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ABSTRACT

Modern commercial Heating, Ventilation, and Air Conditioning (HVAC) systems
form a complex and interconnected thermodynamic system with the building and
outside weather conditions, and current setpoint control policies are not fully op-
timized for minimizing energy use and carbon emission. Given a suitable training
environment, a Reinforcement Learning (RL) model is able to improve upon these
policies, but training such a model, especially in a way that scales to thousands
of buildings, presents many practical challenges. To address these challenges, we
propose a novel simulation based approach, where a customized simulator is used
to train the agent for each building. Our simulator is lightweight and calibrated
with recorded data from the building to achieve sufficient fidelity. On a two-story,
68,000 square foot building, with 127 devices, we were able to calibrate our sim-
ulator to have just over half a degree of drift from the real world over a 6 hour
period. We train an RL agent on this simulator and demonstrate that our agent
is able to learn an improved policy. This approach is an important step toward
having a real-world Reinforcement Learning control system that can be scaled to
many buildings, allowing for greater efficiency and resulting in reduced energy
consumption and carbon emissions.

1 INTRODUCTION

Energy optimization and management in commercial buildings is a very important problem, whose
importance is only growing with time. Buildings account for 39% of all US carbon emissions (Lu
& Lai, 2020). Reducing those emissions by even a small percentage can have a significant effect. In
climates that are either very hot or very cold, energy consumption is much higher, and there is even
more room to have a major impact.

Most office buildings are equipped with advanced HVAC devices, like Variable Air Volume (VAV)
devices, Hot Water Systems, Air Conditioner and Air Handlers that are configured and tuned by the
engineers, manufacturers, installers, and operators to run efficiently with the device’s local control
loops McQuiston et al. (2023). However, integrating multiple HVAC devices from diverse vendors
into a building “system” requires technicians to program fixed operating conditions for these units,
which may not be optimal for every building and every potential weather condition. Existing set-
point control policies are not optimal under all conditions, and the possibility exists that a machine
learning model may be trained to continuously tune a small number of setpoints to achieve greater
energy efficiency and reduced carbon emission.

Our contributions include a highly customizable and scalable HVAC and building simulator, a rapid
configuration method to customize the simulator to a particular building, a calibration method to
improve this fidelity using real world data, and an evaluation method to measure the simulator fi-
delity. We also tran an RL agent on the simulator using Soft Actor Critic (Haarnoja et al., 2018),
and demonstrate that we can learn an improved policy. This system enables offline learning, where
the agent can train in an efficient sandbox environment that adequately emulates the dynamics of
the building before being deployed on the real building, an important step towards a real world RL
HVAC control system. We first present the simulator, discuss our configuration and calibration tech-
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niques, and finally present the results of tuning the simulator and training the RL agent. We also
note that our simulator and tuning process will all be made open source.

2 OPTIMIZING ENERGY AND EMISSION IN OFFICE BUILDINGS WITH
REINFORCEMENT LEARNING

In this section we frame this energy optimization problem in office buildings as a Reinforcement
Learning problem (RL). We define the state of the office building St at time t as a fixed length
vector of measurements from sensors on the building’s devices, such as a specific VAV’s zone air
temperature, gas meter’s flow rate, etc. The action on the building At is a fixed-length vector of
device setpoints selected by agent at time t, such as the boiler supply water temperature setpoint,
etc. We also define a custom feedback signal, or reward, Rt(St, At, v) that indicates the quality
of taking action At in state St, as a weighted sum of negative cost functions for carbon emission,
energy consumption, and zone-level setpoint deviation.

More generally, Reinforcement Learning (RL) is a branch of machine learning that attempts to train
an agent to choose the best actions to maximize some long-term, cumulative reward (Sutton &
Barto, 2018). As depicted below, the agent observes the state St from the environment at time t,
then chooses action At. The environment responds by transitioning to the next state St + 1 and
returns a reward (or penalty) after the action, Rt + 1. Over time, the agent will explore the action
space and learn to maximize the reward over the long term for each given state. A discount factor 1
reduces the value of future rewards amplifying the value of the near-term reward. When this cycle
is repeated over multiple episodes, the agent converges on a state-action policy that maximizes the
long-term reward.

This sequence is often formalized as the Markov Decision Process (MDP), described by the tuple
(S,A, p,R) where the state space is continuous (e.g., temperatures, flow rates, etc.) and the action
space is continuous (e.g., setpoint temperatures) and the transition probability p : S×S×A→ [0, 1]
represents the probability density of the next state St + 1 from taking action At on the current state
St. The reward function R : S ×A→ [Rmin, Rmax] emits a single scalar value at each time t. The
agent is acting under a policy (At|St) which represents the policy of taking action At from state
St. The goal of reinforcement learning is to find the policy that maximizes the expected long-term
cumulative reward. The set of parameters θ∗ of the optimal policy can be expressed as:

θ∗ = arg max θEτ∼πθ(τ ) [
∑
t γ

tR(St, At)]

where is the current policy parameter, and is a trajectory of states, actions, and rewards over multiple
time steps t. In order to converge to the optimal policy, the agent requires many training iterations,
making training directly on the building from scratch inefficient, impracticable, if not impossible.
Therefore, it is necessary to enable offline learning, where the agent can train in an efficient sandbox
environment that adequately emulates the dynamics of the building before being deployed on the
actual building.

3 RELATED WORKS

Considerable attention has been paid to HVAC control (Fong et al., 2006) in recent years (Kim et al.,
2022), and a growing portion of that has considered how Reinforcement Learning and its various
associated algorithms can be leveraged (Yu et al., 2021; Mason & Grijalva, 2019; Yu et al., 2020;
Gao & Wang, 2023; Wang et al., 2023; Vázquez-Canteli & Nagy, 2019; Zhang et al., 2019b; Fang
et al., 2022; Zhang et al., 2019b). As mentioned above, a central requirement in RL is the offline
environment that trains the RL agent. Several methods have been proposed, largely falling under
three broad categories.

Data-driven Emulators: Some works attempt to learn a dynamics as a multivariate regression
model from real world data (Zou et al., 2020; Zhang et al., 2019a), often using recurrent neural
network architecture, such as Long Short-Term Memory (LSTM) (Velswamy et al., 2017; Sendra-
Arranz & Gutiérrez, 2020; Zhuang et al., 2023). The difficulty here is that data-driven models often
do not generalize well to circumstances outside the training distribution, especially since they are
not physics based.
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Offline RL: The second approach is to train the agent directly from the historical real world data,
without ever producing an interactive environment (Chen et al., 2020; 2023; Blad et al., 2022).
While the real world data is obviously of high accuracy and quality, this presents a major challenge,
since the agent cannot take actions in the real world and interact with any form of an environment,
severely limiting its ability to improve over the baseline policy producing the real world data (Levine
et al., 2020).

Physics-based Simulation: HVAC system simulation has long been studied (Trčka & Hensen, 2010;
Riederer, 2005; Park et al., 1985; Trčka et al., 2009; Husaunndee et al., 1997; Trcka et al., 2007).
EnergyPlus (Crawley et al., 2001), a high-fidelity simulator developed by the Department of Energy,
is commonly used (Wei et al., 2017; Azuatalam et al., 2020; Zhao et al., 2015; Wani et al., 2019;
Basarkar, 2011), but suffers from the scalability issues outlined above.

To overcome the limitations of each of the above three methods, some work has proposed a hybrid
approach (Zhao et al., 2021; Balali et al., 2023), and indeed this is the category our work falls under.
What is unique about our approach is the use of a physics based simulator that achieves an ideal
balance between speed and fidelity, which is sufficient to train an effective control agent off-line.

Various works have also discussed how exactly to apply RL to an HVAC environment, such as
what sort of agent to train. Inspired by prior effective use of Soft Actor Critic on related problems
(Kathirgamanathan et al., 2021; Coraci et al., 2021; Campos et al., 2022; Biemann et al., 2021), we
chose to use a SAC agent.

4 SIMULATOR DESIGN CONSIDERATIONS

A fundamental tradeoff when designing a simulator is speed versus fidelity. Fidelity is the simula-
tor’s ability to reproduce the building’s true dynamics that affect the optimization process. Speed
minimizes both simulator configuration time, i.e., the time required to configure a simulator for a
target building, and the agent training time, i.e., the time necessary for the agent to optimize its
policy using the simulator.

Every building is unique, due to its physical layout, equipment, and location. Fully customizing
a high fidelity simulation to a specific target building requires nearly exhaustive knowledge of the
building structure, materials, location, etc., some of which are unknowable, especially for legacy
office buildings. This requires manual “guestimation”, which can erode the accuracy promised
by high-fidelity simulation. In general, the configuration time required for high-fidelity simulations
limits their utility for deploying RL-based optimization to many buildings. High-fidelity simulations
also are affected by computational demand and long execution times.

Alternatively, we developed a fast, low-to-medium-fidelity simulation model that was useful in ad-
dressing various design decisions, such as the reward function, and the modeling of different algo-
rithms and for end-to-end testing. The simulation is built on a 2D finite-difference (FD) grid that
models thermal diffusion, and a simplified HVAC model that generates or removes heat on special
“diffuser” control volumes in the FD grid. For more details on design considerations, see Appendix
C.

While the uncalibrated simulator is of low-to-medium fidelity, the key additional factor is data. We
collect real world observations from the building we are attempting to simulate, and use that data to
finetune the simulator. We believe this approach hits the sweet spot in this tradeoff, allowing us for
scalability, while maintaining a high enough level of fidelity to be useful.

5 A LIGHTWEIGHT, CALIBRATED SIMULATION

Our goal is to develop a method for applying Reinforcement Learning at scale to commercial build-
ings. To this end, we put forth the following requirements for this to be feasible: We must have an
easily customizable simulated environment to train the agent, with high enough fidelity to be useful.
To meet this requirement, we designed a light weight simulator based on finite differences approx-
imation of heat exchange. We proposed a simple automated procedure to go from building floor
plans to a custom simulator in a short time, and we designed a fine tuning and evaluation pipeline,
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Figure 1: Simulation Fidelity vs. Execution Speed. The ideal operating point for training RL agents
for energy and emission efficiency is a tradeoff between fidelity = 1 - normalized error between
simulation and real, ε ,and execution speed = number of training steps per second. Additional
consideration also includes the time to configure a custom simulator for the target building. While
many approaches tend to favor high-fidelity over execution, speed. Our approach argues a low-to-
medium fidelity that has a medium-to-high speed is most suitable for training an RL agent.

to use real world data to fine tune the simulation to better match the real world. What follows is a
description of our implementation. For a more in depth description, see appendix D.

Thermal Model for the Simulation As a template for developing simulators, we propose a general-
purpose high-level thermal model for simulating office buildings, illustrated in Figure 1. In this
thermal cycle, we highlight significant energy consumers as follows. The boiler burns natural gas to
heat the water, Q̇b . Water pumps consume electricity Ẇb,p to circulate heating water through the
VAVs. The air handler fans consume electricity Ẇb,in , Ẇb,out to circulate the air through the VAVs.
A motor drives the chiller’s compressor to operate a refrigeration cycle, consuming electricity Ẇc.
In some buildings coolant is circulated through the air handlers with pumps that consume electricity,
Ẇc,p.

We selected water supply temperature T̂b and the air handler supply temperature T̂s as agent ac-
tions because they affect the balance of electricity and natural gas consumption, they affect multiple
device interactions, and they affect occupant comfort.

Finite Differences Approximation The diffusion of thermal energy in time and space of the build-
ing can be approximated using the method of Finite Differences (FD)Sparrow (1993); Lomax et al.
(2002), and applying an energy balance. This method divides each floor of the building into a grid of
three-dimensional control volumes and applies thermal diffusion equations to estimate the tempera-
ture of each control volume. By assuming each floor is adiabatically isolated, (i.e., no heat is trans-
ferred between floors), we can simplify the three-spatial dimensions into a spatial two-dimensional
heat transfer problem. Each control volume is a narrow volume bounded horizontally, parameter-
ized by ∆x2, and vertically by the height of the floor. The energy balance, shown below, is applied
to each discrete control volume in the FD grid, and consists of the following components: (a) the
thermal exchange across each face of the four participating faces control volume via conduction
or convection Q1, Q2, Q3, Q4, (b) the change in internal energy over time in the control volume
Mc∆T

∆t , and (c) an external energy source that enables applying local thermal energy from the
HVAC model only for those control volumes that include an airflow diffuser, Qext. The equation is
Qext+Q1 +Q2 +Q3 +Q4 = Mc∆T

∆t , whereM is the mass and c is the heat capacity of the control
volume, ∆T is the temperature change from the prior timestep and ∆t is the timestep interval. The
thermal exchange in (a) is calculated using Fourier’s law of steady conduction in the interior control
volumes (walls and interior air), parameterized by the conductivity of the volume, and the exchange
across the exterior faces of control volumes are calculated using the forced convection equation, pa-
rameterized by the convection coefficient, which approximates winds and currents surrounding the
building. The change in internal energy (b) is parameterized by the density, and heat capacity of the
control volume. Finally, the thermal energy associated with the VAV (c) is equally distributed to all
associated control volumes that have a diffuser. Thermal diffusion within the building is mainly ac-
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Figure 2: Thermal model for simulation. A building consists of conditioned zones, where the mean
temperature of the zone Tz should be within upper and lower setpoints, T̂z,max and T̂z,min. Thermal
power for heating or cooling the room is supplied to each zone, Q̇s, and recirculated from the
zone, Q̇r from the HVAC system, with additional thermal exchange Q̇z from walls, doors, etc. The
Air Handler supplies the building with air at supply air temperature setpoint T̂s drawing fresh air,
ṁamb at ambient temperatures, Tamb and returning exhaust air ṁexhaust at temperature Texhaust
to the outside using intake and exhaust fans: Ẇa,in and Ẇa,out. A fraction of the return air can
be recirculated, ṁrecirc. Central air conditioning is achieved with a chiller and pump that joins a
refrigeration cycle to the supply air, consuming electrical energy for the AC compressor Ẇc and
coolant circulation, Ẇc,p. The hot water cycle consists of a boiler that maintains the supply water
temperature at Tb heated by natural gas power Q̇b, and a pump that circulates hot water through
the building, with electrical power Ẇb,p. Supply air is delivered to the zones through Variable Air
Volume (VAV) devices.

complished via forced or natural convection currents, which can be notoriously difficult to estimate
accurately. We note that heat transfer using air circulation is effectively the exchange of air mass
between control volumes, which we approximate by a randomized shuffling of air within thermal
zones, parameterized by a shuffle probability.

Simulator Configuration For RL to scale to many buildings, it is critical to be able to easily and
rapidly configure the simulator to any arbitrary building. We designed a procedure that enabled
a single technician, given floorplans and HVAC layout information, to generate a fully specified
simulation in under three hours. In the interest of space, the details are provided in Appendix B.

Simulator Calibration and Evaluation In order to calibrate the simulator to the real world using
data, we must have a metric with which to evaluate our simulator, and an optimization method to
improve our simulator on this metric.

N-Step Evaluation We proposed a novel evaluation procedure, based on N-step prediction. Each
iteration of our simulator was designed to represent a 5 minute interval, and our real world data is
also obtained in five-minute intervals. To evaluate the simulator, we take a chunk of real data of
N observations. We then initialize the simulator so that its initial state matches that of the starting
observation, and run the simulator for N steps, replaying the same HVAC policy as was used in the
real world observations. At this point, we calculate our simulation fidelity metric, which is the mean
absolute error of the temperatures in each temperature sensor, at the final timestep. More formally,
we define the spatial Mean Absolute Error (MAE) of Z zones at timestep t as:

εt =
1

Z

Z∑
z=1

|Treal,t,z − Tsim,t,z| (1)

Where Treal,t,z is the measured zone air temperature for zone z at timestamp t, and Tsim,t,z =
1
Cz

∑Cz

c=1 Tt,c is the mean temperature of all control volumes Cz in zone z at time t.
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Table 1: Data used for calibration

Scenario Partition Date Start Time

S1 train 2023-07-06 16:40
S2 train 2023-07-07 09:20
S3 train 2023-07-08 02:00
S4 train 2023-07-08 18:40

S5 test 2023-07-11 00:40
S6 test 2023-07-11 04:40
S7 test 2023-07-11 09:20
S8 test 2023-07-11 16:00
S9 test 2023-07-12 04:40

Thus, to evaluate the simulator on N -step prediction, we run the simulator for timesteps 0 to N − 1,
and then calculate the above metric for t = N − 1.

Hyperparameter Calibration

Once we defined our simulation fidelity metric, the spatial mean absolute temperature error, we can
attempt to minimize this error, thus improving fidelity, by hyperparameter tuning several physical
constants and other variables.

The parameters varied during the experiment included:

• Forced convection coefficient quantifying outside wind and air currents against the building
exterior surfaces.

• Thermal conductivity, heat capacity, and density for exterior and interior walls.
• Shuffle Probability that approximates internal air circulation and interior forced convection.

6 EXPERIMENT RESULTS

We now demonstrate the results of how our simulator, when tuned and calibrated, is able to make
useful real world predictions.

Experiment Setup To test out our simulator, we obtained data on our pilot building, a commercial
office building located in northern California. The building has two stories with a combined surface
area of 68,000 square feet, and has 127 HVAC devices. We obtained floor plan blueprints and used
them to configure a customized simulator for the building, a process that took a single human less
than three hours to complete.

Calibration Data To calibrate our simulator, we took nine chunks of observations. Four were used
to tune the simulator, and the remaining five as validation of the tuned performance on unseen data.
All times are given in US Pacific, the local time of the real building. All chunks of time were for 6
hours (N -step prediction, where N = 72), with the start time listed in table 1.

Calibration Procedure We ran hyperparameter tuning for 100 iterations on our simulator. Below
are the parameters varied, the ranges given, and the values found that best minimized the calibration
metric. The metric was calculated by obtaining the Mean Absolute Spatial Error of temperatures on
each of the four train scenarios, and then averaging them.

By including multiple scenarios in our tuning process, we ensured that our hyperparamaters did not
overfit to any specific scenario.
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Table 2: Hyperparameter ranges and chosen values that best minimized the calibration metric

Hyperparameter min max best

convection coefficient (W/m2/K) 5 800 255
exterior cv conductivity (W/m/K) 0.01 1 0.93

exterior cv density (kg/m3) 0 3000 1225
exterior cv heat capacity (J/Kg/K) 100 2500 100

interior wall cv conductivity (W/m/K) 5 800 800
interior wall cv density (kg/m3) 0.5 1500 0.5

interior wall cv heat capacity (J/Kg/K) 500 1500 993
swap prob 0 1 0

swap radius 0 50 50

Table 3: Result Metrics

Metric Training Data S5 S6 S7 S8 S9 Test Mean

MAE 0.58 ◦K 0.45 ◦K 1.22 ◦K 0.90 ◦K 0.65 ◦K 0.94 ◦K 0.83
Median NA -0.29 ◦K 1.12 ◦K 0.80 ◦K -0.49 ◦K 0.76 ◦K NA

We reviewed the physical constants that yielded the lowest simulation error from calibration. Den-
sities, heat capacities, and conductivities plausibly matched common interior and exterior building
materials. However, the external convection coefficient was higher than under the weather condi-
tions, and likely is compensating for the radiative losses and gains, which were not directly simu-
lated.

Calibration Results

We present the predictive results of our calibrated simulator, on N -step prediction, where N = 72,
representing a 6 hour predictive window. We calculated the spatial mean absolute temperature error,
as defined above. We also present a second metric, the median spatial temperature error. This was
not used in the tuning process, but gives us some insight into how well the calibration process is
performing.

As indicated in Table 3, our tuning procedure drifts only 0.58 degrees on average over a six hour
period on the tuning set, and we get good generalization, average test error is only slightly larger at
0.83. One interesting point is that the performance on scenario S6 and S9 were so different, despite
being the same time of day. We believe this is due to the differing weather conditions on those two
days affecting our model differently. It should be noted that an uncalibrated model (ie our baseline)
had a much larger mean error of 1.97 degrees.

Visualizing Temperature Drift Over Time Figure 3 illustrates temperature drift over time for
scenario S6. At each time step, we calculate the spatial temperature error for all sensors, and present
the errors as a boxplot distribution.

In this case, this figure is very useful in helping us understand why the error in scenario S6 was larger
than the others. The scenario began at 4:40 AM, and at 7:AM, two hours and twenty minutes in, the
building shifted from night mode to day mode. As can be observed in the figure, at the two hour
twenty minute mark, the simulator began drifting from the real world, becoming a biased estimator.
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Figure 3: Temperature Drift Over 6 hours, scenario S6. At each time step, the spatial temperature
error distribution is shown as a boxplot.

The larger error here was caused by our simulator being unable to correctly predict the transition
from night mode to day mode. For similar visuals on the other scenarios, see appendix A.

Visualizing Spatial Errors Figure 4 illustrates the results of this predictive process over a six hour
period, on scenario S4.

Figure 4.a displays a heatmap of the spatial temperature difference throughout the building, between
the real world and simulator, after three hours. Red indicates that in that location, the simulator was
warmer than the real world, and blue indicates colder. White means that the simulator and real world
were the same temperature in that location. Figure 4.b illustrates the same after six hours. There
are several key takeaways from this illustration. The ring of blue around the building indicates that
our simulator is too cold on the perimeter, which implies that the heat exchange with the outside
is happening more rapidly than it would in the real world. The inside of the building remains red,
which means that despite the simulator perimeter being cooler than the real world, the inside is
warmer. This implies that our thermal exchange within the building is not as rapid as that of the real
world. We suspect that this may be because our simulator does not have a radiative heat transfer
model. Lastly, there is a band of white around the perimeter of the building, inside the band of blue
and surrounding the red areas. These are the locations where the temperature reached the correct
equilibrium, despite too much exterior exchange, and not enough air moving around inside. These
locations were the right distance within the building to be the exact same as in the real world data.

As mentioned above, we suspect the culprit is a missing radiative heat model that drives the interior
exchange to be too low. To cope with this, the hyper parameter tuning process chooses a too high
exterior exchange. These insights can help improve the fidelity of the simulator in the future. For
similar visuals of the test scenarios, see appendix A. For a more elaborate version of this visual also
including the differences after three hours for comparison, see appendix E.

Training a Reinforcement Learning Agent To demonstrate the usefulness of our simulator, we
trained a Soft Actor Critic (SAC) agent (Haarnoja et al., 2018) on our simulator, recording the actor
loss, critic loss, and return over time 1.

Figure 5: SAC agent metrics

1This agent was not trained on a simulator using the hyperparameters obtained in the tuning process, due to
time constraints, but instead was trained on our simulator with default hyperparameters. We intend to replace
this graphic with an equivalent one using the exact same hyperparameters as obtained in tuning for the published
draft.
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Figure 4: Visualization of simulator drift after 6 hours, on scenario S4. The image is a heatmap
representing the temperature difference between the simulator and the real world, with red indicating
the simulator is hotter, and blue indicating it is colder. The zone with the max and min temperature
difference are indicated by displaying above them the difference.

As can be seen, losses are decreasing and return increasing, indicating the agent is learning some
sort of meaningful policy. The replay buffer was first populated with a random policy, and evaluated
for 1000000 iterations. Both the actor and critic were feedforward networks, with an actor learning
rate of 0.0004, and a critic learning rate of 0.0008.

7 DISCUSSION AND FUTURE WORK

While developing a realistic simulator and training an agent is an important step, our long term
goal is to successfully deploy an agent to the real world. Thus, our aim for the future is real world
transfer, demonstrating that an agent trained using our simulation procedure can indeed transfer to
a real building. We already have a real building that we have the ability to control, and using our
pipeline produced a simulator that perfectly matches all of its devices, setpoints and sensors. We
also have a method of tuning this simulator, based on real data, to make higher accuracy predictions.
Our future goal, showing how an agent, trained on this simulator, is able to produce a useful policy
on the real building, will require a few more components. In future live trials on the real building,
we will train an RL agent on our simulator, and carefully measure its performance in the real world.
We also have outlined several approaches that we intend to use to further improve our simulator and
fine tuning process

1. Tuning on data from multiple seasons, various times of day, and longer time windows, to
improve generalizability and reduce overfitting.

2. Updating our simulation by adding in a radiative heat transfer model to help with interior
heat exchange, and by increasing the action space to include air handler and water system
device on/off commands and air handler static pressure and hot water system differential
pressure.

3. Adding a Neural Network based predictor corrector to the tuning process to further improve
fidelity.

In addition, in the future we hope to incorporate an occupancy model (Peng et al., 2018) to give the
agent specific knowledge of where the building occupants are located.

We are optimistic that our novel simulation tuning process will allow us to develop a useful, and
most importantly, transferable, HVAC control solution, and we hope our work will inspire further
effort in this field.
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A EXTRA VISUALS

We include below figures representing the temperature drift over time, and temperature difference
after 6 hours, for each of the test scenarios:

Figure 6: Temperature Drift scenario S5

Figure 7: Temperature Difference scenario S5
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Figure 8: Temperature Drift scenario S6

Figure 9: Temperature Difference scenario S6

Figure 10: Temperature Drift scenario S7

Figure 11: Temperature Difference scenario S7
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Figure 12: Temperature Drift scenario S8

Figure 13: Temperature Difference scenario S8

Figure 14: Temperature Drift scenario S9

Figure 15: Temperature Difference scenario S9
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B SIMULATOR CONFIGURATION PROCEDURE DETAILS

To configure the simulator, we require two type of information on the building:

1. Floorplan blueprints. This includes the size and shapes of rooms and walls for each floor.

2. HVAC metadata. This includes each device, its name, location, setpoints, fixed parameters
and purpose.

We preprocess the detailed floorplan blueprints of the building, and extract a grid that gives us
an approximate placement of walls and how rooms are divided. This is done via the following
procedure:

1. Using threshold t, binarize the floorplan image into a grid of 0s and 1s.

2. Find and replace any large features that need to be removed (such as doors, a compass, etc)

3. Iteratively apply standard binary morphology operations (erosion and dilation) to the image
to remove noise from background, while preserving the walls.

4. Resize the image, such that each pixel represents exactly one control volume

5. Run a connected components search to determine which control volumes are exterior to the
building, and mark them accordingly

6. Run a DFS over the grid, and reduce every wall we encounter to be only a single control
volume thick in the case of interior wall, and double for exterior wall

Figure 16: Before and after images of the floorplan preprocessing algorithm

We also employ a simple user interface to label the location of each HVAC device on the floorplan
grid. This information is passed into our simulator, and a custom simulator for the new building, with
roughly accurate HVAC and floor layout information, is created. This allows us to then calibrate this
simulator using the real world data, which will now match the simulator in terms of device names
and locations.

We tested this pipeline on our pilot building, which consisted of two floors with combined surface
area of 68,000 square feet, and has 127 HVAC devices. Given floorplans and HVAC layout informa-
tion, a single technician was able to generate a fully specified simulation in under three hours. This
customized simulator matched the real building in every device, room, and structure.
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C SIMULATOR DESIGN CONSIDERATION DETAILS

A simulator models the physical system dynamics of the building, devices, and external weather
conditions, and can train the control agent interactively, if the following desiderata are achieved:

1. The simulation must produce the same observation dimensionality as the actual real build-
ing. In other words, each device-measurement present in the real building must also be
present in the simulation.

2. The simulation must accept the same actions (device-setpoints) as the real building.

3. The simulation must return the reward input data described above (zone air temperatures,
energy use, and carbon emission).

4. The simulation must propagate, estimate, and compute the thermal dynamics of the actual
real building and generate a state update at each timestep.

5. The simulation must model the dynamics of the HVAC system in the building, including
thermostat response, setpoints, boiler, air conditioning, water circulation, and air circula-
tion. This includes altering the HVAC model in response to a setpoint change in an action
request.

6. The time required to recalculate a timestep must be short enough to train a viable agent in
a reasonable amount of time. For example, if a new agent should be trained in under three
days (259,200 seconds), requiring 500,000 steps, the average time required to update the
building should be 0.5 seconds or less.

7. The simulator must be configurable to a target building with minimal manual effort.
We believe our simulation system meets all of these listed requirements.

D SIMULATION IMPLEMENTATION DETAILS

D.1 THERMAL MODEL FOR THE SIMULATION

As a template for a developing a large number of simulators, we propose a general-purpose high-
level thermal model for simulating office buildings, illustrated in Figure 2. The primary objective of
the climate control system is to maintain the room temperature Tz of each conditioned zone with in
its heating and cooling setpoints2, T̂z,min and T̂z,max. The Variable Air Volume (VAV) devices feed
the zones with continuous thermal energy3, Q̇s and offset thermal losses or gains from windows,
floors, people, computers and other heat-generating devices, etc. Q̇z and the rate of thermal energy
drawn out of the zone by recirculation Q̇r. The VAVs regulate the supply airflow, ṁs, and the heating
water flow, ṁb that heats the supply air to a desired temperature Ts,out . Boilers supply VAVs with
heating water, circulated by electrical water pumps. The air handlers supply multiple VAVs/zones
with fresh and potentially cooled air, and regulate the proportion of recirculated and fresh air by
setting dampers and running supply and exhaust electrical fans. When cooling is necessary, the air
handler cools the supply air with electrically driven chillers and possible coolant pumps. In this
thermal cycle, the following significant energy consumers are highlighted:

• The boiler burns natural gas to heat the water, Q̇b .

• Water pumps consume electricity Ẇb,p to circulate heating water through the VAVs.

• The air handler fans consume electricity Ẇb,in , Ẇb,out to circulate the air through the
VAVs.

• A motor drives the chiller’s compressor to operate a refrigeration cycle, consuming elec-
tricity Ẇc .

• In some buildings coolant is circulated through the air handlers with pumps that consume
electricity, Ẇc,p.

2We use hat notation to denote action variables.
3We use a dot to denote the time derivative, such as energy applied over time (i.e. power).
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All electrical consumers may be supplied by electricity obtained from renewable sources. However,
the boiler consumes natural gas and contributes to greenhouse gas emissions. The cost of electricity
varies by time and current load on the grid; prices are highest during peak demand periods.

D.2 OPTIMIZATION TRADEOFFS

In a heating condition (Tamb < Tz,min), heated air must be fed to the zones to compensate for
thermal losses, such that Ts,out > Tz , and the amount of heat applied is proportional to the mass
flow rate times the difference in temperature, Q̇s ∝ ṁs × (Ts,out − Tz). The agent can trade off
air flow for temperature to get the desired heating. The air flow is governed by the fan use and
damper configuration, and the supply air temperature is governed by the heating water temperature
and the amount of heat applied to the boiler. In a cooling condition (Tamb > Tz,min), heat must be
removed from the zone by replacing higher temperature air with lower temperature air, Ts,out < Tz .
In a single-zone configuration, the problem is fairly simple: disable the boiler and engage the chiller
until the zone temperature is within the setpoint. However, an air handler must service multiple
zones simultaneously with different thermal gains. Some zones that have lower thermal gains, i.e.
are colder and require less cooling, may require supplemental heating to ensure that all zones are
within the setpoint ranges. Here, the tradeoff is how much cold air needs to be circulated to ensure
all zones are within set point while minimizing the amount of heating.

D.3 SETPOINTS AND ACTIONS

On its initialization, the environment queries the building for device setpoints. Every continuous-
valued device setpoint is eligible to be acted upon by an agent action. However, it may not be
desirable for the agent to control every possible setpoint reported by the building. Larger action
spaces generally are more difficult to optimize than smaller action spaces, and because exploration
of some setpoints may jeopardize occupancy comfort (e.g., zone air temperature setpoints), not all
setpoints should be controlled by the agent (at least for the initial versions). Furthermore, some
device setpoints are controlled by tuned equipment-level controls, and attempting to control these
setpoints may affect the device’s ability to function properly.

We selected setpoints for actions based on the following criteria:

1. The setpoints should affect the balance of electricity and natural gas consumption.

2. The setpoints should affect device interactions (i.e., changing the setpoint on a device will
force a change on another device).

3. Changes to the setpoint should have an indirect effect on occupant comfort.

Based on this criteria, we selected the water supply temperature and the air handler supply
temperature as initial setpoints for agent actions. Since the target building has two primary air
handler units and one hot water system, the action space dimensionality is 3.
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Figure 17: Thermal model for simulation. A building consists of one or more conditioned zones,
where the mean temperature of the zone Tz should be within upper and lower setpoints, T̂z,max and
T̂z,min. Thermal power for heating or cooling the room is supplied to each zone, Q̇s, and recircu-
lated from the zone, Q̇r from the HVAC system, with additional thermal exchange Q̇z from walls,
doors, windows, etc. The Air Handler supplies the building with air at supply air temperature set-
point T̂s drawing fresh air, ṁamb at ambient temperatures, Tamb and returning exhaust air ṁexhaust

at temperature Texhaust to the outside using intake and exhaust fans that consume electrical energy:
Ẇa,in and Ẇa,out. A fraction of the return air can be recirculated, ṁrecirc for efficiency. Central
air conditioning is achieved with a chiller and pump that joins a refrigeration cycle to the supply
air, consuming electrical energy for the AC compressor Ẇc and coolant circulation, Ẇc,p. The hot
water cycle consists of a boiler that maintains the supply water temperature at Tb heated by natu-
ral gas power Q̇b, and a pump that circulates hot water through the building, with electrical power
Ẇb,p. Supply air is delivered to the zones through Variable Air Volume (VAV) devices that provide
zone-level heating with a water-to-air heat exchanger.

D.4 FINITE DIFFERENCES APPROXIMATION

The diffusion of thermal energy in time and space of the building can be approximated using the
method of Finite Differences (FD)(Sparrow, 1993; Lomax et al., 2002), and applying an energy
balance. This method divides each floor of the building into a grid of three-dimensional control
volumes and applies thermal diffusion equations to estimate the temperature of each control volume.
By assuming that each floor is adiabatically isolated, (i.e., no heat is transferred down or up between
floors), we can simplify the three-spatial dimensions into a spatial two-dimensional heat transfer
problem. Each control volume is a narrow volume bounded horizontally, parameterized by ∆x2,
and vertically by the height of the floor.

The energy balance, shown in Equation 1, is applied to each discrete control volume in the FD grid
consists of the following components: (a) thermal exchange across each face of the four participating
faces control volume via conduction or convectionQ1,Q2,Q3,Q4, (b) the change in internal energy
over time in the control volume Mc∆T

∆t , and (c) an external energy source that enables applying
local thermal energy from the HVAC model only for those control volumes that include an airflow
diffuser, Qext.

Qext +Q1 +Q2 +Q3 +Q4 = Mc
∆T

∆t
(2)

Where M is the mass and c is the heat capacity of the control volume, ∆T is the change in temper-
ature from the previous time step and ∆t is the timestep interval.

The thermal exchange in (a) is calculated using Fourier’s law of steady conduction in the interior
control volumes (walls and interior air), parameterized by the conductivity of the volume, and the
exchange across the exterior faces of control volumes are calculated using the forced convection
equation, parameterized by the convection coefficient, which approximates winds and currents sur-
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rounding the building. The change in internal energy (b) is parameterized by the density, and heat
capacity of the control volume. Finally, the thermal energy associated with the VAV (c) is equally
distributed to all associated control volumes that have a diffuser.

Thermal diffusion within the building is mainly accomplished via forced or natural convection cur-
rents, which can be notoriously difficult to estimate accurately. We note that heat transfer using air
circulation is effectively the exchange of air mass between control volumes, which we approximate
by a randomized shuffling of air control volumes within thermal zones, parameterized by a shuffle
probability.

E THREE HOUR SIX HOUR TEMPERATURE DIFFERENCE COMPARISON

The figure below shows a comparison of temperature difference, on scenario S4.

(a)

(b)

Figure 18: Visualization of simulator drift after 3 and 6 hours, on scenario S4. The image is a
heatmap representing the temperature difference between the simulator and the real world, with red
indicating the simulator is hotter, and blue indicating it is colder. The zone with the max and min
temperature difference are indicated by displaying above them the difference.
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The ring of blue around the building indicates that our simulator is too cold on the perimeter, which
implies that the heat exchange with the outside is happening more rapidly than it would in the real
world, and we can see this difference is more exaggerated after six hours than after three.

Our thermal exchange within the building is not as rapid as that of the real world. We suspect
that this may be because our simulator does not have a radiative heat transfer model. We can also
observe that this is actually better after six hours than three, since the interior air has had more time
to exchange.
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