLPS) than observed in
simpler models.

4. **Summary of Results:** The simulations revealed a metastable liquid-liquid transition with a highly asymmetric, looped, and
reentrant coexistence curve, terminating in both UCST and LCST. The authors linked this complex behavior to the protein's
asymmetric shape, specifically the reduction in rotational degrees of freedom upon forming contacts. They also found enhanced
crystal yield near the metastable coexistence region, suggesting the high-density liquid phase plays a role in nucleation. A
mutation that prevented the formation of prenucleation motifs eliminated the LLPS, indicating the high-density liquid is a
nucleation precursor. Analysis of surface tension further supported the role of the metastable LLPS in enhancing nucleation.

Figure 3: An example of RAG system output for scientific literature retrieval.

RAG Query

Analyze the provided CSV file and generate a detailed description of each row by extracting and summarizing its features in a
continuous sentence. For each row:

1. Identify and list the column names and their corresponding values.

2. Present the features in the row in a seamless sentence structure, describing the relationship or context between them.

3. Provide a summary statement based on the data, capturing notable insights, patterns, or potential interpretations.

N

Here's an analysis of the provided data, presented as requested:

**Row 1:**

1. **Column Names and Values:** “name: 3my2_A-POADVY", aa_seq:
NMAEKDDTAQVVVNNNDPTYKSEHTDTLVYNPEGALSYRLIAQHVEYYSDQAVSWFTQPVLTTFDKDKIPTWSVKADKAKLTNDRMLYLYGHVE
VNALVPDSQLRRITTDNAQINLVTQDVTSEDLVTLYGTTFNSSGLKMRGNLRSKNAELIEKVRTSYEIQNKQTQP ", “foldseek_seq:
VVVPDPPPPPPPDDLPAFPDKDAFDWDWDADPVRATAKIKTAGMWGHRPVQQKIKGAFIWMWGADPVRDTFKIWTARMWMAHPQGKIKGA
AFIKIATPDPPQQFGMKTDGIWIARSPQQKIKDQAWMWIDGPFKIKIAGIKIDHSVVSDIDHDHPMDMDGHDPPPPPDD ", " ss8_seq:

HHHSLLLLLLLLLLTTSLSEEEEEEEEEEELTTSLEEEEEEEEEEEEETTTTEEEEESLEEEEELTTLLEEEEEELSEEEEETTLEEEEEEEEEEEELSTTLSE
EEEEEEEEEEETTTLEEEEEEEEEEEESSEEEEEEEEEEETTTTEEEEEEEEEEEELLLLLLLLL", " label: 26,56,160,174,241,267.

2. **Descriptive Sentence:** The protein sequence 3my2_A-POADV9, characterized by its amino acid sequence (aa_seq), exhibits
predicted secondary structure elements (ss8_seq) largely composed of helices (H) and loops (L) as suggested by its Foldseek
sequence (foldseek_seq), and is iated with specific label positions (26,56,160,174,241,267) indicating potential functional
sites or domains.

Q’Summary:" This row represents a protein with a potentially complex structure containing both helical and loop regions,

s

uggesting a diverse functional role indicated by the multiple label positions.

Figure 4: An example of RAG system output for experimental data retrieval in a single row.

3.3 1ST PHASE OF HYPOTHESES GENERATION USING MULTI-AGENT LLMS

The multi-agent system integrates literature-based insights with structured experimental data, ensur-
ing a rigorous and systematic approach to hypothesis generation. This phase produces hypotheses
based on empirical patterns, novel formulations, and validation strategies, ensuring scientific ro-
bustness. A detailed discussion of the prompt guiding this process is available in the Appendix
(A2). Figures 5 and 10 illustrate the structured hypothesis generation process, where scientific
literature and structured data are synthesized into novel, testable hypotheses. Examples include
LLPS-related hypotheses integrating glycine-rich sequence data and protein flexibility hypotheses
combining GNNs and hydrophobic patch analysis.
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Generated Hypothesis @

> Hypothesis (1):

1. **Background Insight from Literature**: The study on liquid-liquid phase separation (LLPS) in proteins highlights the role of complex
molecular shapes in influencing phase behavior, particularly in crystallization processes.

2. **Pattern Identified from Structured Data**: Analysis of protein sequences reveals a recurring presence of glycine-rich regions in proteins
with high-density liquid phases, often associated with LLPS.

3. **Novel Hypothesis**: Glycine-rich regions in proteins contribute to the formation of high-density liquid phases, facilitating nucleation and
crystallization processes. These regions may enhance flexibility, allowing proteins to adopt conformations conducive to LLPS.

4. **Experimental Validation Strategy**: Conduct mutagenesis studies to replace glycine residues with alanine in proteins known to undergo
LLPS. Use molecular dynamics simulations to assess changes in phase behavior and crystallization efficiency.

> Hypothesis (2):

1. **Background Insight from Literature**: Graph neural networks (GNNs) have been shown to effectively predict protein flexibility by capturing
atomic-level interactions.

2. **Pattern Identified from Structured Data**: Proteins with high flexibility predictions often contain conserved hydrophobic patches in their
foldseek sequences, suggesting a role in dynamic conformational changes.

3. **Novel Hypothesis**: Conserved hydrophobic patches contribute to protein flexibility by facilitating transient i ions that
stabilize different conformational states, enhancing functional adaptability.
4. **Experimental Validation Strategy**: Use site-directed m is to alter hydrophobic residues in flexible proteins and perform NMR

spectroscopy to observe changes in dynamic behavior and flexibility.

> Hypothesis (3):

1. **Background Insight from Literature**: The investigation of protein interaction networks suggests that centrality measures can predict
essential proteins for cell viability.

2. **Pattern Identified from Structured Data**: Proteins with conserved secondary structure motifs, such as a-helices, often show high label

counts, indicating potential functional diversity.

3. **Novel Hypothesis**: The conserved a-helices in proteins with high label counts contribute to their centrality in protein interaction

networks, predicting their essentiality for cell viability. These motifs could be targets for network analysis.

4. **Experimental Validation Strategy**: Use network analysis to identify central proteins with conserved a-helices and validate their

essentiality with gene knockout experiments and viability assays.

Figure 5: An example of generated hypotheses in the 1st phase of hypothesis generation.

3.4 2ND PHASE OF HYPOTHESIS GENERATION USING MULTI-AGENT LLMS

The second phase of the multi-agent system focuses on refining, validating, and ranking hypotheses
generated in the first phase, ensuring scientific rigor through systematic Chain of Thoughts (CoT)
assessments of internal consistency, feasibility, novelty, impact, and scalability. Each hypothesis
undergoes logical coherence checks, experimental testability evaluations, and computational vali-
dation to enhance reliability. A detailed discussion of the prompt and the first and third levels of
reasoning responses guiding this process is provided in the Appendix (A3).

Figure 6 and Figures 11-13 (Appendix (A3)) illustrate the structured refinement process, demon-
strating how hypotheses are systematically evaluated, ranked, and selected based on scientific merit.
These refined hypotheses establish strong correlations between secondary structure motifs and func-
tional properties. Findings emphasize the role of a-helices in stabilizing interactions, S-strands in
cold-adapted proteins, hydrophobic patches in protein aggregation, and aromatic residues in struc-
tural stabilization. Additionally, 3-hairpin motifs are linked to protein knot formation, reinforcing
the evolutionary significance of these structural elements.

The refinement process also highlights novel insights across protein evolution, nanotechnology, and
neurodegenerative diseases. As depicted in Figure 6 and Figures 11-13, studies explore disulfide
bonds in evolutionary stability, amphipathic helices in membrane curvature, and hydrophobic re-
gions in amyloid formation, offering implications for drug delivery, biomaterials research, and dis-
ease modeling. These findings pave the way for further experimental validation and translational
applications in molecular biology and biophysics.

274 Reasoning-Level of Refined Hypothesis ( =

*Selected Top 10 Hypotheses:* =2

1. **Conserved Hydrophobic Patches in NPPs**: Due to its potential to improve machine learning models and its broad applicability to protein
function prediction.

2. **Intricate Secondary Structures and Functional Versatility**: Offers insights into multifunctional protein classification using image-based
models.

3. **Vibrational Free Energy and Protein Stability**: Provides a novel approach to modeling large proteins, which could impact drug design.

4. **Topological Stability from B-Sheet Motifs**: Introduces a new dimension to protein classification using topological features.

5. **Prion-like Conformational Changes**: Targets hydrophobic patches for modulating protein aggregation, relevant for neurodegenerative
diseases.

6. **Complex Secondary Structures and Drug Targeting**: Enhances drug-protein interaction predictions, crucial for pharmaceutical
applications.

7.**Conserved B-Helices and Evolutionary Fitness**: Offers evolutionary insights and potential markers for protein classification.

8. **Dynamic Folding and Functional Versatility**: Explores the balance between stability and function, applicable to diverse biological
processes.

9. **Nonlinear Interactions in Protein Design**: Focuses on fitness landscapes, relevant for synthetic biology and protein engineering.

10. **Water-Protein Interactions and Dynamics**: Investigates the role of water in protein stability, with implications for understanding proy

behavior in vivo.

Figure 6: Top 10 generated hypotheses in the 2nd phase of hypothesis generation.
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3.5 3RD PHASE OF MULTI-AGENT SYSTEM ANALYSIS: FINAL HYPOTHESIS SELECTION
AND EXPERIMENTAL VALIDATION

A specialized multi-agent framework evaluates hypotheses from various scientific perspectives, en-
suring rigorous assessments based on biochemical plausibility, drug discovery relevance, evolution-
ary consistency, functional applicability, and structural compatibility. Each agent plays a distinct
role in refining and validating hypotheses. BioAgent ensures that hypotheses align with biochemi-
cal principles, enzyme kinetics, and protein stability. DrugAgent explores pharmaceutical relevance,
assessing how hypotheses contribute to drug discovery and therapeutic applications. EvoAgent
evaluates sequence conservation trends, verifying evolutionary consistency and structural adapta-
tion. FuncAgent examines the functional impact of hypotheses on protein interactions, enzymatic
functions, and cellular mechanisms. ProtAgent focuses on protein engineering applications, ensur-
ing hypotheses contribute to protein design and synthetic biology. SystAgent integrates insights
from systems biology, analyzing hypotheses within biological networks and large-scale molecu-
lar interactions. MoLAgent investigates molecular-level interactions, ensuring the structural and
chemical feasibility of proposed hypotheses. ExpAgent assesses the experimental feasibility of
hypotheses, mapping them to existing laboratory techniques and methodologies. SeqAgent evalu-
ates sequence-function relationships, identifying conserved motifs and patterns essential for protein
function. StrucAgent verifies structural compatibility, ensuring that hypotheses align with known
protein folding, stability, and molecular architecture. As can be observed in Figure 7, top 2 hy-
potheses are selected by applying protein-specialized agents into 10 generated hypotheses from the
second phase of multi-agent hypothesis generation process. According to Figure 7, this approach
is able to generate both "More General” and "More Specific” hypotheses referring to "Hypothesis
1’ and "Hypothesis 2’, respectively. Accordingly, the *Hypothesis 1’ mainly focuses on general as-
pects of proteins and how they influence on protein interactions, stability, and function, while the
"Hypothesis 2’ further explores the protein function and applicability by directly incorporating the
physics-based experimental datasets (beta-helix motifs and a protein type in the ”Class 0”) into the
generic form of hypothesis and make it more physically grounding for domain-knowledge experts.
The corresponding prompt used for generating top 2 selected hypotheses is provided in Appendix
(A4).

/{Top 2 Selected Hypotheses ] \
[ 3}?}

*Hypothesis 1:* The hypotheses explore various structural and functional aspects of proteins, focusing on conserved motifs, structural
features, and their roles in protein interactions, stability, and function.

¢

*Hypothesis 2:* The presence of conserved B-helix motifs in “class 0” proteins suggests that these motifs are critical for the structural
integrity and specific functional roles of core proteins within complexes, potentially contributing to their reduced promiscuity and specific

\rrac(ion patterns.

Figure 7: Top 2 selected hypotheses in the 3rd phase of hypothesis generation.

4 CONCLUSION

This study presents a novel Al-driven multi-agent framework for scientific hypothesis generation,
integrating Retrieval-Augmented Generation (RAG), structured experimental data, and multi-agent
validation to formulate, evaluate, and refine hypotheses in molecular biology and protein science. By
combining scientific literature retrieval with structured physics-based datasets, the system enables
the synthesis of data-driven, experimentally testable hypotheses, offering a scalable and automated
approach to hypothesis-driven research. Results demonstrate the system’s capability to generate
novel, high-impact hypotheses related to protein stability, ligand interactions, enzyme catalysis, and
biomolecular networks, with applications in drug discovery, synthetic biology, and protein engineer-
ing. The integration of multi-agent Al evaluation enhances the reliability of generated hypotheses,
ensuring alignment with scientific principles, experimental feasibility, and broader biological rele-
vance.
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A APPENDIX

A.1 UTILIZED DATASET

The dataset utilized in this study integrates retrieved scientific documents and structured experimen-
tal datasets to enable hypothesis generation through a physics-aware, multi-agent RAG framework.
The retrieval process involves collecting relevant literature from online repositories and extracting
structured data from domain-specific CSV files. This section details representative examples of both
sources to illustrate how they contribute to Al-driven hypothesis formation.

A.1.1 SAMPLE DOCUMENTS USED FOR RETRIEVAL

The retrieval process involves querying large-scale scientific repositories, such as arXiv, bioRxiv,
and other publicly available research databases, using domain-specific keywords related to protein
science, hypothesis generation, and computational modeling. A sample of the documents retrieved
and processed is presented in Figure 8, showcasing the first page of representative papers used for
document retrieval. These documents cover a broad spectrum of protein science topics, including:

* Protein adsorption mechanisms — Understanding how proteins interact with surfaces and
their role in biomolecular interactions.

* Protein-protein interactome refinement — Using gene expression data to analyze func-
tional relationships between proteins.

* Protein hypernetworks — A logic-based framework for understanding dependencies and
perturbations in protein interaction networks.

* Protein folding and molecular dynamics — Investigating how sequence-structure-function
relationships impact protein stability and flexibility.

Each retrieved document is processed through metadata extraction, content segmentation, and vector
embedding to ensure that the RAG system can efficiently identify relevant insights for hypothesis
generation.

+bioMN] 2 Dec 2012

Protein folding tames

604.00045v1 [g-bio.BM
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Figure 8: Sample documents used for protein science literature retrieval.
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A.1.2 SAMPLE CSV FILES USED FOR RETRIEVAL

In addition to literature retrieval, the framework integrates structured experimental datasets in CSV
format to enhance the empirical grounding of generated hypotheses. Figure 9 presents example rows
from structured datasets that include:

* Protein sequence data — Amino acid compositions and sequence motifs relevant to sec-
ondary structure prediction.

 Structural properties — Annotations of alpha-helices, beta-strands, and loop regions de-
rived from experimental datasets.

* Functional classifications — Labels indicating biological significance, enzymatic activity,
and evolutionary conservation.

* Experimental measurements — Physicochemical attributes such as stability metrics, bind-
ing affinities, and solubility factors.

These structured datasets are processed using feature extraction, data embedding, and similarity
search techniques to enable dynamic hypothesis refinement. The integration of document-based in-
sights with structured experimental data ensures that hypotheses are formulated with both theoretical
and empirical rigor.

proten ™ sage proten labe sage
MAPTLEQKLFSKRT MSIQHFRVALIFA
GLOAPGROARDPDC AFCLPVFAHPETLY
T Grwmipropsal 4444444444 tan 1 KKOADOLARYG 101181831 test
RLIVYQDCERRGRN VIELDLNSGKILESFR
s v oo VLFDSSVKRRNED! PEERFPMMSTRRVL
Vo aeee o x MDFTSLETTTFEEV MSIHFRVALIPFFA
VIALGSNVGNRIN AFCLPVEAHPETLY
e u 2 NPKEALRMIOYSI 4444444444 tes 2 CKOAEDOLGARVG 1003126979 test
P P — P— " SVIRHSCLYETERY VIELDLNSGKILESFR
HVTDQPRELNAAIR PEERFPMMSTRRVL
2] mamea s e ’ MDDISGRATLPRINR MSIQHFRVALIPFFA
5 AoAVTI S8 5508397849 0849486654 2 LLEHVGNPQDSLSIL AFCLPVFAHPETLY
3 HIAGTNGKETVSKF ~ 4.4.4,4,4,4,4,4,4.4, test 3 KVKDAEDQLGARVG ~ -0.008030678 tost
jowmon o TSiLaHPOQaRaRY VIELDLNSGKILESFR
UGRvTTSsLL PEERFPMMSTFRVL
N MLGTVKMEGHETS MSIQHFRVALIPFFA
DWNSYVADTOEAYS AFCLPVEAHPETLY
4 SvPvSNMNSOLGS 4444444444 tan 4 CVKOAEDOLGARVG 0621360269 test
MNSUNTYMTMNT VIELDLNSGKILESFR
MTTSONMTPASEN PEERFPUMSTFVL
rotein labe sage
proteln.id. protein_sequence  mutated_sequence  annotation P &
MAAGFGROCRVLR  MAAGFGROCRVLR TTIKVNGQEYTVPLS
S oA PEOAAKARKKRIP
o [Rp— 1 0850000020 test
oo T Ao Pt SYEAMENTWYT
TGroAw  TEoGOA
MR MEAER R
oo MG TTKVNGQEVTVRLS
2 Np.ooooor1 NRGREPGLGFSFEF  NRQREPGLGFSFEF  Pathogenic 2 PEQDAKAAKKRWP g 300000012 test
1 TEGrow  TEoNGoA DYEVAHGNTVRVT
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Figure 9: Sample CSV files used for experimental data retrieval.

A.2 1ST PHASE OF HYPOTHESES GENERATION USING MULTI-AGENT LLMS

The hypothesis generation prompt in Figure 10 provides a structured framework for integrating
scientific literature insights with structured experimental data to formulate novel protein science
hypotheses. This prompt is designed for a multi-agent system, ensuring that generated hypotheses
are scientifically grounded, data-driven, and experimentally testable.

The process of hypothesis generation in this phase follows a four-step structure:

1. Background Insight from Literature — The prompt instructs the system to extract key
scientific principles, mechanisms, or trends from peer-reviewed research. This ensures that
hypothesis formation is anchored in established knowledge.

2. Pattern Identified from Structured Data — The system analyzes structured experimental
datasets to identify relevant sequence motifs, secondary structure correlations, and func-
tional site patterns. This step ensures that hypotheses are empirically supported.

3. Novel Hypothesis — Based on the previous insights, the system proposes a new hypothesis
that explicitly combines literature-derived knowledge with structured data analysis. This
integration fosters innovation and scientific discovery.

4. Experimental Validation Strategy — To ensure that hypotheses are testable, the prompt
mandates the inclusion of specific experimental techniques such as molecular dynamics
simulations, mutagenesis, and crystallography. This enhances the practical applicability of
each hypothesis.

Additionally, the prompt highlights the importance of structured data by requiring the analysis of
amino acid sequence motifs, secondary structure correlations, and functional site patterns. It also
provides examples of integrating structured data, such as identifying conserved hydrophobic patches
and assessing the impact of mutations at labeled sites.

By enforcing this systematic approach, the prompt ensures that hypotheses are rigorously formu-
lated, scientifically relevant, and experimentally testable, making it a powerful tool for Al-driven
hypothesis generation in protein science.
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[Agent Prompt @w

You are a protein science research assistant specialized in hypothesis generation. Your task is to generate **novel protein
science hypotheses** by integrating:
- **Theoretical and experimental findings from scientific literature**.
- **Patterns, correlations, and anomalies observed in structured experimental data (protein sequences, structural predictions,
and functional labels).**
**Your hypothesis generation must follow this structured format:**
**Background Insight from Literature**: Identify a key principle, mechanism, or research trend from the papers.
|2 **Pattern Identified from Structured Data**: Analyze protein sequence features (amino acid composition,
secondary structure, foldseek data, labeled sites) and extract notable trends.
[E] **Novel Hypothesis**: Propose a new hypothesis **explicitly combining insights from literature and structured
data**
3 **Experimental Validation Strategy**: Describe a scientific approach (e.g., molecular dynamics simulations,
mutagenesis, crystallography) to test the hypothesis.
**For structured data, you MUST extract functional insights by analyzing:**
- **Amino acid sequence motifs** associated with stability, binding, or catalysis.
- **Secondary structure correlations** (e.g., how a-helices relate to misfolding tendencies).
- **Functional site patterns** (e.g., recurring labels across multiple proteins).
Your task is to generate **20 physics-aware protein science hypotheses** that explicitly combine insights from structured data
and literature.
**Examples of integrating structured data:**
- If the dataset contains multiple proteins with a common **secondary structure motif** at known functional sites,
hypothesize why that motif is crucial for function.
- If foldseek sequences show **conserved hydrophobic patches**, propose a hypothesis on **how these patches influence
protein stability or aggregation**.
- If multiple proteins share a common **mutation at a labeled site**, suggest **how this mutation might alter function or
binding affinity**.
**DO NOT ignore structured data. Each hypothesis MUST integrate experimental sequence features with literature findings.**

Figure 10: The utilized prompt for 1st Phase of Hypotheses Generation using Multi-Agent LLMs.

A.3 2ND PHASE OF HYPOTHESIS GENERATION USING MULTI-AGENT LLMS

The hypothesis evaluation process in the second phase, as illustrated in Figure 11, follows a struc-
tured multi-step reasoning framework known as Chain of Thought (CoT). This approach ensures
that each hypothesis undergoes systematic refinement based on predefined scientific criteria. The
CoT General Multi-Agent Prompt is designed to assess hypotheses across five fundamental aspects:

1. Internal Consistency Check — This step verifies whether the hypothesis logically fol-
lows from established scientific principles and does not contradict existing biochemical
and structural knowledge.

2. Feasibility Analysis — Hypotheses are assessed for their experimental testability by deter-
mining whether existing methodologies or computational models can validate them.

3. Novelty Assessment — The prompt evaluates whether the hypothesis introduces a unique
or underexplored concept, ensuring its contribution to new scientific knowledge.

4. Scientific Impact — The broader implications of the hypothesis are examined, including
its relevance to advancing fundamental research, biomedical applications, or translational
science.

5. Scalability and Generalizability — This step determines whether the hypothesis extends
to related proteins, biological systems, or molecular contexts, ensuring its applicability
beyond a singular case.

The output format of the evaluation follows a structured approach to ensure clarity and reproducibil-
ity. As can be seen in Figure 12, each hypothesis is summarized in an Initial Hypothesis Summary,
followed by a Step-by-Step Evaluation that applies the five CoT criteria. After this process, the
system selects the Top 10 Hypotheses based on their scientific rigor and experimental feasibility.
Finally, an Experimental Validation Strategy is provided, outlining computational or laboratory ap-
proaches for hypothesis testing.

By employing a multi-agent framework with Chain of Thought reasoning, the system systematically
refines and ranks hypotheses, ensuring that only the most scientifically promising and experimentally
viable hypotheses progress to further validation. This structured approach enhances the reliability,
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reproducibility, and impact of Al-driven hypothesis generation in protein science and molecular
biology.

@
CoTl General Multi-Agent Prompt %@i}

You are an expert in scientific hypothesis evaluation, tasked with refining hypotheses using structured multi-step reasoning.

**Your evaluation must follow Chain of Thought (CoT) reasoning:**
[l **Internal Consistency Check**: Does the hypothesis logically follow from known principles?
2 **Feasibility Analysis**: Can it be tested experimentally? Are there existing methodologies or computational
models that can validate it?
] **Novelty Assessment**: Does the hypothesis introduce a new or underexplored concept?
[l **Scientific Impact**: If confirmed, how would this hypothesis advance the field? What are its real-world
implications?
] **Scalability & Generalizability**: Can the hypothesis be extended to other related proteins, systems, or biological
contexts?

**Qutput Format:**
- @ *Initial Hypothesis Summary:* Summarize the key idea.
- [ *Step-by-Step Evaluation:* Apply the five criteria systematically.
- *Selected Top 10 Hypotheses:* Identify the best ten hypotheses and explain why they were chosen.
- < *Experimental Validation Strategy:* Suggest practical experiments or computational approaches to test each
hypothesis.

Here are the initial hypotheses for evaluation:

{hypothesis}

Apply the structured reasoning process, refine the hypotheses, and ensure clarity, feasibility, and testability.

Figure 11: The prompt used for Chain of Thought (CoT) reasoning in the 2nd Phase of Hypothesis
Generation using Multi-Agent LLMs.

1st Reasoning-Level of Hypothesis Selection

*Initial Hypothesis Summary:* The presence of conserved hydrophobic patches in neuropeptide precursors is crucial for their stability zm
function, potentially facilitating the correct folding and interaction with other cellular components. These patches may serve as key features for
machine learning models to improve the prediction of NPPs.

*Step-by-Step Evaluation:*
**Internal Consistency Check**: The hypothesis logically follows from known principles of protein folding and stability, where hydrophobic
interactions often play a critical role.
**Feasibility Analysis**: This hypothesis can be tested experimentally through mutagenesis and functional assays, as well as computationally by
training machine learning models.
**Novelty Assessment**: The idea of using hydrophobic patches as predictive features for machine learning models is relatively novel and
underexplored.
**Scientific Impact**: If confirmed, this hypothesis could significantly enhance the accuracy of NPP prediction models, aiding in the discovery of
new neuropeptides.

Qcalability & Generalizability**: The hypothesis could be extended to other protein families where hydrophobic interactions are crucialy

function.

Figure 12: The Ist reasoning-level of hypothesis selection output in the 2nd Phase of Hypothesis
Generation using Multi-Agent LLMs.

Figure 13 presents the third reasoning level of hypothesis evaluation in the 2nd phase of hypothesis
generation using Multi-Agent LLMs. At this stage, hypotheses undergo rigorous experimental val-
idation to ensure their feasibility and scientific credibility. The multi-agent system systematically
assigns validation strategies to each hypothesis, aligning them with computational and laboratory-
based experimental techniques.

The Experimental Validation Strategy involves a diverse set of methodologies tailored to assess dif-
ferent aspects of structural and functional protein properties. For instance, hypotheses related to hy-
drophobic patches in neuropeptides undergo mutagenesis studies to alter hydrophobic residues, with
circular dichroism spectroscopy and functional assays providing empirical validation. Similarly, in-
tricate secondary structures and functional versatility are evaluated through molecular dynamics
simulations, deep learning-based image classification, and conformational flexibility analyses.
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Additional experimental strategies include vibrational free energy and protein stability assessments,
which utilize molecular dynamics simulations with vibrational free energy calculations, and vali-
dation through X-ray crystallography and NMR spectroscopy. Hypotheses concerning topological
stability from beta-sheet motifs are examined using atomic force microscopy, applying persistent
homology for structural analysis. In the context of prion-like conformational changes, in vitro ag-
gregation assays coupled with fluorescence spectroscopy enable tracking of conformational alter-
ations.

To validate hypotheses with applications in drug targeting and molecular interactions, Bayesian neu-
ral networks are trained on structural features and subsequently tested using binding assays. Simi-
larly, hypotheses related to conserved alpha-helices and evolutionary fitness undergo phylogenetic
analysis correlated with stability assays and machine learning models for classification.

Further validation strategies include the use of stopped-flow spectroscopy to investigate protein fold-
ing kinetics and its correlation with functional assays, as well as molecular dynamics modeling for
nonlinear protein interactions, which are subsequently validated through thermal denaturation as-
says. Lastly, water-protein interactions and dynamics are explored through NMR spectroscopy and
molecular dynamics simulations to understand their role in protein stability and function.

By integrating these diverse validation approaches, the multi-agent system ensures that each hy-
pothesis is robustly tested using both experimental and computational methods. This final step in
the evaluation process enhances the reliability of Al-driven hypothesis generation, paving the way

for empirical validation and real-world scientific applications.
2
%?,’

4

3rd Reasoning-Level of Testifying Hypothesis

*Experimental Validation Strategy:

1. **Conserved Hydrophobic Patches in NPPs**: Conduct mutagenesis to alter hydrophobic residues and assess changes in stability and
function using circular dichroism spectroscopy and functional assays. Train machine learning models with and without these features to
evaluate predictive power.

2. **Intricate Secondary Structures and Functional Versatility**: Use molecular dynamics simulations to study conformational flexibility and
implement image-based deep learning models for classification.

3. **Vibrational Free Energy and Protein Stability**: Perform molecular dynamics simulations with vibrational free energy calculations and
compare with X-ray crystallography or NMR spectroscopy data.

4. **Topological Stability from B-Sheet Motifs**: Use atomic force microscopy to measure mechanical stability and apply persistent
homology for topological analysis.

5. **Prion-like Conformational Changes**: Conduct in vitro aggregation assays and use fluorescence spectroscopy to monitor conformational
changes.

6. **Complex Secondary Structures and Drug Targeting**: Train Bayesian neural networks on structural features and validate with binding
assays.

7. **Conserved a-Helices and Evolutionary Fitness**: Perform phylogenetic analysis and correlate with stability assays, using machine
learning for classification.

8. **Dynamic Folding and Functional Versatility**: Use stopped-flow spectroscopy for folding kinetics studies and correlate with functional
assays.

9. **Nonlinear Interactions in Protein Design**: Model interactions using molecular dynamics and validate with thermal denaturation assays.
10. **Water-Protein Interactions and Dynamics**: Conduct molecular dynamics simulations and use NMR spectroscopy to study protein
dynamics and stability.

Figure 13: The 3rd reasoning-level of hypothesis evaluation output in the 2nd Phase of Hypothesis
Generation using Multi-Agent LLMs.

A.4 3RD PHASE OF MULTI-AGENT SYSTEM ANALYSIS: FINAL HYPOTHESIS SELECTION
AND EXPERIMENTAL VALIDATION

Figure 14 illustrates the deployed prompt for protein-specialized Multi-Agent systems in the third
phase of hypothesis generation using Multi-Agent LLMs. This phase focuses on the final selection
and experimental validation of the most promising hypotheses, ensuring their robustness across
multiple scientific perspectives. The system employs a structured evaluation framework, where
hypotheses are assessed by specialized agents, each responsible for a distinct scientific criterion.

The Molecular Stability & Folding Agent evaluates whether the hypothesis aligns with estab-
lished principles of protein folding, stability, and aggregation. The Biochemical Plausibility Agent
ensures that the hypothesis conforms to known biochemical principles, including enzyme kinetics

18



Published as a conference paper at ICLR 2025 Workshop AgenticAl

and ligand interactions. The Functional Relevance Agent assesses the biological applicability of
hypotheses, determining their significance in cellular functions.

To validate hypotheses from an evolutionary standpoint, the Evolutionary Consistency Agent
examines whether the proposed mechanisms align with evolutionary biology principles. The
Sequence-Function Relationship Agent investigates how sequence variations influence protein
function, identifying conserved motifs and their structural relevance. Similarly, the Structural
Compatibility Agent ensures that the hypothesis is consistent with known 3D protein structures.

The Experimental Validation Agent determines whether the hypothesis can be empirically tested
using available laboratory techniques, mapping it to established experimental methodologies. In
the pharmaceutical domain, the Drug Discovery & Therapeutic Potential Agent evaluates the
potential translational impact of the hypothesis for drug development and therapeutic applications.
The Protein Engineering & Synthetic Biology Agent assesses the applicability of the hypothesis
in protein design, synthetic biology, and biomolecular engineering.

Lastly, the Interaction Network & Systems Biology Agent evaluates the relevance of the hypoth-
esis in the broader context of protein interaction networks and cellular systems. Each agent returns
an evaluation score based on predefined scoring criteria, ensuring a systematic ranking of hypothe-
ses. This structured approach enables an objective and multi-faceted assessment, facilitating the
selection of hypotheses with the highest scientific merit and experimental feasibility.

By integrating these specialized assessments, the Multi-Agent system ensures that only the most
robust and scientifically viable hypotheses proceed to experimental validation. This final phase
enhances the reliability of Al-driven hypothesis generation, supporting advancements in structural
biology, drug discovery, and protein engineering.

Protein-Specialized Multi-Agent Prompt

You will be presented with one hypothesis. Your task is to return an evaluation score solely based on {agent_name}.
***{scoring_criteria}***

Here is the hypothesis:

{hypothesis}

Just return the evaluation score as a single number.

Example output: “1°.

E} Molecular Stability & Folding Agent

You are a molecular stability expert in protein science. Your task is to assess whether the hypothesis aligns with known
principles of protein folding, stability, and aggregation.,

B Biochemical Plausibility Agent

You are an expert in biochemical plausibility assessment for proteins. Evaluate if the hypothesis aligns with biochemical
principles, enzyme kinetics, and ligand interactions.,

3] Functional Relevance Agent

You are a protein function expert assessing the biological relevance of hypotheses in cellular contexts.,

3 Evolutionary Consistency Agent

You are an evolutionary biologist assessing whether the hypothesis aligns with evolutionary principles.,

B Ssequence-Function Relationship Agent

You are a bioinformatics expert analyzing how sequence variations affect protein function.,

3 Structural Compatibility Agent

You are a structural biologist assessing whether the hypothesis aligns with known 3D protein structures.,

4 Experimental Validation Agent

You are an experimental scientist assessing if the hypothesis can be tested using available lab techniques.,

3 Drug Discovery & Therapeutic Potential Agent

You are a pharmaceutical scientist evaluating the potential for drug discovery and therapeutic applications.,

E3 Protein Engineering & Synthetic Biology Agent

You are a protein engineer evaluating if the hypothesis contributes to synthetic biology and protein design.,

@ Interaction Network & Systems Biology Agent

You are a systems biologist assessing the hypothesis' relevance to protein interaction networks and cellular systems.

Figure 14: The deployed prompt for protein-specialized Multi-Agent systems in the 3rd Phase of
Hypothesis Generation using Multi-Agent LLMs.
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