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Achieving Resolution-Agnostic DNN-based Image
Watermarking: A Novel Perspective of Implicit Neural

Representation
Anonymous Authors

ABSTRACT
DNN-based watermarking methods are rapidly developing and de-
livering impressive performances. Recent advances achieve resolution-
agnostic image watermarking by reducing the variant resolution
watermarking problem to a fixed resolution watermarking prob-
lem. However, such a reduction process can potentially introduce
artifacts and low robustness. To address this issue, we propose the
first, to the best of our knowledge,Resolution-Agnostic ImageWa-
terMarking (RAIMaRK) framework by watermarking the implicit
neural representation (INR) of image. Unlike previous methods,
our method does not rely on the previous reduction process by di-
rectly watermarking the continuous signal instead of image pixels,
thus achieving resolution-agnostic watermarking. Precisely, given
an arbitrary-resolution image, we fit an INR for the target image.
As a continuous signal, such an INR can be sampled to obtain im-
ages with variant resolutions.Then, we quickly fine-tune the fitted
INR to get a watermarked INR conditioned on a binary secret mes-
sage. A pre-trained watermark decoder extracts the hidden mes-
sage from any sampled images with arbitrary resolutions. By di-
rectly watermarking INR, we achieve resolution-agnostic water-
marking with increased robustness. Extensive experiments show
that our method outperforms previous methods with significant
improvements: averagely improved bit accuracy by 7%∼29%. No-
tably, we observe that previous methods are vulnerable to at least
one watermarking attack (e.g. JPEG, crop, resize), while ours are
robust against all watermarking attacks.

KEYWORDS
Resolution-agnostic; Robust blind watermarking; Implicit neural
representation

1 INTRODUCTION
Invisible digital watermarking [35] is a technology for safeguard-
ing intellectual property in multimedia [2, 13, 14]. Early research
focused on directly modifying pixel values, wherein the lowest
bit was altered to watermark images [5]. To enhance the robust-
ness against various attacks, transformations were employed to
conceal data in the frequency domain [34]. Although these tra-
ditional methods can watermark images of different resolutions,
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Figure 1: Differences between our frameworkRAIMaRK and
the previous framework. Figure 1a: The end-to-end water-
marking frameworks need to re-watermark images even
with a change in resolution, and fixed-resolution water-
marking frameworks need to re-train models to watermark
different resolution images. Figure 1b: Our framework wa-
termarks INR and samples it to obtain watermarked images
of different resolutions.

they rely on analyzing hand-crafted image features for designing
watermarking techniques. With the continuous advancement of
deep learning, researchers have discovered that DNN-based wa-
termarking methods exhibit remarkable effectiveness in analyzing
image features, consequently enhancing their robustness [15, 18,
19, 46]. In these DNN-based approaches, the watermark message
requires expansion for subsequent interactions with images.While
HiDDeN [46] and TSDL [18] directly duplicate the watermark in-
formation, increasing redundancy but lacking error correction ca-
pabilities, resulting in suboptimal robustness. To enhance the ro-
bustness, MBRS [15] incorporates a message processor module to
augment error correction capabilities, thereby improving robust-
ness. However, the message processor module constrains the im-
age resolution that the model can watermark, i.e., the entire frame-
work has to be retrained before it can be applied to watermark
images with different resolutions.

A recent work DWSF [12] tackles the above issue by reducing
the variant resolution watermarking problem to a fixed resolution
watermarking problem (referred to as a reduction process) by lever-
aging block selection. DWSF randomly selects fixed-size blocks,
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which are further embedded with the secret message. The water-
marked areas are first identified during extraction, and then the
embedded message from these blocks is extracted. However, the
bit accuracy drops fast once the extraction identifies a false water-
marked block position or the watermarked block is cropped. Our
experiment in Section 5.4 confirms this. Besides, we also observe
artifacts of watermarked images generated by DWSF (Figure 2).
Recognizing these limitations of the DWSF’s reduction pro-
cess, we take a step further to ask: canwewatermark images
with arbitrary resolutions without relying on such a reduc-
tion process?

To address this issue, we propose a novel perspective of
watermarking images in function space; namely, we water-
mark the image’s implicit neural representation (INR). In
this paper, we propose ourResolution-Agnostic ImageWaterMarking
(RAIMaRK) method, which is the first INR-based watermarking
approach. An INR, as a continuous representation of the image,
outputs corresponding pixel values based on the given coordinates.
By watermarking the INR, we can generate watermarked images
of different resolutions through sampling. The watermark infor-
mation is adaptively distributed across these images and can be
verified with our watermark decoder, effectively addressing the
limitations of previous frameworks. Furthermore, unlike previous
approaches, which watermark multiple times for multiple resolu-
tions, we only need to watermark once to get watermarked INR,
and images with arbitrary resolution can be obtained by sampling
from the watermarked INR, as depicted in Figure 1, which signifi-
cantly reduces computational overhead in image transmissions.

RAIMaRK comprises three key stages, as shown in Figure 3. In
stage 1, we generate the implicit neural representation by fitting it
with an arbitrary-resolution image. Stage 2 involves pre-training a
decoder that is independent of the image and capable of extracting
watermarks from images of any resolution. In stage 3, we first gen-
erate a pre-defined message. Then, we embed the watermarks into
the INR by fine-tuning the model using the pre-trained decoder to
ensure the same message can be obtained from images sampled by
the same INR. We obtain watermarked images of different resolu-
tions during testing by feeding different parameters to the sampler.
Our contributions are summarized as follows:

• We propose the first, to the best of our knowledge, robust,
invisible, and resolution-agnostic watermarking framework
RAIMaRK to protect images based on the implicit neural rep-
resentation (INR).

• Our method leverages the watermarking of INR, enabling
the generation of different resolutions of the same image
directly through sampling, eliminating the need formultiple
watermarking processes, and reducing computational time
and costs.

• The versatility of INR as a representation for various signals,
such as images, videos, and 3D models, opens up new possi-
bilities in multimedia watermarking. This paper provides a
novel perspective of watermarking INR, offering potential
applications in other domains of multimedia watermarking.

• We conduct extensive experiments to demonstrate the supe-
rior performance of our method compared to state-of-the-
art approaches, particularly in scenarios involving images

Original MBRS DWSF RAIM      (Ours)ARK

Figure 2: Watermarked images of robust models. There are
apparent artifacts of watermarks in the MBRS and DWSF,
making it easy to recognize whether or not an image has
been watermarked.

of different resolutions. Additionally, our method exhibits
enhanced resistance against both non-geometric and geo-
metric attacks.

2 RELATED WORK
2.1 Implicit Neural Representation
Unlike explicit representations, which require explicit equations
or rules to describe the object or function, implicit representations
leverage neural networks to learn a mapping between inputs and
outputs. In the context of computer vision, implicit neural repre-
sentations (INRs) are often used in 3D shape modeling [20], scene
reconstruction [28], and semantic segmentation [16]. The neural
network takes a point in the space as input and produces a scalar
value as output.

Implicit neural representation represents continuous signals pa-
rameterized by multi-layer perceptrons (MLPs). Early work used
activation functions like ReLU andTanh, common inmachine learn-
ing [1, 22, 23, 26]. Unlike the signed distance function (SDF) in 3D
space, where INR represents a continuous distance function, the
pixel points of the image are discrete. If we use INR to represent an
image, there are high and low-frequency regions. These activation
functions are not effectiveeffective enough. Thus, periodic nonlin-
earities are introduced into the INR. SIREN [27] pioneeringly ap-
plied sine transform to the input coordinates, enabling INRs to fit
complicated signals, which solves the problem that traditional ac-
tivation functions cannot simultaneously accommodate both high
and low-frequency features.

2.2 Image Watermarking
Traditional watermarking. As a powerful means of copyright
protection, digital watermarking becomes a popular area of research
in real-world scenarios [7, 10, 21, 30, 31, 39]. Initial studies focused
on direct changes to the pixel values of images in the spatial do-
main, such as the least significant bit (LSB) [6, 36]. Although LSB
can achieve high invisibility with small changes in pixel values,
its robustness against noises is weak. To solve this problem, re-
searchers focused on the transformation domains, such as the Dis-
crete Cosine Transform (DCT) [3, 25], the Discrete Fourier Trans-
form (DFT) [29, 32], and theDiscreteWavelet Transformation (DWT)
[9, 38].
DNN-basedwatermarking. Since it is difficult for traditionalmeth-
ods to resist different attacks comprehensively, DNN-based water-
marking emerged as computing power has increased dramatically.
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Figure 3: Framework overview. In Stage 1, we create the implicit neural representation (INR); in Stage 2, we pre-train an end-
to-end watermarking structure, then we discard the encoder and keep only the decoder; in Stage 3, we fine-tune the INR to
obtain watermarked INR. In the test stage, we sample images of different resolutions using sampler S.

Zhu et al. [46] proposed HiDDeN for image watermarking, the first
end-to-end DNN-based image watermarking framework. Liu et al.
[18] proposed a Two-stage Separable Deep Learning (TSDL) frame-
work that solved the gradient transfer problems in non-differentiable
noise. MBRS [15] utilized the mini-batch strategy and combined
real and simulated JPEG compression in training.Ma et al. [19] first
incorporate an Invertible Neural Network (INN) into an embed-
ding process, achieving excellent invisibility and robustness per-
formance.

However, the above method gradually adds a condition to the
watermark: the image resolution is fixed. This makes these water-
marking methods poorly generalizable in resolution. Facing the
problem of different image resolutions in real issues, Guo et al.
[12] proposed DWSF based on selecting blocks so that a fixed-
resolution watermarking framework can be used for images of
other resolutions. Bui et al. [4] proposed a scaling-based water-
marking approach. They first watermarked the images based on
a specific resolution to get the residuals of the watermark. Then,
the residuals are scaled and summed to the original image, thus
obtaining the watermarked image.
Generative model watermarking. In the case of watermarking
images produced by generative models, some works processed wa-
termarking the training set on which the model is trained [41].
To prevent multiple instances of watermarking on the generative
model, some work went closer to model watermarking, merging
the watermarking process and the generation process [42, 45]. The
watermarking process is carried out throughout the model train-
ing process using these methods.They also have the same problem
as the previous approach, and training the model is highly time

and arithmetic-intensive. The stable signature [11] showed that a
quick fine-tuning of the latent decoder part of the generativemodel
can achieve a good watermarking performance. Their work gave a
good scheme for watermarking in models. It is not limited to gen-
erative models but can also be used in other models, such as the
implicit neural representation.

3 PRELIMINARIES
3.1 Implicit Neural Representation
Implicit neural representation can be used as a continuous repre-
sentation of an image. We can define the function 𝐹𝑖𝑚 : R2 ↦→ R3,
which maps a two-dimensional index (𝑥,𝑦) to a three-dimensional
pixel value (𝑟, 𝑔, 𝑏). A handy function 𝐹𝑖𝑚 uses fully-connected net-
works with the formulation:

𝐹𝑖𝑚 = W𝑛 (𝑓𝑛−1 ◦ 𝑓𝑛−2 ◦ · · · ◦ 𝑓1)(x) + b𝑛

𝑓𝑖 (𝑥𝑖 ) = 𝜙 (W𝑖x𝑖 + b𝑖 ),
(1)

where W𝑖 and b𝑖 are weight and bias matrix of the 𝑖-th networks
and 𝜙 is the non-linear activation function between networks. 𝜙
can be ReLU [23], Tanh [1] or sinusoidal activation function used
in SIREN [27]. SIREN can better handle image details thanks to the
smoothness of the sinusoidal function.

3.2 Sampler
We define a sampler S(𝐻,𝑊 ) , which samples INR into a 𝐻 ×𝑊
image. For the height side, there are 𝐻 indexes. For the width side,
there are𝑊 indexes. Combining height and width coordinates, we

3
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Figure 4: Model overview. Stage 1 creates an MLP-based INR 𝐹𝑖𝑚 (𝐹 stands for 𝐹𝑖𝑚 in Stage 1 and 𝐹𝑤𝑚 in Stage 3) to fit the
original image. Stage 2 pre-trains a decoder D in a DNN-based framework. Stage 3 fine-tunes 𝐹𝑖𝑚 with the pre-trained decoder
D to get watermarked INR 𝐹𝑤𝑚 . When fine-tuning, 𝐹𝑤𝑚 randomly generates images of different resolutions by changing the
input parameters of the sampler, and the noise layer N randomly chooses an attack and applies it to the watermarked image.

get 𝐻 ×𝑊 indexes:

(𝑥,𝑦) = ( 2 · 𝑖
𝐻

− 1,
2 · 𝑗
𝑊

− 1), (2)

where 𝑖 = 0, 1, . . . , 𝐻 − 1 and 𝑗 = 0, 1, . . . ,𝑊 − 1. The sampler con-
tains width and height indexes uniformly distributed in the range
[−1, 1).

We input all indexes (𝑥,𝑦) and get corresponding (𝑟, 𝑔, 𝑏) val-
ues. Finally, we get the sampled image by filling the image with
the corresponding RGB values. Based on the continuous function
property of INR, we can get the corresponding RGB values by in-
putting any coordinates into INR.Therefore, for consistency, in our
setup, we set the coordinates of both the height and width of the
samples to [−1, 1).

4 METHOD
In this section, we give an insight into our RAIMaRK, a resolution-
agnostic blind imagewatermarking framework. Figure 4 shows the
architecture of three stages in RAIMaRK. Unlike the end-to-endwa-
termarking approach, our framework embeds the watermark into
the INR. No matter what resolution images are sampled from the
model, these images come with their watermarks. Our framework
is divided into three stages. First, we create the implicit neural rep-
resentation of a given image 𝐹𝑖𝑚 .Then,we pre-train thewatermark
decoderD. Finally, we fine-tune 𝐹𝑖𝑚 to get the watermarked func-
tion space image 𝐹𝑤𝑚 , such that all images sampled from 𝐹𝑤𝑚 have
a given secret message through D.

4.1 Creating the Implicit Neural
Representation

In this stage, we choose the sine function as the activation function
of the INR. The structure of INR is introduced in Section 3.1, and
we initialize each sine neuron’s weights before training. We set
𝑤𝑖 ∼ U(−

√
6/𝑛,

√
6/𝑛), where 𝑛 is the number of inputs of the

neuron andU means uniform distribution, which ensures that the
input of each sine activation is Gauss distributed with a standard
deviation of 1. Specifically, for the first layer of 𝐹𝑖𝑚 , combined with
the periodicity of the sine function, we expect the output of the
first neuron to span over multiple periods. Thus, we set the weight
distribution of the first layer as𝑤 ∼ U(−𝑤0/𝑛,𝑤0/𝑛) and set𝑤0 =
30.

Afterward, we create the INR by following the previous condi-
tions. We define the height and width of the given image 𝐼𝑜 as 𝐻
and𝑊 . In the data processing part, to satisfy the requirements of
the sampler, the first thing to do is to normalize index data into
range [−1, 1), which means for any index (ℎ,𝑤), the transforma-
tion is:

(ℎ,𝑤) → ( 2 · ℎ
𝐻

− 1,
2 ·𝑤
𝑊

− 1). (3)

The horizontal and vertical pixel distribution density is related to
𝐻 and𝑊 . Then, after transformation, we assume, at a certain index
(𝑥,𝑦), the RGB value of the original image is (𝑟𝑜 , 𝑔𝑜 , 𝑏𝑜 ), which is
the ground truth value. 𝐹𝑖𝑚 receives the same index (𝑥,𝑦) as in-
put and outputs the corresponding RGB value (𝑟, 𝑔, 𝑏). We must
minimize the difference between (𝑟, 𝑔, 𝑏) and (𝑟𝑜 , 𝑔𝑜 , 𝑏𝑜 ) for a sin-
gle pixel. Then, we apply a sampler S(𝐻,𝑊 ) on 𝐹𝑖𝑚 and recover
the image 𝐼𝐹 that is predicted by 𝐹𝑖𝑚 . To make the predicted im-
age similar to the original image, the loss function applies mean
squared error (MSE) on 𝐼𝐹 and 𝐼𝑜 :

L = 𝑀𝑆𝐸 (𝐼𝐹 , 𝐼𝑜 ) = 𝑀𝑆𝐸 (S(𝐻,𝑊 ) (𝐹𝑖𝑚), 𝐼𝑜 ) . (4)

4.2 Pre-training the Watermark Decoder
We first train a DNN-based watermarking framework. It optimizes
both watermark encoder E and watermark decoder D to embed
𝑛-bit messages into images and extract them. The framework is ro-
bust against different image noises, and the decoder can receive
input for any image resolution. In our framework, after training a

4
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Table 1: Description of geometric and non-geometric attacks.

Type Attacks Description

Non-Geometric
GN(𝜎) Apply gaussian noise on watermarked image with standard deviation 𝜎 .
MF(𝑘𝑠 ) Blur the watermarked image by median filter with kernel size 𝑘𝑠 .
JPEG(𝑄) Compress the watermarked image with quaility factor 𝑄 .

Geometric Crop(𝑠) Randomly crop the 𝐻 ×𝑊 watermarked image with a region (
√
𝑠 · 𝐻 ) × (

√
𝑠 ·𝑊 ).

Resize(𝑝) Scale the 𝐻 ×𝑊 watermarked image into (𝑝 · 𝐻 ) × (𝑝 ·𝑊 ).

robust decoder, we discard watermark encoder E and keep water-
mark decoder D for fine-tuning.

Formally, E receives a cover image 𝐼𝑜 ∈ R3×𝐻×𝑊 and an 𝑛-bit
message 𝑀 ∈ {0, 1}𝑛 . E outputs a residual image 𝐼𝑟 which is the
same resolution as 𝐼𝑜 . Then, we add a strength factor 𝛼 when cre-
ating the watermarked image 𝐼𝑤 = 𝐼𝑜 + 𝛼 · 𝐼𝑟 , which controls the
encoding strength. After applying different noises onto the water-
marked image, we get the noised image 𝐼𝑛 = N(𝐼𝑤). D extracts
an 𝑛-bit message 𝑚 = D(𝐼𝑤). The final message 𝑀′ = 𝑠𝑔𝑛(𝑚) is
the sign of𝑚. We can calculate the accuracy by comparing𝑀 and
𝑀′. The loss function we choose is Binary Cross Entropy (BCE)
between the original message𝑀 and the extracted message𝑚:

L = −
𝑛∑
𝑖=1

𝑀𝑖 · log(𝜎 (𝑚𝑖 )) + (1 −𝑀𝑖 ) · log(1 − 𝜎 (𝑚𝑖 )), (5)

where 𝜎 is the Sigmoid activation function,𝑀𝑖 and𝑚𝑖 are the 𝑖-th
bit of original and decoded message.

Since we discard E afterward, the watermark invisibility is not
considered in this stage.Thus, in the loss function, we consider the
differencce between the original and decoded message and ignore
the difference between 𝐼𝑜 and 𝐼𝑤 .

4.3 Fine-tuning the Implicit Neural
Representation

Watermarking INR is different from the end-to-end approach. In
this approach, there is not a watermark embedding process. For
each image generated, it comes directly from the sampling of INR.
Here, we need to handle the 𝐹𝑖𝑚 created in the previous step for
watermarking. We define the fine-tuned INR as 𝐹𝑤𝑚 to distinguish
it from the clean INR 𝐹𝑖𝑚 . We fine-tune 𝐹𝑤𝑚 such that the image
sampled from 𝐹𝑤𝑚 contains a specific message 𝑚 that can be ex-
tracted by D. In the fine-tuning process, because in practice, we
have many clean INRs to fine-tune, we lock all the parameters of
D so that all fine-tuned INRs can extract the correct message from
the same decoder D.

First, we generate a pre-defined message 𝑚 = (𝑚1, . . . ,𝑚𝑛) ∈
{0, 1}𝑛 for a given INR 𝐹𝑖𝑚 . We need to save this message and use
the same message during validation and testing. Then, we feed the
fine-tuning INR 𝐹𝑤𝑚 to a sampler S(𝐻,𝑊 ) that outputs an image
𝐼𝑠 ∈ R3×𝐻×𝑊 . Moreover, 𝐼𝑠 is the image with watermarks. Dur-
ing training, we change the resolution of 𝐻 and𝑊 and add sam-
ples of different resolutions to improve generalization. The noise
layers distort the sampled image 𝐼𝑛 = N(𝐼𝑠 ), and the pre-trained
decoder extracts a message𝑚′ = D(𝐼𝑛). The loss function of the

message part is the BCE between extracted message 𝑚′ and pre-
defined message𝑚:

L𝑚𝑠𝑔 = 𝐵𝐶𝐸 (𝜎 (𝑚′),𝑚) = 𝐵𝐶𝐸 (𝜎 (D(𝐼𝑛)),𝑚) . (6)
Another objective is to improve the invisibility between 𝐼𝑠 and

𝐼𝑜 . Here, since the resolution of our original image is determined,
we need to generate clean images of the corresponding resolution
when comparing other resolutions. We adopt 𝐼𝑜 = S(𝐻,𝑊 ) (𝐹𝑖𝑚)
for comparison. The loss function of the image part is the MSE
between 𝐼𝑠 and 𝐼𝑜 :

L𝑖𝑚𝑔 = 𝑀𝑆𝐸 (𝐼𝑠 , 𝐼𝑜 )
= 𝑀𝑆𝐸 (S(𝐻,𝑊 ) (𝐹𝑤𝑚),S(𝐻,𝑊 ) (𝐹𝑖𝑚)) . (7)

Thus, 𝐹𝑤𝑚 is optimized by minimizing the total loss L. We add
coefficients 𝜆𝑚𝑠𝑔 and 𝜆𝑖𝑚𝑔 for both parts of losses:

L = 𝜆𝑚𝑠𝑔L𝑚𝑠𝑔 + 𝜆𝑖𝑚𝑔L𝑖𝑚𝑔 . (8)

4.4 Noise Layers
Since watermarked images tend to suffer from various distortions
in real-life scenarios, we added a noise layer in the training process
to enhance the robustness of our model. The details of all noises
we used in our method are shown in Table 1. We classify the noise
into differentiable or non-differentiable depending on its realiza-
tion. Differentiable noise means that after applying themselves to
watermarked images, we can typically perform the reverse process
when training. Moreover, with non-differentiable noises like JPEG
compression, the backward propagation fails to produce the corre-
sponding gradient because of the saving and reading of the images.
Here, we choose Forward ASL [44], which is compatible with non-
differentiable noises. ForwardASL first calculates the difference be-
tween noised image 𝐼𝑛 and watermarked image 𝐼𝑤 , 𝐼𝑑𝑖 𝑓 𝑓 = 𝐼𝑛 − 𝐼𝑤 .
Here, 𝐼𝑑𝑖 𝑓 𝑓 has no gradient. The new noised image 𝐼 ′𝑛 = 𝐼𝑤 + 𝐼𝑑𝑖 𝑓 𝑓
is the input of the decoder. The non-differentiable noise does not
participate in the gradient propagation during the backward pro-
cess. Therefore, the gradient can be back-propagated through the
noise layer.

5 EXPERIMENTS
In this section, we conduct experiments on the effectiveness and
robustness of our proposed framework RAIMaRK. First, we intro-
duce the experimental settings of our process. Then, we show our
results in two aspects. First, We validate the performance of our
proposed method on the same test dataset and the exact resolu-
tion from two perspectives: invisibility and robustness. In terms of
robustness, we test it against non-geometric attacks and geomet-
ric attacks. Another aspect is that we demonstrate our method’s
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Figure 5: Comparison of visual quality. First row: original image 𝐼𝑜 . Second row: watermarked image 𝐼𝑤 . Third row: residual
image 𝐼𝑟 . Fourth row: normalized residual image 𝐼𝑚 . We randomly choose two images in the test dataset to compare the invis-
ibility of the watermarked images between the five methods.

generalization by showcasing the watermark’s invisibility and ro-
bustness at different resolutions. We show the generalizability of
our method by testing three chosen resolutions in a fine-tuned pro-
cess and three other resolutions commonly used on the screen. We
choose the resolutions used during our fine-tuning process and
three commonly used resolutions on screens for testing.

5.1 Implementation Details
Our RAIMaRK chooses COCO [17] as the dataset for all three phases.
PyTorch implements the framework [24] and executes on Ubuntu
22.04 with an Intel Xeon Gold 5318Y CPU and an NVIDIA A100
GPU.

When creating INR, we use images whose resolution is 256×256
to fit the implicit neural representation. We choose Adam opti-
mizer with a learning rate of 1× 10−4. We train 𝐹𝑖𝑚 for about 5000
epochs. The difference between the two images, 𝐼𝐹 and 𝐼𝑜 , is invis-
ible to the naked eye.

We select 10000 images from the COCO dataset in the decoder
pre-training process. The input image resolution is set to 256×256.
We set the message length to 30 to maintain consistency with the
subsequent fine-tuning. The optimizer is Lamb [40] with learing
rate of 1 × 10−2. We choose CosineLRScheduler [37] to schedule
the learning rate, which decays to 1× 10−6. This process is done in
500 epochs.

In the fine-tuning process, to ensure invisibility and robustness
over different resolutions, we fine-tune the INR in three samples,
256 × 256, 384 × 384, and 512 × 512. We utilize Adam optimizer
with a learning rate of 5 × 10−5. We fine-tune the INR under non-
geometric attacks and geometric attacks. Our choice for the coef-
ficients 𝜆𝑚𝑠𝑔 and 𝜆𝑖𝑚𝑔 are 5 × 105 and 3 × 103. We fine-tune 500
epochs and choose the best-performing model as the watermarked
INR 𝐹𝑤𝑚 .

5.2 Metrics
The two main indicators for our watermarking model are robust-
ness and invisibility. For different watermarked INR 𝐹𝑤𝑚 in test-
ing, robustness is measured by the accuracy between pre-defined
message𝑚 and the extracted message𝑚′. We can get the𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
(%) by calculating the bit error rate (BER):

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 𝐵𝐸𝑅

= (1 − 1
𝑛
×

𝑛∑
𝑖=1

(𝑚𝑖 ⊕𝑚′
𝑖 )) × 100%.

(9)

where ⊕ is the exclusive or operation between bits.
For the invisibility, we measure the item peak signal-to-noise

ratio (PSNR). We suppose 𝐼𝑜 and 𝐼𝑤 are original images and water-
marked images.

𝑃𝑆𝑁𝑅(𝐼𝑜 , 𝐼𝑤) = 10 × log10
𝑀𝐴𝑋 2

𝐼

𝑀𝑆𝐸 (𝐼𝑜 , 𝐼𝑤)
, (10)

where𝑀𝐴𝑋𝐼 is the maximum possible pixel value of the image and
𝑀𝑆𝐸 is the mean squared error.

5.3 Baseline
Our baseline for comparison are [46], [18], [15] and [12]. All these
methods are DNN-based watermarking frameworks, and their au-
thors open-source their code. [46], [18] and [12] can extract mes-
sage from image of any resolution. We can train their author’s
open-source code directly. For [15], MBRS can only accept fixed-
resolution input images. So, when the watermarked image is dis-
torted by cropping or resizing, we need to scale it to its original
resolution.
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Table 2: Comparison with SOTA methods. We train models with combined noise layers. We also test them with the same test
dataset. PSNR is measured for RGB channels, and robustness is measured by bit accuracy (%).

Models Invisibility Robustness AVG
PSNR Identity() GN(0.05) MF(7) Jpeg(50) Crop(0.25) Resize(0.5) Resize(2.0)

HiDDeN 35.31 98.97 98.77 94.80 60.77 98.53 98.67 99.13 92.80
TSDL 33.69 90.77 87.53 58.17 54.30 86.73 60.03 58.73 70.90
MBRS 27.63 99.23 97.90 98.97 97.43 58.80 98.97 99.27 91.76
DWSF 37.45 99.97 99.97 100.00 95.83 51.33 99.97 100.00 92.44
RAIMaRK (Ours) 39.61 100.00 99.97 100.00 99.97 99.20 100.00 100.00 99.88

5.4 Comparison with Previous Methods
In this section, we compare our method with the SOTA methods,
HiDDeN[46], TSDL[18], MBRS[15] and DWSF[12]. Since the in-
put image resolution of each method and message length vary, we
choose message length 𝑛 = 30 for a fair comparison, and the image
resolution is 256×256. Therefore, we train SOTAmethods and test
all methods in these conditions. Table 2 shows the detailed invisi-
bility and robustness results.

5.4.1 VisualQuality. In this section, we focus on thewatermarked
images produced by the five methods and show the visual quality
of watermarked images.The comparison of visual quality is shown
in Figure 5. We calculate the residual image between original and
watermarked images 𝐼𝑟 = |𝐼𝑤 − 𝐼𝑜 |. Moreover, we calculate the
greyscale image 𝐼𝑔 :

𝐼𝑔 = 0.299 × 𝐼𝑟𝑅 + 0.587 × 𝐼𝑟𝐺 + 0.114 × 𝐼𝑟𝐵 , (11)

where 𝐼𝑟𝑅 , 𝐼𝑟𝐺 and 𝐼𝑟𝐵 are red, green and blue channels of 𝐼𝑟 . Then
we normalize 𝐼𝑔 :

𝐼𝑚 =
𝐼𝑔 −𝑚𝑖𝑛(𝐼𝑔)

𝑚𝑎𝑥 (𝐼𝑔) −𝑚𝑖𝑛(𝐼𝑔)
× 𝐼𝑚𝑎𝑥 , (12)

where 𝐼𝑚𝑎𝑥 = 1 for floating-number images and 𝐼𝑚𝑎𝑥 = 255 for
uint8 images. Then, we can measure where the methods embed
watermarks by 𝐼𝑚 . As a result, in the 𝐼𝑚 , the brighter the place, the
higher the intensity of the embedded watermark, and the darker
the place, the lower the intensity of the embedded watermark.

Based on the residual image 𝐼𝑟 , we can see that RAIMaRK out-
performs other methods in invisibility at a resolution of 256 ×
256. For example, our method achieves 39.61dB PSNR, while the
largest PSNR of the previous method only achieves 37.45 dB. No-
tably, when the block size is large, and image resolution is low,
DWSF achieves relatively lower PSNR than RAIMaRK becauseDWSF
adds a relatively larger perturbation within the block. In contrast,
RAIMaRK adds a relatively more minor global perturbation.

5.4.2 Combined Distortions. To show that our RAIMaRK is resis-
tant to various distortions simultaneously, we fine-tune our model
with a random noise layer and a random sampler. We also train
models of other methods using their default strategy and replace
the noise layers with ours. The noise layers include GN(𝜎 = 0.05),
MF(𝑘𝑠 = 7), Jpeg(𝑄 = 50), Crop(𝑠 = 0.25), Resize(𝑝 = 0.5) and
Resize(𝑝 = 2.0). We choose two parameters of Resize, which are
zooming in and out. When we test, we add an Identity() layer,
which adds no noise to the watermarked image. As shown in Table

2, our model performs better than other models in all these distor-
tions. HiDDeN is weak in JPEG compression. MBRS and DWSF
are weak in cropping attacks. In particular, our method achieves
100% accuracy for Identity, Median Filter, and Resize distortions.
However, our model also shows weakness in the cropping attack,
which accounts for the special watermarking method of our frame-
work. Our model increases the intensity of watermarking the high-
frequency part and reduces the intensity of the low-frequency part.

We observe that previous works are vulnerable to at least one
image attack. For example, DWSF is vulnerable to cropping attack
because its bit accuracy drops to 51.33 under cropping attack. The
reason is that DWSF only hides watermarks within selected blocks.
Once selected blocks are cropped, the watermark cannot be veri-
fied. MBRS is also vulnerable to cropping attack because a specific
region of thewatermarked image only hides part of the binarymes-
sage. Once the region is cropped, the part of the binary message it
hides cannot be recovered from other image regions.

5.5 Evaluation on Varied Resolutions
In this section, we conduct experiments on different samples to test
ourmodel’s invisibility and robustness and show its generalization.
We also compare our model with the baseline approach to further
demonstrate the advantages of our model.

5.5.1 Fine-tuning Strategy. In ourmethod, we fine-tune ourmodel
under three different resolutions and six different noises. Randomly
selecting from the resolutions and noises makes the convergence
of the model uncertain. The convergence trend may be more to-
wards a specific resolution or noise, dramatically affecting gener-
alizability.

Thus, we refine the stochastic strategy for the fine-tuning pro-
cess. We expect the model to converge in a more balanced way
for various scenarios. Here, we cross-combine different resolutions
and noises and get all (𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑛𝑜𝑖𝑠𝑒) pairs as a set 𝑆0. In each
epoch, we get a clone 𝑆 ′0 of 𝑆0. When fine-tuning, we randomly
choose a pair from 𝑆 ′0 and remove the pair from 𝑆 ′0. When the pair
𝑆 ′0 is empty, we finish an epoch of fine-tuning.

5.5.2 Results on invisibility and Robustness. In this section, we an-
alyze the invisibility and robustness of our model on six different
samples: 128×128, 256×256, 512×512, 480×854 (480p), 720×1280
(720p) and 1080 × 1920 (1080p).

Section 5.5.3 shows the invisibility results. For robustness, we
divide the attack into two categories: non-geometric attacks (Fig-
ure 6a) and geometric attacks (Figure 6b). Our method maintains a
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Figure 6:The robustness of ourmodel when facing non-geometric and geometric attacks.We sample 𝐹𝑤𝑚 into different resolu-
tions and apply attacks to the sampled image. We show robustness against different attacks in two categories: non-geometric
and geometric attacks. Figure 6c shows the noised images after applying different attacks to the watermarked image.

Table 3: Comparisonwith SOTAmethods in varied resolutions. HiDDeN, TSDL, DWSF andRAIMaRK canwatermark images of
any resolution. MBRS can only watermark images with the same resolution as training. “/”means themethod is not applicable
under the selected resolution. We measure PSNR between watermarked and original images and average bit accuracy (%)
evaluated under multiple attacks.

Models 256x256 384x384 512x512 480x854 720x1280 1080x1920
PSNR Acc PSNR Acc PSNR Acc PSNR Acc PSNR Acc PSNR Acc

HiDDeN 35.31 92.80 35.50 92.87 35.80 92.65 35.97 92.64 37.14 92.28 38.28 92.64
TSDL 33.69 70.90 33.86 71.51 33.91 71.34 33.75 71.04 33.66 71.59 33.89 70.58
MBRS 27.63 91.76 / / / / / / / / / /
DWSF 37.45 92.44 40.96 92.05 43.28 92.02 45.88 91.82 46.44 94.01 45.71 93.94
RAIMaRK (Ours) 39.61 99.88 39.83 99.90 39.79 99.96 39.73 99.79 39.73 99.90 39.73 99.92

high standard in all non-geometric attacks, which keeps over 99%
regardless of the image resolution. In geometric attacks, zooming
in and out has little effect on accuracy. The accuracy of the crop-
ping attacks is more significant than 99%. From the results above,
we observe no performance degradation when the watermarked
INR is smapled to larger resolution images.

5.5.3 Compare with Other Methods. This section compares our
method with other methods in varied resolutions. The training set-
tings are 30-bit messages, and the image resolution is the above-
mentioned six resolutions. ForMBRS, their encoders utilized ames-
sage processor module, which fixed the resolution of the images,
making it impossible to watermark images of other resolutions.
HiDDeN and TSDL processed messages repeatedly to handle wa-
termarking images of any resolution. DWSF achieved variant res-
olution watermarking through block selection.

Table 3 shows the results of fivemethods, in whichwe only com-
pareMBRS at the trained resolution, while the other threemethods
are compared at all resolutions. We can observe that RAIMaRK and
DWSF outperform previous watermarking methods. In most cases,
RAIMaRK achieves higher bit accuracywhile DWSF achieves higher
PSNR. The reason is that DWSF only adds perturbation within the
selected block, leaving the unselected region unchanged. However,
this makes it vulnerable to cropping attacks. Once the block is
falsely identified or cropped, its watermark cannot be verified, thus

DWSF has low bit accuracy. RAIMaRK has higher robustness when
compared with DWSF because RAIMaRK adds a global perturba-
tion, which makes the watermark survive various attacks. This
is why RAIMaRK has a relatively low PSNR compared to DWSF.
However, RAIMaRK still achieves higher than 39dB PSNR, and pre-
vious work already clearly indicated that 37dB PSNR is enough to
provide good visual quality in practice[8, 33, 43].

6 CONCLUSION
In this paper, we have shown that reducing the variant resolution
watermarking problem to the fixed resolution watermarking prob-
lem introduces artifacts and low robustness in image watermark-
ing. To address this issue, we have proposed RAIMaRK to solve the
variant resolution image watermarking by watermarking the im-
plicit neural representation(INR) of the image. Different from pre-
vious methods, RAIMaRK does not rely on the previous reduction
process by directly watermarking the continuous signal instead
of image pixels. Watermarked images with arbitrary resolutions
can be sampled from the watermarked implicit neural represen-
tation. Extensive experiments have demonstrated that our frame-
work shows promising results. Overall, INR can express various
multimedia resources, and our watermarking scheme provides a
novel perspective to inspire subsequent resolution-agnostic water-
marking frameworks.
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