Under review as a conference paper at ICLR 2026

PERMANENT AND TRANSIENT REPRESENTATIONS FOR
CONTINUAL REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual Reinforcement Learning agents struggle to adapt to new situations
while retaining past knowledge, resulting in a stability—plasticity trade-off.
An appealing solution is to decompose the agent’s predictions into permanent
and transient components—one for long-term retention and the other for rapid
adaptation—thereby achieving a better balance (Anand & Precup, [2023). Build-
ing on this idea, we propose using different sets of feature representations to esti-
mate permanent and transient value functions, enabling even faster adaptation. We
demonstrate the effectiveness of our approach on small-scale examples for both
prediction and control tasks, analyze its theoretical properties, and show its bene-
fits on the Craftax-Classic benchmark using a novel non-parametric approximator
for transient value function estimation. Our method facilitates online learning and
outperforms the PQN baseline.

1 INTRODUCTION

Continual reinforcement learning (CRL) is a key ingredient for understanding intelligence and build-
ing agents that autonomously adapt to changes in their environment (Sutton et al., 2022} |Silver,
& Sutton, [2025). An important challenge for artificial CRL agents is the tension between retain-
ing knowledge already acquired while adapting to new information—the stability—plasticity trade-
off (Carpenter & Grossberg, [1987). In contrast, humans and other natural intelligences adapt to
changes in their environment throughout their lifetime. |Kumaran et al.| (2016) posited that this nat-
ural ability is due to the existence of two complementary learning systems (CLS): one that adapts
rapidly and another that slowly consolidates information across experiences. Inspired by CLS the-
ory, |Anand & Precup| (2023) introduced a decomposition of the value function into a permanent
component, which provides a stable baseline estimate for any situation the agent may face, and
a transient component, which adapts these estimates to the present context by applying temporal-
difference corrections. This approach led to improved performance in both prediction and control
problems with various forms of value function approximation. However, they use the same features
for both value functions. Intuitively, using separate feature spaces for these approximators would
be more aligned with the idea of keeping them complementary: one system should compensate
for the weaknesses of the other, making the framework both more effective and more biologically
plausible. For example, permanent features should intuitively encode stationary or slowly chang-
ing components of the environment, such as the map of a city, while transient features can capture
situation-specific aspects, such as a road being blocked on a given day.

In this paper, we develop this idea, establish some theoretical results and provide empirical evidence
that it scales to large environments. For this purpose, we develop a novel non-parametric approxima-
tor that operates directly on raw observations and can be used to learn efficiently a transient repre-
sentation and value function. Its design combines the strengths of tabular learning, CMACs (Miller
et al.||1990), and tile coding (Sutton, |1995)), enabling precise corrections at a rapid pace, facilitating
online learning, and providing controlled generalization—ultimately leading to faster CRL.

Our main contributions are as follows:

* We build on the permanent—transient value function framework to incorporating separate
feature representations;

Under review as a conference paper at ICLR 2026

* We establish convergence guarantees under linear function approximation for both perma-
nent and transient value functions using a two-timescale convergence technique;

* We demonstrate the effectiveness of the approach in both prediction and control through
small-scale experiments;

* We introduce a novel non-parametric method for representing transient features, which can
be used to complement neural network-based permanent features;

* We evaluate our design in online CRL on the 18M and the 250M Craftax benchmark,
showing favourable comparisons with a strong PQN baseline.

2 BACKGROUND

CRL agents exhibit endless adaptation, as opposed to converging to a fixed solution (Abel et al.,
2023} Sutton et al.l 2007). The need for CRL arises when aspects of the environment—such as
rewards or transition dynamics—change over time (Khetarpal et al.,[2022; Pan et al.|[2025)), or when
the agent’s resources are limited relative to the complexity of its environment, thereby creating the
need for the agent to keep updating its limited knowledge (Kumar et al.,[2025;|Javed & Sutton, 2024
Lewandowski et al., 2025). In such scenarios, the agent must balance retaining useful information
from the past to adapt more quickly when similar situations reappear in the future—stability—with
allocating resources to learn from new experiences—plasticity.

Because neural networks have become the main approach to approximating value functions and
policies (Mnih et al.| 2013)), most CRL research has focused on understanding the stability—plasticity
trade-off in neural networks (Lyle et al |2022; Nikishin et al.| 2022} |Abbas et al.| 2023} |Lyle et al.,
2023} 12024)) and on developing new regularization techniques (Lewandowski et al.l 2024; (Chung
et al., 2024) and optimizers (Kirkpatrick et al.| 2017; Jones et al., 2022} |Dohare et al.| 2024) to
improve it.

Building on earlier ideas of decomposing value functions in model-based RL (Silver et al., |2008),
Anand & Precup|(2023)) proposed splitting both the value function and the action-value function into
two components to trade-off stability and plasticity: permanent components, V) and Q*), which
learn general estimates from the entire agent experience (similar to |Abel et al.| (2018)) in transfer
learning), and transient components, V() and Q(T), which adapt these estimates to the current
situation. The overall value functions, V*1) and Q(P T), are then expressed as sums of these two
components:

VD) (5) = VD (s) + V{E(s), (1
QP (s,a) = Q) (s,a) + Q5 (s,a), ©)

where 6 and w are the parameters of the permanent and transient function approximators, respec-
tively.

The permanent value function is updated more slowly, in phases —either every k timesteps or at task
boundaries (when available)— by using experience from that phase:

s O+ (VD (S1) = Vi (80) VoV (1), 3
Opr1 < O + (Q(PT) (Sky Ak) — ép)(skvAk)) VoQS” (Sk, Av),)

where @ is the learning rate for permanent updates.

In contrast, the transient value function updates rapidly to capture aspects of the value that are not
yet reflected in the permanent estimates:

Wil & W+ oy (Rt+1 + ’YV(PT)(StH) — V(PT)(St)) VWVVST)(St)v @)
Wit Wt ap (Rer +7max Q0(Si11,0) = QU (S, An)) VwQUW (St Ar), - (6)

where « is the learning rate for transient updates. To maintain plasticity, transient parameters are
decayed or reset after each permanent update.

Under review as a conference paper at ICLR 2026

3 PERMANENT AND TRANSIENT REPRESENTATIONS

Since the permanent and transient and value functions should intuitively complement each other, it is
reasonable to imagine them using distinct representations, with different requirements. In CLS (Ku-
maran et al.| 2016)), the equivalent of the transient representation is considered to be the hippocam-
pus, which stores latent embeddings of recent trajectories. These are later replayed during sleep,
resulting in consolidation and slow learning of a permanent representation, thought to be located
mainly in the prefrontal cortex. This representation provides good generalization to new situations
and supports long-term planning.

In the rest of the paper, we consider architectural choices which implement this intuition for CRL
agents. Specifically, the permanent representation should be expressive enough to learn baseline
predictions for any situation the agent might encounter. Learning can be slow, but the information
acquired should persist and be useful for a long period of time (ie. high stability). Therefore,
the permanent representation should support broad generalization of predictions between similar
situations. Many neural network architectures, such as feedforward, convolutional, or recurrent,
meet these desiderata, making them good candidates for the permanent value function.

The transient representation should support online learning at a rapid pace (ie. high plasticity), in
order to adapt quickly to new situations. Moreover, if we assume that the agent’s circumstances
can change rapidly, the transient representation should facilitate learning precise estimates, with
minimal or carefully controlled generalization around the current data. Additionally, the transient
representations should allow fast and accurate information retrieval. As in CLS, knowledge stored
in the transient representation should support long-term learning of the permanent representation.

In the following sections, we present both theoretical and empirical analysis of simpler architectures
based on these intuitions. Then, in Sections[6]and[7} we develop and test a new approach to imple-
menting the transient memory, which respects the goals above while providing better generalization
than simple replay buffers.

4 THEORETICAL RESULTS

In this section, we study the convergence of permanent and transient value function updates when
these are based on different feature spaces, by leveraging the two-timescale proof technique pio-
neered by Borkar (see Appendix [2) (Borkar, [1997). While his approach is general and broadly
applicable, the conditions can be simplified in the context of RL, as shown by Bertsekas & Tsitsiklis
(1996); [Tsitsiklis & Van Roy| (1996)) for a single iteration. In particular, the Lipschitz assumption
is satisfied by showing that the expected update in matrix form (ie. the key matrix) is well-defined
and positive definite. His final assumption is satisfied by first showing that the noise terms form
martingale difference sequence with zero mean and bounded variance. In our analysis, we consider
updating permanent value function at each timestep.

We make the following assumption

Assumption 1. The step-sizes @ and o satisfy }, @ = o0, 3, ay < oo, Y, =00, a7 <
00, lim¢—,00 5+ — 0.

Assumption 2. The permanent and transient feature matrices, ® € RISI*? and Z € RISI¥! are

full column rank, ie. the column vectors are linearly independent. Also, their norms are bounded,
|®]] < My, || Z]|| < My where My and M, are constants.

Assumption 3. There are |V tasks and task 7 is i.i.d. sampled according to p,. Each task is an MDP,
M, = (S, A, R, Pr,7), let E. denote the expectation with respect to the task distribution. The
rewards for each task R, are bounded. The task boundaries are observable.

Assumption 4. Every task, 7, induces irreducible, aperiodic Markov chain under the fixed evalua-
tion policy 7 and the chain is rapidly mixing:

|Prr (S = 8S0) — dr(s)| < Cot, ¥Sy € S,0 < 1,

where C is a constant.

"We use the notations defined here in the proofs presented in Appendix.

Under review as a conference paper at ICLR 2026

Theorem 1 (Main result). Under Assumptions[IHd] the sequence of expected updates computed
by permanent and transient updates converge to a unique fixed point:

6" =E,[®7 D, 115, 'E.[07 D, Zw} ")),
wi=wiP) — (27D (I = yPr)2) " 27D (I — Pr.r) D",
where
Nz, = Z (27D (I~ vPa:)Z) " Z7Do(I = 7Pry),
wy P = 2 (27D (I —vPrs)Z) " Z"D, Ry

Proof. We outline the proof here, with full details provided in Appendix.

Because of the disparity in learning rates between permanent and transient updates, the permanent
estimates appear stationary while the transient values are being updated. And, the transient values
appear converged when analyzing permanent updates.

We first establish the convergence of the transient updates, treating the permanent values as fixed,
by verifying the conditions outlined in Theorem [3| (Tsitsiklis & Van Roy, [1996) (see Lemma [I]in
Appendix). By substituting the fixed point of the transient parameters into the permanent updates,
we then show that the required conditions are satisfied for them as well, and therefore convergence
follows from Theorem [2| (Borkar, |1997) (see Lemma in Appendix). O

Corollary 1. If Z = @, then

0" =E.[07D,0] ' E,[07Dow("]

o (ID) _ g

Moreover, in the single-task setting, 0* = WEI:TD) and wri=0.

Proof. The proof is included in Appendix [2] O

The above corollary implies that in the single-task setting, if both the permanent and transient value
functions are approximated using the same feature representation, then the permanent value function
alone suffices to capture the predictions, while the transient component converges to zero.

5 SMALL-SCALE EXPERIMENTS

We conducted experiments on both prediction and control problems, where the value function and
action-value function were estimated using a linear function approximator. In these experiments,
we assume that the agent’s experience can be divided into tasks, and that the task boundaries are
known to the agent (semi-continual RL). The transition dynamics remain fixed across tasks, while
the reward function changes. Through these experiments, we show that using separate features to
approximate permanent and transient value functions results in faster adaptation in CRL. The pseu-
docode is provided in Appendix[T]and[2]and the details of hyperparameter sweeps in Appendix [A.2]

5.1 PREDICTION

For the prediction problem, we use the 5 x 5 discrete gridworld environment shown in Fig.|l| The
agent starts in the central state and can choose from four navigation actions, one for each cardinal
direction. Each action typically moves the agent to the adjacent state, but the intended action is
replaced by one of the two perpendicular actions with 10% probability. The agent receives a reward
when it transitions into a designated goal state, located in one of the corners highlighted in green;
otherwise, no reward is given. Rewards are modified across tasks to introduce non-stationarity, as
described in Table[I]in Appendix.

Under review as a conference paper at ICLR 2026

We use a Fourier basis (Konidaris et al., [2011) up to second order to approximate the value func-
tion. In our variant of PT-TD learning, second-order features are used to approximate the transient
value function, while first-order features are used to approximate the permanent value function. The
original PT-TD learning method (denoted as NeurIPS) uses all features for approximating both per-
manent and transient value functions. In both variants, the transient weights are reset to zero at the
beginning of each task to induce plasticity, while previously learned values are retained through the
permanent weights.

For comparison, we include two TD-learning baselines on which PT-TD
G 2 learning is built. In the reset variant, all function-approximator weights are
reset to zero at the start of each new task (full plasticity). In the continual

variant, the agent continually updates its estimates on top of previously
A learned approximations. All algorithms are hyperparameter tuned thor-
oughly as outlined in Appendix [A.2]

G 4 To evaluate performance, we use a uniformly random policy with a dis-
count factor of 0.9. Each experiment runs for 1000 episodes, with the task
Figure 1: Grid task. ~ changing every 100 episodes. The agent must therefore continually up-
date its estimates to adapt to the current task. We use root mean squared
value error (RMSVE) as a performance metric (the lower, the better). We report the mean and 90%
confidence intervals over 30 random seeds, computed with z* = 1.645.

Results: The results are shown in Fig. 2a In our variant, higher-order terms are used only for
estimating the transient value function, enabling quick, low-variance, and precise adjustments to
the permanent value function, resulting in the lowest overall RMSVE. First-order features provide
sufficient expressivity while remaining low variance, making them well-suited for approximating
the permanent value function (see Figure[9). The NeurIPS variant has slightly higher RMSVE due
to the increased variance from using all features to approximate both value functions. Both PT-TD
learning variants retain prior knowledge through the permanent value function, leading to lower
error at the onset of tasks that reappear. In contrast, the TD-learning baselines perform poorly, as
they fail to preserve previous predictions while simultaneously adapting to new tasks, corroborating
prior findings (Anand & Precupl [2023).

Discrete Grid (Fourier: 2,1) ChainMDP

—— PT-TD (Ours) — 1D
0.25+ A e == PTTD(NeurIPS) .~ —— TD (w/ Reset)

j\ \ \ 0.4
015+ | 1
W (W A 4N [0g| — PTQ(OUrS) H— Qiealfing
0.10- - o R YR Ry —— PTQ(NeurlPS) “— Q-leafning (Reset)
0 200 400 600 800 1000 0 50 100 150 200 250 300
Episodes Episodes
(a) Prediction results. (b) Control results.

Figure 2: Prediction and control results in Semi-CRL. Our method (red line) achieves lower RMSVE
in prediction and higher cumulative rewards in control compared to baseline algorithms.

5.2 CONTROL

Q (Q For the control problem, we use the simple
= e @ e ° chain environment with seven states shown in
A el o e et e Fig. B] The agent starts in the central state
P [Illifi} L',_f-i‘—,'] [&lﬂ {f‘\".’] [I ';52} {}".—".’] [‘;EE;} and can choose either the left or right action
waoon Lo fos] (043 [0 [oag] (012 to move to the neighbouring state in the cor-
T e N I (2 I I X responding direction, with a 10% probability
of a reversed effect. Goal states with positive
Figure 3: Chain task. rewards are located at both ends of the chain.
Non-stationarity is introduced by varying the

reward magnitude across tasks, as described in Table 2]in Appendix.

Each state is represented using four features: the first three correspond to the red, green, and blue
(RGB) components of the state, while the fourth encodes the light intensity, which depends on
which end of the chain contains the reward. In our variant of PTQ-learning, the first three features

Under review as a conference paper at ICLR 2026

are used to approximate the permanent value function, and the last feature is used for the transient
value function. In contrast, all other algorithms we compare against—including the NeurIPS variant
of PTQ-learning and the reset and non-reset variants of Q-learning—use all features to approxi-
mate the value function. For the reset variant of Q-learning, the function-approximator weights are
reinitialized at the beginning of each task.

We use discount factor of 0.99 and compute episodic returns to compare various algorithms. We run
the experiment for 300 episodes, with the task changing every 50 episodes. We report the mean and
90% confidence intervals over 30 random seeds, computed with z* = 1.645.

Results: The results are shown in Fig. [2b] Because our approach uses a single reward-correlated
feature to adjust transient value estimates, adaptation is rapid. It is the only method that learns a
meaningful behaviour within the first 50 episodes and re-adjusts it within five episodes whenever
tasks change. PTQ-learning with all features fails to learn a meaningful policy during the initial
50 episodes and adapts marginally more slowly when tasks subsequently change. The reset variant
of Q-learning performs the worst, as no prior knowledge is retained at the start of each task. The
continual variant of Q-learning requires more time to overcome bias in its action-value estimates
and is therefore slower to adapt.

These experiments demonstrate that using separate features for the permanent and transient value
functions results in quicker adaptation.

6 NON-PARAMETRIC TRANSIENT MEMORY

O/

1-»,w,1

Observation

(a) An end-to-end overview of transient memory. (b) Transient value table.

Figure 4: (a) Four-step process: (1) tokenization; (2) hashing; (3) binning; (4) value estimation. (b)
Within each table, the value of the query observation is weighted by p, and the remaining mass,
(1 — p), is distributed among its neighbours to form the estimate.

In this section, we introduce a new non-parametric architecture that meets the desiderata of a tran-
sient memory (as described in Sec. [3)), inspired by tile coding (Sutton| [1995) and CMACs (Miller
et al.l [1990).

We suppose that each observation consists of several channels, with each channel indicating the pres-
ence or absence of a specific item type in a particular location in the agent’s view. Many commonly
used RL environments, such as gym-Minigrid (Chevalier-Boisvert et al., [2023)), Craftax (Matthews
et al., 2024)), and MinAtar (Young & Tian, |2019), are structured in this way. This assumption will
allow us to produce hash signatures of observations using MinHash (Broder, [1997).

The overall process is illustrated in Fig.|4] It transforms an observation into a sparse, hashed repre-
sentation that supports non-parametric value estimation with controlled generalization. The pipeline
has four main stages:

1. Tokenization: Each observation is converted into a set of discrete tokens, where each token
encodes the type of object present at a particular (x, y) position in the agent’s view. This converts
the raw grid-like observation into a symbolic set representation.

2. Hashing: The tokenized set is mapped to a compact hash signature and an auxiliary tag using
several independent MinHash functions. MinHash is used because it preserves the Jaccard similar-
ity: the probability that two sets produce the same MinHash value is exactly their Jaccard scoreﬂ

>The Jaccard score between two sets A and B is, J(A,B) = }ﬁggi, and it is widely used in re-

trieval (Broder, [1997), bioinformatics (Ondov et al., 2016), and clustering (Tan et al.| 2016)).

Under review as a conference paper at ICLR 2026

As a result, observations that share many elements produce similar signatures (ie. overlap in many
bits), which forms the basis for local generalization.

3. Binning: The signature is partitioned into multiple subsequences, each of which indexes into a
bin in a transient table. Conceptually, each table corresponds to one tiling in tile coding (Sutton,
1995)). Within a bin there are S slots. When a new observation maps into a bin, it occupies an empty
slot if available; otherwise, the least recently used (LRU) slot is evicted. The slot’s initial value is
set to the average of values already stored in that bin, so new entries inherit some local context.
The auxiliary tag computed in the previous step is also stored in the slot, making it unique to that
observation (see Alg.[3).

4. Value estimation: To induce generalization akin to CMACs (Miller et al., [1990), the value of a
query observation is not taken from a single slot alone. Instead, its estimate is a convex combination
of the focal slot and the other occupied slots in the matched bin (see Fig. Ab):

T T 1-p T
QD) (a5 k) = pQiD) (a5 k) + (s_1 > Qi (05, a5 k), (7)
J#i
where p controls the relative weight of the focal slot versus its neighbours, x is the query observation,
o; is the observation stored in slot j of the matched bin, S is the total number of slots per bin, and

QEJTF)I (x,a; k) is the transient value of the (x, a) pair estimated by the k-th table. This encourages
smooth interpolation between similar observations while still preserving distinct slot identities. The
final transient value is obtained by summing the estimates from all transient tables. For more details,
see[d]and[3]in Appendix.

Since several tables and their corresponding bins contribute to the overall estimate of the transient
value function, the TD-error is distributed among them in proportion to their contributions (see [5]in
Appendix). Specifically, the TD-error is first split evenly across all T tables, and within each table
it is further divided among the slots in the matched bin. The focal slot receives weight p, while
its neighbouring slots share the remaining weight H. The updates are analogous to those in tile
coding:

o
T
where « is the learning rate of the transient updates, 7" is the total number of tables, and J; is the
TD-error at time ¢. The weighting factor 7y, ; reflects the contribution of slot % in table &:

QI (O, Avi i) QY7 (Or, Ags ki) + =i, ®)

0, if slot ¢ stores the query observation in the matched bin,
Nkeyi = ﬁ, if slot 7 is a neighbour in the same bin,
0, otherwise.

Although the transient table has a fixed size and older observations within a bin are evicted using a
LRU strategy, it can still retain observations from a long time ago if temporally adjacent states are
similar and therefore continue to map to the same bin, while observations encountered much later
differ from those earlier states and are hashed into different bins, leaving the older ones untouched.

7 EXPERIMENTS: CRAFTAX-CLASSIC

We use the Craftax-Classic environment for large-scale experiments. The environment is open-
ended, containing 22 achievements of varying difficulty. At each step ¢, the agent receives a 7 x 9
grid observation containing the object types in its view (Fig.[5)), along with its inventory (e.g., wood,
stone, or crafted tools) and intrinsic variables (e.g., health, hunger, or thirst). The agent can take
one of 17 available actions. Within each episode, it receives a reward the first time it completes an
achievement, such as collecting coal or crafting an iron pickaxe. Simpler achievements yield smaller
rewards, while more advanced ones yield larger rewards. An episode ends when its length reaches
1000 steps, when the agent completes all 22 achievements, or when it is killed due to a zombie,
skeleton, or by depletion of its intrinsic variables. More details can be found in Matthews et al.
(2024).

Under review as a conference paper at ICLR 2026

We conducted two experiments: online learningﬂ to demonstrate the effectiveness of our method in
online CRL, and benchmarking with 250M, to show the competitiveness of our approach in a higher
sample-complexity regime.

For the 250M benchmarking, the agent interacts with 1024 environ-
ments simultaneously, reducing the runtime for both our approach
and the baselines to under 6 hours on a H100 GPU. It is worth not-
ing that we use parallel environments only to reduce wall-clock time
and enable faster iteration. An ideal, general-purpose CRL algorithm
should learn effectively from a single stream of experience.

Baselines: We compare our approach against PQN, the state-of-the-
art value-based algorithm on Craftax (Gallici et all, [2025), along-
side three variants: PTQ-IHT, which utilizes Index Hash Tables
(IHTs) rather than slot-based memory; TM-Only, which relies solely
Figure 5: Craftax Env. on the non-parametric transient approximator (Sec. [6); and PTQ-
NeurIPS (Anand & Precup} [2023)), a fully neural network-based base-

line.

In this experiment, PQN aggregates

Returned Episode Returns Returned Episode Returns data over 32 interaCtiOﬂ StepS. IIl
15- the 250M benchmark, we evaluate

PQN(1) (one gradient step per batch)
and PQN(32) (32 gradient steps via
minibatches), and in the online ex-
periment, PQN uses 8 gradient steps.

IS

10-

N

{n

/
v M/\ ” 5
'—— PTQ(Memory) ~—— PTQ(IHT)
0- — PQN —— PTQ(NeurlPS)
TM-only 0-

Episode Return
Episode Return

o W’A Q(Memory) TM-only

S —mum. - The hyperparameters for PQN were
oM 5M 10M 15M om som 100M 150m 200m 250w adopted from the PQN library.
Environment Steps Environment Steps

For our approach, PTQ-Memory, we
use a neural network to approximate
the permanent value function and
the non-parametric approximator de-
scribed in Sec. [f] to approximate the
transient value function. For the per-
manent neural network, we adopt the same hyperparameters and network architecture as PQN. For
the transient memory, we tokenize the observation and append inventory, intrinsic values, and light
level after quantizing (see Alg. [6]for details). The hash signature length is 256, which we split into
two subsequences of 128 bits to obtain the bin indices for two tables. Each table has 2048 bins and
32 slots. We use a learning rate of 1.3/2 for each table, a decay factor of 0.95, and p = 0.85. For
a fair comparison with baselines, we divide the data into 32 minibatches and update the permanent
values toward the latest estimate of the overall value function, following [Anand & Precup| (2023).
These hyperparameters were obtained by sweeping through candidate values for each parameter
while keeping the others fixed. Additional details are provided in Appendix [A:3] We used the same
method to find the hyperparameters for baselines.

(a) Online Experiment Results (b) 250M Experiment Results

Figure 6: PT(Memory) and PT(IHT) learns online, and out-
performs other approaches on the 250M benchmark.

Results: The main results, averaged over 3 seeds for the online experiment (due to computational
constraints) and 10 seeds for the 250M benchmarking, are shown in Fig.[6} per-achievement results
are detailed in Appendix Fig.[I0] Parameter ablation results are presented in the Appendix [T2{I7]

Online Performance: As shown in Fig. [6a] our approach, PTQ-Memory, successfully learns in the
fully online setting. This success stems from the transient memory’s ability to perform precise, local
updates where generalization is explicitly controlled, preventing interference between states. In
contrast, the PTQ-IHT ablation (mimicking Tile Coding) achieves fast initial updates but degrades
over time. Due to the large observation space, the lack of slots and controlled generalization in
IHTs leads to undesirable hash collisions. This results in over-generalization and poor long-term
value estimation, empirically validating the necessity of our slot-based design. The PTQ-NeurIPS
baseline, which relies on a neural network for transient estimates, fails completely in the online

3Strictly speaking it is a low-parallelism setting since the agent interacts with two instances of the environ-
ment (for 16M timesteps). We use two instances to reduce the experiment runtime to about 18 hours on a H100
GPU. We expect the results to carry over when the experience data source is reduced to a single stream.

https://github.com/mttga/purejaxql/tree/main

Under review as a conference paper at ICLR 2026

setting. This confirms that gradient-based methods suffer from update instability and slow initial
learning when denied large batches (Mnih et al.|[2013}; |Elsayed et al.,[2024)). Similarly, the TM-only
method performs poorly, confirming that transient memory alone lacks the capacity for effective
long-term learning. Finally, PQN fails to learn rapidly in the low-parallelization setting as it relies
on batching (32 steps) and environment parallelization to stabilize gradients.

250M Benchmarking: As shown in Fig.[6b]and Fig.[T1] our method outperforms all baselines in the
extensive 250M step benchmark. The benefits are most evident in the early training stages: our ap-
proach surpasses a return of 10 in under SOM steps—twice as fast as PQN(32)—and reaches a return
of 15 within 150M steps, whereas PQN(32) requires over 200M steps. It also achieves higher scores
across all learnable achievements. While the PTQ-IHT variant performs competitively here, it still
suffers marginally from collision-induced noise. This performance difference highlights the comple-
mentarity of our estimators: the transient component provides rapid, local feature discovery, which
accelerates the permanent component’s ability to generalize. Among PQN baselines, PQN(32) out-
performs PQN(1) due to multiple gradient updates per step, though this minibatch strategy risks
introducing primacy bias (Nikishin et al.; 2022 |D’Oro et al., 2022)).

Overall, these results demonstrate that our approach is well-suited for online CRL on complex tasks.

8 EXPERIMENT: GENERALIZATION TO IMAGE-BASED TASKS

This section provides preliminary evidence of the generalizability of the non-parametric transient
memory (Section [6) to image-based domains.

Task: We evaluate our approach on a non-stationary, image-based
MDP consisting of five states and five actions. Observations for
each state are sampled from specific categories of the CIFAR-10
dataset. We evaluate three variations of this task by restricting the
sub-sampled data size to 250, 500, and 1000 images per category.
Transitions are stochastic: selecting the rewarding action (+1) leads
to the next state w.p. 0.8 (otherwise remaining current w.p. 0.2),
while suboptimal actions yield a small negative penalty and result in
remaining in the current state w.p. 0.8. Rewards are perturbed with
Gaussian noise (u = 0,0 = 0.01). To induce non-stationarity, the
optimal action is switched every 100k timesteps (from a set of three)
over a 600k timestep duration. We use v = 0.9. We compare the five
algorithms from Section [/| (all fully online except PQN) and report
mean rewards over 100 timesteps (90% C.I. over 30 seeds). Hyperparameter details are provided in

Appendix

Tokenization: To enable MinHash hashing on image inputs, we first train a CIFAR-10 CNN classi-
fier. We extract 256-dimensional features from the penultimate layer and binarize them via median
thresholding. Our analysis revealed high similarity between these vectors (inter-class Hamming dis-
tance ~ 130 vs. intra-class ~ 113). We append positional indices (1 to 256) to the binary vector,
analogous to Transformer positional encoding (Vaswani et al.,|2017)) and the spatial coordinates used
in symbolic observations. This augmented vector is then processed by MinHash to map observations
to transient memory slots.

Figure 7: Image Task

Image task (250) Image task (500) Image task (1000)
0.8-

0.8+ 0.6

0.6- 0.6

0.4+

f“

—PTQ(Memigry) — PQN
—\PTQUHT) TM-only
—— PTQ(NeurlPs)

0.4+ —— PTQ(Memory) —— PQN 0.4-
—— PTQ(IHT) TM-only

—— PTQ(NeurlPs)

—IPTQ(Memgry) — PQN
—— 'PTQUHT) TM-only
—— PTQ(NeurlPs)

0.2
0.2+

- |

-0.2-

Reward per step
Reward per Step
Reward per Step

0.2

0.0 f{ 0.01 {

ok 100k 200k 300k 400k 500k 600k ok 100k 200k 300k 400k 500k 600k ok 100k 200k 300k 400k 500k 600k
Environment Steps Environment Steps Environment Steps

(a) Image Task (250) Results (b) Image Task (500) Results (c) Image Task (1000) Results

Figure 8: PTQ(Memory) variant adapts the fastest when changes occur in the environment.

9

Under review as a conference paper at ICLR 2026

Results: The results on Image MDPs, presented in Figure [§] mirror the trends observed in the
Craftax experiments. The PTQ-Memory variant demonstrates superior performance. By utilizing
memory slots to separate values and controlling generalization via p, it ensures precise transient
updates. This mechanism enables rapid adaptation to task changes—a crucial advantage over the
neural-network-based baselines. In contrast, PTQ-NeurIPS and TM-only fail to learn meaningful
policies due to update instability and insufficient capacity, respectively. PQN achieves stability
through batch updates but suffers from slow initial learning and slow recovery after task changes.
Similarly, PTQ-IHT is hampered by the size of observation space, where increased hash collisions
lead to detrimental over-generalization and degraded value estimates. These findings provide evi-
dence that the memory-based Permanent-Transient (PT) approach successfully extends to complex
visual domains.

9 DISCUSSION AND CONCLUSION

In this paper, we extended and enhanced the permanent-transient value function decomposition
by incorporating separate feature representations to further improve performance through a better
stability—plasticity trade-off. Specifically, we leveraged slowly evolving or static features—either
hand-crafted (e.g., Fourier bases) or learned using neural networks—for the permanent component,
alongside reward-predictive, fast-evolving, or non-parametric features for the transient component.
This design yielded improved performance in both small-scale and large-scale experiments.

The backbone which allows our approach to scale is a novel MinHash-based non-parametric approx-
imator that enables rapid online learning like tabular RL, local generalization like CMACs and tile
coding (but controlled via a hyperparameter, p), and efficient storage and retrieval of observations
and values, all while remaining modest in size relative to the complexity of the environment. We
explore its use for estimating the transient value function in CRL, though its benefits may extend
more broadly.

While tokenization is natural for symbolic observation, we leveraged a pre-trained convolutional
neural network to obtain tokens in the image experiment. This setup allowed us to isolate and
demonstrate the core contribution: the transient memory’s ability to adapt instantly for a pixel-based
observation. This requirement can be relaxed in future work by: leveraging a pretrained vision
encoder or traditional CV techniques (bag of visual words) (Dosovitskiy| 2020;|Radford et al.,[2021));
adapting deep hashing to bypass the tokenization step and directly compute a hash signature (Luo
et al.,|2023); exploiting the inductive biases of randomly initialized CNNs along with a small, trained
projection layer to obtain the token vector (Farebrother et al., 2023)); or simply treating individual
pixels as tokens, analogous to the symbolic setting.

Our non-parameteric memory share some similarities with episodic memory (Pritzel et al.l [2017):
while both approaches use key-value storage, Episodic Memory typically acts as a non-parametric
replay buffer that stores and retrieves specific past returns (or Q-value estimates) via complex kernel
regression (averaging neighbours). In contrast, our non-parametric component is a function approx-
imator. The values stored in our hash table are residuals, learned and updated via TD-error using
simple summation. Consequently, our approach is designed for rapid adaptation in continual RL,
rather than to accelerate single-task convergence.

Despite these contributions, many research questions remain open in the permanent—transient frame-
work: extension to policy gradient algorithms; developing mechanisms for selective consolidation
(determining when and what to transfer to permanent memory); integrating recurrent neural net-
works to fully realize memory; applying meta-learning to automate transient parameter tuning (Xu
et al.,2018)); and investigating other architectural choices for efficient permanent and transient learn-
ing. Additionally, combining our approach with neural networks-based continual learning strategies,
such as EWC (Kirkpatrick et al.l [2017)), offers a promising direction to further stabilize long-term
retention in the permanent component.

Conclusion: Ultimately, an RL agent’s ability to continually learn from new experiences is crucial
both for advancing our scientific understanding of intelligence and for building systems that perform
reliably in real-world conditions. Our framework advances this goal by demonstrating that separate
representations is critical for a better trade-off between stability and plasticity that scale to complex,
non-stationary environments.

10

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All code and configuration files re-
quired to reproduce our experiments will be released publicly upon acceptance. Our implementation
builds on the publicly available purejaxqll codebase, and we provide pseudocode for our approach
in Appendix [6] Model architectures, hyperparameters, and training procedures are described in
Section /| and Appendix We use the publicly available Craftax environment (Matthews et al.,
2024) for large-scale experiments, and all necessary details to reproduce the synthetic environments
are included in the paper. Details on random seeds, hardware, and GPU usage are provided in the
corresponding sections of the main paper. We used ChatGPT, Copilot, and Gemini for code auto-
completion, beautifying plots, and developing hashing code in JAX. We also acknowledge the use
of LLMs (ChatGPT, Apple writing tools, Al mode in Google Search, and Grammarly) for grammar
correction and polishing certain parts of the paper.

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity
in continual deep reinforcement learning. In Conference on lifelong learning agents, pp. 620-636.
PMLR, 2023.

David Abel, Yuu Jinnai, Sophie Yue Guo, George Konidaris, and Michael Littman. Policy and value
transfer in lifelong reinforcement learning. In International Conference on Machine Learning,
pp- 20-29. PMLR, 2018.

David Abel, André Barreto, Benjamin Van Roy, Doina Precup, Hado P van Hasselt, and Satinder
Singh. A definition of continual reinforcement learning. Advances in Neural Information Pro-
cessing Systems, 36:50377-50407, 2023.

Nishanth Anand and Doina Precup. Preferential temporal difference learning. In International
Conference on Machine Learning, pp. 286-296. PMLR, 2021.

Nishanth Anand and Doina Precup. Prediction and control in continual reinforcement learning.
Advances in Neural Information Processing Systems, 36:63779—63817, 2023.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Scientific, 1996.

Vivek S Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29(5):
291-294, 1997.

Andrei Z Broder. On the resemblance and containment of documents. In Proceedings. Compression
and Complexity of Sequences 1997 (Cat. No. 97TB100171), pp. 21-29. IEEE, 1997.

Gail A Carpenter and Stephen Grossberg. A massively parallel architecture for a self-organizing
neural pattern recognition machine. Computer vision, graphics, and image processing, 37(1):
54-115, 1987.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023.

Wesley Chung, Lynn Cherif, David Meger, and Doina Precup. Parseval regularization for continual
reinforcement learning. Advances in Neural Information Processing Systems, 37:127937-127967,
2024.

Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-
mood, and Richard S Sutton. Loss of plasticity in deep continual learning. Nature, 632(8026):
768-774, 2024.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.
In Deep Reinforcement Learning Workshop NeurIPS 2022, 2022.

11

https://github.com/mttga/purejaxql

Under review as a conference paper at ICLR 2026

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Mohamed Elsayed, Gautham Vasan, and A Rupam Mahmood. Streaming deep reinforcement learn-
ing finally works. arXiv preprint arXiv:2410.14606, 2024.

Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin,
Pablo Samuel Castro, and Marc G Bellemare. Proto-value networks: Scaling representation learn-
ing with auxiliary tasks. arXiv preprint arXiv:2304.12567, 2023.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus
Foerster, and Mario Martin. Simplifying deep temporal difference learning. The International
Conference on Learning Representations (ICLR), 2025. URL https://arxiv.org/abs/
2407.04811.

Khurram Javed and Richard S Sutton. The big world hypothesis and its ramifications for artificial
intelligence. In Finding the Frame: An RLC Workshop for Examining Conceptual Frameworks,
2024.

Matt Jones, Tyler R Scott, Mengye Ren, Gamaleldin Fathy Elsayed, Katherine Hermann, David
Mayo, and Michael Curtis Mozer. Learning in temporally structured environments. In The
Eleventh International Conference on Learning Representations, 2022.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforce-
ment learning: A review and perspectives. Journal of Artificial Intelligence Research, 75:1401—
1476, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521-3526, 2017.

George Konidaris, Sarah Osentoski, and Philip Thomas. Value function approximation in rein-
forcement learning using the fourier basis. In Proceedings of the AAAI conference on artificial
intelligence, volume 25, pp. 380-385, 2011.

Saurabh Kumar, Henrik Marklund, Ashish Rao, Yifan Zhu, Hong Jun Jeon, Yueyang Liu, Ben-
jamin Van Roy, et al. Continual learning as computationally constrained reinforcement learning.
Foundations and Trends® in Machine Learning, 18(5):913-1053, 2025.

Dharshan Kumaran, Demis Hassabis, and James L. McClelland. What learning systems do intelligent
agents need? complementary learning systems theory updated. Trends in cognitive sciences, 20
(7):512-534, 2016.

Alex Lewandowski, Michat Bortkiewicz, Saurabh Kumar, Andrds Gyorgy, Dale Schuurmans, Ma-
teusz Ostaszewski, and Marlos C Machado. Learning continually by spectral regularization. arXiv
preprint arXiv:2406.06811, 2024.

Alex Lewandowski, Aditya A Ramesh, Edan Meyer, Dale Schuurmans, and Marlos C Machado.
The world is bigger: A computationally-embedded perspective on the big world hypothesis. In
Workshop on Reinforcement Learning Beyond Rewards@ Reinforcement Learning Conference
2025, 2025.

Xiao Luo, Haixin Wang, Daqing Wu, Chong Chen, Minghua Deng, Jianqiang Huang, and Xian-
Sheng Hua. A survey on deep hashing methods. ACM Transactions on Knowledge Discovery
from Data, 17(1):1-50, 2023.

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in rein-
forcement learning. arXiv preprint arXiv:2204.09560, 2022.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. In International Conference on Machine Learning,
pp- 23190-23211. PMLR, 2023.

12

https://arxiv.org/abs/2407.04811
https://arxiv.org/abs/2407.04811

Under review as a conference paper at ICLR 2026

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, Hado van Hasselt, Razvan Pascanu, James Martens,
and Will Dabney. Disentangling the causes of plasticity loss in neural networks. arXiv preprint
arXiv:2402.18762, 2024.

Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson,
Samuel Coward, and Jakob Foerster. Craftax: A lightning-fast benchmark for open-ended re-
inforcement learning. arXiv preprint arXiv:2402.16801, 2024.

W Thomas Miller, Filson H Glanz, and L Gordon Kraft. Cmac: An associative neural network
alternative to backpropagation. Proceedings of the IEEE, 78(10):1561-1567, 1990.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International conference on machine learning,
pp. 16828-16847. PMLR, 2022.

Brian D Ondov, Todd J Treangen, Pall Melsted, Adam B Mallonee, Nicholas H Bergman, Sergey
Koren, and Adam M Phillippy. Mash: fast genome and metagenome distance estimation using
minhash. Genome biology, 17(1):132, 2016.

Chaofan Pan, Xin Yang, Yanhua Li, Wei Wei, Tianrui Li, Bo An, and Jiye Liang. A survey of
continual reinforcement learning. arXiv preprint arXiv:2506.21872, 2025.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia, Oriol Vinyals,
Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In International
conference on machine learning, pp. 2827-2836. PMLR, 2017.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PmLR, 2021.

David Silver and Richard S Sutton. Welcome to the era of experience. Google Al, 1, 2025.

David Silver, Richard S Sutton, and Martin Miiller. Sample-based learning and search with perma-
nent and transient memories. In Proceedings of the 25th international conference on Machine
learning, pp. 968-975, 2008.

Richard S Sutton. Generalization in reinforcement learning: Successful examples using sparse
coarse coding. Advances in neural information processing systems, 8, 1995.

Richard S Sutton, Anna Koop, and David Silver. On the role of tracking in stationary environments.
In Proceedings of the 24th international conference on Machine learning, pp. 871-878, 2007.

Richard S Sutton, Michael Bowling, and Patrick M Pilarski. The alberta plan for ai research. arXiv
preprint arXiv:2208.11173, 2022.

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data mining. Pearson Educa-
tion India, 2016.

John Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning with function
approximation. Advances in neural information processing systems, 9, 1996.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement learning. Ad-
vances in neural information processing systems, 31, 2018.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

13

Under review as a conference paper at ICLR 2026

A APPENDIX
A.1 THEORETICAL RESULTS

Theorem 2 (Borkar, 1997). Consider two d and | dimensional coupled iterates of the form:
Or1 < Op + (A0, W) + Mys1),)
Wit Wi+ a(C(0s, wy) + Nip), (10)
fort > 0. If,
1. A:R¥* 5 RY C: R — R are Lipschitz,
23 @ =), a4 =00, %, a; =Y, af < oo, limy_,0 f—f — 0,

3. for Fy & o(0, Wi, My, Nip, k < t), t > 0, (My, Fi), (N, Fi) are sequences of
random variables satisfying: Zt g My, Zt oz Ny < oo almost surely,

then the iterates converge converge almost surely to the asymptotically stable equilibria of the
associated limiting ODEs.

Theorem 3 (Tsitsiklis & Van Roy (1996)). Consider an iterative algorithm of the form wy; =
Wi + Ott(A(Xt)Wt + b(Xt)) where,

1. the step-size sequence o satisfies y ., o = 00, >, o < 00,
2. Xy is a Markov process with a unique invariant distribution,

3. A(:) and b(-) are matrix and vector valued functions respectively, for which A =
Eq, [A(X})] and b = E4_[b(X})] are well defined and finite,

4. the matrix A is positive definite,
5. there exists constants K and q such that for all X

© Yo IEx[A(X:)[Xo = X] — Al| < K (1 + h?(X)), and
* Ym0 IEx[b(Xe) [Xo = X] = b|| < K(1+ h9(X)),

N

. for any q > 1 there exists a constant |14 such that for all Xt
o En[h(X,)| Xo = X] < pig(1 + h9(X)).

Then, w converges to W, with probability one, where W is the unique vector that satisfies
Aw, +b=0.

Lemma 1. For any fixed choice of 0, for any task 7 in the task distribution, the sequence of
expected transient updates converges to a unique fixed point.

Proof. We use the proof technique outlined in|/Anand & Precup|(2021);[Tsitsiklis & Van Roy|(1996)
to establish convergence.

Step 1. Transient update as linear stochastic approximation. Dropping the (7, 7) subscript for
clarity, the transient update can be written as

Wipl = Wy + oy (Rt+1 + ’7(9T¢t+1 + W;‘FZt+1) - (9T¢t + W?%)) 2t

= wy + o (0(Xy) + A(Xp)we),

where
b(X:) = 2t (Regr + 907 e — 0T ¢0), A(Xy) = (2 — v2e41) 7,
and X; = (S, Sta1, &1, 2¢).

14

Under review as a conference paper at ICLR 2026

Step 2. Limiting expectations. Define
A= tlggo]E[A(Xt)], b = tlirgo]E[b(Xt)].
Explicitly,

A=Y ds) 2(s) (2(s) 3 Y[Plals)) =[27 DU —P)2]
b= d(s) () (R(s) + 707 Y [Plar(s) — 07 6(s))

s/

=|Z"DR+ Z"D(vP — 1)®6 |

A is positive definite because D (I —~P) has positive row sums (since P is a sub-stochastic matrix)
and column sums (since 17 D(I —yP) = d* —~vd" = (1 —v)d" > 0).

Step 3. Bounded noise. Using mixing of the Markov chain,
[E[A(X)|Xo] = All = || 2" Di(I =vP)Z = Z"D(I = vP)Z||
=[|Zz"(D: = D) = ~P)Z||
< || Z"[| 1D = DI |1 =Pl || 2]
< By -Co' By B

< Kot
IE[B(X:)|Xo] - b|| = |27 (Ds — D)R + Z7(D; — D)(vP — 1)®4)||
<||Z"|| |1D: = DI |R]| + |27 1Dx = DIl |(vP = D] [|@0]|

<]

Therefore,
o0 %) K 3
S IEIAX)IXo] — Al <Y Kio' =| = =K |
t=0 =0 —0o
S — K _
[E[b(X:)|Xo] = b < ZKQO’t =1 720 — Kyl
t=0 t=0

Step 4. Fixed point. Thus, the expected iterates converge to the unique fixed point
wi=A"'b

= Z"D(I —~vP)2) (Z"DR + Z"D(vP — I)¥0)
=ZTD(I —vP)2) ' ZTDR + ZTD(I —vP)2) (2" D(vP — I)V{"))

=|\wi P — (27D (I =Py)2) " ZT DI = APr 1) 20"

Lemma 2. The sequence of expected permanent updates converges to a unique fixed point.

Proof. Step 1. Permanent update with transient fixed point. Since permanent updates evolve on
a slower timescale, we may treat the transient parameters as converged. The update is

9t+l = Ht + oy C(Xt), where C(Xt) = W;/T,Zt(ﬁt.
Define

C=> p(r)> d(s)wFz(s)b(s)

=) p(r)®" D 2w}

T

15

Under review as a conference paper at ICLR 2026

Step 2. Boundedness and Lipschitz condition. For each task 7,
C,=9"D, Zw?,
and using wr = AZH(ZTD R, + ZT D (yP, — I)®0), we obtain
IC. | = [|#7 D, zw?
=||®" D, ZA. " (Z" DR + Z" D (vP, — I)®0)]|

<||®"D,ZA, ' ZT D, || + (R + (vPr — 1)®0)||
S K37

ICll =

> p(r)®" D, Zw,

<3 7D, 2w,
< K.

Thus the mapping is bounded and Lipschitz.

Step 3. Noise boundedness. Because tasks are sampled i.i.d. and each task’s Markov chain is
rapidly mixing, the noise terms have finite variance.

Step 4. Fixed point. Therefore, the expected permanent updates converge to the unique fixed point:
C= Zp(T)CI)TDTZw:
0="> p(r) (@TDTZv(fo’) — "D, Z(Z" D (I —vPr) 2) " 27D, (I - WPW,T)QH*)

0=E.[®"D,Zvy)| ~ E.[0" D, 11, ¢"]

E.[07 D112, ®)0* = E.[®7 D, Zvy "))

0" =E,[07 D, 15,9 'E.[07 D, Zv5 "]

Corollary 2. If Z = ®, then

0" =E,[07D,0] " E,[0"Dow("]
wr = WEDT,TD) —6".

Moreover, in the single-task setting, 0* = wg_rD) and wri =0.

Proof. When & = Z,
My, =Ty, = (8" DI —yPr)®) " &7 D (I — Py ,),
My, ® = & (37 D, (I = yPr,)®) " (87D, (I — APy ,)®) = .
Therefore,

0* =E,[®7D, o] 'E, [T D, dw{ "]

wi=wi) (@TD, (I — APr)®) " T D (I — 7Py,)07,

= W((I,T,TD) — 0*.

16

Under review as a conference paper at ICLR 2026

In the single task setting,

0" = E,[®7 D, @] 'E, [T D, dw{],
= (@"D,®) " ("D, 2) wi ” = wi'",

. (TD) (TD) _ ,(TD) _

— *
W, = W<I>,T —0" = W<I>,'r W<I>,'r

A.2 SMALL-SCALE EXPERIMENTS

Pseudocode for prediction and control with separate permanent and transient features.

Algorithm 1 Prediction with Linear Approximations

1: Initialize: buffer B, parameters 6, w
2: fort =0 — ocodo
3: Take action A;
4: Store state S; in B
5 Observe reward Ry, 1 and next state Sy
Update transient parameters
6: Wit Wi+ o(Rep1 + 7V ED(S40) = VIED(S,)) 2(S5y)

7: if Task ends then
8: for Every Si in B do
Update permanent parameters
9: Opp1 < O+ (VIED(S) — VIPI(S))) ¢(Sk)
10: end for
Reset transient parameters
11: wip1 <0
Clear buffer
12: Reset B
13: end if
14: end for

Algorithm 2 Control with Linear Approximations

1: Initialize: buffer B, parameters 6, w
2: fort =0 — codo
3: Take action Ay
4: Store state Sy, A; in B
5: Observe reward R;, 1 and next state Sy 1
Update transient parameters
6: Wip1 < Wi + Oé(Rt+1 + ymax, QU (S, a") — QED(S,, At))z(St, Ap)
7: if Task ends then

8: for Every (Sk, Ax) in Bdo
Update permanent parameters
9: Orr1 < O + @ (QFD(Sk, Ax) — QP (Sk, Ak)) &(Sk, Ak)
10: end for
Reset transient parameters
11: Wil < 0
Clear buffer
12: Reset B
13: end if
14: end for

Hyperparameter Sweeps for Linear Prediction (best highlighted in bold).

17

Under review as a conference paper at ICLR 2026

TD-learning:
LR = [3e-2, le-2, 3e-3, 1le-3, 3e—-4, le-4]

TD-learning (Reset) :
LR = [3e-2, le-2, 3e-3, 1le-3, 3e-4]

PT-TD (NeurIPS) :
LR-P = [le-2, 3e-3, 1le-3, 3e-4, le-4, 3e-5]
LR-T = [le-1, 3e-2, le-2, 3e-3, le-3, 3e-4]

PT-TD (QOurs) :
LR-P = [le-2, 3e-3, 1le-3, 3e-4, le-4, 3e-5]
LR-T = [le-1, 3e-2, le-2, 3e-3, le-3, 3e-4]

Hyperparameter Sweeps for Linear Control (best highlighted in bold).

Q-learning:
LR = [0.5, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001]

Q-learning (Reset):
LR = [0.5, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001]

PT-Q (NeurIPS):
LR-P (0.03, 0.01, 0.003, 0.001, 0.0003]
LR-T = [0.5, 0.3, 0.1, 0.03, 0.01]

LR-P = [0.03, 0.01, 0.003, 0.001, 0.0003]
LR-T = [0.5, 0.3, 0.1, 0.03, 0.01]

Tasks Used in Experiments

Task Gl G2 G3 G4
1 0 1 0 1
2 1 0 1 0
3 0 0 1 1
4 1 1 0 0

Table 1: Tasks used in Linear Prediction Experiments.

Task o o
1 1 0.1
2 0.1 1

Table 2: Tasks Used in Linear Control Experiments

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

After 750 episodes After 650 episodes After 550 episodes After 450 episodes After 350 episodes After 250 episodes After 150 episodes After 50 episodes

o

3
<

After 950 episodes
= w

PV estimates

00 00 00

2 3 a4
PV estimates

013 013 012 016
014 014 013 3 016
015 015 014 016
016 015 015 : 017

016 016 0.15 019

2 3 a4
PV estimates

12 3

011

016

12 3

011

011

011

012 002

013 005

2 3

011

0.

12 03

019 018 016

-0.04

015

018 018 0.16

02 019 018

011 001

013

TV estimates

TV estimates

PVATV estimates D estimates

a5

2

007

a

043 043

031

018 02 . 016

a

016

2

028

029

012

011

0.07

Figure 9: Value Function Heatmap for the Prediction Task

A.3 CRAFTAX EXPERIMENTS

Hyperparameter Tuning.

19

Under review as a conference paper at ICLR 2026

Craftax Baselines: For the baselines and the permanent network in all variants of PTQ-learning,
we used hyperparameters from the PQN repository, which are consistent with the results published
in the PQN paper. We only tuned minibatches for the PQN baseline, because it determined the
number of steps the permanent network would take, which we also tuned for our approach. Transient
parameters were found by performing a search over a range of values. Craftax: Given the large
hyperparameter space, we used coordinate-wise search: we fixed all hyperparameters but one to a
reasonable baseline and performed a grid search for that single hyperparameter. This process was
then repeated iteratively for each hyperparameter, fixing the newly tuned value before moving to the
next. For each configuration, we ran a total of 150M steps with 1024 environments in parallel, using
AUC as the selection metric. The final results were reported for 250M steps. We used the same HPs
for the online craftax experiment (minibatch was reduced to 8 to fit the smaller batch size).

Transient in Craftax: Given the large hyperparameter space, we used coordinate-wise search: we
fixed all hyperparameters but one to a reasonable baseline and performed a grid search for that
single hyperparameter. This process was then repeated iteratively for each hyperparameter, fixing
the newly tuned value before moving to the next. For each configuration, we ran a total of 150M
steps with 1024 environments in parallel, using AUC as the selection metric. The final results were
reported for 250M steps. We used the same HPs for the online craftax experiment (minibatch was
reduced to 8 to fit the smaller batch size).

Role of HPs.

1. Tables (T') vs. Generalization: Similar to tiles in Tile Coding. More tables spread infor-
mation, increasing generalization. Fewer tables concentrate information, reducing general-
ization.

2. Slots (S) & Eviction: Determines capacity. Too few slots lead to high eviction rates; too
many slots approach tabular memory.

3. Generalization (p): Explicitly controls the mixing of values between slots. p = 1 forces
isolation (no generalization); p < 1 enables local smoothing.

4. Number of Hashes (K): Determines the precision of the MinHash signature. A higher K
better preserves the Jaccard similarity property (improving retrieval accuracy), though with
diminishing returns beyond a certain point.

Non-parametric Transient Memory. The non-parametric transient memory is implemented
through three core methods: Put, which stores incoming observations; Get, which retrieves stored
value estimates; and UpdateTDError, which updates the estimates in proportion to their contribu-
tion. Pseudocode for these methods is given in Algorithms [3J4] and [5]

20

Under review as a conference paper at ICLR 2026

Algorithm 3 PUT method for non-parametric transient memory

1: procedure PUT(M, x)
Require: M: transient memory; z: observation
Ensure: Updated memory M
(sig,tag) < MINHASH(z)
3: bins <~ GETBUCKETS(sig)
Insert observation in all tables
4: fort <~ 0to7T — 1do

»

5: if (CONTAINSTAG(M[t, bins|t]], tag) == false) then
empty-first else LRU
6: slot < SELECTSLOT(M, t, bins|t])
7: M(t, binslt], slot].tag < tag
mean over other valid slots
8: M(t, bins[t], slot].values < INITIALIZE(t, bins]t])
9: else
10: slot < FINDSLOTBYTAG(M[t, bins|t]], tag)
11: end if
12: M(t, bins|t], slot].age + TOUCH(M.clock)
13: end for

14: M.clock < M.clock + 1
15: return M
16: end procedure

Algorithm 4 GET method for non-parametric transient memory

1: procedure GET(M, z, p)
Require: M: transient memory; z: observation; p: mixing weight
Ensure: values

2: (sig,tag) < MINHASH(x)
3: bins <~ GETBUCKETS(sig)
4: values <+ 0

Collect values from every table
5: fort <~ 0to7T —1do

6: slot <~ FINDSLOTBYTAG(M]t, bins|t]], tag)
Weigh the update for matching slot by p
7: values < values +p - M([t, bins[t], slot].values
8: OSlots +— FINDOTHERVALIDSLOTS(M [t, bins|t]], tag)
9: n < LEN(OSlots)
Divide weight (1 — p) equally among other valid slots
10: for s <~ 0Oton —1do
11: values < values +@ - Mt, bins|t], OSlots[s]].values
12: end for
13: end for
14: return values

15: end procedure

A.4 IMAGE EXPERIMENTS

We performed a grid search over all the hyperparameters for the 256-image variant. Once we found
the best values, we fixed them and tested the performance for the 500- and 1000-image variants (see
Figures [I8}20} The best hyperparameter values for each algorithm is provided below:

21

Under review as a conference paper at ICLR 2026

Algorithm 5 UpdateTDError method for non-parametric transient memory

1: procedure UPDATETDERROR(M, z, a, p, 9, o)
Require: M: transient memory; x: observation; a: action; p: mixing weight; §: TD-error; a:
learning rate
Ensure: Updated memory M

2: (sig,tag) < MINHASH(x)
3: bins <~ GETBUCKETS(sig)
4: fort < O0toT —1do
5: slot <— FINDSLOTBYTAG(M(t, bins|t]], tag)
Weight the matching slot by p
6: M(t, bins[t], slot].values[a] <— M[t, bins[t], slot].values[a] + & pé
7: OSlots < FINDOTHERVALIDSLOTS(Mt, bins|[t]], tag)
8: n LEN(OSlots)

Divide TD-error equally among other valid slots by weighting by (1 — p)
9: for s <~ 0ton —1do

10: M(t, bins|t], OSlots[s]].values[a] <— M|t, binst], OSlots[s]].values[a] + 5= (1 —p)o
11: end for
12: end for

13: return M
14: end procedure

Parameter Value
ALG_NAME PON
TOTAL_TIMESTEPS 5 x 108
TOTAL_TIMESTEPS_DECAY 5 x 108
NUM_ENVS 1024
NUM_STEPS 32
EPS_START 0.1
EPS _FINISH 0.005
EPS_DECAY 0.2
NUM_MINIBATCHES 1 for PQN(1), 32 for PQN(32)
NUM_EPOCHS 1
NORM_INPUT True
NORM_TYPE layer_norm
HIDDEN_SIZE 1024
NUM_LAYERS 4
LR 0.0001
MAX_GRAD_NORM 1.0
LR_LINEAR_DECAY True
REW_SCALE 1.0
GAMMA 0.99
Q_LAMBDA False
LAMBDA 0
Environment
ENV_NAME Craftax-Classic-Symbolic-vl

USE_OPTIMISTIC_RESETS True
OPTIMISTIC_RESET_RATIO 16
LOG_ACHIEVEMENTS True

Table 3: Hyperparameters for PON.

22

Under review as a conference paper at ICLR 2026

Algorithm 6 PTQ for Craftax

Require: M: transient memory; 6: permanent parameters; env: environment; 7: total timesteps;
B: buffer; @: permanent LR; «: transient LR; p: mixing weight; e: exploration rate; y: discount;
k: PM update period; A: TM decay
Ensure: Updated 6, M
1: s<-env.reset ()
2: M+ PUT(M,)
3: fort < 1to T, do
permanent values
4 QW)(s) + GETPERMANENT(s, 0)
transient values
5: QM) (s) + GET(M, s, p)
Compute () for current state
6 QUD(s) = QP(s) + QN (s)
Select action (epsilon-greedy over Q)

7. a < EPSILONGREEDY(Q(FT)(s), €)
Step environment
8: (s',r) « env.step(a)

9: M + PUT(M, §')
10: B« BU{(s,a,Q")(s))}
Evaluate () for next state
11: QW) (s") +— GETPERMANENT(s', 0)
12: QM (s") + GET(M, s/, p)
13 QUPN(s) « QP)(s) + Q(s)
TD error and transient update
14: § 4+ ymaxy QD (s a’) — QT (s, a)
15: M + UPDATETDERROR(M, s, a, p, J, @)
Periodic permanent update and TM decay
16: if mod(¢, k) = 0 then

17: 0 < UPDATEPM (M, B, @)
18: B+ {}

19: M <+ DECAYVALUES(M, \)
20: end if

21: s+ ¢

22: end for

23: return 0, M

23

Under review as a conference paper at ICLR 2026

Parameter Value

Permanent Memory

ALG_NAME PTQ
TOTAL_TIMESTEPS 2 x 107
TOTAL_TIMESTEPS DECAY 5 x 108
NUM_ENVS 1024
NUM_STEPS 32 (Permanent memory update frequency)
EPS_START 0.1
EPS_FINISH 0.005
EPS_DECAY 0.2
NUM_MINIBATCHES 32
NUM_EPOCHS 1
NORM_INPUT True
NORM_TYPE layer_norm
HIDDEN_SIZE 1024
NUM_LAYERS 4
LR 0.0001
MAX_GRAD_NORM 1.0
LR_LINEAR_DECAY True
REW_SCALE 1.0
GAMMA 0.99
Q_LAMBDA False
LAMBDA 0
Environment
ENV_NAME Craftax—-Classic—-Symbolic-vl

USE_OPTIMISTIC_RESETS True
OPTIMISTIC_RESET RATIO 16

LOG_ACHIEVEMENTS True
Transient Memory

NUM_TABLES 2

TRANSIENT_TABLE_SIZE 2048

NUM_SLOTS 32

NUM_HASHES 128

CROP_SIZE 7

p 0.85

TRANSIENT_LR 1.3

DECAY 0.95

Table 4: Hyperparameters for PTQ for the results presented in the main paper.

Parameter Value

Hyperparameters
ALG_NAME PON
NUM_MINIBATCHES 4
NUM_EPOCHS 1
NORM_INPUT True
NORM_TYPE layer_norm
LR 0.001

MAX_GRAD_NORM 1.0

Table 5: Hyperparameters for PQN for Image task.

24

Under review as a conference paper at ICLR 2026

Score Returned Episode Lengths Wake Up Place Table
B —— 300/ B — 100 — rrqemony) —
3 — PON —— PTQ(NeurlPS) —— PON ~—— PTQ(NeurlPS) PON
T Teony a0) — Tany
£ 250- = =
£ z z
B 2 z
©2- &) 3 3 60-
g 3 200 5 g
@] 3 3 40-
2150+ = =
14 3 g <
20-
100-
0- 0-
oM 5M 10o0M 15M oM 5M 10M 15M oM 5M 10M 15M oM 5M 1o0M 15M
Environment Steps. Environment Steps. Environment Steps. Environment Steps.
(a) Score. (b) Episode Lengths. (c) Wake Up. (d) Place Table.
Place Plant Make Wood Pickaxe Make Wood Sword Eat Cow
100+ 100+ —— PTQ(Memory) —— PTQIHT) 100+ —— PTQ(Memory) —— PTQIHT) 100+ PTQ(Memory) —— PTQIHT)
—s) Fateunrs) s Fateunrs) ron — Fatheunrs)
]] — Ry] — Ry] — R
= 80 = 80 = 80 = 80
€ € € €
@ 60- @ 60- @ 60- @ 60+
£ £ £ £
g g g g
@ 40- @ 40- @ 40- @ 40-
£ £ £ £
< 20- < 20- < 20- < 20-
N Al MRl 4
0- 0- 0- 0-
oM 5M oM 15M oM 5M oM 15M oM 5M oM 15M oM 5M oM 15M
Environment Steps Environment Steps Environment Steps Environment Steps
(e) Place Plant. (f) Make Wood Pickaxe. (g) Make Wood Sword. (h) Eat Cow.
Defeat Zombie Collect Wood Collect Sapling Collect Drink
100+ — PTQ(Memory) —— PTQUHT) 100+ 100+ — PTQ(Memory) —— PTQUHT)
rou A Pon v
]]] — Teony
=< 80 =< =< 80 =< 80
§ 60- § § 60- § 60-
13 13 13 13
g g g g
L 404 K] L 404 3 404
2 2 2 2
& g g g ‘
20~ 20~ ¥ rotenoy) — pran 20+) r ll “" y
0. Il | 0- —— TMonly 0- !‘I\.Q’ll‘llnu
oM 5M 10M 15M oM 5M 10M 15M oM 5M 10M 15M oM 5M) 15M
Environment Steps Environment Steps. Environment Steps. Environment Steps.
(i) Defeat Zombie. (j) Collect Wood. (k) Collect Sapling. (1) Collect Drink.
Collect Stone Place Stone Defeat Zombie Place Furnace
100+ —— PTQ(Memory) —— PTQUHT) 100+ —— PTQ(Memory) —— PTQUHT) 100+ —— PTQ(Memory) —— PTQUHT) 100+ PTQ(Memory) —— PTQUHT)
—r Pt o — Fateunrs) . — Fateunrs) ron — Foteunrs)
] g] g]] ey
= 80 = 80 = 80 = 80
e e e =
@ 60+ @ 60+ @ 60+ @ 60+
£ £ £ £
§ § § §
3 40- 3 40- 3 40- 3 40-
2 2 2 2
g g g g
20- 20- 20- 20-
ol N ol o M ol n
oM 5M oM 15M oM 5M oM 15M oM 5M oM 15M oM 5M oM 15M
Environment Steps Environment Steps Environment Steps Environment Steps
(m) Collect Stone. (n) Place Stone. (o) Defeat Zombie. (p) Place Furnace.
Collect Coal Make Stone Pickaxe Make Stone Sword Eat Plant
100+ — PTQ(Memory) —— PTQUHT) 100+ — PTQMMemory) — PTQUHT) 100+ — PTQMMemory) — PTQUHT) 100+ — PTQ(Memory) —— PTQUHT)
—— PQN —— PTQ(NeurlPS) —— PON —— PTQ(NeurlPS) —— PON —— PTQ(NeurlPS) PON —— PTQ(NeurlPS)
] oy] oy] oy] oy
= 80 = 80 = 80 = 80
§ 60- § 60- § 60- § 60-
13 £ £ £
g g g g
& 40 & 40 & 40 & 40
£ £ £ £
< 20- < 20- < 20- < 20-
0- 0- 0- 0-
oM 5M oM 15M oM 5M oM 15M oM 5M oM 15M oM 5M oM 15M
Environment Steps Environment Steps Environment Steps Environment Steps
(q) Collect Coal. (r) Make Stone Pickaxe. (s) Make Stone Sword. (t) Eat Plant.
Collect Iron Make Iron Pickaxe Make Iron Sword Collect Diamond
100+ — PTQ(Memory) —— PTQUHT) 100+ — PTQ(Memory) —— PTQUHT) 100+ — PTQ(Memory) —— PTQUHT) 100+ — PTQ(Memory) —— PTQUHT)
—— PQN ~—— PTQ(NeurlPS) —— PON ~—— PTQ(NeurlPS) —— PON ~—— PTQ(NeurlPS) ~—— PTQ(NeurlPS)
e0l — Doy eol — Doy eol — Doy eol — Doy
B B B E
e e e =
@ 60- @ 60- @ 60- @ 60-
£ £ £ £
§ § § §
3 40- 3 40- 3 40- 3 40-
2 2 2 2
g g g g
20- 20- 20- 20-
0- 0- 0- 0-
oM 5M 10M 15M oM 5M 10M 15M oM 5M oM 15M oM 5M oM 15M

Environment Steps

(u) Collect Iron.

Environment Steps

(v) Make Iron Pickaxe.

Environment Steps

(w) Make Iron Sword.

Environment Steps

(x) Collect Diamond.

Figure 10: All achievements in the craftax online experiment.

25

Achievement %

Under review as a conference paper at ICLR 2026

Score
40+
ot | — Thony
—— PQN(1) —— PTQ(IHT)
ol — e — e
@
6 20-
&
&
10-
o]
oM 50M 100M 150M 200M 250M
Environment Steps
(a) Score.
Place Plant
100-
= 80-
e
@ 60+
£
g
3 40-
£
< 20- —— ProMemory) — Theonly
™ =
0- —— PQN(32) ~—— PTQ(NeurlPS)

50M 100M 150M 200M 250M
Environment Steps

(e) Place Plant.

Defeat Zombie

A
i

50M 100M 150M 200M 250M
Environment Steps

(i) Defeat Zombie.

Collect Stone

1001
o 80
2
§ 60-
£
¢
3 40+
S
< 20-
o
OM 50M 100M 150M 200M 250M
Environment Steps
(m) Collect Stone.
Collect Coal
100-
o 80
G 60-
£
g
3 404
2
<
20+
o
Environment Steps
(q) Collect Coal.
Collect Iron
1001 — promemory) — Ti-only
— pan) — rau
| —— PQN(32) ~—— PTQ(NeurlPS)
o 80 o
2
§ 60-
£
¢
3 40+
S
<

250M

50M 100M 150M 200M
Environment Steps

(u) Collect Iron.

Returned Episode Lengths

£ %0 ety
£ e
=3 .
2
g PTQ(Memory) —— TM-only
3 300- — ProwHm
'g PTQN P
2
2

200-

OM 50M 100M 150M 200M 250M

Environment Steps

(b) Episode Lengths.

Make Wood Pickaxe

100+

Achievement %

Wake Up

Q(Memary)
PON(1)

(HT)

— PaNG2) — PTQNeurlPS)

Achievement %

50M 100M 150M 200M 250M
Environment Steps

(c) Wake Up.

Make Wood Sword
100+

Achievement %

50M 100M 150M 200M 250M
Environment Steps

(f) Make Wood Pickaxe.

Collect Wood

100+
o 801
2
H
@ 60- PTQ(Memory) —— TM-only
£ PON(L) — Tl
3 40 PON(2) —— PTQ(NeurlPS)
=
<

20~

0-

50M 100M 150M 200M 250M

Environment Steps

(j) Collect Wood.

Place Stone

Achievement %

250M

50M 100M 150M 200M
Environment Steps

(n) Place Stone.

Make Stone Pickaxe

50M 100M 150M 200M 250M
Environment Steps

(g) Make Wood Sword.

Collect Sapling

100+

o 80-

®

=

@ 60-

£

g

@ 40-

b5

<
20+ —— PTQ(Memory) —— TM-only

— PON() — PraqHT)

o — PON(2) — PTQINeurlPS)

50M 100M 150M 200M 250M
Environment Steps

(k) Collect Sapling.

Defeat Zombie

Achievement %

50M 100M 150M 200M 250M
Environment Steps

(0) Defeat Zombie.

Make Stone Sword

Place Table

— TMeonly
PTQHT)
— PTQNeurlPS)

Achievement %

50M 100M 150M 200M 250M
Environment Steps

(d) Place Table.

Eat Cow

Achievement %

50M 100M 150M 200M 250M
Environment Steps

(h) Eat Cow.

Collect Drink

Achievement %

50M 100M 150M 200M 250M
Environment Steps

(1) Collect Drink.

Place Furnace
100-

Achievement %

50M 100M 150M 200M 250M
Environment Steps

(p) Place Furnace.
Eat Plant

100+ 100+ 100+ QMemory) —— TM-only
QN(1) —— PTQ(HT)

]] I TR s
< 80 < 80 o 80 jeur
§ 60- § 60- Tt-only § 60-

§ 5 g £
2 a0 2 400 PTQMNeus) 3 401
2 2 2
g g &
20- 20- 20-
CNTA
0- - 0- 0-
oM 50M 100M 150M 200M 250M oM 50M 100M 150M 200M 250M oM 50M 100M 150M 200M 250M
Environment Steps Environment Steps Environment Steps
(r) Make Stone Pickaxe. (s) Make Stone Sword. (t) Eat Plant.
Make Iron Pickaxe Make Iron Sword Collect Diamond
100+ —— PTQ(Memory) —— TM-only 100+ —— PTQ(Memory) —— TM-only 100+ —— PTQ(Memory) —— TM-only
vl — rou v " o

Bl ~—— PQN(32) —— PTQ(NeurlPS) Bl —— PQN(32) —— PTQ(NeurlPS) J —— PQN(32) —— PTQ(NeurIPS)
L0 e L0 e L0 e
€ € €
@ 60+ @ 60+ @ 60+
£ £ £
g g g
@ 40- @ 40- @ 40-
£ £ £
< 20- < 20- < 20-

0- sttt 0- e, o
oM 50M 100M 150M 200M 250M oM 50M 100M 150M 200M 250M oM 50M 100M 150M 200M 250M
Environment Steps Environment Steps Environment Steps
(v) Make Iron Pickaxe. (w) Make Iron Sword. (x) Collect Diamond.

Figure 11: All achievements in the craftax 250M experiment.

26

Under review as a conference paper at ICLR 2026

Returned Episode Returns Score Returned Episode Lengths
400-
15-
- = 300-
2 5
219 g
) © 200+
o el
[e] o
u 5 32 a
2 5.
& 16 w i
s 100
— 4
0- — 0, | : ‘ | |
OM 50M 100M 150M 200M 250M OM 50M 100M 150M 200M 250M OM 50M 100M 150M 200M 250M
Environment Steps Environment Steps Environment Steps
(a) Returns. (b) Score. (c) Episode Length.
Figure 12: Effect of minibatch updates to permanent network on performance.
Returned Episode Returns Score Returned Episode Lengths
12.5-
10.0- 3007
c =
£ s
=1 o
® 7.5- g
o —~200-
3 3
8 50 g
o o
“ 25 &100-
0.0-
! ! ! ! ! ! i I I } } } 0- ; ; ; : :
oM 50M 100M 150M 200M 250M OM 50M 100M 150M 200M 250M OM 50M 100M 150M 200M 250M
Environment Steps Environment Steps Environment Steps
(a) Returns. (b) Score. (c) Episode Length.
Figure 13: Effect of p on performance.
12 Returned Episode Returns Score Returned Episode Lengths
— (256, 1) — (256, 1)
10- — (1282 12.5- —— (128,2) 300-
—— (64, 4) —— (64, 4)
E g — (28 10.0- — (32,8) S
E] —— (16, 16) — (16,16) 2
& Y 75- %200+
v 6 s 9
° i °
(o] o
9 4 5.0- a — (256, 1)
& & 100- — (128,2)
2- 2.5- —— (64, 4)
— (32,8)
0- 0.0 ol —— (16, 16)
OM 50M 100M 150M 200M 250M OM 50M 100M 150M 200M 250M OM 50M 100M 150M 200M 250M
Environment Steps Environment Steps Environment Steps
(a) Returns. (b) Score. (c) Episode Length.

Figure 14: Effect of number of tables on Performance (fixed hash signature to 256 bits).

Returned Episode Returns

Returned Episode Lengths

12+
104 300-
c <
¥ 5
[@ (7]
< 6 5 < 200-
3 @ 3
o 4- 2
o o
w 5] Ww'100-
0- ol
OM 50M 100M 150M 200M 250M OM 50M 100M 150M 200M 250M OM 50M 100M 150M 200M 250M
Environment Steps Environment Steps Environment Steps
(a) Returns. (b) Score. (c) Episode Length.

Figure 15: Effect of the decay parameter on performance.

27

Under review as a conference paper at ICLR 2026

Episode Return

Episode Return

10.0-

7.5-

5.0

2.5+

15-

10-

oM

— 0.5

Returned Episode Returns

1251 — 01
— 0.2

0.3

50M 100M 150M 200M 250M

Environment Steps

(a) Returns.

Score

Environment Steps

(b) Score.

50M 100M 150M 200M 250M

Returned Episode Lengths

300-

N
=]
o

— 0.1
— 0.2

0.3
— 0.5

Episode Length

-
o
o

50M 100M 150M 200M 250M
Environment Steps

oM

(c) Episode Length.

Figure 16: Effect of the transient learning rate on performance.

Returned Episode Returns

50M 100M 150M 200M 250M

Environment Steps

(a) Returns.

Score

1.8
1.5
13
1.0
0.9
0.8

oM

(b) Score.

50M 100M 150M 200M 250M
Environment Steps

Returned Episode Lengths

— 1.8
— 15

13
— 1.0
— 0.9
— 0.8

50M 100M 150M 200M 250M
Environment Steps

oM

(c) Episode Length.

Figure 17: Effect of the transient learning rate on performance.

Parameter

Value

General Configuration

ALG_NAME pt_minhash
NUM_MINIBATCHES 4
NUM_EPOCHS 1
NORM_INPUT True
NORM_TYPE layer_norm
LR 0.001
MAX_GRAD_NORM 1.0

Transient Memory (IHT)
TRANSIENT_TABLE_SIZE 128
NUM_HASHES 2
NUM_ROWS 128
SLOTS_PER_BIN 4
TRANSIENT_LR 0.5
DECAY 0.95
0 0.75

Table 6: Hyperparameters for PT_minhash (IHT).

28

Under review as a conference paper at ICLR 2026

Parameter Value
TRANSIENT_TABLE_SIZE 512
NUM_HASHES 2
NUM_ROWS 128
TRANSIENT_LR 0.5
DECAY 1.0

Table 7: Tranisent Memory Hyperparameters for PT-IHT (permanent retains from PQN).

Parameter Value
TRANSIENT_LR 0.003
DECAY 1.0

Table 8: Hyperparameters for PTQO-NeurIPS (permanent retains from PQN).

Parameter Value
TRANSIENT_TABLE_SIZE 128
NUM_HASHES 2
NUM_ROWS 128
SLOTS_PER_BIN 4
TRANSIENT_LR 0.5
DECAY 0.95
p 0.75

Table 9: Hyperparameters for TM-Only ablation.

Figure 18: HP tuning plot for the PQN baseline.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

nnnnnnnnnnnnnnnnnnnnnnnnnnnnn

WA N

X7 N
\0@@(

R

SRR W
. ,’\\ W \'\ .
AN
Q@

Figure 19: HP tuning plot for the PT MinHash method.

Figure 20: HP tuning plot for the PT-IHT method.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Minibatches Decay Rho Transient &

Figure 21: HP tuning plot for the PTQ-NeurIPS baseline.

31

versge reward AUC
om

	Introduction
	Background
	Permanent and Transient Representations
	Theoretical results
	Small-Scale Experiments
	Prediction
	Control

	Non-parametric transient memory
	Experiments: Craftax-Classic
	Experiment: Generalization to image-based tasks
	Discussion and Conclusion
	Appendix
	Theoretical Results
	Small-Scale Experiments
	Craftax Experiments
	Image Experiments

