

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PERMANENT AND TRANSIENT REPRESENTATIONS FOR CONTINUAL REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Continual Reinforcement Learning agents struggle to adapt to new situations while retaining past knowledge, resulting in a stability–plasticity trade-off. An appealing solution is to decompose the agent’s predictions into permanent and transient components—one for long-term retention and the other for rapid adaptation—thereby achieving a better balance (Anand & Precup, 2023). Building on this idea, we propose using different sets of feature representations to estimate permanent and transient value functions, enabling even faster adaptation. We demonstrate the effectiveness of our approach on small-scale examples for both prediction and control tasks, analyze its theoretical properties, and show its benefits on the Craftax-Classic benchmark using a novel non-parametric approximator for transient value function estimation. Our method facilitates online learning and outperforms the PQN baseline.

1 INTRODUCTION

Continual reinforcement learning (CRL) is a key ingredient for understanding intelligence and building agents that autonomously adapt to changes in their environment (Sutton et al., 2022; Silver & Sutton, 2025). An important challenge for artificial CRL agents is the tension between retaining knowledge already acquired while adapting to new information—the *stability–plasticity* trade-off (Carpenter & Grossberg, 1987). In contrast, humans and other natural intelligences adapt to changes in their environment throughout their lifetime. Kumaran et al. (2016) posited that this natural ability is due to the existence of two complementary learning systems (CLS): one that adapts rapidly and another that slowly consolidates information across experiences. Inspired by CLS theory, Anand & Precup (2023) introduced a decomposition of the value function into a permanent component, which provides a stable baseline estimate for any situation the agent may face, and a transient component, which adapts these estimates to the present context by applying temporal-difference corrections. This approach led to improved performance in both prediction and control problems with various forms of value function approximation. However, they use the same features for both value functions. Intuitively, using separate feature spaces for these approximators would be more aligned with the idea of keeping them complementary: one system should compensate for the weaknesses of the other, making the framework both more effective and more biologically plausible. For example, permanent features should intuitively encode *stationary or slowly changing* components of the environment, such as the map of a city, while transient features can capture *situation-specific* aspects, such as a road being blocked on a given day.

In this paper, we develop this idea, establish some theoretical results and provide empirical evidence that it scales to large environments. For this purpose, we develop a novel non-parametric approximator that operates directly on raw observations and can be used to learn efficiently a transient representation and value function. Its design combines the strengths of tabular learning, CMACs (Miller et al., 1990), and tile coding (Sutton, 1995), enabling precise corrections at a rapid pace, facilitating online learning, and providing controlled generalization—ultimately leading to faster CRL.

Our main contributions are as follows:

- We build on the permanent–transient value function framework to incorporating separate feature representations;

- We establish convergence guarantees under linear function approximation for both permanent and transient value functions using a two-timescale convergence technique;
- We demonstrate the effectiveness of the approach in both prediction and control through small-scale experiments;
- We introduce a novel non-parametric method for representing transient features, which can be used to complement neural network-based permanent features;
- We evaluate our design in online CRL on the 18M and the 250M Craftax benchmark, showing favourable comparisons with a strong PQN baseline.

2 BACKGROUND

CRL agents exhibit *endless adaptation*, as opposed to converging to a fixed solution (Abel et al., 2023; Sutton et al., 2007). The need for CRL arises when aspects of the environment—such as rewards or transition dynamics—change over time (Khetarpal et al., 2022; Pan et al., 2025), or when the agent’s resources are limited relative to the complexity of its environment, thereby creating the need for the agent to keep updating its limited knowledge (Kumar et al., 2025; Javed & Sutton, 2024; Lewandowski et al., 2025). In such scenarios, the agent must balance retaining useful information from the past to adapt more quickly when similar situations reappear in the future—*stability*—with allocating resources to learn from new experiences—*plasticity*.

Because neural networks have become the main approach to approximating value functions and policies (Mnih et al., 2013), most CRL research has focused on understanding the stability–plasticity trade-off in neural networks (Lyle et al., 2022; Nikishin et al., 2022; Abbas et al., 2023; Lyle et al., 2023; 2024) and on developing new regularization techniques (Lewandowski et al., 2024; Chung et al., 2024) and optimizers (Kirkpatrick et al., 2017; Jones et al., 2022; Dohare et al., 2024) to improve it.

Building on earlier ideas of decomposing value functions in model-based RL (Silver et al., 2008), Anand & Precup (2023) proposed splitting both the value function and the action-value function into two components to trade-off stability and plasticity: permanent components, $V^{(P)}$ and $Q^{(P)}$, which learn general estimates from the entire agent experience (similar to Abel et al. (2018) in transfer learning), and transient components, $V^{(T)}$ and $Q^{(T)}$, which adapt these estimates to the current situation. The overall value functions, $V^{(PT)}$ and $Q^{(PT)}$, are then expressed as sums of these two components:

$$V^{(PT)}(s) = V_{\mathbf{w}}^{(T)}(s) + V_{\theta}^{(P)}(s), \quad (1)$$

$$Q^{(PT)}(s, a) = Q_{\mathbf{w}}^{(T)}(s, a) + Q_{\theta}^{(P)}(s, a), \quad (2)$$

where θ and \mathbf{w} are the parameters of the permanent and transient function approximators, respectively.

The permanent value function is updated more slowly, in phases –either every k timesteps or at task boundaries (when available)– by using experience from that phase:

$$\theta_{k+1} \leftarrow \theta_k + \bar{\alpha}_k \left(V^{(PT)}(S_k) - V_{\theta}^{(P)}(S_k) \right) \nabla_{\theta} V_{\theta}^{(P)}(S_k), \quad (3)$$

$$\theta_{k+1} \leftarrow \theta_k + \bar{\alpha}_k \left(Q^{(PT)}(S_k, A_k) - Q_{\theta}^{(P)}(S_k, A_k) \right) \nabla_{\theta} Q_{\theta}^{(P)}(S_k, A_k), \quad (4)$$

where $\bar{\alpha}$ is the learning rate for permanent updates.

In contrast, the transient value function updates rapidly to capture aspects of the value that are not yet reflected in the permanent estimates:

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha_t \left(R_{t+1} + \gamma V^{(PT)}(S_{t+1}) - V^{(PT)}(S_t) \right) \nabla_{\mathbf{w}} V_{\mathbf{w}}^{(T)}(S_t), \quad (5)$$

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha_t \left(R_{t+1} + \gamma \max_{a'} Q^{(PT)}(S_{t+1}, a') - Q^{(PT)}(S_t, A_t) \right) \nabla_{\mathbf{w}} Q_{\mathbf{w}}^{(T)}(S_t, A_t), \quad (6)$$

where α is the learning rate for transient updates. To maintain plasticity, transient parameters are decayed or reset after each permanent update.

108

3 PERMANENT AND TRANSIENT REPRESENTATIONS

109

110 Since the permanent and transient and value functions should intuitively complement each other, it is
111 reasonable to imagine them using distinct representations, with different requirements. In CLS (Ku-
112 maran et al., 2016), the equivalent of the transient representation is considered to be the hippocam-
113 pus, which stores latent embeddings of recent trajectories. These are later replayed during sleep,
114 resulting in consolidation and slow learning of a permanent representation, thought to be located
115 mainly in the prefrontal cortex. This representation provides good generalization to new situations
116 and supports long-term planning.

117 In the rest of the paper, we consider architectural choices which implement this intuition for CRL
118 agents. Specifically, the permanent representation should be expressive enough to learn baseline
119 predictions for any situation the agent might encounter. Learning can be slow, but the information
120 acquired should persist and be useful for a long period of time (ie. high stability). Therefore,
121 the permanent representation should support broad generalization of predictions between similar
122 situations. Many *neural network architectures*, such as feedforward, convolutional, or recurrent,
123 meet these desiderata, making them good candidates for the permanent value function.

124 The transient representation should support online learning at a rapid pace (ie. high plasticity), in
125 order to adapt quickly to new situations. Moreover, if we assume that the agent’s circumstances
126 can change rapidly, the transient representation should facilitate learning precise estimates, with
127 minimal or carefully controlled generalization around the current data. Additionally, the transient
128 representations should allow fast and accurate information retrieval. As in CLS, knowledge stored
129 in the transient representation should support long-term learning of the permanent representation.

130 In the following sections, we present both theoretical and empirical analysis of simpler architectures
131 based on these intuitions. Then, in Sections 6 and 7, we develop and test a new approach to imple-
132 menting the transient memory, which respects the goals above while providing better generalization
133 than simple replay buffers.

134

4 THEORETICAL RESULTS

135

136 In this section, we study the convergence of permanent and transient value function updates when
137 these are based on different feature spaces, by leveraging the two-timescale proof technique pio-
138 neered by Borkar (see Appendix 2) (Borkar, 1997). While his approach is general and broadly
139 applicable, the conditions can be simplified in the context of RL, as shown by Bertsekas & Tsitsiklis
140 (1996); Tsitsiklis & Van Roy (1996) for a single iteration. In particular, the Lipschitz assumption
141 is satisfied by showing that the expected update in matrix form (ie. the key matrix) is well-defined
142 and positive definite. His final assumption is satisfied by first showing that the noise terms form
143 *martingale difference sequence* with zero mean and bounded variance. In our analysis, we consider
144 updating permanent value function at each timestep.

145 We make the following assumptions¹:

146 **Assumption 1.** The step-sizes $\bar{\alpha}$ and α satisfy $\sum_t \bar{\alpha}_t = \infty$, $\sum_t \bar{\alpha}_t^2 < \infty$, $\sum_t \alpha_t = \infty$, $\sum_t \alpha_t^2 <$
147 ∞ , $\lim_{t \rightarrow \infty} \frac{\bar{\alpha}_t}{\alpha_t} \rightarrow 0$.

148 **Assumption 2.** The permanent and transient feature matrices, $\Phi \in \mathbb{R}^{|\mathcal{S}| \times d}$ and $Z \in \mathbb{R}^{|\mathcal{S}| \times l}$, are
149 full column rank, ie. the column vectors are linearly independent. Also, their norms are bounded,
150 $\|\Phi\| \leq M_1$, $\|Z\| \leq M_2$ where M_1 and M_2 are constants.

151 **Assumption 3.** There are N tasks and task τ is i.i.d. sampled according to p_τ . Each task is an MDP,
152 $\mathcal{M}_\tau = (\mathcal{S}, \mathcal{A}, \mathcal{R}_\tau, \mathcal{P}_\tau, \gamma)$, let \mathbb{E}_τ denote the expectation with respect to the task distribution. The
153 rewards for each task \mathcal{R}_τ are bounded. The task boundaries are observable.

154 **Assumption 4.** Every task, τ , induces irreducible, aperiodic Markov chain under the fixed evalua-
155 tion policy π and the chain is rapidly mixing:

156
$$|\mathcal{P}_{\pi, \tau}(S_t = s | S_0) - d_\pi(s)| \leq C\sigma^t, \forall S_0 \in \mathcal{S}, \sigma < 1,$$
157

158 where C is a constant.

159

160 ¹We use the notations defined here in the proofs presented in Appendix.

162
163 **Theorem 1** (Main result). *Under Assumptions 1–4, the sequence of expected updates computed
164 by permanent and transient updates converge to a unique fixed point:*

165 $\theta^* = \mathbb{E}_\tau [\Phi^T D_\tau \Pi_{Z,\tau} \Phi]^{-1} \mathbb{E}_\tau [\Phi^T D_\tau Z \mathbf{w}_{Z,\tau}^{(TD)}],$
166 $\mathbf{w}_\tau^* = \mathbf{w}_{Z,\tau}^{(TD)} - (Z^T D_\tau (I - \gamma \mathcal{P}_{\pi,\tau}) Z)^{-1} Z^T D_\tau (I - \gamma \mathcal{P}_{\pi,\tau}) \Phi \theta^*,$
167

168 where

169 $\Pi_{Z,\tau} = Z (Z^T D_\tau (I - \gamma \mathcal{P}_{\pi,\tau}) Z)^{-1} Z^T D_\tau (I - \gamma \mathcal{P}_{\pi,\tau}),$
170 $\mathbf{w}_{Z,\tau}^{(TD)} = Z (Z^T D_\tau (I - \gamma \mathcal{P}_{\pi,\tau}) Z)^{-1} Z^T D_\tau \mathcal{R}_{\pi,\tau}.$
171
172

173
174 *Proof.* We outline the proof here, with full details provided in Appendix.

175 Because of the disparity in learning rates between permanent and transient updates, the permanent
176 estimates appear stationary while the transient values are being updated. And, the transient values
177 appear converged when analyzing permanent updates.

178 We first establish the convergence of the transient updates, treating the permanent values as fixed,
179 by verifying the conditions outlined in Theorem 3 (Tsitsiklis & Van Roy, 1996) (see Lemma 1 in
180 Appendix). By substituting the fixed point of the transient parameters into the permanent updates,
181 we then show that the required conditions are satisfied for them as well, and therefore convergence
182 follows from Theorem 2 (Borkar, 1997) (see Lemma 2 in Appendix). \square
183

184 **Corollary 1.** *If $Z = \Phi$, then*

185
186 $\theta^* = \mathbb{E}_\tau [\Phi^T D_\tau \Phi]^{-1} \mathbb{E}_\tau [\Phi^T D_\tau \Phi \mathbf{w}_{\Phi,\tau}^{(TD)}],$
187
188 $\mathbf{w}_\tau^* = \mathbf{w}_{\Phi,\tau}^{(TD)} - \theta^*.$

189
190 *Moreover, in the single-task setting, $\theta^* = \mathbf{w}_{\Phi,\tau}^{(TD)}$ and $\mathbf{w}_\tau^* = 0$.*
191

192 *Proof.* The proof is included in Appendix 2. \square
193

194 The above corollary implies that in the single-task setting, if both the permanent and transient value
195 functions are approximated using the same feature representation, then the permanent value function
196 alone suffices to capture the predictions, while the transient component converges to zero.
197

198 5 SMALL-SCALE EXPERIMENTS

200 We conducted experiments on both prediction and control problems, where the value function and
201 action-value function were estimated using a linear function approximator. In these experiments,
202 we assume that the agent’s experience can be divided into tasks, and that the task boundaries are
203 known to the agent (semi-continual RL). The transition dynamics remain fixed across tasks, while
204 the reward function changes. Through these experiments, we show that using separate features to
205 approximate permanent and transient value functions results in faster adaptation in CRL. The pseu-
206 decode is provided in Appendix 1 and 2 and the details of hyperparameter sweeps in Appendix A.2.
207

208 5.1 PREDICTION

210 For the prediction problem, we use the 5×5 discrete gridworld environment shown in Fig. 1. The
211 agent starts in the central state and can choose from four navigation actions, one for each cardinal
212 direction. Each action typically moves the agent to the adjacent state, but the intended action is
213 replaced by one of the two perpendicular actions with 10% probability. The agent receives a reward
214 when it transitions into a designated goal state, located in one of the corners highlighted in green;
215 otherwise, no reward is given. Rewards are modified across tasks to introduce non-stationarity, as
described in Table 1 in Appendix.

We use a Fourier basis (Konidaris et al., 2011) up to second order to approximate the value function. In our variant of PT-TD learning, second-order features are used to approximate the transient value function, while first-order features are used to approximate the permanent value function. The original PT-TD learning method (denoted as NeurIPS) uses all features for approximating both permanent and transient value functions. In both variants, the transient weights are reset to zero at the beginning of each task to induce plasticity, while previously learned values are retained through the permanent weights.

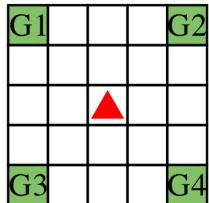


Figure 1: Grid task.

For comparison, we include two TD-learning baselines on which PT-TD learning is built. In the reset variant, all function-approximator weights are reset to zero at the start of each new task (full plasticity). In the continual variant, the agent continually updates its estimates on top of previously learned approximations. All algorithms are hyperparameter tuned thoroughly as outlined in Appendix A.2.

To evaluate performance, we use a uniformly random policy with a discount factor of 0.9. Each experiment runs for 1000 episodes, with the task changing every 100 episodes. The agent must therefore continually update its estimates to adapt to the current task. We use root mean squared value error (RMSVE) as a performance metric (the lower, the better). We report the mean and 90% confidence intervals over 30 random seeds, computed with $z^* = 1.645$.

Results: The results are shown in Fig. 2a. In our variant, higher-order terms are used only for estimating the transient value function, enabling quick, low-variance, and precise adjustments to the permanent value function, resulting in the lowest overall RMSVE. First-order features provide sufficient expressivity while remaining low variance, making them well-suited for approximating the permanent value function (see Figure 9). The NeurIPS variant has slightly higher RMSVE due to the increased variance from using all features to approximate both value functions. Both PT-TD learning variants retain prior knowledge through the permanent value function, leading to lower error at the onset of tasks that reappear. In contrast, the TD-learning baselines perform poorly, as they fail to preserve previous predictions while simultaneously adapting to new tasks, corroborating prior findings (Anand & Precup, 2023).

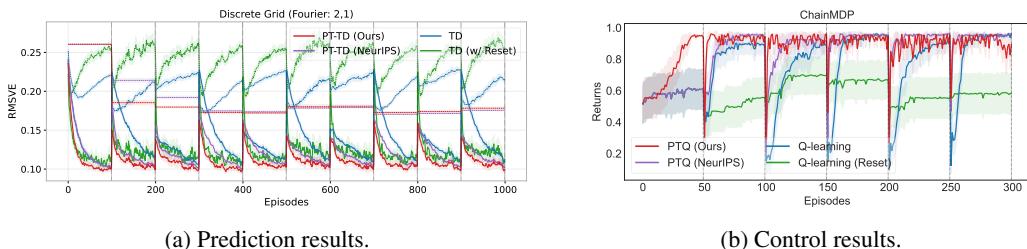


Figure 2: Prediction and control results in Semi-CRL. Our method (red line) achieves lower RMSVE in prediction and higher cumulative rewards in control compared to baseline algorithms.

5.2 CONTROL

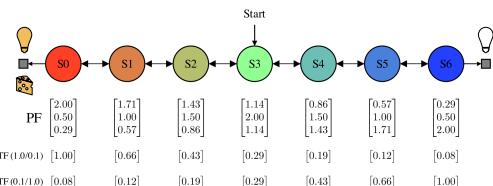


Figure 3: Chain task.

For the control problem, we use the simple chain environment with seven states shown in Fig. 3. The agent starts in the central state and can choose either the *left* or *right* action to move to the neighbouring state in the corresponding direction, with a 10% probability of a reversed effect. Goal states with positive rewards are located at both ends of the chain. Non-stationarity is introduced by varying the

reward magnitude across tasks, as described in Table 2 in Appendix.

Each state is represented using four features: the first three correspond to the red, green, and blue (RGB) components of the state, while the fourth encodes the light intensity, which depends on which end of the chain contains the reward. In our variant of PTQ-learning, the first three features

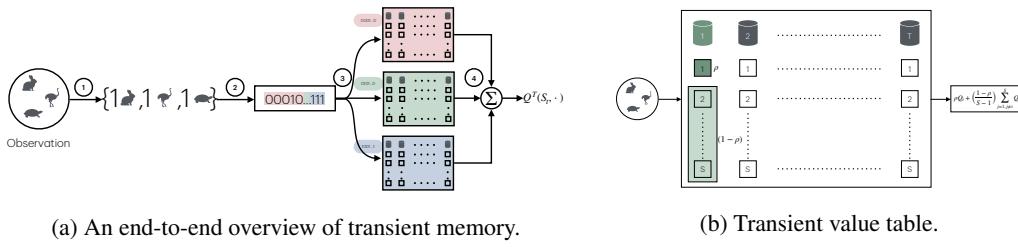
270 are used to approximate the permanent value function, and the last feature is used for the transient
 271 value function. In contrast, all other algorithms we compare against—including the NeurIPS variant
 272 of PTQ-learning and the reset and non-reset variants of Q-learning—use all features to approxi-
 273 mately the value function. For the reset variant of Q-learning, the function-approximator weights are
 274 reinitialized at the beginning of each task.

275 We use discount factor of 0.99 and compute episodic returns to compare various algorithms. We run
 276 the experiment for 300 episodes, with the task changing every 50 episodes. We report the mean and
 277 90% confidence intervals over 30 random seeds, computed with $z^* = 1.645$.

278 **Results:** The results are shown in Fig. 2b. Because our approach uses a single reward-correlated
 279 feature to adjust transient value estimates, adaptation is rapid. It is the only method that learns a
 280 meaningful behaviour within the first 50 episodes and re-adjusts it within five episodes whenever
 281 tasks change. PTQ-learning with all features fails to learn a meaningful policy during the initial
 282 50 episodes and adapts marginally more slowly when tasks subsequently change. The reset variant
 283 of Q-learning performs the worst, as no prior knowledge is retained at the start of each task. The
 284 continual variant of Q-learning requires more time to overcome bias in its action-value estimates
 285 and is therefore slower to adapt.

286 These experiments demonstrate that using separate features for the permanent and transient value
 287 functions results in quicker adaptation.

289 6 NON-PARAMETRIC TRANSIENT MEMORY



300 Figure 4: (a) Four-step process: (1) tokenization; (2) hashing; (3) binning; (4) value estimation. (b)
 301 Within each table, the value of the query observation is weighted by ρ , and the remaining mass,
 302 $(1 - \rho)$, is distributed among its neighbours to form the estimate.

304 In this section, we introduce a new non-parametric architecture that meets the desiderata of a trans-
 305 ient memory (as described in Sec. 3), inspired by tile coding (Sutton, 1995) and CMACs (Miller
 306 et al., 1990).

307 We suppose that each observation consists of several channels, with each channel indicating the pres-
 308 ence or absence of a specific item type in a particular location in the agent’s view. Many commonly
 309 used RL environments, such as gym-Minigrid (Chevalier-Boisvert et al., 2023), Craftax (Matthews
 310 et al., 2024), and MinAtar (Young & Tian, 2019), are structured in this way. This assumption will
 311 allow us to produce hash signatures of observations using MinHash (Broder, 1997).

313 The overall process is illustrated in Fig. 4. It transforms an observation into a sparse, hashed repre-
 314 sentation that supports non-parametric value estimation with controlled generalization. The pipeline
 315 has four main stages:

316 **1. Tokenization:** Each observation is converted into a set of discrete tokens, where each token
 317 encodes the type of object present at a particular (x, y) position in the agent’s view. This converts
 318 the raw grid-like observation into a symbolic set representation.

319 **2. Hashing:** The tokenized set is mapped to a compact hash signature and an auxiliary tag using
 320 several independent MinHash functions. MinHash is used because it preserves the Jaccard simi-
 321 larity: the probability that two sets produce the same MinHash value is exactly their Jaccard score.²

322 ²The Jaccard score between two sets A and B is, $J(A, B) = \frac{|A \cap B|}{|A \cup B|}$, and it is widely used in re-
 323 trieval (Broder, 1997), bioinformatics (Ondov et al., 2016), and clustering (Tan et al., 2016).

324 As a result, observations that share many elements produce similar signatures (ie. overlap in many
 325 bits), which forms the basis for local generalization.

327 **3. Binning:** The signature is partitioned into multiple subsequences, each of which indexes into a
 328 bin in a transient table. Conceptually, each table corresponds to one *tiling* in tile coding (Sutton,
 329 1995). Within a bin there are S slots. When a new observation maps into a bin, it occupies an empty
 330 slot if available; otherwise, the least recently used (LRU) slot is evicted. The slot’s initial value is
 331 set to the average of values already stored in that bin, so new entries inherit some local context.
 332 The auxiliary tag computed in the previous step is also stored in the slot, making it unique to that
 333 observation (see Alg. 3).

334 **4. Value estimation:** To induce generalization akin to CMACs (Miller et al., 1990), the value of a
 335 query observation is not taken from a single slot alone. Instead, its estimate is a convex combination
 336 of the focal slot and the other occupied slots in the *matched bin* (see Fig. 4b):

$$337 Q_{t+1}^{(T)}(x, a; k) = \rho Q_{t+1}^{(T)}(x, a; k) + \left(\frac{1-\rho}{S-1} \right) \sum_{j \neq i} Q_{t+1}^{(T)}(o_j, a; k), \quad (7)$$

340 where ρ controls the relative weight of the focal slot versus its neighbours, x is the query observation,
 341 o_j is the observation stored in slot j of the matched bin, S is the total number of slots per bin, and
 342 $Q_{t+1}^{(T)}(x, a; k)$ is the transient value of the (x, a) pair estimated by the k -th table. This encourages
 343 smooth interpolation between similar observations while still preserving distinct slot identities. The
 344 final transient value is obtained by summing the estimates from all transient tables. For more details,
 345 see 4 and 3 in Appendix.

346 Since several tables and their corresponding bins contribute to the overall estimate of the transient
 347 value function, the TD-error is distributed among them in proportion to their contributions (see 5 in
 348 Appendix). Specifically, the TD-error is first split evenly across all T tables, and within each table
 349 it is further divided among the slots in the *matched bin*. The focal slot receives weight ρ , while
 350 its neighbouring slots share the remaining weight $\frac{1-\rho}{S-1}$. The updates are analogous to those in tile
 351 coding:

$$353 Q_{t+1}^{(T)}(O_t, A_t; k, i) \leftarrow Q_t^{(T)}(O_t, A_t; k, i) + \frac{\alpha}{T} \eta_{k,i} \delta_t, \quad (8)$$

354 where α is the learning rate of the transient updates, T is the total number of tables, and δ_t is the
 355 TD-error at time t . The weighting factor $\eta_{k,i}$ reflects the contribution of slot i in table k :

$$357 \eta_{k,i} = \begin{cases} \rho, & \text{if slot } i \text{ stores the query observation in the matched bin,} \\ 358 \frac{1-\rho}{S-1}, & \text{if slot } i \text{ is a neighbour in the same bin,} \\ 359 0, & \text{otherwise.} \end{cases}$$

362 Although the transient table has a fixed size and older observations within a bin are evicted using a
 363 LRU strategy, it can still retain observations from a long time ago if temporally adjacent states are
 364 similar and therefore continue to map to the same bin, while observations encountered much later
 365 differ from those earlier states and are hashed into different bins, leaving the older ones untouched.

367 7 EXPERIMENTS: CRAFTAX-CLASSIC

369 We use the Craftax-Classic environment for large-scale experiments. The environment is open-
 370 ended, containing 22 achievements of varying difficulty. At each step t , the agent receives a 7×9
 371 grid observation containing the object types in its view (Fig. 5), along with its inventory (e.g., wood,
 372 stone, or crafted tools) and intrinsic variables (e.g., health, hunger, or thirst). The agent can take
 373 one of 17 available actions. Within each episode, it receives a reward the first time it completes an
 374 achievement, such as collecting coal or crafting an iron pickaxe. Simpler achievements yield smaller
 375 rewards, while more advanced ones yield larger rewards. An episode ends when its length reaches
 376 1000 steps, when the agent completes all 22 achievements, or when it is killed due to a zombie,
 377 skeleton, or by depletion of its intrinsic variables. More details can be found in Matthews et al.
 378 (2024).

378 We conducted two experiments: *online learning*³, to demonstrate the effectiveness of our method in
 379 online CRL, and *benchmarking* with 250M, to show the competitiveness of our approach in a higher
 380 sample-complexity regime.

Figure 5: Craftax Env.

line.

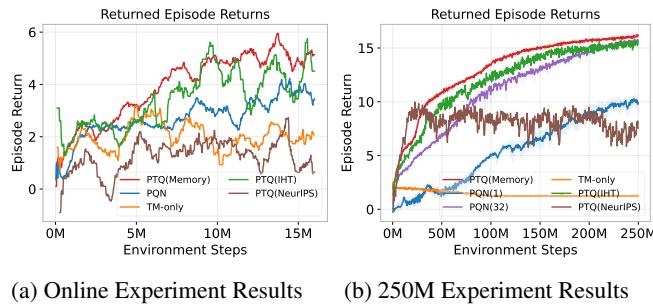


Figure 6: PT(Memory) and PT(IHT) learns online, and outperforms other approaches on the 250M benchmark.

For the 250M benchmarking, the agent interacts with 1024 environments simultaneously, reducing the runtime for both our approach and the baselines to under 6 hours on a H100 GPU. *It is worth noting that we use parallel environments only to reduce wall-clock time and enable faster iteration. An ideal, general-purpose CRL algorithm should learn effectively from a single stream of experience.*

Baselines: We compare our approach against PQN, the state-of-the-art value-based algorithm on Craftax (Gallici et al., 2025), alongside three variants: PTQ-IHT, which utilizes Index Hash Tables (IHTs) rather than slot-based memory; TM-Only, which relies solely on the non-parametric transient approximator (Sec. 6); and PTQ-NeurIPS (Anand & Precup, 2023), a fully neural network-based baseline.

In this experiment, PQN aggregates data over 32 interaction steps. In the 250M benchmark, we evaluate PQN(1) (one gradient step per batch) and PQN(32) (32 gradient steps via minibatches), and in the online experiment, PQN uses 8 gradient steps. The hyperparameters for PQN were adopted from the PQN library.

For our approach, PTQ-Memory, we use a neural network to approximate the permanent value function and the non-parametric approximator described in Sec. 6 to approximate the transient value function. For the permanent neural network, we adopt the same hyperparameters and network architecture as PQN. For the transient memory, we tokenize the observation and append inventory, intrinsic values, and light level after quantizing (see Alg. 6 for details). The hash signature length is 256, which we split into two subsequences of 128 bits to obtain the bin indices for two tables. Each table has 2048 bins and 32 slots. We use a learning rate of 1.3/2 for each table, a decay factor of 0.95, and $\rho = 0.85$. For a fair comparison with baselines, we divide the data into 32 minibatches and update the permanent values toward the latest estimate of the overall value function, following Anand & Precup (2023).

These hyperparameters were obtained by sweeping through candidate values for each parameter while keeping the others fixed. Additional details are provided in Appendix A.3. We used the same method to find the hyperparameters for baselines.

Results: The main results, averaged over 3 seeds for the online experiment (due to computational constraints) and 10 seeds for the 250M benchmarking, are shown in Fig. 6; per-achievement results are detailed in Appendix Fig. 10. Parameter ablation results are presented in the Appendix 12-17.

Online Performance: As shown in Fig. 6a, our approach, PTQ-Memory, successfully learns in the fully online setting. This success stems from the transient memory’s ability to perform precise, local updates where generalization is explicitly controlled, preventing interference between states. In contrast, the PTQ-IHT ablation (mimicking Tile Coding) achieves fast initial updates but degrades over time. Due to the large observation space, the lack of slots and controlled generalization in IHTs leads to undesirable hash collisions. This results in over-generalization and poor long-term value estimation, empirically validating the necessity of our slot-based design. The PTQ-NeurIPS baseline, which relies on a neural network for transient estimates, fails completely in the online

³Strictly speaking it is a low-parallelism setting since the agent interacts with two instances of the environment (for 16M timesteps). We use two instances to reduce the experiment runtime to about 18 hours on a H100 GPU. We expect the results to carry over when the experience data source is reduced to a single stream.

setting. This confirms that gradient-based methods suffer from update instability and slow initial learning when denied large batches (Mnih et al., 2013; Elsayed et al., 2024). Similarly, the TM-only method performs poorly, confirming that transient memory alone lacks the capacity for effective long-term learning. Finally, PQN fails to learn rapidly in the low-parallelization setting as it relies on batching (32 steps) and environment parallelization to stabilize gradients.

250M Benchmarking: As shown in Fig. 6b and Fig. 11, our method outperforms all baselines in the extensive 250M step benchmark. The benefits are most evident in the early training stages: our approach surpasses a return of 10 in under 50M steps—twice as fast as PQN(32)—and reaches a return of 15 within 150M steps, whereas PQN(32) requires over 200M steps. It also achieves higher scores across all learnable achievements. While the PTQ-IHT variant performs competitively here, it still suffers marginally from collision-induced noise. This performance difference highlights the complementarity of our estimators: the transient component provides rapid, local feature discovery, which accelerates the permanent component’s ability to generalize. Among PQN baselines, PQN(32) outperforms PQN(1) due to multiple gradient updates per step, though this minibatch strategy risks introducing primacy bias (Nikishin et al., 2022; D’Oro et al., 2022).

Overall, these results demonstrate that our approach is well-suited for online CRL on complex tasks.

8 EXPERIMENT: GENERALIZATION TO IMAGE-BASED TASKS

This section provides preliminary evidence of the generalizability of the non-parametric transient memory (Section 6) to image-based domains.

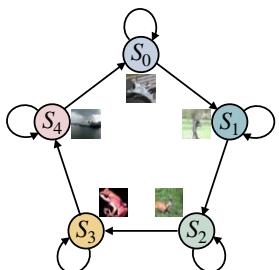


Figure 7: Image Task

Task: We evaluate our approach on a non-stationary, image-based MDP consisting of five states and five actions. Observations for each state are sampled from specific categories of the CIFAR-10 dataset. We evaluate three variations of this task by restricting the sub-sampled data size to 250, 500, and 1000 images per category. Transitions are stochastic: selecting the rewarding action (+1) leads to the next state w.p. 0.8 (otherwise remaining current w.p. 0.2), while suboptimal actions yield a small negative penalty and result in remaining in the current state w.p. 0.8. Rewards are perturbed with Gaussian noise ($\mu = 0, \sigma = 0.01$). To induce non-stationarity, the optimal action is switched every $100k$ timesteps (from a set of three) over a $600k$ timestep duration. We use $\gamma = 0.9$. We compare the five algorithms from Section 7 (all fully online except PQN) and report

mean rewards over 100 timesteps (90% C.I. over 30 seeds). Hyperparameter details are provided in Appendix A.4.

Tokenization: To enable MinHash hashing on image inputs, we first train a CIFAR-10 CNN classifier. We extract 256-dimensional features from the penultimate layer and binarize them via median thresholding. Our analysis revealed high similarity between these vectors (inter-class Hamming distance ≈ 130 vs. intra-class ≈ 113). We append positional indices (1 to 256) to the binary vector, analogous to Transformer positional encoding (Vaswani et al., 2017) and the spatial coordinates used in symbolic observations. This augmented vector is then processed by MinHash to map observations to transient memory slots.

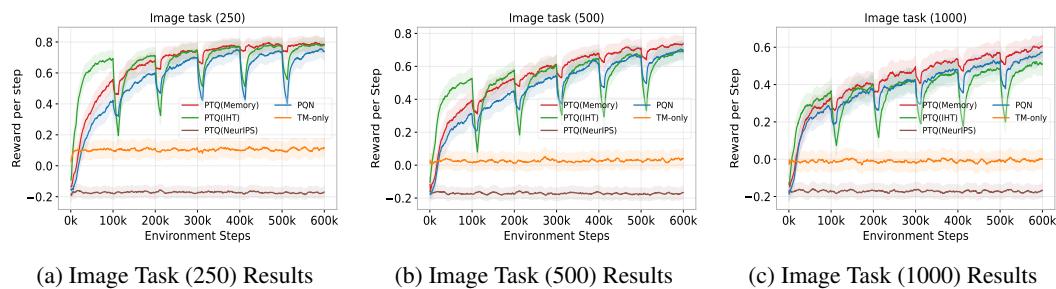


Figure 8: PTQ(Memory) variant adapts the fastest when changes occur in the environment.

486 **Results:** The results on Image MDPs, presented in Figure 8, mirror the trends observed in the
 487 Craftax experiments. The PTQ-Memory variant demonstrates superior performance. By utilizing
 488 memory slots to separate values and controlling generalization via ρ , it ensures precise transient
 489 updates. This mechanism enables rapid adaptation to task changes—a crucial advantage over the
 490 neural-network-based baselines. In contrast, PTQ-NeurIPS and TM-only fail to learn meaningful
 491 policies due to update instability and insufficient capacity, respectively. PQN achieves stability
 492 through batch updates but suffers from slow initial learning and slow recovery after task changes.
 493 Similarly, PTQ-IHT is hampered by the size of observation space, where increased hash collisions
 494 lead to detrimental over-generalization and degraded value estimates. These findings provide evi-
 495 dence that the memory-based Permanent–Transient (PT) approach successfully extends to complex
 496 visual domains.

497 9 DISCUSSION AND CONCLUSION

500 In this paper, we extended and enhanced the permanent-transient value function decomposition
 501 by incorporating separate feature representations to further improve performance through a better
 502 stability–plasticity trade-off. Specifically, we leveraged slowly evolving or static features—either
 503 hand-crafted (e.g., Fourier bases) or learned using neural networks—for the permanent component,
 504 alongside reward-predictive, fast-evolving, or non-parametric features for the transient component.
 505 This design yielded improved performance in both small-scale and large-scale experiments.

506 The backbone which allows our approach to scale is a novel MinHash-based non-parametric approxi-
 507 mator that enables rapid online learning like tabular RL, local generalization like CMACs and tile
 508 coding (but controlled via a hyperparameter, ρ), and efficient storage and retrieval of observations
 509 and values, all while remaining modest in size relative to the complexity of the environment. We
 510 explore its use for estimating the transient value function in CRL, though its benefits may extend
 511 more broadly.

512 While tokenization is natural for symbolic observation, we leveraged a pre-trained convolutional
 513 neural network to obtain tokens in the image experiment. This setup allowed us to isolate and
 514 demonstrate the core contribution: the transient memory’s ability to adapt instantly for a pixel-based
 515 observation. This requirement can be relaxed in future work by: leveraging a pretrained vision
 516 encoder or traditional CV techniques (bag of visual words) (Dosovitskiy, 2020; Radford et al., 2021);
 517 adapting deep hashing to bypass the tokenization step and directly compute a hash signature (Luo
 518 et al., 2023); exploiting the inductive biases of randomly initialized CNNs along with a small, trained
 519 projection layer to obtain the token vector (Farebrother et al., 2023); or simply treating individual
 520 pixels as tokens, analogous to the symbolic setting.

521 Our non-parametric memory share some similarities with episodic memory (Pritzel et al., 2017):
 522 while both approaches use key-value storage, Episodic Memory typically acts as a non-parametric
 523 replay buffer that stores and retrieves specific past returns (or Q-value estimates) via complex kernel
 524 regression (averaging neighbours). In contrast, our non-parametric component is a function approxi-
 525 mator. The values stored in our hash table are residuals, learned and updated via TD-error using
 526 simple summation. Consequently, our approach is designed for rapid adaptation in continual RL,
 527 rather than to accelerate single-task convergence.

528 Despite these contributions, many research questions remain open in the permanent–transient frame-
 529 work: extension to policy gradient algorithms; developing mechanisms for selective consolidation
 530 (determining when and what to transfer to permanent memory); integrating recurrent neural net-
 531 works to fully realize memory; applying meta-learning to automate transient parameter tuning (Xu
 532 et al., 2018); and investigating other architectural choices for efficient permanent and transient learn-
 533 ing. Additionally, combining our approach with neural networks-based continual learning strategies,
 534 such as EWC (Kirkpatrick et al., 2017), offers a promising direction to further stabilize long-term
 535 retention in the permanent component.

536 **Conclusion:** Ultimately, an RL agent’s ability to continually learn from new experiences is crucial
 537 both for advancing our scientific understanding of intelligence and for building systems that perform
 538 reliably in real-world conditions. Our framework advances this goal by demonstrating that separate
 539 representations is critical for a better trade-off between stability and plasticity that scale to complex,
 non-stationary environments.

540 REPRODUCIBILITY STATEMENT
541

542 We are committed to ensuring the reproducibility of our results. All code and configuration files re-
 543 quired to reproduce our experiments will be released publicly upon acceptance. Our implementation
 544 builds on the publicly available purejaxql codebase, and we provide pseudocode for our approach
 545 in Appendix 6. Model architectures, hyperparameters, and training procedures are described in
 546 Section 7 and Appendix A.3. We use the publicly available Craftax environment (Matthews et al.,
 547 2024) for large-scale experiments, and all necessary details to reproduce the synthetic environments
 548 are included in the paper. Details on random seeds, hardware, and GPU usage are provided in the
 549 corresponding sections of the main paper. We used ChatGPT, Copilot, and Gemini for code auto-
 550 completion, beautifying plots, and developing hashing code in JAX. We also acknowledge the use
 551 of LLMs (ChatGPT, Apple writing tools, AI mode in Google Search, and Grammarly) for grammar
 552 correction and polishing certain parts of the paper.

553 REFERENCES
554

555 Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity
 556 in continual deep reinforcement learning. In *Conference on lifelong learning agents*, pp. 620–636.
 557 PMLR, 2023.

558 David Abel, Yuu Jinnai, Sophie Yue Guo, George Konidaris, and Michael Littman. Policy and value
 559 transfer in lifelong reinforcement learning. In *International Conference on Machine Learning*,
 560 pp. 20–29. PMLR, 2018.

561 David Abel, André Barreto, Benjamin Van Roy, Doina Precup, Hado P van Hasselt, and Satinder
 562 Singh. A definition of continual reinforcement learning. *Advances in Neural Information Pro-
 563 cessing Systems*, 36:50377–50407, 2023.

564 Nishanth Anand and Doina Precup. Preferential temporal difference learning. In *International
 565 Conference on Machine Learning*, pp. 286–296. PMLR, 2021.

566 Nishanth Anand and Doina Precup. Prediction and control in continual reinforcement learning.
 567 *Advances in Neural Information Processing Systems*, 36:63779–63817, 2023.

568 Dimitri P Bertsekas and John N Tsitsiklis. *Neuro-dynamic programming*. Athena Scientific, 1996.

569 Vivek S Borkar. Stochastic approximation with two time scales. *Systems & Control Letters*, 29(5):
 570 291–294, 1997.

571 Andrei Z Broder. On the resemblance and containment of documents. In *Proceedings. Compression
 572 and Complexity of Sequences 1997 (Cat. No. 97TB100171)*, pp. 21–29. IEEE, 1997.

573 Gail A Carpenter and Stephen Grossberg. A massively parallel architecture for a self-organizing
 574 neural pattern recognition machine. *Computer vision, graphics, and image processing*, 37(1):
 575 54–115, 1987.

576 Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
 577 Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
 578 Modular & customizable reinforcement learning environments for goal-oriented tasks. *CoRR*,
 579 abs/2306.13831, 2023.

580 Wesley Chung, Lynn Cherif, David Meger, and Doina Precup. Parseval regularization for continual
 581 reinforcement learning. *Advances in Neural Information Processing Systems*, 37:127937–127967,
 582 2024.

583 Shibhangi Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-
 584 mood, and Richard S Sutton. Loss of plasticity in deep continual learning. *Nature*, 632(8026):
 585 768–774, 2024.

586 Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and
 587 Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.
 588 In *Deep Reinforcement Learning Workshop NeurIPS 2022*, 2022.

594 Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
 595 *arXiv preprint arXiv:2010.11929*, 2020.

596

597 Mohamed Elsayed, Gautham Vasan, and A Rupam Mahmood. Streaming deep reinforcement learn-
 598 ing finally works. *arXiv preprint arXiv:2410.14606*, 2024.

599

600 Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin,
 601 Pablo Samuel Castro, and Marc G Bellemare. Proto-value networks: Scaling representation learn-
 602 ing with auxiliary tasks. *arXiv preprint arXiv:2304.12567*, 2023.

603

604 Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus
 605 Foerster, and Mario Martin. Simplifying deep temporal difference learning. *The International
 606 Conference on Learning Representations (ICLR)*, 2025. URL <https://arxiv.org/abs/2407.04811>.

607

608 Khurram Javed and Richard S Sutton. The big world hypothesis and its ramifications for artificial
 609 intelligence. In *Finding the Frame: An RLC Workshop for Examining Conceptual Frameworks*,
 610 2024.

611

612 Matt Jones, Tyler R Scott, Mengye Ren, Gamaleldin Fathy Elsayed, Katherine Hermann, David
 613 Mayo, and Michael Curtis Mozer. Learning in temporally structured environments. In *The
 614 Eleventh International Conference on Learning Representations*, 2022.

615

616 Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforce-
 617 ment learning: A review and perspectives. *Journal of Artificial Intelligence Research*, 75:1401–
 618 1476, 2022.

619

620 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
 621 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
 622 ing catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*,
 623 114(13):3521–3526, 2017.

624

625 George Konidaris, Sarah Osentoski, and Philip Thomas. Value function approximation in rein-
 626 forcement learning using the fourier basis. In *Proceedings of the AAAI conference on artificial
 627 intelligence*, volume 25, pp. 380–385, 2011.

628

629 Saurabh Kumar, Henrik Marklund, Ashish Rao, Yifan Zhu, Hong Jun Jeon, Yueyang Liu, Ben-
 630 jamin Van Roy, et al. Continual learning as computationally constrained reinforcement learning.
Foundations and Trends® in Machine Learning, 18(5):913–1053, 2025.

631

632 Dharshan Kumaran, Demis Hassabis, and James L McClelland. What learning systems do intelligent
 633 agents need? complementary learning systems theory updated. *Trends in cognitive sciences*, 20
 634 (7):512–534, 2016.

635

636 Alex Lewandowski, Michał Bortkiewicz, Saurabh Kumar, András György, Dale Schuurmans, Ma-
 637 teusz Ostaszewski, and Marlos C Machado. Learning continually by spectral regularization. *arXiv
 638 preprint arXiv:2406.06811*, 2024.

639

640 Alex Lewandowski, Aditya A Ramesh, Edan Meyer, Dale Schuurmans, and Marlos C Machado.
 641 The world is bigger: A computationally-embedded perspective on the big world hypothesis. In
 642 *Workshop on Reinforcement Learning Beyond Rewards@ Reinforcement Learning Conference
 2025*, 2025.

643

644 Xiao Luo, Haixin Wang, Daqing Wu, Chong Chen, Minghua Deng, Jianqiang Huang, and Xian-
 645 Sheng Hua. A survey on deep hashing methods. *ACM Transactions on Knowledge Discovery
 646 from Data*, 17(1):1–50, 2023.

647

648 Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in rein-
 649 forcement learning. *arXiv preprint arXiv:2204.09560*, 2022.

650

651 Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
 652 Understanding plasticity in neural networks. In *International Conference on Machine Learning*,
 653 pp. 23190–23211. PMLR, 2023.

648 Clare Lyle, Zeyu Zheng, Khimya Khetarpal, Hado van Hasselt, Razvan Pascanu, James Martens,
 649 and Will Dabney. Disentangling the causes of plasticity loss in neural networks. *arXiv preprint*
 650 *arXiv:2402.18762*, 2024.

651 Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson,
 652 Samuel Coward, and Jakob Foerster. Craftax: A lightning-fast benchmark for open-ended re-
 653 enforcement learning. *arXiv preprint arXiv:2402.16801*, 2024.

654 W Thomas Miller, Filson H Glanz, and L Gordon Kraft. Cmac: An associative neural network
 655 alternative to backpropagation. *Proceedings of the IEEE*, 78(10):1561–1567, 1990.

656 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
 657 stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. *arXiv preprint*
 658 *arXiv:1312.5602*, 2013.

659 Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
 660 primacy bias in deep reinforcement learning. In *International conference on machine learning*,
 661 pp. 16828–16847. PMLR, 2022.

662 Brian D Ondov, Todd J Treangen, Páll Melsted, Adam B Mallonee, Nicholas H Bergman, Sergey
 663 Koren, and Adam M Phillippy. Mash: fast genome and metagenome distance estimation using
 664 minhash. *Genome biology*, 17(1):132, 2016.

665 Chaofan Pan, Xin Yang, Yanhua Li, Wei Wei, Tianrui Li, Bo An, and Jiye Liang. A survey of
 666 continual reinforcement learning. *arXiv preprint arXiv:2506.21872*, 2025.

667 Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia, Oriol Vinyals,
 668 Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In *International*
 669 *conference on machine learning*, pp. 2827–2836. PMLR, 2017.

670 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 671 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 672 models from natural language supervision. In *International conference on machine learning*, pp.
 673 8748–8763. PmLR, 2021.

674 David Silver and Richard S Sutton. Welcome to the era of experience. *Google AI*, 1, 2025.

675 David Silver, Richard S Sutton, and Martin Müller. Sample-based learning and search with perma-
 676 nent and transient memories. In *Proceedings of the 25th international conference on Machine*
 677 *learning*, pp. 968–975, 2008.

678 Richard S Sutton. Generalization in reinforcement learning: Successful examples using sparse
 679 coarse coding. *Advances in neural information processing systems*, 8, 1995.

680 Richard S Sutton, Anna Koop, and David Silver. On the role of tracking in stationary environments.
 681 In *Proceedings of the 24th international conference on Machine learning*, pp. 871–878, 2007.

682 Richard S Sutton, Michael Bowling, and Patrick M Pilarski. The alberta plan for ai research. *arXiv*
 683 *preprint arXiv:2208.11173*, 2022.

684 Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. *Introduction to data mining*. Pearson Edu-
 685 cation India, 2016.

686 John Tsitsiklis and Benjamin Van Roy. Analysis of temporal-difference learning with function
 687 approximation. *Advances in neural information processing systems*, 9, 1996.

688 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 689 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 690 tion processing systems*, 30, 2017.

691 Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement learning. *Ad-
 692 vances in neural information processing systems*, 31, 2018.

693 Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
 694 reinforcement learning experiments. *arXiv preprint arXiv:1903.03176*, 2019.

A APPENDIX

A.1 THEORETICAL RESULTS

Theorem 2 (Borkar, 1997). Consider two d and l dimensional coupled iterates of the form:

$$\theta_{t+1} \leftarrow \theta_t + \bar{\alpha}(\mathcal{A}(\theta_t, \mathbf{w}_t) + \mathcal{M}_{t+1}), \quad (9)$$

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha (\mathcal{C}(\theta_t, \mathbf{w}_t) + \mathcal{N}_{t+1}), \quad (10)$$

for $t \geq 0$. If,

1. $\mathcal{A} : \mathbb{R}^{d+l} \rightarrow \mathbb{R}^d$, $\mathcal{C} : \mathbb{R}^{d+l} \rightarrow \mathbb{R}^l$ are Lipschitz,
2. $\sum_t \bar{\alpha}_t = \sum_t \alpha_t = \infty$, $\sum_t \bar{\alpha}_t^2 = \sum_t \alpha_t^2 < \infty$, $\lim_{t \rightarrow \infty} \frac{\bar{\alpha}_t}{\alpha_t} \rightarrow 0$,
3. for $\mathcal{F}_t \triangleq \sigma(\theta_k, \mathbf{w}_k, \mathcal{M}_k, \mathcal{N}_k, k \leq t)$, $t \geq 0$, $(\mathcal{M}_t, \mathcal{F}_t)$, $(\mathcal{N}_t, \mathcal{F}_t)$ are sequences of random variables satisfying: $\sum_t \bar{\alpha}_t \mathcal{M}_t$, $\sum_t \alpha_t \mathcal{N}_t \leq \infty$ almost surely,

then the iterates converge almost surely to the asymptotically stable equilibria of the associated limiting ODEs.

Theorem 3 (Tsitsiklis & Van Roy (1996)). *Consider an iterative algorithm of the form $\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha_t(\mathcal{A}(X_t)\mathbf{w}_t + b(X_t))$ where,*

1. the step-size sequence α_t satisfies $\sum_t \alpha_t = \infty$, $\sum_t \alpha_t^2 < \infty$,
2. X_t is a Markov process with a unique invariant distribution,
3. $\mathcal{A}(\cdot)$ and $b(\cdot)$ are matrix and vector valued functions respectively, for which $\mathbf{A} = \mathbb{E}_{d_\pi}[\mathcal{A}(X_t)]$ and $\mathbf{b} = \mathbb{E}_{d_\pi}[b(X_t)]$ are well defined and finite,
4. the matrix \mathbf{A} is positive definite,
5. there exists constants K and q such that for all X
 - $\sum_{t=0}^{\infty} \|\mathbb{E}_\pi[\mathcal{A}(X_t)|X_0 = X] - \mathbf{A}\| \leq K(1 + h^q(X))$, and
 - $\sum_{t=0}^{\infty} \|\mathbb{E}_\pi[b(X_t)|X_0 = X] - \mathbf{b}\| \leq K(1 + h^q(X))$,
6. for any $q > 1$ there exists a constant μ_q such that for all X, t
 - $\mathbb{E}_\pi[h^q(X_t)|X_0 = X] \leq \mu_q(1 + h^q(X))$.

Then, \mathbf{w}_t converges to \mathbf{w}_π , with probability one, where \mathbf{w}_π is the unique vector that satisfies $\mathbf{A}\mathbf{w}_\pi + \mathbf{b} = 0$.

proof. We use the proof technique outlined in Anand & Precup (2021); Tsitsiklis & Van Roy (1996) to establish convergence.

Step 1. Transient update as linear stochastic approximation. Dropping the (τ, π) subscript for

$$\text{arity, the transient update can be written as} \quad (T_{\text{transient}}(sT_1), \dots, T_{\text{transient}}(sT_n)) = (T_1, \dots, T_n)$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha_t \left(\mathbf{r}_{t+1} + \gamma (\mathbf{\sigma}^\top \mathbf{\phi}_{t+1} + \mathbf{w}_t^\top \mathbf{z}_{t+1}) - (\mathbf{\sigma}^\top \mathbf{\phi}_t + \mathbf{w}_t^\top \mathbf{z}_t) \right) \mathbf{z}_t \\ = \mathbf{w}_t + \alpha_t (b(X_t) + A(X_t) \mathbf{w}_t),$$

where

$$b(X_t) = z_t(R_{t+1} + \gamma \theta^T \phi_{t+1} - \theta^T \phi_t), \quad A(X_t) = z_t(z_t - \gamma z_{t+1})^T,$$

and $X_t = (S_t, S_{t+1}, \phi_t, z_t)$.

756 **Step 2. Limiting expectations.** Define

$$757 \quad \mathbf{A} = \lim_{t \rightarrow \infty} \mathbb{E}[A(X_t)], \quad \mathbf{b} = \lim_{t \rightarrow \infty} \mathbb{E}[b(X_t)].$$

759 Explicitly,

$$760 \quad \mathbf{A} = \sum_s d(s) z(s) \left(z(s) - \gamma \sum_{s'} [\mathcal{P}]_{ss'} z(s') \right)^T = \boxed{Z^T D(I - \gamma \mathcal{P}) Z},$$

$$761 \quad \mathbf{b} = \sum_s d(s) z(s) \left(\mathcal{R}(s) + \gamma \theta^T \sum_{s'} [\mathcal{P}]_{ss'} \phi(s') - \theta^T \phi(s) \right)$$

$$762 \quad = \boxed{Z^T D \mathcal{R} + Z^T D(\gamma \mathcal{P} - I) \Phi \theta}.$$

763 \mathbf{A} is positive definite because $D(I - \gamma \mathcal{P})$ has positive row sums (since $\gamma \mathcal{P}$ is a sub-stochastic matrix)
764 and column sums (since $\mathbf{1}^T D(I - \gamma \mathcal{P}) = d^T - \gamma d^T = (1 - \gamma)d^T > 0$).

765 **Step 3. Bounded noise.** Using mixing of the Markov chain,

$$766 \quad \begin{aligned} \|\mathbb{E}[A(X_t)|X_0] - \mathbf{A}\| &= \|Z^T D_t(I - \gamma \mathcal{P}) Z - Z^T D(I - \gamma \mathcal{P}) Z\| \\ 767 &= \|Z^T (D_t - D)(I - \gamma \mathcal{P}) Z\| \\ 768 &\leq \|Z^T\| \|D_t - D\| \|I - \gamma \mathcal{P}\| \|Z\| \\ 769 &\leq B_1 \cdot C \sigma^t \cdot B_2 \cdot B_1 \\ 770 &\leq \boxed{K_1 \sigma^t}, \\ 771 \quad \|\mathbb{E}[b(X_t)|X_0] - \mathbf{b}\| &= \|Z^T (D_t - D) \mathcal{R} + Z^T (D_t - D)(\gamma \mathcal{P} - I) \Phi \theta\| \\ 772 &\leq \|Z^T\| \|D_t - D\| \|\mathcal{R}\| + \|Z^T\| \|D_t - D\| \|(\gamma \mathcal{P} - I)\| \|\Phi \theta\| \\ 773 &\leq \boxed{K_2 \sigma^t}. \end{aligned}$$

774 Therefore,

$$775 \quad \sum_{t=0}^{\infty} \|\mathbb{E}[A(X_t)|X_0] - \mathbf{A}\| \leq \sum_{t=0}^{\infty} K_1 \sigma^t = \boxed{\frac{K_1}{1 - \sigma} = \bar{K}_1},$$

$$776 \quad \sum_{t=0}^{\infty} \|\mathbb{E}[b(X_t)|X_0] - \mathbf{b}\| \leq \sum_{t=0}^{\infty} K_2 \sigma^t = \boxed{\frac{K_2}{1 - \sigma} = \bar{K}_2}.$$

777 **Step 4. Fixed point.** Thus, the expected iterates converge to the unique fixed point

$$778 \quad \begin{aligned} \mathbf{w}_{\tau}^* &= \mathbf{A}^{-1} \mathbf{b} \\ 779 &= Z^T D(I - \gamma \mathcal{P}) Z^{-1} (Z^T D \mathcal{R} + Z^T D(\gamma \mathcal{P} - I) \Phi \theta) \\ 780 &= Z^T D(I - \gamma \mathcal{P}) Z^{-1} Z^T D \mathcal{R} + Z^T D(I - \gamma \mathcal{P}) Z^{-1} (Z^T D(\gamma \mathcal{P} - I) V_{\theta}^{(P)}) \\ 781 &= \boxed{\mathbf{w}_{Z,\tau}^{(TD)} - (Z^T D_{\tau}(I - \gamma \mathcal{P}_{\pi,\tau}) Z)^{-1} Z^T D_{\tau}(I - \gamma \mathcal{P}_{\pi,\tau}) \Phi \theta^*} \end{aligned}$$

782 \square

783 **Lemma 2.** The sequence of expected permanent updates converges to a unique fixed point.

801 *Proof.* **Step 1. Permanent update with transient fixed point.** Since permanent updates evolve on
802 a slower timescale, we may treat the transient parameters as converged. The update is

$$803 \quad \theta_{t+1} = \theta_t + \bar{\alpha}_t C(X_t), \quad \text{where } C(X_t) = \mathbf{w}_t^T z_t \phi_t.$$

804 Define

$$805 \quad \mathbf{C} = \sum_{\tau} p(\tau) \sum_s d_{\tau}(s) \mathbf{w}_{\tau}^T z(s) \phi(s)$$

$$806 \quad = \boxed{\sum_{\tau} p(\tau) \Phi^T D_{\tau} Z \mathbf{w}_{\tau}^*}$$

810 **Step 2. Boundedness and Lipschitz condition.** For each task τ ,

$$811 \quad \mathbf{C}_\tau = \Phi^T D_\tau Z \mathbf{w}_\tau^*,$$

812 and using $\mathbf{w}_\tau^* = \mathbf{A}_\tau^{-1} (Z^T D_\tau \mathcal{R}_\tau + Z^T D_\tau (\gamma \mathcal{P}_\tau - I) \Phi \theta)$, we obtain

$$813 \quad \begin{aligned} \|\mathbf{C}_\tau\| &= \|\Phi^T D_\tau Z \mathbf{w}_\tau^*\| \\ 814 &= \|\Phi^T D_\tau Z \mathbf{A}_\tau^{-1} (Z^T D_\tau \mathcal{R}_\tau + Z^T D_\tau (\gamma \mathcal{P}_\tau - I) \Phi \theta)\| \\ 815 &\leq \|\Phi^T D_\tau Z \mathbf{A}_\tau^{-1} Z^T D_\tau\| + \|(\mathcal{R}_\tau + (\gamma \mathcal{P}_\tau - I) \Phi \theta)\| \\ 816 &\leq K_3, \end{aligned}$$

$$817 \quad \begin{aligned} \|\mathbf{C}\| &= \left\| \sum_\tau p(\tau) \Phi^T D_\tau Z \mathbf{w}_\tau^* \right\| \\ 818 &\leq \sum_\tau \|\Phi^T D_\tau Z \mathbf{w}_\tau^*\| \\ 819 &\leq K_3. \end{aligned}$$

820 Thus the mapping is bounded and Lipschitz.

821 **Step 3. Noise boundedness.** Because tasks are sampled i.i.d. and each task's Markov chain is
822 rapidly mixing, the noise terms have finite variance.

823 **Step 4. Fixed point.** Therefore, the expected permanent updates converge to the unique fixed point:

$$824 \quad \begin{aligned} \mathbf{C} &= \sum_\tau p(\tau) \Phi^T D_\tau Z \mathbf{w}_\tau^* \\ 825 &0 = \sum_\tau p(\tau) \left(\Phi^T D_\tau Z v_{Z,\tau}^{(TD)} - \Phi^T D_\tau Z (Z^T D_\tau (I - \gamma \mathcal{P}_{\pi,\tau}) Z)^{-1} Z^T D_\tau (I - \gamma \mathcal{P}_{\pi,\tau}) \Phi \theta^* \right) \\ 826 &0 = \mathbb{E}_\tau [\Phi^T D_\tau Z v_{Z,\tau}^{(TD)}] - \mathbb{E}_\tau [\Phi^T D_\tau \Pi_{Z,\tau} \Phi \theta^*] \\ 827 \quad \mathbb{E}_\tau [\Phi^T D_\tau \Pi_{Z,\tau} \Phi] \theta^* = \mathbb{E}_\tau [\Phi^T D_\tau Z v_{Z,\tau}^{(TD)}] \\ 828 \quad \boxed{\theta^* = \mathbb{E}_\tau [\Phi^T D_\tau \Pi_{Z,\tau} \Phi]^{-1} \mathbb{E}_\tau [\Phi^T D_\tau Z v_{Z,\tau}^{(TD)}]} \\ 829 \end{aligned}$$

□

830 **Corollary 2.** If $Z = \Phi$, then

$$831 \quad \begin{aligned} \theta^* &= \mathbb{E}_\tau [\Phi^T D_\tau \Phi]^{-1} \mathbb{E}_\tau [\Phi^T D_\tau \Phi \mathbf{w}_{\Phi,\tau}^{(TD)}], \\ 832 \quad \mathbf{w}_\tau^* &= \mathbf{w}_{\Phi,\tau}^{(TD)} - \theta^*. \end{aligned}$$

833 Moreover, in the single-task setting, $\theta^* = \mathbf{w}_{\Phi,\tau}^{(TD)}$ and $\mathbf{w}_\tau^* = 0$.

834 *Proof.* When $\Phi = Z$,

$$835 \quad \begin{aligned} \Pi_{Z,\tau} &= \Pi_{\Phi,\tau} = \Phi (\Phi^T D_\tau (I - \gamma \mathcal{P}_{\pi,\tau}) \Phi)^{-1} \Phi^T D_\tau (I - \gamma \mathcal{P}_{\pi,\tau}), \\ 836 \quad \Pi_{\Phi,\tau} \Phi &= \Phi (\Phi^T D_\tau (I - \gamma \mathcal{P}_{\pi,\tau}) \Phi)^{-1} (\Phi^T D_\tau (I - \gamma \mathcal{P}_{\pi,\tau}) \Phi) = \Phi. \end{aligned}$$

837 Therefore,

$$838 \quad \begin{aligned} \theta^* &= \mathbb{E}_\tau [\Phi^T D_\tau \Phi]^{-1} \mathbb{E}_\tau [\Phi^T D_\tau \Phi \mathbf{w}_{\Phi}^{(TD)}] \\ 839 \quad \mathbf{w}_\tau^* &= \mathbf{w}_{\Phi,\tau}^{(TD)} - (\Phi^T D_\tau (I - \gamma \mathcal{P}_{\pi,\tau}) \Phi)^{-1} \Phi^T D_\tau (I - \gamma \mathcal{P}_{\pi,\tau}) \Phi \theta^*, \\ 840 &= \mathbf{w}_{\Phi,\tau}^{(TD)} - \theta^*. \end{aligned}$$

864 In the single task setting,
 865

$$\begin{aligned}
 866 \quad \theta^* &= \mathbb{E}_\tau[\Phi^T D_\tau \Phi]^{-1} \mathbb{E}_\tau[\Phi^T D_\tau \Phi \mathbf{w}_\Phi^{(TD)}], \\
 867 \quad &= (\Phi^T D_\tau \Phi)^{-1} (\Phi^T D_\tau \Phi) \mathbf{w}_{\Phi, \tau}^{(TD)} = \mathbf{w}_{\Phi, \tau}^{(TD)}, \\
 869 \quad \mathbf{w}_\tau^* &= \mathbf{w}_{\Phi, \tau}^{(TD)} - \theta^* = \mathbf{w}_{\Phi, \tau}^{(TD)} - \mathbf{w}_{\Phi, \tau}^{(TD)} = 0.
 \end{aligned}$$

870
 871
 872

□

873 A.2 SMALL-SCALE EXPERIMENTS

875 **Pseudocode for prediction and control with separate permanent and transient features.**

877 Algorithm 1 Prediction with Linear Approximations

```

878 1: Initialize: buffer  $\mathcal{B}$ , parameters  $\theta, \mathbf{w}$ 
879 2: for  $t = 0 \rightarrow \infty$  do
880 3:   Take action  $A_t$ 
881 4:   Store state  $S_t$  in  $\mathcal{B}$ 
882 5:   Observe reward  $R_{t+1}$  and next state  $S_{t+1}$ 
883 6:   # Update transient parameters
884 7:    $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha (R_{t+1} + \gamma V^{(PT)}(S_{t+1}) - V^{(PT)}(S_t)) z(S_t)$ 
885 8:   if Task ends then
886 9:     for Every  $S_k$  in  $\mathcal{B}$  do
887 10:    # Update permanent parameters
888 11:     $\theta_{k+1} \leftarrow \theta_k + \bar{\alpha} (V^{(PT)}(S_k) - V^{(P)}(S_k)) \phi(S_k)$ 
889 12:   end for
890 13:   # Reset transient parameters
891 14:    $\mathbf{w}_{t+1} \leftarrow 0$ 
892 15:   # Clear buffer
893 16:   Reset  $\mathcal{B}$ 
894 17: end if
895 18: end for

```

898 Algorithm 2 Control with Linear Approximations

```

899 1: Initialize: buffer  $\mathcal{B}$ , parameters  $\theta, \mathbf{w}$ 
900 2: for  $t = 0 \rightarrow \infty$  do
901 3:   Take action  $A_t$ 
902 4:   Store state  $S_t, A_t$  in  $\mathcal{B}$ 
903 5:   Observe reward  $R_{t+1}$  and next state  $S_{t+1}$ 
904 6:   # Update transient parameters
905 7:    $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha (R_{t+1} + \gamma \max_{a'} Q^{(PT)}(S_{t+1}, a') - Q^{(PT)}(S_t, A_t)) z(S_t, A_t)$ 
906 8:   if Task ends then
907 9:     for Every  $(S_k, A_k)$  in  $\mathcal{B}$  do
908 10:    # Update permanent parameters
909 11:     $\theta_{k+1} \leftarrow \theta_k + \bar{\alpha} (Q^{(PT)}(S_k, A_k) - Q^{(P)}(S_k, A_k)) \phi(S_k, A_k)$ 
910 12:   end for
911 13:   # Reset transient parameters
912 14:    $\mathbf{w}_{t+1} \leftarrow 0$ 
913 15:   # Clear buffer
914 16:   Reset  $\mathcal{B}$ 
915 17: end if

```

916 **Hyperparameter Sweeps for Linear Prediction (best highlighted in bold).**

```

918 TD-learning:
919     LR = [3e-2, 1e-2, 3e-3, 1e-3, 3e-4, 1e-4]
920
921 TD-learning (Reset):
922     LR = [3e-2, 1e-2, 3e-3, 1e-3, 3e-4]
923
924 PT-TD (NeurIPS):
925     LR-P = [1e-2, 3e-3, 1e-3, 3e-4, 1e-4, 3e-5]
926     LR-T = [1e-1, 3e-2, 1e-2, 3e-3, 1e-3, 3e-4]
927
928 PT-TD (Ours):
929     LR-P = [1e-2, 3e-3, 1e-3, 3e-4, 1e-4, 3e-5]
930     LR-T = [1e-1, 3e-2, 1e-2, 3e-3, 1e-3, 3e-4]

```

Hyperparameter Sweeps for Linear Control (best highlighted in bold).

```

931 Q-learning:
932     LR = [0.5, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001]
933
934 Q-learning (Reset):
935     LR = [0.5, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001]
936
937 PT-Q (NeurIPS):
938     LR-P = [0.03, 0.01, 0.003, 0.001, 0.0003]
939     LR-T = [0.5, 0.3, 0.1, 0.03, 0.01]
940
941 PT-Q (Ours):
942     LR-P = [0.03, 0.01, 0.003, 0.001, 0.0003]
943     LR-T = [0.5, 0.3, 0.1, 0.03, 0.01]
944

```

Tasks Used in Experiments

Task	G1	G2	G3	G4
1	0	1	0	1
2	1	0	1	0
3	0	0	1	1
4	1	1	0	0

Table 1: Tasks used in Linear Prediction Experiments.

Task	●	●
1	1	0.1
2	0.1	1

Table 2: Tasks Used in Linear Control Experiments

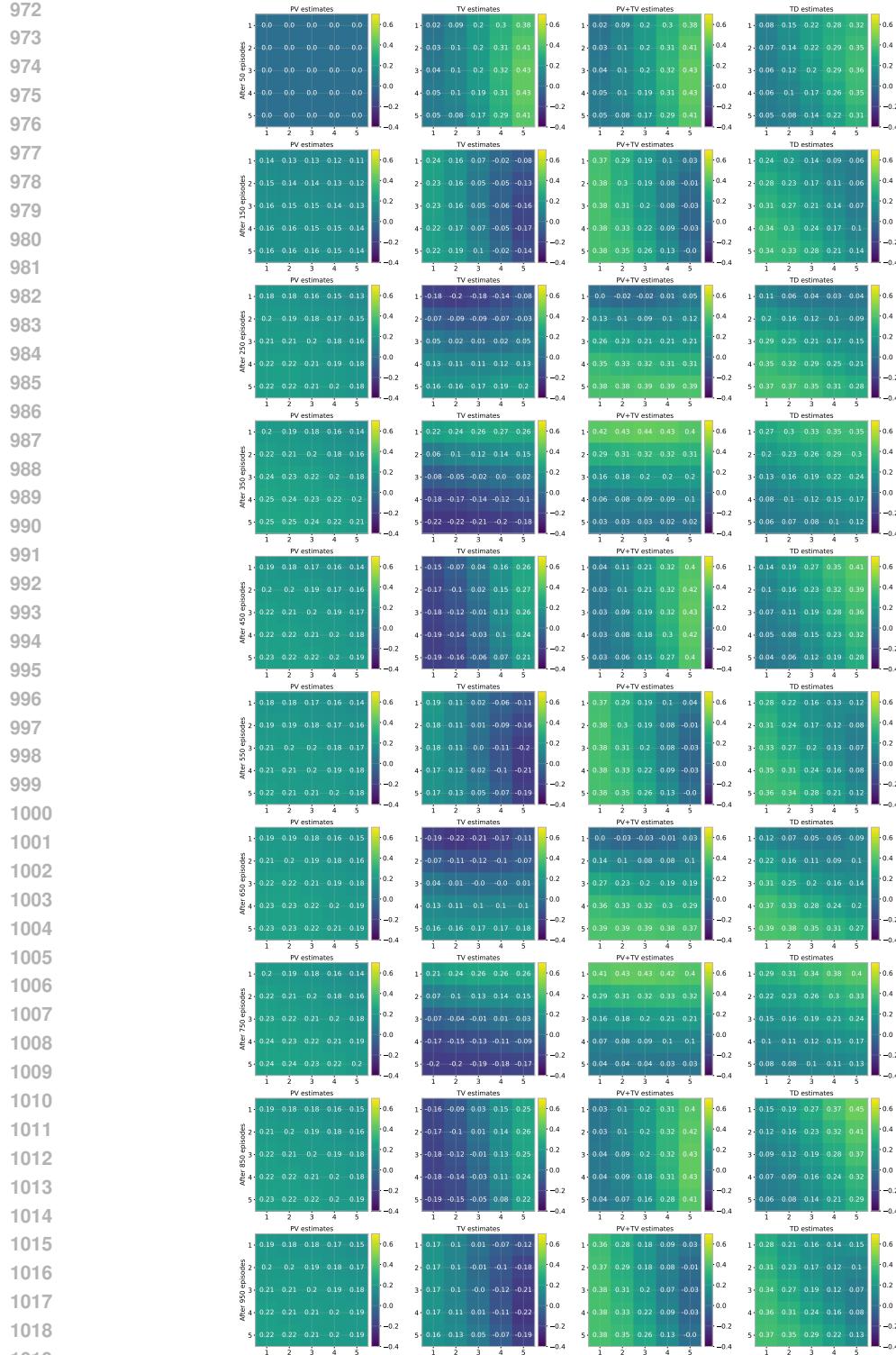


Figure 9: Value Function Heatmap for the Prediction Task

A.3 CRAFTAX EXPERIMENTS

Hyperparameter Tuning.

1026 Craftax Baselines: For the baselines and the permanent network in all variants of PTQ-learning,
 1027 we used hyperparameters from the PQN repository, which are consistent with the results published
 1028 in the PQN paper. We only tuned minibatches for the PQN baseline, because it determined the
 1029 number of steps the permanent network would take, which we also tuned for our approach. Transient
 1030 parameters were found by performing a search over a range of values. Craftax: Given the large
 1031 hyperparameter space, we used coordinate-wise search: we fixed all hyperparameters but one to a
 1032 reasonable baseline and performed a grid search for that single hyperparameter. This process was
 1033 then repeated iteratively for each hyperparameter, fixing the newly tuned value before moving to the
 1034 next. For each configuration, we ran a total of 150M steps with 1024 environments in parallel, using
 1035 AUC as the selection metric. The final results were reported for 250M steps. We used the same HPs
 1036 for the online craftax experiment (minibatch was reduced to 8 to fit the smaller batch size).
 1037

1038 Transient in Craftax: Given the large hyperparameter space, we used coordinate-wise search: we
 1039 fixed all hyperparameters but one to a reasonable baseline and performed a grid search for that
 1040 single hyperparameter. This process was then repeated iteratively for each hyperparameter, fixing
 1041 the newly tuned value before moving to the next. For each configuration, we ran a total of 150M
 1042 steps with 1024 environments in parallel, using AUC as the selection metric. The final results were
 1043 reported for 250M steps. We used the same HPs for the online craftax experiment (minibatch was
 1044 reduced to 8 to fit the smaller batch size).

1044 **Role of HPs.**

1045

- 1046 **Tables (T) vs. Generalization:** Similar to tiles in Tile Coding. More tables spread information,
 1047 increasing generalization. Fewer tables concentrate information, reducing generalization.
- 1048 **Slots (S) & Eviction:** Determines capacity. Too few slots lead to high eviction rates; too
 1049 many slots approach tabular memory.
- 1050 **Generalization (ρ):** Explicitly controls the mixing of values between slots. $\rho = 1$ forces
 1051 isolation (no generalization); $\rho < 1$ enables local smoothing.
- 1052 **Number of Hashes (K):** Determines the precision of the MinHash signature. A higher K
 1053 better preserves the Jaccard similarity property (improving retrieval accuracy), though with
 1054 diminishing returns beyond a certain point.

1055
 1056 **Non-parametric Transient Memory.** The non-parametric transient memory is implemented
 1057 through three core methods: *Put*, which stores incoming observations; *Get*, which retrieves stored
 1058 value estimates; and *UpdateTDError*, which updates the estimates in proportion to their contribu-
 1059 tion. Pseudocode for these methods is given in Algorithms 3,4, and 5.
 1060

1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080 **Algorithm 3** PUT method for non-parametric transient memory

1081 1: **procedure** PUT(\mathcal{M} , x)
1082 **Require:** \mathcal{M} : transient memory; x : observation
1083 **Ensure:** Updated memory \mathcal{M}
1084 2: $(sig, tag) \leftarrow \text{MINHASH}(x)$
1085 3: $bins \leftarrow \text{GETBUCKETS}(sig)$
1086 **# Insert observation in all tables**
1087 4: **for** $t \leftarrow 0$ to $T - 1$ **do**
1088 5: **if** (CONTAINSTAG($\mathcal{M}[t, bins[t]], tag$) == **false**) **then**
1089 **# empty-first else LRU**
1090 6: $slot \leftarrow \text{SELECTSLOT}(\mathcal{M}, t, bins[t])$
1091 7: $\mathcal{M}[t, bins[t], slot].tag \leftarrow tag$
1092 **# mean over other valid slots**
1093 8: $\mathcal{M}[t, bins[t], slot].values \leftarrow \text{INITIALIZE}(t, bins[t])$
1094 9: **else**
1095 10: $slot \leftarrow \text{FINDSLOTBYTAG}(\mathcal{M}[t, bins[t]], tag)$
1096 11: **end if**
1097 12: $\mathcal{M}[t, bins[t], slot].age \leftarrow \text{TOUCH}(\mathcal{M}.clock)$
1098 13: **end for**
1099 14: $\mathcal{M}.clock \leftarrow \mathcal{M}.clock + 1$
1100 15: **return** \mathcal{M}
1101 16: **end procedure**

1102 **Algorithm 4** GET method for non-parametric transient memory

1103 1: **procedure** GET(\mathcal{M} , x , ρ)
1104 **Require:** \mathcal{M} : transient memory; x : observation; ρ : mixing weight
1105 **Ensure:** values
1106 2: $(sig, tag) \leftarrow \text{MINHASH}(x)$
1107 3: $bins \leftarrow \text{GETBUCKETS}(sig)$
1108 4: values $\leftarrow 0$
1109 **# Collect values from every table**
1110 5: **for** $t \leftarrow 0$ to $T - 1$ **do**
1111 6: $slot \leftarrow \text{FINDSLOTBYTAG}(\mathcal{M}[t, bins[t]], tag)$
1112 **# Weigh the update for matching slot by ρ**
1113 7: values $\leftarrow values + \rho \cdot \mathcal{M}[t, bins[t], slot].values$
1114 8: OSlots $\leftarrow \text{FINDOTHERVALIDSLOTS}(\mathcal{M}[t, bins[t]], tag)$
1115 9: $n \leftarrow \text{LEN}(OSlots)$
1116 **# Divide weight $(1 - \rho)$ equally among other valid slots**
1117 10: **for** $s \leftarrow 0$ to $n - 1$ **do**
1118 11: values $\leftarrow values + \frac{(1 - \rho)}{n} \cdot \mathcal{M}[t, bins[t], OSlots[s]].values$
1119 12: **end for**
1120 13: **end for**
1121 14: **return** values
1122 15: **end procedure**

1123 A.4 IMAGE EXPERIMENTS

1124 We performed a grid search over all the hyperparameters for the 256-image variant. Once we found
1125 the best values, we fixed them and tested the performance for the 500- and 1000-image variants (see
1126 Figures 18-20. The best hyperparameter values for each algorithm is provided below:

1127
1128
1129
1130
1131
1132
1133

1134
 1135
 1136 **Algorithm 5** UpdateTDError method for non-parametric transient memory
 1137 1: **procedure** UPDATETDERROR(\mathcal{M} , x , a , ρ , δ , α)
 1138 **Require:** \mathcal{M} : transient memory; x : observation; a : action; ρ : mixing weight; δ : TD-error; α :
 1139 learning rate
 1140 **Ensure:** Updated memory \mathcal{M}
 1141 2: $(sig, tag) \leftarrow \text{MINHASH}(x)$
 1142 3: $\text{bins} \leftarrow \text{GETBUCKETS}(sig)$
 1143 4: **for** $t \leftarrow 0$ **to** $T - 1$ **do**
 1144 5: $\text{slot} \leftarrow \text{FINDSLOTBYTAG}(\mathcal{M}[t, \text{bins}[t]], tag)$
 1145 **# Weight the matching slot by ρ**
 1146 6: $\mathcal{M}[t, \text{bins}[t], \text{slot}].values[a] \leftarrow \mathcal{M}[t, \text{bins}[t], \text{slot}].values[a] + \frac{\alpha}{T} \rho \delta$
 1147 7: $OSlots \leftarrow \text{FINDOTHERVALIDSLOTS}(\mathcal{M}[t, \text{bins}[t]], tag)$
 1148 8: $n \leftarrow \text{LEN}(OSlots)$
 1149 **# Divide TD-error equally among other valid slots by weighting by $(1 - \rho)$**
 1150 9: **for** $s \leftarrow 0$ **to** $n - 1$ **do**
 1151 10: $\mathcal{M}[t, \text{bins}[t], OSlots[s]].values[a] \leftarrow \mathcal{M}[t, \text{bins}[t], OSlots[s]].values[a] + \frac{\alpha}{nT} (1 - \rho) \delta$
 1152 **end for**
 1153 **end for**
 1154 13: **return** \mathcal{M}
 1155 14: **end procedure**
 1156
 1157
 1158

Parameter	Value
ALG_NAME	PQN
TOTAL_TIMESTEPS	5×10^8
TOTAL_TIMESTEPS_DECAY	5×10^8
NUM_ENVS	1024
NUM_STEPS	32
EPS_START	0.1
EPS_FINISH	0.005
EPS_DECAY	0.2
NUM_MINIBATCHES	1 for PQN(1), 32 for PQN(32)
NUM_EPOCHS	1
NORM_INPUT	True
NORM_TYPE	layer_norm
HIDDEN_SIZE	1024
NUM_LAYERS	4
LR	0.0001
MAX_GRAD_NORM	1.0
LR_LINEAR_DECAY	True
REW_SCALE	1.0
GAMMA	0.99
Q_LAMBDA	False
LAMBDA	0
Environment	
ENV_NAME	Craftax-Classic-Symbolic-v1
USE_OPTIMISTIC_RESETS	True
OPTIMISTIC_RESET_RATIO	16
LOG_ACHIEVEMENTS	True

Table 3: Hyperparameters for PQN .

1185

1186

1187

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197

Algorithm 6 PTQ for Craftax

1198 **Require:** \mathcal{M} : transient memory; θ : permanent parameters; env : environment; T_s : total timesteps;
 1199 \mathcal{B} : buffer; $\bar{\alpha}$: permanent LR; α : transient LR; ρ : mixing weight; ϵ : exploration rate; γ : discount;
 1200 k : PM update period; λ : TM decay
 1201 **Ensure:** Updated θ, \mathcal{M}
 1202 1: $s \leftarrow \text{env.reset}()$
 1203 2: $\mathcal{M} \leftarrow \text{PUT}(\mathcal{M}, s)$
 1204 3: **for** $t \leftarrow 1$ **to** T_s **do**
 1205 **# permanent values**
 1206 4: $Q^{(P)}(s) \leftarrow \text{GETPERMANENT}(s, \theta)$
 1207 **# transient values**
 1208 5: $Q^{(T)}(s) \leftarrow \text{GET}(\mathcal{M}, s, \rho)$
 1209 **# Compute Q for current state**
 1210 6: $Q^{(PT)}(s) \leftarrow Q^{(P)}(s) + Q^{(T)}(s)$
 1211 **# Select action (epsilon-greedy over Q)**
 1212 7: $a \leftarrow \text{EPSILONGREEDY}(Q^{(PT)}(s), \epsilon)$
 1213 **# Step environment**
 1214 8: $(s', r) \leftarrow \text{env.step}(a)$
 1215 9: $\mathcal{M} \leftarrow \text{PUT}(\mathcal{M}, s')$
 1216 10: $\mathcal{B} \leftarrow \mathcal{B} \cup \{(s, a, Q^{(P)}(s))\}$
 1217 **# Evaluate Q for next state**
 1218 11: $Q^{(P)}(s') \leftarrow \text{GETPERMANENT}(s', \theta)$
 1219 12: $Q^{(T)}(s') \leftarrow \text{GET}(\mathcal{M}, s', \rho)$
 1220 13: $Q^{(PT)}(s') \leftarrow Q^{(P)}(s') + Q^{(T)}(s')$
 1221 **# TD error and transient update**
 1222 14: $\delta \leftarrow r + \gamma \max_{a'} Q^{(PT)}(s', a') - Q^{(PT)}(s, a)$
 1223 15: $\mathcal{M} \leftarrow \text{UPDATETDERROR}(\mathcal{M}, s, a, \rho, \delta, \alpha)$
 1224 **# Periodic permanent update and TM decay**
 1225 16: **if** $\text{mod}(t, k) = 0$ **then**
 1226 17: $\theta \leftarrow \text{UPDATEPM}(\mathcal{M}, \mathcal{B}, \bar{\alpha})$
 1227 18: $\mathcal{B} \leftarrow \{\}$
 1228 19: $\mathcal{M} \leftarrow \text{DECAYVALUES}(\mathcal{M}, \lambda)$
 1229 20: **end if**
 1230 21: $s \leftarrow s'$
 1231 22: **end for**
 1232 23: **return** θ, \mathcal{M}

1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242	Parameter	Value
1243	Permanent Memory	
1244	ALG_NAME	PTQ
1245	TOTAL_TIMESTEPS	2×10^7
1246	TOTAL_TIMESTEPS_DECAY	5×10^8
1247	NUM_ENVS	1024
1248	NUM_STEPS	32 (Permanent memory update frequency)
1249	EPS_START	0.1
1250	EPS_FINISH	0.005
1251	EPS_DECAY	0.2
1252	NUM_MINIBATCHES	32
1253	NUM_EPOCHS	1
1254	NORM_INPUT	True
1255	NORM_TYPE	layer_norm
1256	HIDDEN_SIZE	1024
1257	NUM_LAYERS	4
1258	LR	0.0001
1259	MAX_GRAD_NORM	1.0
1260	LR_LINEAR_DECAY	True
1261	REW_SCALE	1.0
1262	GAMMA	0.99
1263	Q_LAMBDA	False
1264	LAMBDA	0
1265	Environment	
1266	ENV_NAME	Craftax-Classic-Symbolic-v1
1267	USE_OPTIMISTIC_RESETS	True
1268	OPTIMISTIC_RESET_RATIO	16
1269	LOG_ACHIEVEMENTS	True
1270	Transient Memory	
1271	NUM_TABLES	2
1272	TRANSIENT_TABLE_SIZE	2048
1273	NUM_SLOTS	32
1274	NUM_HASHES	128
1275	CROP_SIZE	7
1276	ρ	0.85
1277	TRANSIENT_LR	1.3
1278	DECAY	0.95

Table 4: Hyperparameters for PTQ for the results presented in the main paper.

1284	Parameter	Value
1285	Hyperparameters	
1286	ALG_NAME	PQN
1287	NUM_MINIBATCHES	4
1288	NUM_EPOCHS	1
1289	NORM_INPUT	True
1290	NORM_TYPE	layer_norm
1291	LR	0.001
1292	MAX_GRAD_NORM	1.0

Table 5: Hyperparameters for PQN for Image task.

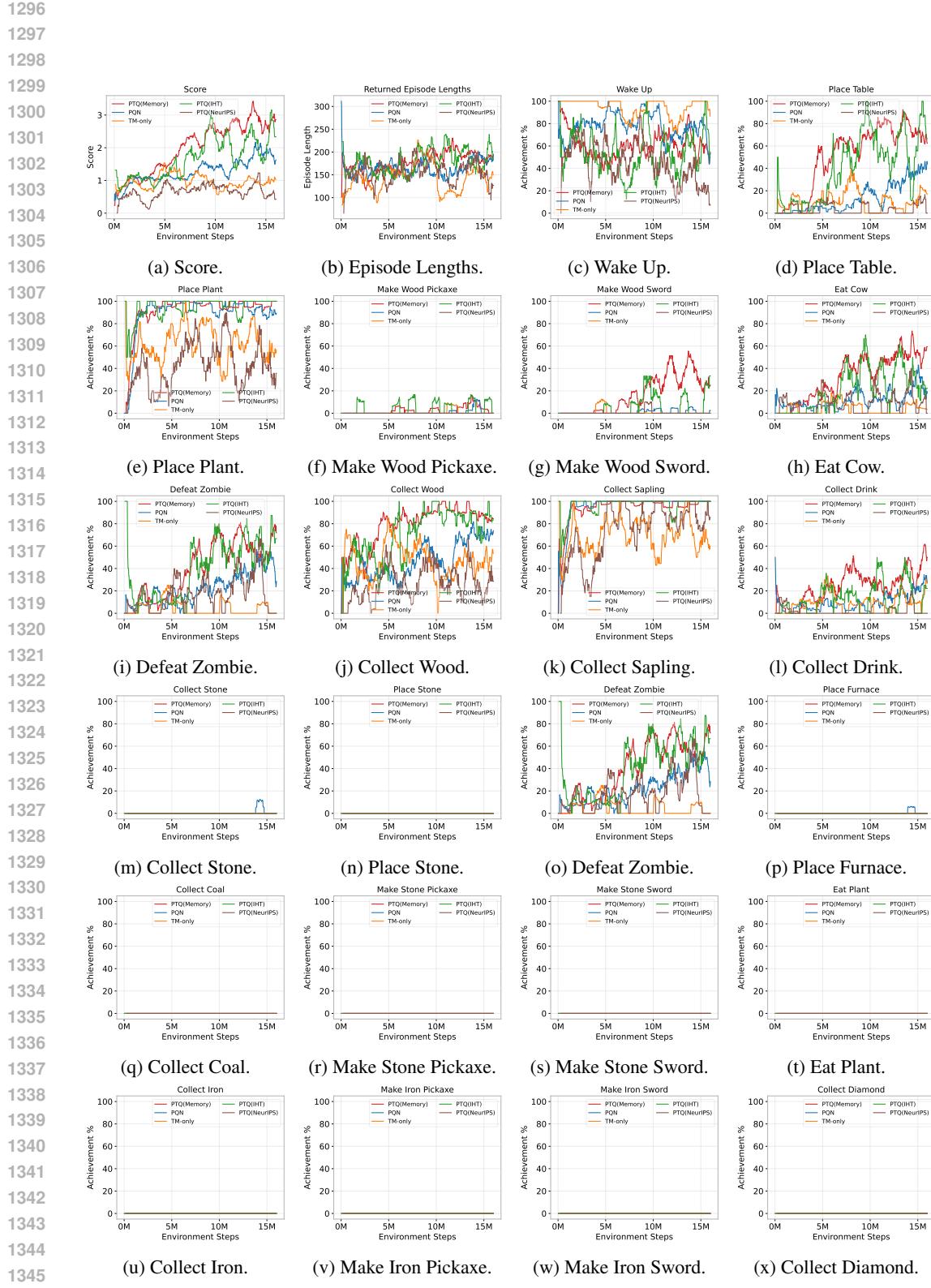


Figure 10: All achievements in the craftax online experiment.

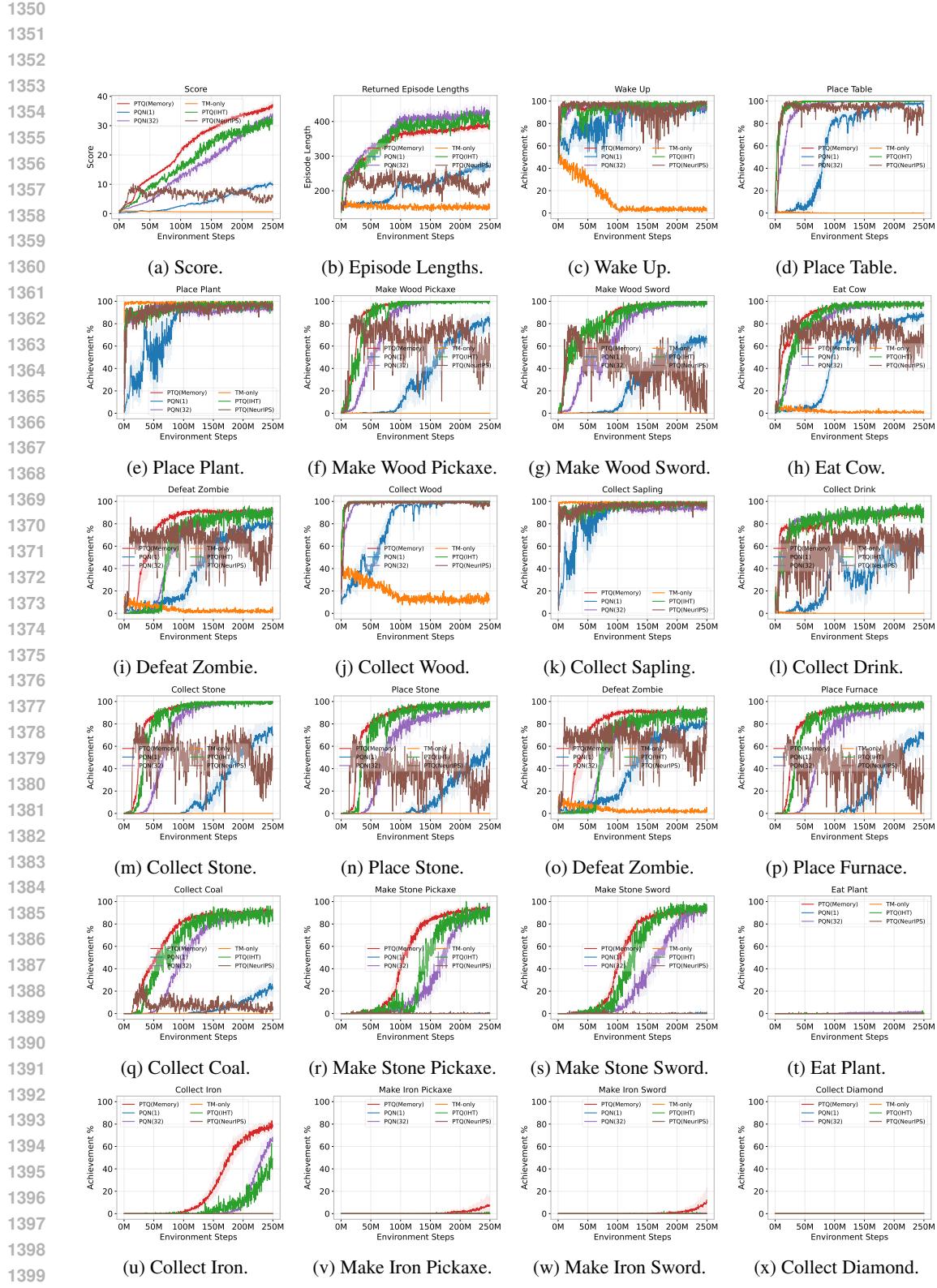


Figure 11: All achievements in the craftax 250M experiment.

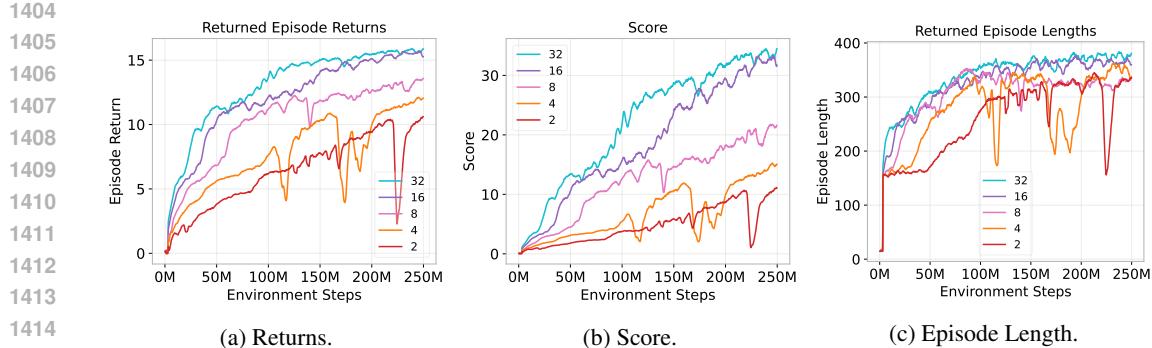


Figure 12: Effect of minibatch updates to permanent network on performance.

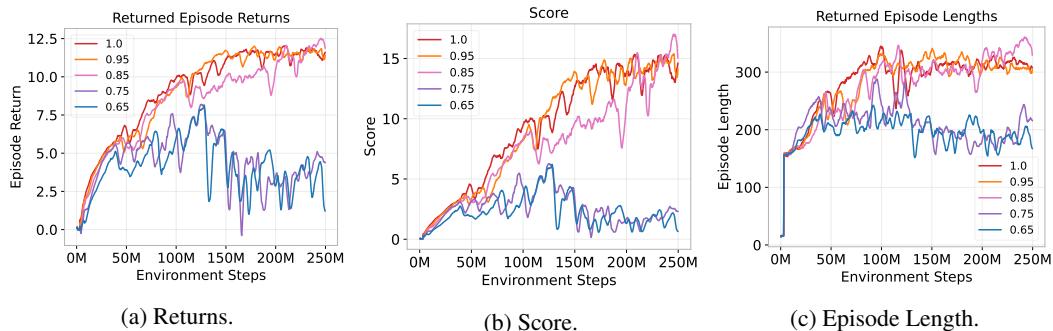
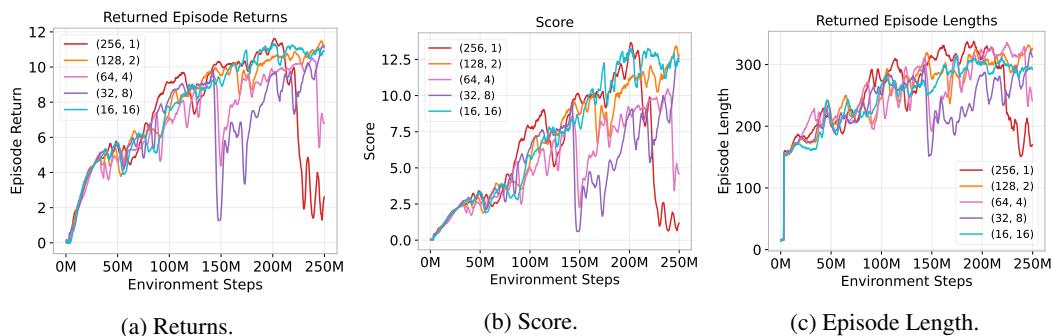
Figure 13: Effect of ρ on performance.

Figure 14: Effect of number of tables on Performance (fixed hash signature to 256 bits).

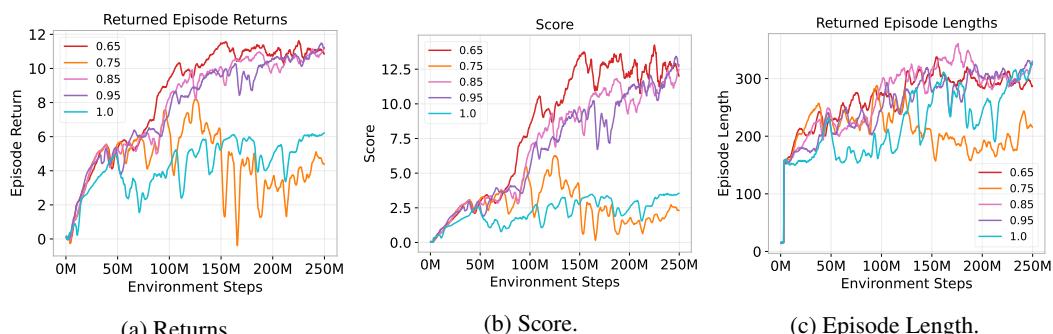


Figure 15: Effect of the decay parameter on performance.

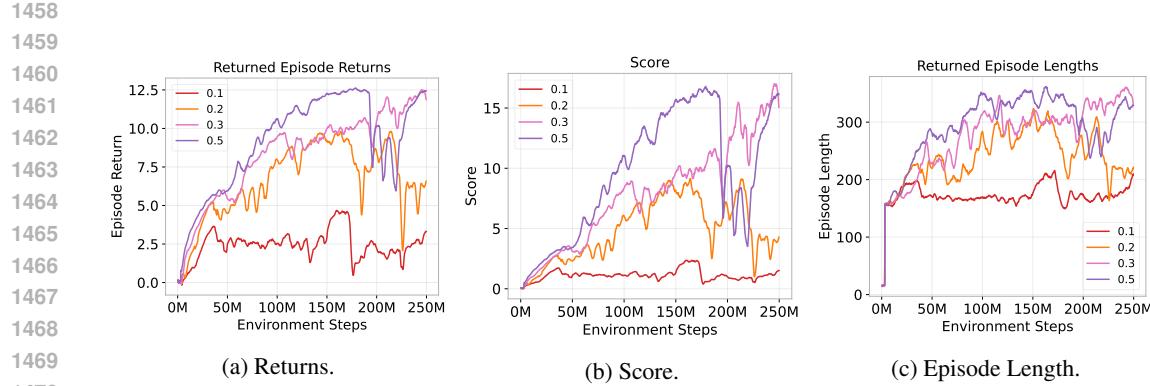


Figure 16: Effect of the transient learning rate on performance.

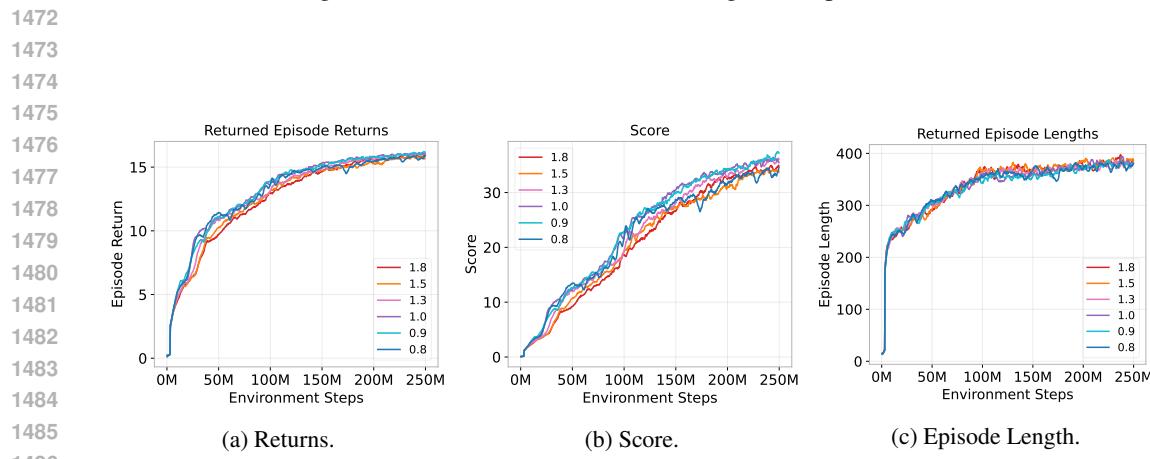


Figure 17: Effect of the transient learning rate on performance.

Parameter	Value
General Configuration	
ALG_NAME	pt_minhash
NUM_MINIBATCHES	4
NUM_EPOCHS	1
NORM_INPUT	True
NORM_TYPE	layer_norm
LR	0.001
MAX_GRAD_NORM	1.0
Transient Memory (IHT)	
TRANSIENT_TABLE_SIZE	128
NUM_HASHES	2
NUM_ROWS	128
SLOTS_PER_BIN	4
TRANSIENT_LR	0.5
DECAY	0.95
ρ	0.75

Table 6: Hyperparameters for PT_minhash (IHT).

1510

1511

1512
1513
1514
1515
1516
1517
1518
1519
1520

Parameter	Value
TRANSIENT_TABLE_SIZE	512
NUM_HASHES	2
NUM_ROWS	128
TRANSIENT_LR	0.5
DECAY	1.0

1521
1522
1523
1524

Parameter	Value
TRANSIENT_LR	0.003
DECAY	1.0

1525
1526
1527
1528

Table 7: Transient Memory Hyperparameters for PT-IHT (permanent retains from PQN).

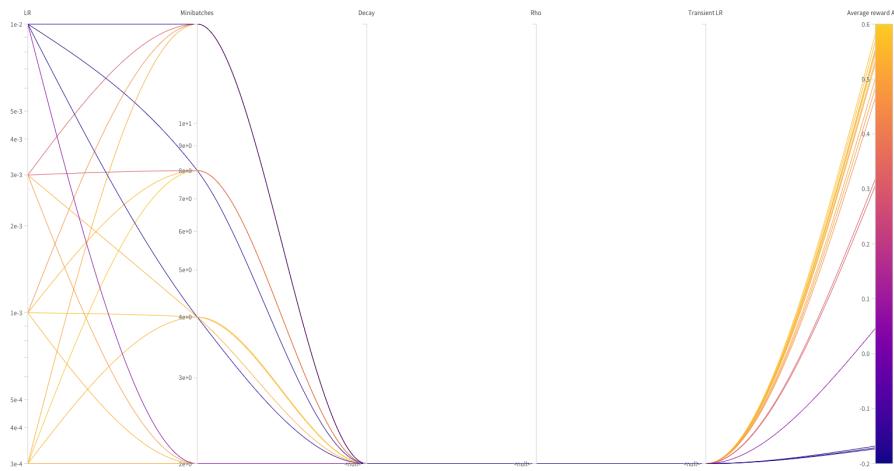
1529
1530
1531
1532

Parameter	Value
TRANSIENT_TABLE_SIZE	128
NUM_HASHES	2
NUM_ROWS	128
SLOTS_PER_BIN	4
TRANSIENT_LR	0.5
DECAY	0.95
ρ	0.75

1533
1534
1535
1536
1537
1538
1539
1540
1541
1542

Table 9: Hyperparameters for TM-Only ablation.

1543
1544
1545
1546



1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 18: HP tuning plot for the PQN baseline.

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

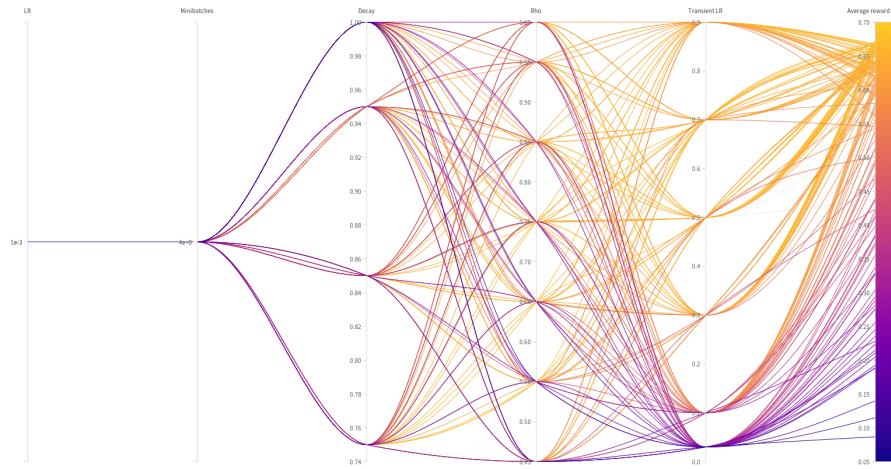


Figure 19: HP tuning plot for the PT MinHash method.

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

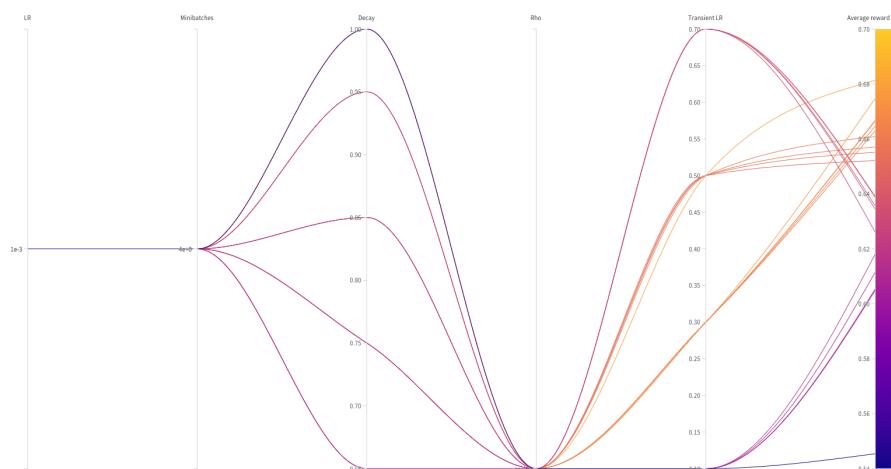


Figure 20: HP tuning plot for the PT-IHT method.

1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

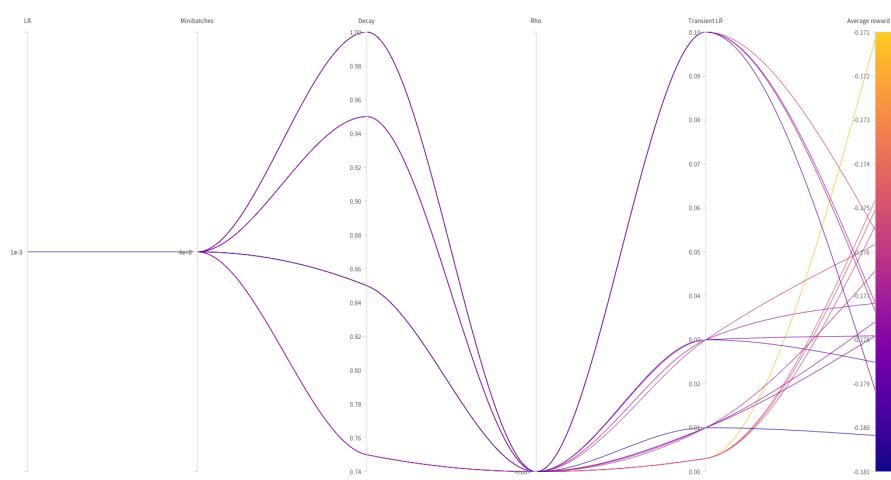


Figure 21: HP tuning plot for the PTQ-NeurIPS baseline.