
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PERMANENT AND TRANSIENT REPRESENTATIONS FOR
CONTINUAL REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual Reinforcement Learning agents struggle to adapt to new situations
while retaining past knowledge, resulting in a stability–plasticity trade-off.
An appealing solution is to decompose the agent’s predictions into permanent
and transient components—one for long-term retention and the other for rapid
adaptation—thereby achieving a better balance (Anand & Precup, 2023). Build-
ing on this idea, we propose using different sets of feature representations to esti-
mate permanent and transient value functions, enabling even faster adaptation. We
demonstrate the effectiveness of our approach on small-scale examples for both
prediction and control tasks, analyze its theoretical properties, and show its bene-
fits on the Craftax-Classic benchmark using a novel non-parametric approximator
for transient value function estimation. Our method facilitates online learning and
outperforms the PQN baseline.

1 INTRODUCTION

Continual reinforcement learning (CRL) is a key ingredient for understanding intelligence and build-
ing agents that autonomously adapt to changes in their environment (Sutton et al., 2022; Silver
& Sutton, 2025). An important challenge for artificial CRL agents is the tension between retain-
ing knowledge already acquired while adapting to new information—the stability–plasticity trade-
off (Carpenter & Grossberg, 1987). In contrast, humans and other natural intelligences adapt to
changes in their environment throughout their lifetime. Kumaran et al. (2016) posited that this nat-
ural ability is due to the existence of two complementary learning systems (CLS): one that adapts
rapidly and another that slowly consolidates information across experiences. Inspired by CLS the-
ory, Anand & Precup (2023) introduced a decomposition of the value function into a permanent
component, which provides a stable baseline estimate for any situation the agent may face, and
a transient component, which adapts these estimates to the present context by applying temporal-
difference corrections. This approach led to improved performance in both prediction and control
problems with various forms of value function approximation. However, they use the same features
for both value functions. Intuitively, using separate feature spaces for these approximators would
be more aligned with the idea of keeping them complementary: one system should compensate
for the weaknesses of the other, making the framework both more effective and more biologically
plausible. For example, permanent features should intuitively encode stationary or slowly chang-
ing components of the environment, such as the map of a city, while transient features can capture
situation-specific aspects, such as a road being blocked on a given day.

In this paper, we develop this idea, establish some theoretical results and provide empirical evidence
that it scales to large environments. For this purpose, we develop a novel non-parametric approxima-
tor that operates directly on raw observations and can be used to learn efficiently a transient repre-
sentation and value function. Its design combines the strengths of tabular learning, CMACs (Miller
et al., 1990), and tile coding (Sutton, 1995), enabling precise corrections at a rapid pace, facilitating
online learning, and providing controlled generalization—ultimately leading to faster CRL.

Our main contributions are as follows:

• We build on the permanent–transient value function framework to incorporating separate
feature representations;

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• We establish convergence guarantees under linear function approximation for both perma-
nent and transient value functions using a two-timescale convergence technique;

• We demonstrate the effectiveness of the approach in both prediction and control through
small-scale experiments;

• We introduce a novel non-parametric method for representing transient features, which can
be used to complement neural network-based permanent features;

• We evaluate our design in online CRL on the 18M and the 250M Craftax benchmark,
showing favourable comparisons with a strong PQN baseline.

2 BACKGROUND

CRL agents exhibit endless adaptation, as opposed to converging to a fixed solution (Abel et al.,
2023; Sutton et al., 2007). The need for CRL arises when aspects of the environment—such as
rewards or transition dynamics—change over time (Khetarpal et al., 2022; Pan et al., 2025), or when
the agent’s resources are limited relative to the complexity of its environment, thereby creating the
need for the agent to keep updating its limited knowledge (Kumar et al., 2025; Javed & Sutton, 2024;
Lewandowski et al., 2025). In such scenarios, the agent must balance retaining useful information
from the past to adapt more quickly when similar situations reappear in the future—stability—with
allocating resources to learn from new experiences—plasticity.

Because neural networks have become the main approach to approximating value functions and
policies (Mnih et al., 2013), most CRL research has focused on understanding the stability–plasticity
trade-off in neural networks (Lyle et al., 2022; Nikishin et al., 2022; Abbas et al., 2023; Lyle et al.,
2023; 2024) and on developing new regularization techniques (Lewandowski et al., 2024; Chung
et al., 2024) and optimizers (Kirkpatrick et al., 2017; Jones et al., 2022; Dohare et al., 2024) to
improve it.

Building on earlier ideas of decomposing value functions in model-based RL (Silver et al., 2008),
Anand & Precup (2023) proposed splitting both the value function and the action-value function into
two components to trade-off stability and plasticity: permanent components, V (P ) and Q(P ), which
learn general estimates from the entire agent experience (similar to Abel et al. (2018) in transfer
learning), and transient components, V (T ) and Q(T ), which adapt these estimates to the current
situation. The overall value functions, V (PT ) and Q(PT ), are then expressed as sums of these two
components:

V (PT )(s) = V (T )
w (s) + V

(P )
θ (s), (1)

Q(PT )(s, a) = Q(T )
w (s, a) +Q

(P )
θ (s, a), (2)

where θ and w are the parameters of the permanent and transient function approximators, respec-
tively.

The permanent value function is updated more slowly, in phases –either every k timesteps or at task
boundaries (when available)– by using experience from that phase:

θk+1 ← θk + αk

(
V (PT )(Sk)− V

(P )
θ (Sk)

)
∇θV

(P )
θ (Sk), (3)

θk+1 ← θk + αk

(
Q(PT )(Sk, Ak)−Q

(P )
θ (Sk, Ak)

)
∇θQ

(P )
θ (Sk, Ak), (4)

where α is the learning rate for permanent updates.

In contrast, the transient value function updates rapidly to capture aspects of the value that are not
yet reflected in the permanent estimates:

wt+1 ← wt + αt

(
Rt+1 + γV (PT )(St+1)− V (PT )(St)

)
∇wV (T )

w (St), (5)

wt+1 ← wt + αt

(
Rt+1 + γmax

a′
Q(PT )(St+1, a

′)−Q(PT )(St, At)
)
∇wQ(T )

w (St, At), (6)

where α is the learning rate for transient updates. To maintain plasticity, transient parameters are
decayed or reset after each permanent update.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 PERMANENT AND TRANSIENT REPRESENTATIONS

Since the permanent and transient and value functions should intuitively complement each other, it is
reasonable to imagine them using distinct representations, with different requirements. In CLS (Ku-
maran et al., 2016), the equivalent of the transient representation is considered to be the hippocam-
pus, which stores latent embeddings of recent trajectories. These are later replayed during sleep,
resulting in consolidation and slow learning of a permanent representation, thought to be located
mainly in the prefrontal cortex. This representation provides good generalization to new situations
and supports long-term planning.

In the rest of the paper, we consider architectural choices which implement this intuition for CRL
agents. Specifically, the permanent representation should be expressive enough to learn baseline
predictions for any situation the agent might encounter. Learning can be slow, but the information
acquired should persist and be useful for a long period of time (ie. high stability). Therefore,
the permanent representation should support broad generalization of predictions between similar
situations. Many neural network architectures, such as feedforward, convolutional, or recurrent,
meet these desiderata, making them good candidates for the permanent value function.

The transient representation should support online learning at a rapid pace (ie. high plasticity), in
order to adapt quickly to new situations. Moreover, if we assume that the agent’s circumstances
can change rapidly, the transient representation should facilitate learning precise estimates, with
minimal or carefully controlled generalization around the current data. Additionally, the transient
representations should allow fast and accurate information retrieval. As in CLS, knowledge stored
in the transient representation should support long-term learning of the permanent representation.

In the following sections, we present both theoretical and empirical analysis of simpler architectures
based on these intuitions. Then, in Sections 6 and 7, we develop and test a new approach to imple-
menting the transient memory, which respects the goals above while providing better generalization
than simple replay buffers.

4 THEORETICAL RESULTS

In this section, we study the convergence of permanent and transient value function updates when
these are based on different feature spaces, by leveraging the two-timescale proof technique pio-
neered by Borkar (see Appendix 2) (Borkar, 1997). While his approach is general and broadly
applicable, the conditions can be simplified in the context of RL, as shown by Bertsekas & Tsitsiklis
(1996); Tsitsiklis & Van Roy (1996) for a single iteration. In particular, the Lipschitz assumption
is satisfied by showing that the expected update in matrix form (ie. the key matrix) is well-defined
and positive definite. His final assumption is satisfied by first showing that the noise terms form
martingale difference sequence with zero mean and bounded variance. In our analysis, we consider
updating permanent value function at each timestep.

We make the following assumptions1:
Assumption 1. The step-sizes α and α satisfy

∑
t αt = ∞,

∑
t α

2
t < ∞,

∑
t αt = ∞,

∑
t α

2
t <

∞, limt→∞
αt

αt
→ 0.

Assumption 2. The permanent and transient feature matrices, Φ ∈ R|S|×d and Z ∈ R|S|×l, are
full column rank, ie. the column vectors are linearly independent. Also, their norms are bounded,
∥Φ∥ ≤M1, ∥Z∥ ≤M2 where M1 and M2 are constants.
Assumption 3. There are N tasks and task τ is i.i.d. sampled according to pτ . Each task is an MDP,
Mτ = (S,A,Rτ ,Pτ , γ), let Eτ denote the expectation with respect to the task distribution. The
rewards for each taskRτ are bounded. The task boundaries are observable.
Assumption 4. Every task, τ , induces irreducible, aperiodic Markov chain under the fixed evalua-
tion policy π and the chain is rapidly mixing:

|Pπ,τ (St = s|S0)− dπ(s)| ≤ Cσt, ∀S0 ∈ S, σ < 1,

where C is a constant.

1We use the notations defined here in the proofs presented in Appendix.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Theorem 1 (Main result). Under Assumptions 1–4, the sequence of expected updates computed
by permanent and transient updates converge to a unique fixed point:

θ∗ = Eτ [Φ
TDτΠZ,τΦ]

−1Eτ [Φ
TDτZw

(TD)
Z,τ ],

w∗
τ = w

(TD)
Z,τ −

(
ZTDτ (I − γPπ,τ )Z

)−1
ZTDτ (I − γPπ,τ )Φθ

∗,

where

ΠZ,τ = Z
(
ZTDτ (I − γPπ,τ )Z

)−1
ZTDτ (I − γPπ,τ ),

w
(TD)
Z,τ = Z

(
ZTDτ (I − γPπ,τ )Z

)−1
ZTDτRπ,τ .

Proof. We outline the proof here, with full details provided in Appendix.

Because of the disparity in learning rates between permanent and transient updates, the permanent
estimates appear stationary while the transient values are being updated. And, the transient values
appear converged when analyzing permanent updates.

We first establish the convergence of the transient updates, treating the permanent values as fixed,
by verifying the conditions outlined in Theorem 3 (Tsitsiklis & Van Roy, 1996) (see Lemma 1 in
Appendix). By substituting the fixed point of the transient parameters into the permanent updates,
we then show that the required conditions are satisfied for them as well, and therefore convergence
follows from Theorem 2 (Borkar, 1997) (see Lemma 2 in Appendix).

Corollary 1. If Z = Φ, then

θ∗ = Eτ

[
ΦTDτΦ

]−1 Eτ

[
ΦTDτΦw

(TD)
Φ,τ

]
,

w∗
τ = w

(TD)
Φ,τ − θ∗.

Moreover, in the single-task setting, θ∗ = w
(TD)
Φ,τ and w∗

τ = 0.

Proof. The proof is included in Appendix 2.

The above corollary implies that in the single-task setting, if both the permanent and transient value
functions are approximated using the same feature representation, then the permanent value function
alone suffices to capture the predictions, while the transient component converges to zero.

5 SMALL-SCALE EXPERIMENTS

We conducted experiments on both prediction and control problems, where the value function and
action-value function were estimated using a linear function approximator. In these experiments,
we assume that the agent’s experience can be divided into tasks, and that the task boundaries are
known to the agent (semi-continual RL). The transition dynamics remain fixed across tasks, while
the reward function changes. Through these experiments, we show that using separate features to
approximate permanent and transient value functions results in faster adaptation in CRL. The pseu-
docode is provided in Appendix 1 and 2 and the details of hyperparameter sweeps in Appendix A.2.

5.1 PREDICTION

For the prediction problem, we use the 5 × 5 discrete gridworld environment shown in Fig. 1. The
agent starts in the central state and can choose from four navigation actions, one for each cardinal
direction. Each action typically moves the agent to the adjacent state, but the intended action is
replaced by one of the two perpendicular actions with 10% probability. The agent receives a reward
when it transitions into a designated goal state, located in one of the corners highlighted in green;
otherwise, no reward is given. Rewards are modified across tasks to introduce non-stationarity, as
described in Table 1 in Appendix.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We use a Fourier basis (Konidaris et al., 2011) up to second order to approximate the value func-
tion. In our variant of PT-TD learning, second-order features are used to approximate the transient
value function, while first-order features are used to approximate the permanent value function. The
original PT-TD learning method (denoted as NeurIPS) uses all features for approximating both per-
manent and transient value functions. In both variants, the transient weights are reset to zero at the
beginning of each task to induce plasticity, while previously learned values are retained through the
permanent weights.

Figure 1: Grid task.

For comparison, we include two TD-learning baselines on which PT-TD
learning is built. In the reset variant, all function-approximator weights are
reset to zero at the start of each new task (full plasticity). In the continual
variant, the agent continually updates its estimates on top of previously
learned approximations. All algorithms are hyperparameter tuned thor-
oughly as outlined in Appendix A.2.

To evaluate performance, we use a uniformly random policy with a dis-
count factor of 0.9. Each experiment runs for 1000 episodes, with the task
changing every 100 episodes. The agent must therefore continually up-
date its estimates to adapt to the current task. We use root mean squared

value error (RMSVE) as a performance metric (the lower, the better). We report the mean and 90%
confidence intervals over 30 random seeds, computed with z∗ = 1.645.

Results: The results are shown in Fig. 2a. In our variant, higher-order terms are used only for
estimating the transient value function, enabling quick, low-variance, and precise adjustments to
the permanent value function, resulting in the lowest overall RMSVE. First-order features provide
sufficient expressivity while remaining low variance, making them well-suited for approximating
the permanent value function (see Figure 9). The NeurIPS variant has slightly higher RMSVE due
to the increased variance from using all features to approximate both value functions. Both PT-TD
learning variants retain prior knowledge through the permanent value function, leading to lower
error at the onset of tasks that reappear. In contrast, the TD-learning baselines perform poorly, as
they fail to preserve previous predictions while simultaneously adapting to new tasks, corroborating
prior findings (Anand & Precup, 2023).

0 200 400 600 800 1000
Episodes

0.10

0.15

0.20

0.25

RM
SV

E

Discrete Grid (Fourier: 2,1)

PT-TD (Ours)
PT-TD (NeurIPS)

TD
TD (w/ Reset)

(a) Prediction results.

0 50 100 150 200 250 300
Episodes

0.2

0.4

0.6

0.8

1.0

R
et

ur
ns

ChainMDP

PTQ (Ours)
PTQ (NeurIPS)

Q-learning
Q-learning (Reset)

(b) Control results.

Figure 2: Prediction and control results in Semi-CRL. Our method (red line) achieves lower RMSVE
in prediction and higher cumulative rewards in control compared to baseline algorithms.

5.2 CONTROL

Figure 3: Chain task.

For the control problem, we use the simple
chain environment with seven states shown in
Fig. 3. The agent starts in the central state
and can choose either the left or right action
to move to the neighbouring state in the cor-
responding direction, with a 10% probability
of a reversed effect. Goal states with positive
rewards are located at both ends of the chain.
Non-stationarity is introduced by varying the

reward magnitude across tasks, as described in Table 2 in Appendix.

Each state is represented using four features: the first three correspond to the red, green, and blue
(RGB) components of the state, while the fourth encodes the light intensity, which depends on
which end of the chain contains the reward. In our variant of PTQ-learning, the first three features

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

are used to approximate the permanent value function, and the last feature is used for the transient
value function. In contrast, all other algorithms we compare against—including the NeurIPS variant
of PTQ-learning and the reset and non-reset variants of Q-learning—use all features to approxi-
mate the value function. For the reset variant of Q-learning, the function-approximator weights are
reinitialized at the beginning of each task.

We use discount factor of 0.99 and compute episodic returns to compare various algorithms. We run
the experiment for 300 episodes, with the task changing every 50 episodes. We report the mean and
90% confidence intervals over 30 random seeds, computed with z∗ = 1.645.

Results: The results are shown in Fig. 2b. Because our approach uses a single reward-correlated
feature to adjust transient value estimates, adaptation is rapid. It is the only method that learns a
meaningful behaviour within the first 50 episodes and re-adjusts it within five episodes whenever
tasks change. PTQ-learning with all features fails to learn a meaningful policy during the initial
50 episodes and adapts marginally more slowly when tasks subsequently change. The reset variant
of Q-learning performs the worst, as no prior knowledge is retained at the start of each task. The
continual variant of Q-learning requires more time to overcome bias in its action-value estimates
and is therefore slower to adapt.

These experiments demonstrate that using separate features for the permanent and transient value
functions results in quicker adaptation.

6 NON-PARAMETRIC TRANSIENT MEMORY

Observation

{1   ,1    ,1   }

0001…0

0101…0

1001…1

00010…111 𝔼 QT(St, ∞ )
1 2

3 4

(a) An end-to-end overview of transient memory.

1

2

S

1 2 T

1

2

S

1

2

S

π

(1 𝔼 π)

πQi + (1 𝔼 π
S 𝔼 1 )

S

∑
j=1, j∞i

Qj

(b) Transient value table.

Figure 4: (a) Four-step process: (1) tokenization; (2) hashing; (3) binning; (4) value estimation. (b)
Within each table, the value of the query observation is weighted by ρ, and the remaining mass,
(1− ρ), is distributed among its neighbours to form the estimate.

In this section, we introduce a new non-parametric architecture that meets the desiderata of a tran-
sient memory (as described in Sec. 3), inspired by tile coding (Sutton, 1995) and CMACs (Miller
et al., 1990).

We suppose that each observation consists of several channels, with each channel indicating the pres-
ence or absence of a specific item type in a particular location in the agent’s view. Many commonly
used RL environments, such as gym-Minigrid (Chevalier-Boisvert et al., 2023), Craftax (Matthews
et al., 2024), and MinAtar (Young & Tian, 2019), are structured in this way. This assumption will
allow us to produce hash signatures of observations using MinHash (Broder, 1997).

The overall process is illustrated in Fig. 4. It transforms an observation into a sparse, hashed repre-
sentation that supports non-parametric value estimation with controlled generalization. The pipeline
has four main stages:

1. Tokenization: Each observation is converted into a set of discrete tokens, where each token
encodes the type of object present at a particular (x, y) position in the agent’s view. This converts
the raw grid-like observation into a symbolic set representation.

2. Hashing: The tokenized set is mapped to a compact hash signature and an auxiliary tag using
several independent MinHash functions. MinHash is used because it preserves the Jaccard similar-
ity: the probability that two sets produce the same MinHash value is exactly their Jaccard score.2.

2The Jaccard score between two sets A and B is, J(A,B) = |A∩B|
|A∪B| , and it is widely used in re-

trieval (Broder, 1997), bioinformatics (Ondov et al., 2016), and clustering (Tan et al., 2016).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

As a result, observations that share many elements produce similar signatures (ie. overlap in many
bits), which forms the basis for local generalization.

3. Binning: The signature is partitioned into multiple subsequences, each of which indexes into a
bin in a transient table. Conceptually, each table corresponds to one tiling in tile coding (Sutton,
1995). Within a bin there are S slots. When a new observation maps into a bin, it occupies an empty
slot if available; otherwise, the least recently used (LRU) slot is evicted. The slot’s initial value is
set to the average of values already stored in that bin, so new entries inherit some local context.
The auxiliary tag computed in the previous step is also stored in the slot, making it unique to that
observation (see Alg. 3).

4. Value estimation: To induce generalization akin to CMACs (Miller et al., 1990), the value of a
query observation is not taken from a single slot alone. Instead, its estimate is a convex combination
of the focal slot and the other occupied slots in the matched bin (see Fig. 4b):

Q
(T )
t+1(x, a; k) = ρQ

(T )
t+1(x, a; k) +

(
1− ρ

S − 1

)∑
j ̸=i

Q
(T )
t+1(oj , a; k), (7)

where ρ controls the relative weight of the focal slot versus its neighbours, x is the query observation,
oj is the observation stored in slot j of the matched bin, S is the total number of slots per bin, and
Q

(T )
t+1(x, a; k) is the transient value of the (x, a) pair estimated by the k-th table. This encourages

smooth interpolation between similar observations while still preserving distinct slot identities. The
final transient value is obtained by summing the estimates from all transient tables. For more details,
see 4 and 3 in Appendix.

Since several tables and their corresponding bins contribute to the overall estimate of the transient
value function, the TD-error is distributed among them in proportion to their contributions (see 5 in
Appendix). Specifically, the TD-error is first split evenly across all T tables, and within each table
it is further divided among the slots in the matched bin. The focal slot receives weight ρ, while
its neighbouring slots share the remaining weight 1−ρ

S−1 . The updates are analogous to those in tile
coding:

Q
(T )
t+1(Ot, At; k, i)← Q

(T )
t (Ot, At; k, i) +

α

T
ηk,iδt, (8)

where α is the learning rate of the transient updates, T is the total number of tables, and δt is the
TD-error at time t. The weighting factor ηk,i reflects the contribution of slot i in table k:

ηk,i =


ρ, if slot i stores the query observation in the matched bin,
1−ρ
S−1 , if slot i is a neighbour in the same bin,

0, otherwise.

Although the transient table has a fixed size and older observations within a bin are evicted using a
LRU strategy, it can still retain observations from a long time ago if temporally adjacent states are
similar and therefore continue to map to the same bin, while observations encountered much later
differ from those earlier states and are hashed into different bins, leaving the older ones untouched.

7 EXPERIMENTS: CRAFTAX-CLASSIC

We use the Craftax-Classic environment for large-scale experiments. The environment is open-
ended, containing 22 achievements of varying difficulty. At each step t, the agent receives a 7 × 9
grid observation containing the object types in its view (Fig. 5), along with its inventory (e.g., wood,
stone, or crafted tools) and intrinsic variables (e.g., health, hunger, or thirst). The agent can take
one of 17 available actions. Within each episode, it receives a reward the first time it completes an
achievement, such as collecting coal or crafting an iron pickaxe. Simpler achievements yield smaller
rewards, while more advanced ones yield larger rewards. An episode ends when its length reaches
1000 steps, when the agent completes all 22 achievements, or when it is killed due to a zombie,
skeleton, or by depletion of its intrinsic variables. More details can be found in Matthews et al.
(2024).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

We conducted two experiments: online learning3, to demonstrate the effectiveness of our method in
online CRL, and benchmarking with 250M, to show the competitiveness of our approach in a higher
sample-complexity regime.

Figure 5: Craftax Env.

For the 250M benchmarking, the agent interacts with 1024 environ-
ments simultaneously, reducing the runtime for both our approach
and the baselines to under 6 hours on a H100 GPU. It is worth not-
ing that we use parallel environments only to reduce wall-clock time
and enable faster iteration. An ideal, general-purpose CRL algorithm
should learn effectively from a single stream of experience.

Baselines: We compare our approach against PQN, the state-of-the-
art value-based algorithm on Craftax (Gallici et al., 2025), along-
side three variants: PTQ-IHT, which utilizes Index Hash Tables
(IHTs) rather than slot-based memory; TM-Only, which relies solely
on the non-parametric transient approximator (Sec. 6); and PTQ-
NeurIPS (Anand & Precup, 2023), a fully neural network-based base-

line.

0M 5M 10M 15M
Environment Steps

0

2

4

6

Ep
iso

de
 R

et
ur

n

Returned Episode Returns

PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(a) Online Experiment Results

0M 50M 100M 150M 200M 250M
Environment Steps

0

5

10

15

Ep
iso

de
 R

et
ur

n

Returned Episode Returns

PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(b) 250M Experiment Results

Figure 6: PT(Memory) and PT(IHT) learns online, and out-
performs other approaches on the 250M benchmark.

In this experiment, PQN aggregates
data over 32 interaction steps. In
the 250M benchmark, we evaluate
PQN(1) (one gradient step per batch)
and PQN(32) (32 gradient steps via
minibatches), and in the online ex-
periment, PQN uses 8 gradient steps.
The hyperparameters for PQN were
adopted from the PQN library.

For our approach, PTQ-Memory, we
use a neural network to approximate
the permanent value function and
the non-parametric approximator de-
scribed in Sec. 6 to approximate the
transient value function. For the per-

manent neural network, we adopt the same hyperparameters and network architecture as PQN. For
the transient memory, we tokenize the observation and append inventory, intrinsic values, and light
level after quantizing (see Alg. 6 for details). The hash signature length is 256, which we split into
two subsequences of 128 bits to obtain the bin indices for two tables. Each table has 2048 bins and
32 slots. We use a learning rate of 1.3/2 for each table, a decay factor of 0.95, and ρ = 0.85. For
a fair comparison with baselines, we divide the data into 32 minibatches and update the permanent
values toward the latest estimate of the overall value function, following Anand & Precup (2023).
These hyperparameters were obtained by sweeping through candidate values for each parameter
while keeping the others fixed. Additional details are provided in Appendix A.3. We used the same
method to find the hyperparameters for baselines.

Results: The main results, averaged over 3 seeds for the online experiment (due to computational
constraints) and 10 seeds for the 250M benchmarking, are shown in Fig. 6; per-achievement results
are detailed in Appendix Fig. 10. Parameter ablation results are presented in the Appendix 12-17.

Online Performance: As shown in Fig. 6a, our approach, PTQ-Memory, successfully learns in the
fully online setting. This success stems from the transient memory’s ability to perform precise, local
updates where generalization is explicitly controlled, preventing interference between states. In
contrast, the PTQ-IHT ablation (mimicking Tile Coding) achieves fast initial updates but degrades
over time. Due to the large observation space, the lack of slots and controlled generalization in
IHTs leads to undesirable hash collisions. This results in over-generalization and poor long-term
value estimation, empirically validating the necessity of our slot-based design. The PTQ-NeurIPS
baseline, which relies on a neural network for transient estimates, fails completely in the online

3Strictly speaking it is a low-parallelism setting since the agent interacts with two instances of the environ-
ment (for 16M timesteps). We use two instances to reduce the experiment runtime to about 18 hours on a H100
GPU. We expect the results to carry over when the experience data source is reduced to a single stream.

8

https://github.com/mttga/purejaxql/tree/main


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

setting. This confirms that gradient-based methods suffer from update instability and slow initial
learning when denied large batches (Mnih et al., 2013; Elsayed et al., 2024). Similarly, the TM-only
method performs poorly, confirming that transient memory alone lacks the capacity for effective
long-term learning. Finally, PQN fails to learn rapidly in the low-parallelization setting as it relies
on batching (32 steps) and environment parallelization to stabilize gradients.

250M Benchmarking: As shown in Fig. 6b and Fig. 11, our method outperforms all baselines in the
extensive 250M step benchmark. The benefits are most evident in the early training stages: our ap-
proach surpasses a return of 10 in under 50M steps—twice as fast as PQN(32)—and reaches a return
of 15 within 150M steps, whereas PQN(32) requires over 200M steps. It also achieves higher scores
across all learnable achievements. While the PTQ-IHT variant performs competitively here, it still
suffers marginally from collision-induced noise. This performance difference highlights the comple-
mentarity of our estimators: the transient component provides rapid, local feature discovery, which
accelerates the permanent component’s ability to generalize. Among PQN baselines, PQN(32) out-
performs PQN(1) due to multiple gradient updates per step, though this minibatch strategy risks
introducing primacy bias (Nikishin et al., 2022; D’Oro et al., 2022).

Overall, these results demonstrate that our approach is well-suited for online CRL on complex tasks.

8 EXPERIMENT: GENERALIZATION TO IMAGE-BASED TASKS

This section provides preliminary evidence of the generalizability of the non-parametric transient
memory (Section 6) to image-based domains.

19

S0

S1

S2S3

S4

Figure 7: Image Task

Task: We evaluate our approach on a non-stationary, image-based
MDP consisting of five states and five actions. Observations for
each state are sampled from specific categories of the CIFAR-10
dataset. We evaluate three variations of this task by restricting the
sub-sampled data size to 250, 500, and 1000 images per category.
Transitions are stochastic: selecting the rewarding action (+1) leads
to the next state w.p. 0.8 (otherwise remaining current w.p. 0.2),
while suboptimal actions yield a small negative penalty and result in
remaining in the current state w.p. 0.8. Rewards are perturbed with
Gaussian noise (µ = 0, σ = 0.01). To induce non-stationarity, the
optimal action is switched every 100k timesteps (from a set of three)
over a 600k timestep duration. We use γ = 0.9. We compare the five
algorithms from Section 7 (all fully online except PQN) and report

mean rewards over 100 timesteps (90% C.I. over 30 seeds). Hyperparameter details are provided in
Appendix A.4.

Tokenization: To enable MinHash hashing on image inputs, we first train a CIFAR-10 CNN classi-
fier. We extract 256-dimensional features from the penultimate layer and binarize them via median
thresholding. Our analysis revealed high similarity between these vectors (inter-class Hamming dis-
tance ≈ 130 vs. intra-class ≈ 113). We append positional indices (1 to 256) to the binary vector,
analogous to Transformer positional encoding (Vaswani et al., 2017) and the spatial coordinates used
in symbolic observations. This augmented vector is then processed by MinHash to map observations
to transient memory slots.

0k 100k 200k 300k 400k 500k 600k
Environment Steps

0.2

0.0

0.2

0.4

0.6

0.8

Re
w

ar
d 

pe
r s

te
p

Image task (250)

PTQ(Memory)
PTQ(IHT)
PTQ(NeurIPS)

PQN
TM-only

(a) Image Task (250) Results

0k 100k 200k 300k 400k 500k 600k
Environment Steps

0.2

0.0

0.2

0.4

0.6

0.8

Re
w

ar
d 

pe
r S

te
p

Image task (500)

PTQ(Memory)
PTQ(IHT)
PTQ(NeurIPS)

PQN
TM-only

(b) Image Task (500) Results

0k 100k 200k 300k 400k 500k 600k
Environment Steps

0.2

0.0

0.2

0.4

0.6

Re
w

ar
d 

pe
r S

te
p

Image task (1000)

PTQ(Memory)
PTQ(IHT)
PTQ(NeurIPS)

PQN
TM-only

(c) Image Task (1000) Results

Figure 8: PTQ(Memory) variant adapts the fastest when changes occur in the environment.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Results: The results on Image MDPs, presented in Figure 8, mirror the trends observed in the
Craftax experiments. The PTQ-Memory variant demonstrates superior performance. By utilizing
memory slots to separate values and controlling generalization via ρ, it ensures precise transient
updates. This mechanism enables rapid adaptation to task changes—a crucial advantage over the
neural-network-based baselines. In contrast, PTQ-NeurIPS and TM-only fail to learn meaningful
policies due to update instability and insufficient capacity, respectively. PQN achieves stability
through batch updates but suffers from slow initial learning and slow recovery after task changes.
Similarly, PTQ-IHT is hampered by the size of observation space, where increased hash collisions
lead to detrimental over-generalization and degraded value estimates. These findings provide evi-
dence that the memory-based Permanent-Transient (PT) approach successfully extends to complex
visual domains.

9 DISCUSSION AND CONCLUSION

In this paper, we extended and enhanced the permanent-transient value function decomposition
by incorporating separate feature representations to further improve performance through a better
stability–plasticity trade-off. Specifically, we leveraged slowly evolving or static features—either
hand-crafted (e.g., Fourier bases) or learned using neural networks—for the permanent component,
alongside reward-predictive, fast-evolving, or non-parametric features for the transient component.
This design yielded improved performance in both small-scale and large-scale experiments.

The backbone which allows our approach to scale is a novel MinHash-based non-parametric approx-
imator that enables rapid online learning like tabular RL, local generalization like CMACs and tile
coding (but controlled via a hyperparameter, ρ), and efficient storage and retrieval of observations
and values, all while remaining modest in size relative to the complexity of the environment. We
explore its use for estimating the transient value function in CRL, though its benefits may extend
more broadly.

While tokenization is natural for symbolic observation, we leveraged a pre-trained convolutional
neural network to obtain tokens in the image experiment. This setup allowed us to isolate and
demonstrate the core contribution: the transient memory’s ability to adapt instantly for a pixel-based
observation. This requirement can be relaxed in future work by: leveraging a pretrained vision
encoder or traditional CV techniques (bag of visual words) (Dosovitskiy, 2020; Radford et al., 2021);
adapting deep hashing to bypass the tokenization step and directly compute a hash signature (Luo
et al., 2023); exploiting the inductive biases of randomly initialized CNNs along with a small, trained
projection layer to obtain the token vector (Farebrother et al., 2023); or simply treating individual
pixels as tokens, analogous to the symbolic setting.

Our non-parameteric memory share some similarities with episodic memory (Pritzel et al., 2017):
while both approaches use key-value storage, Episodic Memory typically acts as a non-parametric
replay buffer that stores and retrieves specific past returns (or Q-value estimates) via complex kernel
regression (averaging neighbours). In contrast, our non-parametric component is a function approx-
imator. The values stored in our hash table are residuals, learned and updated via TD-error using
simple summation. Consequently, our approach is designed for rapid adaptation in continual RL,
rather than to accelerate single-task convergence.

Despite these contributions, many research questions remain open in the permanent–transient frame-
work: extension to policy gradient algorithms; developing mechanisms for selective consolidation
(determining when and what to transfer to permanent memory); integrating recurrent neural net-
works to fully realize memory; applying meta-learning to automate transient parameter tuning (Xu
et al., 2018); and investigating other architectural choices for efficient permanent and transient learn-
ing. Additionally, combining our approach with neural networks-based continual learning strategies,
such as EWC (Kirkpatrick et al., 2017), offers a promising direction to further stabilize long-term
retention in the permanent component.

Conclusion: Ultimately, an RL agent’s ability to continually learn from new experiences is crucial
both for advancing our scientific understanding of intelligence and for building systems that perform
reliably in real-world conditions. Our framework advances this goal by demonstrating that separate
representations is critical for a better trade-off between stability and plasticity that scale to complex,
non-stationary environments.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All code and configuration files re-
quired to reproduce our experiments will be released publicly upon acceptance. Our implementation
builds on the publicly available purejaxql codebase, and we provide pseudocode for our approach
in Appendix 6. Model architectures, hyperparameters, and training procedures are described in
Section 7 and Appendix A.3. We use the publicly available Craftax environment (Matthews et al.,
2024) for large-scale experiments, and all necessary details to reproduce the synthetic environments
are included in the paper. Details on random seeds, hardware, and GPU usage are provided in the
corresponding sections of the main paper. We used ChatGPT, Copilot, and Gemini for code auto-
completion, beautifying plots, and developing hashing code in JAX. We also acknowledge the use
of LLMs (ChatGPT, Apple writing tools, AI mode in Google Search, and Grammarly) for grammar
correction and polishing certain parts of the paper.

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity
in continual deep reinforcement learning. In Conference on lifelong learning agents, pp. 620–636.
PMLR, 2023.

David Abel, Yuu Jinnai, Sophie Yue Guo, George Konidaris, and Michael Littman. Policy and value
transfer in lifelong reinforcement learning. In International Conference on Machine Learning,
pp. 20–29. PMLR, 2018.

David Abel, André Barreto, Benjamin Van Roy, Doina Precup, Hado P van Hasselt, and Satinder
Singh. A definition of continual reinforcement learning. Advances in Neural Information Pro-
cessing Systems, 36:50377–50407, 2023.

Nishanth Anand and Doina Precup. Preferential temporal difference learning. In International
Conference on Machine Learning, pp. 286–296. PMLR, 2021.

Nishanth Anand and Doina Precup. Prediction and control in continual reinforcement learning.
Advances in Neural Information Processing Systems, 36:63779–63817, 2023.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Scientific, 1996.

Vivek S Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29(5):
291–294, 1997.

Andrei Z Broder. On the resemblance and containment of documents. In Proceedings. Compression
and Complexity of Sequences 1997 (Cat. No. 97TB100171), pp. 21–29. IEEE, 1997.

Gail A Carpenter and Stephen Grossberg. A massively parallel architecture for a self-organizing
neural pattern recognition machine. Computer vision, graphics, and image processing, 37(1):
54–115, 1987.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023.

Wesley Chung, Lynn Cherif, David Meger, and Doina Precup. Parseval regularization for continual
reinforcement learning. Advances in Neural Information Processing Systems, 37:127937–127967,
2024.

Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-
mood, and Richard S Sutton. Loss of plasticity in deep continual learning. Nature, 632(8026):
768–774, 2024.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.
In Deep Reinforcement Learning Workshop NeurIPS 2022, 2022.

11

https://github.com/mttga/purejaxql


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Mohamed Elsayed, Gautham Vasan, and A Rupam Mahmood. Streaming deep reinforcement learn-
ing finally works. arXiv preprint arXiv:2410.14606, 2024.

Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin,
Pablo Samuel Castro, and Marc G Bellemare. Proto-value networks: Scaling representation learn-
ing with auxiliary tasks. arXiv preprint arXiv:2304.12567, 2023.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus
Foerster, and Mario Martin. Simplifying deep temporal difference learning. The International
Conference on Learning Representations (ICLR), 2025. URL https://arxiv.org/abs/
2407.04811.

Khurram Javed and Richard S Sutton. The big world hypothesis and its ramifications for artificial
intelligence. In Finding the Frame: An RLC Workshop for Examining Conceptual Frameworks,
2024.

Matt Jones, Tyler R Scott, Mengye Ren, Gamaleldin Fathy Elsayed, Katherine Hermann, David
Mayo, and Michael Curtis Mozer. Learning in temporally structured environments. In The
Eleventh International Conference on Learning Representations, 2022.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforce-
ment learning: A review and perspectives. Journal of Artificial Intelligence Research, 75:1401–
1476, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

George Konidaris, Sarah Osentoski, and Philip Thomas. Value function approximation in rein-
forcement learning using the fourier basis. In Proceedings of the AAAI conference on artificial
intelligence, volume 25, pp. 380–385, 2011.

Saurabh Kumar, Henrik Marklund, Ashish Rao, Yifan Zhu, Hong Jun Jeon, Yueyang Liu, Ben-
jamin Van Roy, et al. Continual learning as computationally constrained reinforcement learning.
Foundations and Trends® in Machine Learning, 18(5):913–1053, 2025.

Dharshan Kumaran, Demis Hassabis, and James L McClelland. What learning systems do intelligent
agents need? complementary learning systems theory updated. Trends in cognitive sciences, 20
(7):512–534, 2016.

Alex Lewandowski, Michał Bortkiewicz, Saurabh Kumar, András György, Dale Schuurmans, Ma-
teusz Ostaszewski, and Marlos C Machado. Learning continually by spectral regularization. arXiv
preprint arXiv:2406.06811, 2024.

Alex Lewandowski, Aditya A Ramesh, Edan Meyer, Dale Schuurmans, and Marlos C Machado.
The world is bigger: A computationally-embedded perspective on the big world hypothesis. In
Workshop on Reinforcement Learning Beyond Rewards@ Reinforcement Learning Conference
2025, 2025.

Xiao Luo, Haixin Wang, Daqing Wu, Chong Chen, Minghua Deng, Jianqiang Huang, and Xian-
Sheng Hua. A survey on deep hashing methods. ACM Transactions on Knowledge Discovery
from Data, 17(1):1–50, 2023.

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in rein-
forcement learning. arXiv preprint arXiv:2204.09560, 2022.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. In International Conference on Machine Learning,
pp. 23190–23211. PMLR, 2023.

12

https://arxiv.org/abs/2407.04811
https://arxiv.org/abs/2407.04811


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, Hado van Hasselt, Razvan Pascanu, James Martens,
and Will Dabney. Disentangling the causes of plasticity loss in neural networks. arXiv preprint
arXiv:2402.18762, 2024.

Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson,
Samuel Coward, and Jakob Foerster. Craftax: A lightning-fast benchmark for open-ended re-
inforcement learning. arXiv preprint arXiv:2402.16801, 2024.

W Thomas Miller, Filson H Glanz, and L Gordon Kraft. Cmac: An associative neural network
alternative to backpropagation. Proceedings of the IEEE, 78(10):1561–1567, 1990.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International conference on machine learning,
pp. 16828–16847. PMLR, 2022.

Brian D Ondov, Todd J Treangen, Páll Melsted, Adam B Mallonee, Nicholas H Bergman, Sergey
Koren, and Adam M Phillippy. Mash: fast genome and metagenome distance estimation using
minhash. Genome biology, 17(1):132, 2016.

Chaofan Pan, Xin Yang, Yanhua Li, Wei Wei, Tianrui Li, Bo An, and Jiye Liang. A survey of
continual reinforcement learning. arXiv preprint arXiv:2506.21872, 2025.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia, Oriol Vinyals,
Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In International
conference on machine learning, pp. 2827–2836. PMLR, 2017.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

David Silver and Richard S Sutton. Welcome to the era of experience. Google AI, 1, 2025.

David Silver, Richard S Sutton, and Martin Müller. Sample-based learning and search with perma-
nent and transient memories. In Proceedings of the 25th international conference on Machine
learning, pp. 968–975, 2008.

Richard S Sutton. Generalization in reinforcement learning: Successful examples using sparse
coarse coding. Advances in neural information processing systems, 8, 1995.

Richard S Sutton, Anna Koop, and David Silver. On the role of tracking in stationary environments.
In Proceedings of the 24th international conference on Machine learning, pp. 871–878, 2007.

Richard S Sutton, Michael Bowling, and Patrick M Pilarski. The alberta plan for ai research. arXiv
preprint arXiv:2208.11173, 2022.

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data mining. Pearson Educa-
tion India, 2016.

John Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning with function
approximation. Advances in neural information processing systems, 9, 1996.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement learning. Ad-
vances in neural information processing systems, 31, 2018.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THEORETICAL RESULTS

Theorem 2 (Borkar, 1997). Consider two d and l dimensional coupled iterates of the form:

θt+1 ← θt + α
(
A(θt,wt) +Mt+1

)
, (9)

wt+1 ← wt + α
(
C(θt,wt) +Nt+1

)
, (10)

for t ≥ 0. If,

1. A : Rd+l → Rd, C : Rd+l → Rl are Lipschitz,

2.
∑

t αt =
∑

t αt =∞,
∑

t α
2
t =

∑
t α

2
t <∞, limt→∞

αt

αt
→ 0,

3. for Ft ≜ σ(θk,wk,Mk,Nk, k ≤ t), t ≥ 0, (Mt,Ft), (Nt,Ft) are sequences of
random variables satisfying:

∑
t αtMt,

∑
t αtNt ≤ ∞ almost surely,

then the iterates converge converge almost surely to the asymptotically stable equilibria of the
associated limiting ODEs.

Theorem 3 (Tsitsiklis & Van Roy (1996)). Consider an iterative algorithm of the form wt+1 =
wt + αt(A(Xt)wt + b(Xt)) where,

1. the step-size sequence αt satisfies
∑

t αt =∞,
∑

t α
2
t <∞,

2. Xt is a Markov process with a unique invariant distribution,

3. A(·) and b(·) are matrix and vector valued functions respectively, for which A =
Edπ [A(Xt)] and b = Edπ [b(Xt)] are well defined and finite,

4. the matrix A is positive definite,

5. there exists constants K and q such that for all X

•
∑∞

t=0 ∥Eπ[A(Xt)|X0 = X]−A∥ ≤ K(1 + hq(X)), and
•
∑∞

t=0 ∥Eπ[b(Xt)|X0 = X]− b∥ ≤ K(1 + hq(X)),

6. for any q > 1 there exists a constant µq such that for all X, t

• Eπ[h
q(Xt)|X0 = X] ≤ µq(1 + hq(X)).

Then, wt converges to wπ , with probability one, where wπ is the unique vector that satisfies
Awπ + b = 0.

Lemma 1. For any fixed choice of θ, for any task τ in the task distribution, the sequence of
expected transient updates converges to a unique fixed point.

Proof. We use the proof technique outlined in Anand & Precup (2021); Tsitsiklis & Van Roy (1996)
to establish convergence.

Step 1. Transient update as linear stochastic approximation. Dropping the (τ, π) subscript for
clarity, the transient update can be written as

wt+1 = wt + αt

(
Rt+1 + γ(θTϕt+1 +wT

t zt+1)− (θTϕt +wT
t zt)

)
zt

= wt + αt

(
b(Xt) +A(Xt)wt

)
,

where
b(Xt) = zt(Rt+1 + γθTϕt+1 − θTϕt), A(Xt) = zt(zt − γzt+1)

T ,

and Xt = (St, St+1, ϕt, zt).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Step 2. Limiting expectations. Define
A = lim

t→∞
E[A(Xt)], b = lim

t→∞
E[b(Xt)].

Explicitly,

A =
∑
s

d(s) z(s)
(
z(s)− γ

∑
s′

[P]ss′z(s′)
)T

= ZTD(I − γP)Z ,

b =
∑
s

d(s) z(s)
(
R(s) + γθT

∑
s′

[P]ss′ϕ(s′)− θTϕ(s)
)

= ZTDR+ ZTD(γP − I)Φθ .

A is positive definite because D(I−γP) has positive row sums (since γP is a sub-stochastic matrix)
and column sums (since 1TD(I − γP) = dT − γdT = (1− γ)dT > 0).

Step 3. Bounded noise. Using mixing of the Markov chain,

∥E[A(Xt)|X0]−A∥ =
∥∥ZTDt(I − γP)Z − ZTD(I − γP)Z

∥∥
=
∥∥ZT (Dt −D)(I − γP)Z

∥∥
≤
∥∥ZT

∥∥ ∥Dt −D∥ ∥I − γP∥ ∥Z∥
≤ B1 · Cσt ·B2 ·B1

≤ K1σ
t ,

∥E[b(Xt)|X0]− b∥ =
∥∥ZT (Dt −D)R+ ZT (Dt −D)(γP − I)Φθ

∥∥
≤
∥∥ZT

∥∥ ∥Dt −D∥ ∥R∥+
∥∥ZT

∥∥ ∥Dt −D∥ ∥(γP − I)∥ ∥Φθ∥

≤ K2σ
t .

Therefore,
∞∑
t=0

∥E[A(Xt)|X0]−A∥ ≤
∞∑
t=0

K1σ
t =

K1

1− σ
= K̄1 ,

∞∑
t=0

∥E[b(Xt)|X0]− b∥ ≤
∞∑
t=0

K2σ
t =

K2

1− σ
= K̄2 .

Step 4. Fixed point. Thus, the expected iterates converge to the unique fixed point
w∗

τ = A−1b

= ZTD(I − γP)Z)
−1

(ZTDR+ ZTD(γP − I)Φθ)

= ZTD(I − γP)Z)
−1

ZTDR+ ZTD(I − γP)Z)
−1

(ZTD(γP − I)V
(P )
θ )

= w
(TD)
Z,τ −

(
ZTDτ (I − γPπ,τ )Z

)−1
ZTDτ (I − γPπ,τ )Φθ

∗

Lemma 2. The sequence of expected permanent updates converges to a unique fixed point.

Proof. Step 1. Permanent update with transient fixed point. Since permanent updates evolve on
a slower timescale, we may treat the transient parameters as converged. The update is

θt+1 = θt + αt C(Xt), where C(Xt) = wT
t ztϕt.

Define
C =

∑
τ

p(τ)
∑
s

dτ (s)w
T
τ z(s)ϕ(s)

=
∑
τ

p(τ)ΦTDτZw∗
τ

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Step 2. Boundedness and Lipschitz condition. For each task τ ,

Cτ = ΦTDτZw∗
τ ,

and using w∗
τ = A−1

τ

(
ZTDτRτ + ZTDτ (γPτ − I)Φθ

)
, we obtain

∥Cτ∥ =
∥∥ΦTDτZw∗

τ

∥∥
=
∥∥ΦTDτZAτ

−1(ZTDτRτ + ZTDτ (γPτ − I)Φθ)
∥∥

≤
∥∥ΦTDτZAτ

−1ZTDτ

∥∥+ ∥(Rτ + (γPτ − I)Φθ)∥
≤ K3,

∥C∥ =

∥∥∥∥∥∑
τ

p(τ)ΦTDτZwτ

∥∥∥∥∥
≤
∑
τ

∥∥ΦTDτZwτ

∥∥
≤ K3.

Thus the mapping is bounded and Lipschitz.

Step 3. Noise boundedness. Because tasks are sampled i.i.d. and each task’s Markov chain is
rapidly mixing, the noise terms have finite variance.

Step 4. Fixed point. Therefore, the expected permanent updates converge to the unique fixed point:

C =
∑
τ

p(τ)ΦTDτZw∗
τ

0 =
∑
τ

p(τ)
(
ΦTDτZv

(TD)
Z,τ − ΦTDτZ

(
ZTDτ (I − γPπ,τ )Z

)−1
ZTDτ (I − γPπ,τ )Φθ

∗
)

0 = Eτ [Φ
TDτZv

(TD)
Z,τ ]− Eτ [Φ

TDτΠZ,τΦθ
∗]

Eτ [Φ
TDτΠZ,τΦ]θ

∗ = Eτ [Φ
TDτZv

(TD)
Z,τ ]

θ∗ = Eτ [Φ
TDτΠZ,τΦ]

−1Eτ [Φ
TDτZv

(TD)
Z,τ ]

Corollary 2. If Z = Φ, then

θ∗ = Eτ

[
ΦTDτΦ

]−1 Eτ

[
ΦTDτΦw

(TD)
Φ,τ

]
,

w∗
τ = w

(TD)
Φ,τ − θ∗.

Moreover, in the single-task setting, θ∗ = w
(TD)
Φ,τ and w∗

τ = 0.

Proof. When Φ = Z,

ΠZ,τ = ΠΦ,τ = Φ
(
ΦTDτ (I − γPπ,τ )Φ

)−1
ΦTDτ (I − γPπ,τ ),

ΠΦ,τΦ = Φ
(
ΦTDτ (I − γPπ,τ )Φ

)−1 (
ΦTDτ (I − γPπ,τ )Φ

)
= Φ.

Therefore,

θ∗ = Eτ [Φ
TDτΦ]

−1Eτ [Φ
TDτΦw

(TD)
Φ ]

w∗
τ = w

(TD)
Φ,τ −

(
ΦTDτ (I − γPπ,τ )Φ

)−1
ΦTDτ (I − γPπ,τ )Φθ

∗,

= w
(TD)
Φ,τ − θ∗.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

In the single task setting,

θ∗ = Eτ [Φ
TDτΦ]

−1Eτ [Φ
TDτΦw

(TD)
Φ ],

=
(
ΦTDτΦ

)−1 (
ΦTDτΦ

)
w

(TD)
Φ,τ = w

(TD)
Φ,τ ,

w∗
τ = w

(TD)
Φ,τ − θ∗ = w

(TD)
Φ,τ −w

(TD)
Φ,τ = 0.

A.2 SMALL-SCALE EXPERIMENTS

Pseudocode for prediction and control with separate permanent and transient features.

Algorithm 1 Prediction with Linear Approximations

1: Initialize: buffer B, parameters θ, w
2: for t = 0→∞ do
3: Take action At

4: Store state St in B
5: Observe reward Rt+1 and next state St+1

# Update transient parameters
6: wt+1 ← wt + α

(
Rt+1 + γV (PT )(St+1)− V (PT )(St)

)
z(St)

7: if Task ends then
8: for Every Sk in B do

# Update permanent parameters
9: θk+1 ← θk + α

(
V (PT )(Sk)− V (P )(Sk)

)
ϕ(Sk)

10: end for
# Reset transient parameters

11: wt+1 ← 0
# Clear buffer

12: Reset B
13: end if
14: end for

Algorithm 2 Control with Linear Approximations

1: Initialize: buffer B, parameters θ, w
2: for t = 0→∞ do
3: Take action At

4: Store state St, At in B
5: Observe reward Rt+1 and next state St+1

# Update transient parameters
6: wt+1 ← wt + α

(
Rt+1 + γmaxa′ Q(PT )(St+1, a

′)−Q(PT )(St, At)
)
z(St, At)

7: if Task ends then
8: for Every (Sk, Ak) in B do

# Update permanent parameters
9: θk+1 ← θk + α

(
Q(PT )(Sk, Ak)−Q(P )(Sk, Ak)

)
ϕ(Sk, Ak)

10: end for
# Reset transient parameters

11: wt+1 ← 0
# Clear buffer

12: Reset B
13: end if
14: end for

Hyperparameter Sweeps for Linear Prediction (best highlighted in bold).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

TD-learning:
LR = [3e-2, 1e-2, 3e-3, 1e-3, 3e-4, 1e-4]

TD-learning (Reset):
LR = [3e-2, 1e-2, 3e-3, 1e-3, 3e-4]

PT-TD (NeurIPS):
LR-P = [1e-2, 3e-3, 1e-3, 3e-4, 1e-4, 3e-5]
LR-T = [1e-1, 3e-2, 1e-2, 3e-3, 1e-3, 3e-4]

PT-TD (Ours):
LR-P = [1e-2, 3e-3, 1e-3, 3e-4, 1e-4, 3e-5]
LR-T = [1e-1, 3e-2, 1e-2, 3e-3, 1e-3, 3e-4]

Hyperparameter Sweeps for Linear Control (best highlighted in bold).

Q-learning:
LR = [0.5, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001]

Q-learning (Reset):
LR = [0.5, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001]

PT-Q (NeurIPS):
LR-P = [0.03, 0.01, 0.003, 0.001, 0.0003]
LR-T = [0.5, 0.3, 0.1, 0.03, 0.01]

PT-Q (Ours):
LR-P = [0.03, 0.01, 0.003, 0.001, 0.0003]
LR-T = [0.5, 0.3, 0.1, 0.03, 0.01]

Tasks Used in Experiments

Task G1 G2 G3 G4
1 0 1 0 1
2 1 0 1 0
3 0 0 1 1
4 1 1 0 0

Table 1: Tasks used in Linear Prediction Experiments.

Task
1 1 0.1
2 0.1 1

Table 2: Tasks Used in Linear Control Experiments

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1 2 3 4 5

1

2

3

4

5

Af
te

r 5
0 

ep
iso

de
s

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

PV estimates

1 2 3 4 5

1

2

3

4

5

0.02 0.09 0.2 0.3 0.38

0.03 0.1 0.2 0.31 0.41

0.04 0.1 0.2 0.32 0.43

0.05 0.1 0.19 0.31 0.43

0.05 0.08 0.17 0.29 0.41

TV estimates

1 2 3 4 5

1

2

3

4

5

0.02 0.09 0.2 0.3 0.38

0.03 0.1 0.2 0.31 0.41

0.04 0.1 0.2 0.32 0.43

0.05 0.1 0.19 0.31 0.43

0.05 0.08 0.17 0.29 0.41

PV+TV estimates

1 2 3 4 5

1

2

3

4

5

0.08 0.15 0.22 0.28 0.32

0.07 0.14 0.22 0.29 0.35

0.06 0.12 0.2 0.29 0.36

0.06 0.1 0.17 0.26 0.35

0.05 0.08 0.14 0.22 0.31

TD estimates

1 2 3 4 5

1

2

3

4

5

Af
te

r 1
50

 e
pi

so
de

s

0.14 0.13 0.13 0.12 0.11

0.15 0.14 0.14 0.13 0.12

0.16 0.15 0.15 0.14 0.13

0.16 0.16 0.15 0.15 0.14

0.16 0.16 0.16 0.15 0.14

PV estimates

1 2 3 4 5

1

2

3

4

5

0.24 0.16 0.07 -0.02 -0.08

0.23 0.16 0.05 -0.05 -0.13

0.23 0.16 0.05 -0.06 -0.16

0.22 0.17 0.07 -0.05 -0.17

0.22 0.19 0.1 -0.02 -0.14

TV estimates

1 2 3 4 5

1

2

3

4

5

0.37 0.29 0.19 0.1 0.03

0.38 0.3 0.19 0.08 -0.01

0.38 0.31 0.2 0.08 -0.03

0.38 0.33 0.22 0.09 -0.03

0.38 0.35 0.26 0.13 -0.0

PV+TV estimates

1 2 3 4 5

1

2

3

4

5

0.24 0.2 0.14 0.09 0.06

0.28 0.23 0.17 0.11 0.06

0.31 0.27 0.21 0.14 0.07

0.34 0.3 0.24 0.17 0.1

0.34 0.33 0.28 0.21 0.14

TD estimates

1 2 3 4 5

1

2

3

4

5

Af
te

r 2
50

 e
pi

so
de

s

0.18 0.18 0.16 0.15 0.13

0.2 0.19 0.18 0.17 0.15

0.21 0.21 0.2 0.18 0.16

0.22 0.22 0.21 0.19 0.18

0.22 0.22 0.21 0.2 0.18

PV estimates

1 2 3 4 5

1

2

3

4

5

-0.18 -0.2 -0.18 -0.14 -0.08

-0.07 -0.09 -0.09 -0.07 -0.03

0.05 0.02 0.01 0.02 0.05

0.13 0.11 0.11 0.12 0.13

0.16 0.16 0.17 0.19 0.2

TV estimates

1 2 3 4 5

1

2

3

4

5

0.0 -0.02 -0.02 0.01 0.05

0.13 0.1 0.09 0.1 0.12

0.26 0.23 0.21 0.21 0.21

0.35 0.33 0.32 0.31 0.31

0.38 0.38 0.39 0.39 0.39

PV+TV estimates

1 2 3 4 5

1

2

3

4

5

0.11 0.06 0.04 0.03 0.04

0.2 0.16 0.12 0.1 0.09

0.29 0.25 0.21 0.17 0.15

0.35 0.32 0.29 0.25 0.21

0.37 0.37 0.35 0.31 0.28

TD estimates

1 2 3 4 5

1

2

3

4

5

Af
te

r 3
50

 e
pi

so
de

s

0.2 0.19 0.18 0.16 0.14

0.22 0.21 0.2 0.18 0.16

0.24 0.23 0.22 0.2 0.18

0.25 0.24 0.23 0.22 0.2

0.25 0.25 0.24 0.22 0.21

PV estimates

1 2 3 4 5

1

2

3

4

5

0.22 0.24 0.26 0.27 0.26

0.06 0.1 0.12 0.14 0.15

-0.08 -0.05 -0.02 0.0 0.02

-0.18 -0.17 -0.14 -0.12 -0.1

-0.22 -0.22 -0.21 -0.2 -0.18

TV estimates

1 2 3 4 5

1

2

3

4

5

0.42 0.43 0.44 0.43 0.4

0.29 0.31 0.32 0.32 0.31

0.16 0.18 0.2 0.2 0.2

0.06 0.08 0.09 0.09 0.1

0.03 0.03 0.03 0.02 0.02

PV+TV estimates

1 2 3 4 5

1

2

3

4

5

0.27 0.3 0.33 0.35 0.35

0.2 0.23 0.26 0.29 0.3

0.13 0.16 0.19 0.22 0.24

0.08 0.1 0.12 0.15 0.17

0.06 0.07 0.08 0.1 0.12

TD estimates

1 2 3 4 5

1

2

3

4

5

Af
te

r 4
50

 e
pi

so
de

s

0.19 0.18 0.17 0.16 0.14

0.2 0.2 0.19 0.17 0.16

0.22 0.21 0.2 0.19 0.17

0.22 0.22 0.21 0.2 0.18

0.23 0.22 0.22 0.2 0.19

PV estimates

1 2 3 4 5

1

2

3

4

5

-0.15 -0.07 0.04 0.16 0.26

-0.17 -0.1 0.02 0.15 0.27

-0.18 -0.12 -0.01 0.13 0.26

-0.19 -0.14 -0.03 0.1 0.24

-0.19 -0.16 -0.06 0.07 0.21

TV estimates

1 2 3 4 5

1

2

3

4

5

0.04 0.11 0.21 0.32 0.4

0.03 0.1 0.21 0.32 0.42

0.03 0.09 0.19 0.32 0.43

0.03 0.08 0.18 0.3 0.42

0.03 0.06 0.15 0.27 0.4

PV+TV estimates

1 2 3 4 5

1

2

3

4

5

0.14 0.19 0.27 0.35 0.41

0.1 0.16 0.23 0.32 0.39

0.07 0.11 0.19 0.28 0.36

0.05 0.08 0.15 0.23 0.32

0.04 0.06 0.12 0.19 0.28

TD estimates

1 2 3 4 5

1

2

3

4

5

Af
te

r 5
50

 e
pi

so
de

s

0.18 0.18 0.17 0.16 0.14

0.19 0.19 0.18 0.17 0.16

0.21 0.2 0.2 0.18 0.17

0.21 0.21 0.2 0.19 0.18

0.22 0.21 0.21 0.2 0.18

PV estimates

1 2 3 4 5

1

2

3

4

5

0.19 0.11 0.02 -0.06 -0.11

0.18 0.11 0.01 -0.09 -0.16

0.18 0.11 0.0 -0.11 -0.2

0.17 0.12 0.02 -0.1 -0.21

0.17 0.13 0.05 -0.07 -0.19

TV estimates

1 2 3 4 5

1

2

3

4

5

0.37 0.29 0.19 0.1 0.04

0.38 0.3 0.19 0.08 -0.01

0.38 0.31 0.2 0.08 -0.03

0.38 0.33 0.22 0.09 -0.03

0.38 0.35 0.26 0.13 -0.0

PV+TV estimates

1 2 3 4 5

1

2

3

4

5

0.28 0.22 0.16 0.13 0.12

0.31 0.24 0.17 0.12 0.08

0.33 0.27 0.2 0.13 0.07

0.35 0.31 0.24 0.16 0.08

0.36 0.34 0.28 0.21 0.12

TD estimates

1 2 3 4 5

1

2

3

4

5

Af
te

r 6
50

 e
pi

so
de

s

0.19 0.19 0.18 0.16 0.15

0.21 0.2 0.19 0.18 0.16

0.22 0.22 0.21 0.19 0.18

0.23 0.23 0.22 0.2 0.19

0.23 0.23 0.22 0.21 0.19

PV estimates

1 2 3 4 5

1

2

3

4

5

-0.19 -0.22 -0.21 -0.17 -0.11

-0.07 -0.11 -0.12 -0.1 -0.07

0.04 0.01 -0.0 -0.0 0.01

0.13 0.11 0.1 0.1 0.1

0.16 0.16 0.17 0.17 0.18

TV estimates

1 2 3 4 5

1

2

3

4

5

0.0 -0.03 -0.03 -0.01 0.03

0.14 0.1 0.08 0.08 0.1

0.27 0.23 0.2 0.19 0.19

0.36 0.33 0.32 0.3 0.29

0.39 0.39 0.39 0.38 0.37

PV+TV estimates

1 2 3 4 5

1

2

3

4

5

0.12 0.07 0.05 0.05 0.09

0.22 0.16 0.11 0.09 0.1

0.31 0.25 0.2 0.16 0.14

0.37 0.33 0.28 0.24 0.2

0.39 0.38 0.35 0.31 0.27

TD estimates

1 2 3 4 5

1

2

3

4

5

Af
te

r 7
50

 e
pi

so
de

s

0.2 0.19 0.18 0.16 0.14

0.22 0.21 0.2 0.18 0.16

0.23 0.22 0.21 0.2 0.18

0.24 0.23 0.22 0.21 0.19

0.24 0.24 0.23 0.22 0.2

PV estimates

1 2 3 4 5

1

2

3

4

5

0.21 0.24 0.26 0.26 0.26

0.07 0.1 0.13 0.14 0.15

-0.07 -0.04 -0.01 0.01 0.03

-0.17 -0.15 -0.13 -0.11 -0.09

-0.2 -0.2 -0.19 -0.18 -0.17

TV estimates

1 2 3 4 5

1

2

3

4

5

0.41 0.43 0.43 0.42 0.4

0.29 0.31 0.32 0.33 0.32

0.16 0.18 0.2 0.21 0.21

0.07 0.08 0.09 0.1 0.1

0.04 0.04 0.04 0.03 0.03

PV+TV estimates

1 2 3 4 5

1

2

3

4

5

0.29 0.31 0.34 0.38 0.4

0.22 0.23 0.26 0.3 0.33

0.15 0.16 0.19 0.21 0.24

0.1 0.11 0.12 0.15 0.17

0.08 0.08 0.1 0.11 0.13

TD estimates

1 2 3 4 5

1

2

3

4

5

Af
te

r 8
50

 e
pi

so
de

s

0.19 0.18 0.18 0.16 0.15

0.21 0.2 0.19 0.18 0.16

0.22 0.21 0.2 0.19 0.18

0.22 0.22 0.21 0.2 0.18

0.23 0.22 0.22 0.2 0.19

PV estimates

1 2 3 4 5

1

2

3

4

5

-0.16 -0.09 0.03 0.15 0.25

-0.17 -0.1 0.01 0.14 0.26

-0.18 -0.12 -0.01 0.13 0.25

-0.18 -0.14 -0.03 0.11 0.24

-0.19 -0.15 -0.05 0.08 0.22

TV estimates

1 2 3 4 5

1

2

3

4

5

0.03 0.1 0.2 0.31 0.4

0.03 0.1 0.2 0.32 0.42

0.04 0.09 0.2 0.32 0.43

0.04 0.09 0.18 0.31 0.43

0.04 0.07 0.16 0.28 0.41

PV+TV estimates

1 2 3 4 5

1

2

3

4

5

0.15 0.19 0.27 0.37 0.45

0.12 0.16 0.23 0.32 0.41

0.09 0.12 0.19 0.28 0.37

0.07 0.09 0.16 0.24 0.32

0.06 0.08 0.14 0.21 0.29

TD estimates

1 2 3 4 5

1

2

3

4

5

Af
te

r 9
50

 e
pi

so
de

s

0.19 0.18 0.18 0.17 0.15

0.2 0.2 0.19 0.18 0.17

0.21 0.21 0.2 0.19 0.18

0.22 0.21 0.21 0.2 0.19

0.22 0.22 0.21 0.2 0.19

PV estimates

1 2 3 4 5

1

2

3

4

5

0.17 0.1 0.01 -0.07 -0.12

0.17 0.1 -0.01 -0.1 -0.18

0.17 0.1 -0.0 -0.12 -0.21

0.17 0.11 0.01 -0.11 -0.22

0.16 0.13 0.05 -0.07 -0.19

TV estimates

1 2 3 4 5

1

2

3

4

5

0.36 0.28 0.18 0.09 0.03

0.37 0.29 0.18 0.08 -0.01

0.38 0.31 0.2 0.07 -0.03

0.38 0.33 0.22 0.09 -0.03

0.38 0.35 0.26 0.13 -0.0

PV+TV estimates

1 2 3 4 5

1

2

3

4

5

0.28 0.21 0.16 0.14 0.15

0.31 0.23 0.17 0.12 0.1

0.34 0.27 0.19 0.12 0.07

0.36 0.31 0.24 0.16 0.08

0.37 0.35 0.29 0.22 0.13

TD estimates

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Figure 9: Value Function Heatmap for the Prediction Task

A.3 CRAFTAX EXPERIMENTS

Hyperparameter Tuning.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Craftax Baselines: For the baselines and the permanent network in all variants of PTQ-learning,
we used hyperparameters from the PQN repository, which are consistent with the results published
in the PQN paper. We only tuned minibatches for the PQN baseline, because it determined the
number of steps the permanent network would take, which we also tuned for our approach. Transient
parameters were found by performing a search over a range of values. Craftax: Given the large
hyperparameter space, we used coordinate-wise search: we fixed all hyperparameters but one to a
reasonable baseline and performed a grid search for that single hyperparameter. This process was
then repeated iteratively for each hyperparameter, fixing the newly tuned value before moving to the
next. For each configuration, we ran a total of 150M steps with 1024 environments in parallel, using
AUC as the selection metric. The final results were reported for 250M steps. We used the same HPs
for the online craftax experiment (minibatch was reduced to 8 to fit the smaller batch size).

Transient in Craftax: Given the large hyperparameter space, we used coordinate-wise search: we
fixed all hyperparameters but one to a reasonable baseline and performed a grid search for that
single hyperparameter. This process was then repeated iteratively for each hyperparameter, fixing
the newly tuned value before moving to the next. For each configuration, we ran a total of 150M
steps with 1024 environments in parallel, using AUC as the selection metric. The final results were
reported for 250M steps. We used the same HPs for the online craftax experiment (minibatch was
reduced to 8 to fit the smaller batch size).

Role of HPs.

1. Tables (T ) vs. Generalization: Similar to tiles in Tile Coding. More tables spread infor-
mation, increasing generalization. Fewer tables concentrate information, reducing general-
ization.

2. Slots (S) & Eviction: Determines capacity. Too few slots lead to high eviction rates; too
many slots approach tabular memory.

3. Generalization (ρ): Explicitly controls the mixing of values between slots. ρ = 1 forces
isolation (no generalization); ρ < 1 enables local smoothing.

4. Number of Hashes (K): Determines the precision of the MinHash signature. A higher K
better preserves the Jaccard similarity property (improving retrieval accuracy), though with
diminishing returns beyond a certain point.

Non-parametric Transient Memory. The non-parametric transient memory is implemented
through three core methods: Put, which stores incoming observations; Get, which retrieves stored
value estimates; and UpdateTDError, which updates the estimates in proportion to their contribu-
tion. Pseudocode for these methods is given in Algorithms 3,4, and 5.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 3 PUT method for non-parametric transient memory

1: procedure PUT(M, x)
Require: M: transient memory; x: observation
Ensure: Updated memoryM

2: (sig, tag)← MINHASH(x)
3: bins← GETBUCKETS(sig)

# Insert observation in all tables
4: for t← 0 to T − 1 do
5: if (CONTAINSTAG(M[t, bins[t]], tag) == false) then

# empty-first else LRU
6: slot← SELECTSLOT(M, t, bins[t])
7: M[t, bins[t], slot].tag← tag

# mean over other valid slots
8: M[t, bins[t], slot].values← INITIALIZE(t, bins[t])
9: else

10: slot← FINDSLOTBYTAG(M[t, bins[t]], tag)
11: end if
12: M[t, bins[t], slot].age← TOUCH(M.clock)
13: end for
14: M.clock←M.clock + 1
15: returnM
16: end procedure

Algorithm 4 GET method for non-parametric transient memory

1: procedure GET(M, x, ρ)
Require: M: transient memory; x: observation; ρ: mixing weight
Ensure: values

2: (sig, tag)← MINHASH(x)
3: bins← GETBUCKETS(sig)
4: values← 0

# Collect values from every table
5: for t← 0 to T − 1 do
6: slot← FINDSLOTBYTAG(M[t, bins[t]], tag)

# Weigh the update for matching slot by ρ
7: values← values +ρ · M[t, bins[t], slot].values
8: OSlots← FINDOTHERVALIDSLOTS(M[t, bins[t]], tag)
9: n← LEN(OSlots)

# Divide weight (1− ρ) equally among other valid slots
10: for s← 0 to n− 1 do
11: values← values + (1−ρ)

n · M[t, bins[t],OSlots[s]].values
12: end for
13: end for
14: return values
15: end procedure

A.4 IMAGE EXPERIMENTS

We performed a grid search over all the hyperparameters for the 256-image variant. Once we found
the best values, we fixed them and tested the performance for the 500- and 1000-image variants (see
Figures 18-20. The best hyperparameter values for each algorithm is provided below:

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 5 UpdateTDError method for non-parametric transient memory

1: procedure UPDATETDERROR(M, x, a, ρ, δ, α)
Require: M: transient memory; x: observation; a: action; ρ: mixing weight; δ: TD-error; α:

learning rate
Ensure: Updated memoryM

2: (sig, tag)← MINHASH(x)
3: bins← GETBUCKETS(sig)
4: for t← 0 to T − 1 do
5: slot← FINDSLOTBYTAG(M[t, bins[t]], tag)

# Weight the matching slot by ρ
6: M[t, bins[t], slot].values[a]←M[t, bins[t], slot].values[a] + α

T ρδ
7: OSlots← FINDOTHERVALIDSLOTS(M[t, bins[t]], tag)
8: n← LEN(OSlots)

# Divide TD-error equally among other valid slots by weighting by (1− ρ)
9: for s← 0 to n− 1 do

10: M[t, bins[t],OSlots[s]].values[a]←M[t, bins[t],OSlots[s]].values[a]+ α
nT (1−ρ)δ

11: end for
12: end for
13: returnM
14: end procedure

Parameter Value
ALG NAME PQN
TOTAL TIMESTEPS 5× 108

TOTAL TIMESTEPS DECAY 5× 108

NUM ENVS 1024
NUM STEPS 32
EPS START 0.1
EPS FINISH 0.005
EPS DECAY 0.2
NUM MINIBATCHES 1 for PQN(1), 32 for PQN(32)
NUM EPOCHS 1
NORM INPUT True
NORM TYPE layer norm
HIDDEN SIZE 1024
NUM LAYERS 4
LR 0.0001
MAX GRAD NORM 1.0
LR LINEAR DECAY True
REW SCALE 1.0
GAMMA 0.99
Q LAMBDA False
LAMBDA 0

Environment
ENV NAME Craftax-Classic-Symbolic-v1
USE OPTIMISTIC RESETS True
OPTIMISTIC RESET RATIO 16
LOG ACHIEVEMENTS True

Table 3: Hyperparameters for PQN.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 6 PTQ for Craftax

Require: M: transient memory; θ: permanent parameters; env: environment; Ts: total timesteps;
B: buffer; α: permanent LR; α: transient LR; ρ: mixing weight; ϵ: exploration rate; γ: discount;
k: PM update period; λ: TM decay

Ensure: Updated θ,M
1: s← env.reset()
2: M← PUT(M, s)
3: for t← 1 to Ts do

# permanent values
4: Q(P )(s)← GETPERMANENT(s, θ)

# transient values
5: Q(T )(s)← GET(M, s, ρ)

# Compute Q for current state
6: Q(PT )(s)← Q(P )(s) +Q(T )(s)

# Select action (epsilon-greedy over Q)
7: a← EPSILONGREEDY(Q(PT )(s), ϵ)

# Step environment
8: (s′, r)← env.step(a)
9: M← PUT(M, s′)

10: B ← B ∪ {(s, a,Q(P )(s))}
# Evaluate Q for next state

11: Q(P )(s′)← GETPERMANENT(s′, θ)
12: Q(T )(s′)← GET(M, s′, ρ)
13: Q(PT )(s′)← Q(P )(s′) +Q(T )(s′)

# TD error and transient update
14: δ ← r + γmaxa′ Q(PT )(s′, a′)−Q(PT )(s, a)
15: M← UPDATETDERROR(M, s, a, ρ, δ, α)

# Periodic permanent update and TM decay
16: if mod(t, k) = 0 then
17: θ ← UPDATEPM(M,B, α)
18: B ← {}
19: M← DECAYVALUES(M, λ)
20: end if
21: s← s′

22: end for
23: return θ,M

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Parameter Value
Permanent Memory

ALG NAME PTQ
TOTAL TIMESTEPS 2× 107

TOTAL TIMESTEPS DECAY 5× 108

NUM ENVS 1024
NUM STEPS 32 (Permanent memory update frequency)
EPS START 0.1
EPS FINISH 0.005
EPS DECAY 0.2
NUM MINIBATCHES 32
NUM EPOCHS 1
NORM INPUT True
NORM TYPE layer norm
HIDDEN SIZE 1024
NUM LAYERS 4
LR 0.0001
MAX GRAD NORM 1.0
LR LINEAR DECAY True
REW SCALE 1.0
GAMMA 0.99
Q LAMBDA False
LAMBDA 0

Environment
ENV NAME Craftax-Classic-Symbolic-v1
USE OPTIMISTIC RESETS True
OPTIMISTIC RESET RATIO 16
LOG ACHIEVEMENTS True

Transient Memory
NUM TABLES 2
TRANSIENT TABLE SIZE 2048
NUM SLOTS 32
NUM HASHES 128
CROP SIZE 7
ρ 0.85
TRANSIENT LR 1.3
DECAY 0.95

Table 4: Hyperparameters for PTQ for the results presented in the main paper.

Parameter Value
Hyperparameters

ALG NAME PQN
NUM MINIBATCHES 4
NUM EPOCHS 1
NORM INPUT True
NORM TYPE layer norm
LR 0.001
MAX GRAD NORM 1.0

Table 5: Hyperparameters for PQN for Image task.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0M 5M 10M 15M
Environment Steps

0

1

2

3

Sc
or

e

Score
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(a) Score.

0M 5M 10M 15M
Environment Steps

100

150

200

250

300

Ep
iso

de
 L

en
gt

h

Returned Episode Lengths
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(b) Episode Lengths.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Wake Up

PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(c) Wake Up.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Place Table
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(d) Place Table.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Place Plant

PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(e) Place Plant.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Make Wood Pickaxe
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(f) Make Wood Pickaxe.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Make Wood Sword
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(g) Make Wood Sword.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Eat Cow
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(h) Eat Cow.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Defeat Zombie
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(i) Defeat Zombie.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Collect Wood

PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(j) Collect Wood.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100
Ac

hi
ev

em
en

t %
Collect Sapling

PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(k) Collect Sapling.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Collect Drink
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(l) Collect Drink.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Collect Stone
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(m) Collect Stone.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Place Stone
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(n) Place Stone.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Defeat Zombie
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(o) Defeat Zombie.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100
Ac

hi
ev

em
en

t %

Place Furnace
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(p) Place Furnace.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Collect Coal
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(q) Collect Coal.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Make Stone Pickaxe
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(r) Make Stone Pickaxe.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Make Stone Sword
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(s) Make Stone Sword.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Eat Plant
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(t) Eat Plant.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Collect Iron
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(u) Collect Iron.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Make Iron Pickaxe
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(v) Make Iron Pickaxe.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Make Iron Sword
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(w) Make Iron Sword.

0M 5M 10M 15M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Collect Diamond
PTQ(Memory)
PQN
TM-only

PTQ(IHT)
PTQ(NeurIPS)

(x) Collect Diamond.

Figure 10: All achievements in the craftax online experiment.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0M 50M 100M 150M 200M 250M
Environment Steps

0

10

20

30

40

Sc
or

e

Score
PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(a) Score.

0M 50M 100M 150M 200M 250M
Environment Steps

200

300

400

Ep
iso

de
 L

en
gt

h

Returned Episode Lengths

PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(b) Episode Lengths.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Wake Up

PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(c) Wake Up.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Place Table

PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(d) Place Table.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Place Plant

PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(e) Place Plant.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Make Wood Pickaxe

PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(f) Make Wood Pickaxe.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Make Wood Sword

PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(g) Make Wood Sword.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Eat Cow

PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(h) Eat Cow.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Defeat Zombie

PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(i) Defeat Zombie.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Collect Wood

PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(j) Collect Wood.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100
Ac

hi
ev

em
en

t %
Collect Sapling

PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(k) Collect Sapling.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Collect Drink

PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(l) Collect Drink.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Collect Stone

PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(m) Collect Stone.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Place Stone

PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(n) Place Stone.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Defeat Zombie

PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(o) Defeat Zombie.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100
Ac

hi
ev

em
en

t %

Place Furnace

PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(p) Place Furnace.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Collect Coal

PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(q) Collect Coal.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Make Stone Pickaxe

PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(r) Make Stone Pickaxe.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Make Stone Sword

PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(s) Make Stone Sword.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Eat Plant
PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(t) Eat Plant.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Collect Iron
PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(u) Collect Iron.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Make Iron Pickaxe
PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(v) Make Iron Pickaxe.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Make Iron Sword
PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(w) Make Iron Sword.

0M 50M 100M 150M 200M 250M
Environment Steps

0

20

40

60

80

100

Ac
hi

ev
em

en
t %

Collect Diamond
PTQ(Memory)
PQN(1)
PQN(32)

TM-only
PTQ(IHT)
PTQ(NeurIPS)

(x) Collect Diamond.

Figure 11: All achievements in the craftax 250M experiment.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0M 50M 100M 150M 200M 250M
Environment Steps

0

5

10

15
Ep

iso
de

 R
et

ur
n

Returned Episode Returns

32
16
8
4
2

(a) Returns.

0M 50M 100M 150M 200M 250M
Environment Steps

0

10

20

30

Sc
or

e

Score
32
16
8
4
2

(b) Score.

0M 50M 100M 150M 200M 250M
Environment Steps

0

100

200

300

400

Ep
iso

de
 L

en
gt

h

Returned Episode Lengths

32
16
8
4
2

(c) Episode Length.

Figure 12: Effect of minibatch updates to permanent network on performance.

0M 50M 100M 150M 200M 250M
Environment Steps

0.0

2.5

5.0

7.5

10.0

12.5

Ep
iso

de
 R

et
ur

n

Returned Episode Returns
1.0
0.95
0.85
0.75
0.65

(a) Returns.

0M 50M 100M 150M 200M 250M
Environment Steps

0

5

10

15

Sc
or

e
Score

1.0
0.95
0.85
0.75
0.65

(b) Score.

0M 50M 100M 150M 200M 250M
Environment Steps

0

100

200

300

Ep
iso

de
 L

en
gt

h

Returned Episode Lengths

1.0
0.95
0.85
0.75
0.65

(c) Episode Length.

Figure 13: Effect of ρ on performance.

0M 50M 100M 150M 200M 250M
Environment Steps

0

2

4

6

8

10

12

Ep
iso

de
 R

et
ur

n

Returned Episode Returns
(256, 1)
(128, 2)
(64, 4)
(32, 8)
(16, 16)

(a) Returns.

0M 50M 100M 150M 200M 250M
Environment Steps

0.0

2.5

5.0

7.5

10.0

12.5

Sc
or

e

Score
(256, 1)
(128, 2)
(64, 4)
(32, 8)
(16, 16)

(b) Score.

0M 50M 100M 150M 200M 250M
Environment Steps

0

100

200

300

Ep
iso

de
 L

en
gt

h

Returned Episode Lengths

(256, 1)
(128, 2)
(64, 4)
(32, 8)
(16, 16)

(c) Episode Length.

Figure 14: Effect of number of tables on Performance (fixed hash signature to 256 bits).

0M 50M 100M 150M 200M 250M
Environment Steps

0

2

4

6

8

10

12

Ep
iso

de
 R

et
ur

n

Returned Episode Returns
0.65
0.75
0.85
0.95
1.0

(a) Returns.

0M 50M 100M 150M 200M 250M
Environment Steps

0.0

2.5

5.0

7.5

10.0

12.5

Sc
or

e

Score
0.65
0.75
0.85
0.95
1.0

(b) Score.

0M 50M 100M 150M 200M 250M
Environment Steps

0

100

200

300

Ep
iso

de
 L

en
gt

h

Returned Episode Lengths

0.65
0.75
0.85
0.95
1.0

(c) Episode Length.

Figure 15: Effect of the decay parameter on performance.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0M 50M 100M 150M 200M 250M
Environment Steps

0.0

2.5

5.0

7.5

10.0

12.5
Ep

iso
de

 R
et

ur
n

Returned Episode Returns
0.1
0.2
0.3
0.5

(a) Returns.

0M 50M 100M 150M 200M 250M
Environment Steps

0

5

10

15

Sc
or

e

Score
0.1
0.2
0.3
0.5

(b) Score.

0M 50M 100M 150M 200M 250M
Environment Steps

0

100

200

300

Ep
iso

de
 L

en
gt

h

Returned Episode Lengths

0.1
0.2
0.3
0.5

(c) Episode Length.

Figure 16: Effect of the transient learning rate on performance.

0M 50M 100M 150M 200M 250M
Environment Steps

0

5

10

15

Ep
iso

de
 R

et
ur

n

Returned Episode Returns

1.8
1.5
1.3
1.0
0.9
0.8

(a) Returns.

0M 50M 100M 150M 200M 250M
Environment Steps

0

10

20

30

Sc
or

e

Score
1.8
1.5
1.3
1.0
0.9
0.8

(b) Score.

0M 50M 100M 150M 200M 250M
Environment Steps

0

100

200

300

400

Ep
iso

de
 L

en
gt

h

Returned Episode Lengths

1.8
1.5
1.3
1.0
0.9
0.8

(c) Episode Length.

Figure 17: Effect of the transient learning rate on performance.

Parameter Value
General Configuration

ALG NAME pt minhash
NUM MINIBATCHES 4
NUM EPOCHS 1
NORM INPUT True
NORM TYPE layer norm
LR 0.001
MAX GRAD NORM 1.0

Transient Memory (IHT)
TRANSIENT TABLE SIZE 128
NUM HASHES 2
NUM ROWS 128
SLOTS PER BIN 4
TRANSIENT LR 0.5
DECAY 0.95
ρ 0.75

Table 6: Hyperparameters for PT minhash (IHT).

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Parameter Value
TRANSIENT TABLE SIZE 512
NUM HASHES 2
NUM ROWS 128
TRANSIENT LR 0.5
DECAY 1.0

Table 7: Tranisent Memory Hyperparameters for PT-IHT (permanent retains from PQN).

Parameter Value
TRANSIENT LR 0.003
DECAY 1.0

Table 8: Hyperparameters for PTQ-NeurIPS (permanent retains from PQN).

Parameter Value
TRANSIENT TABLE SIZE 128
NUM HASHES 2
NUM ROWS 128
SLOTS PER BIN 4
TRANSIENT LR 0.5
DECAY 0.95
ρ 0.75

Table 9: Hyperparameters for TM-Only ablation.

LR

50.3

aR٠٦٦

3e-3

م3.7-

1e-3

5e-4

4e-4

20.4

Minibatchec Decav Rho TransientLR AveragerewvardAUU

1e+1

geto

0.3
7040

6e+0

0.2

5e+0

0.1

-40+0-

00

3e+0

-0.1

٣٥٠ٮ(نلمى$ -0.2

Figure 18: HP tuning plot for the PQN baseline.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 19: HP tuning plot for the PT MinHash method.

Figure 20: HP tuning plot for the PT-IHT method.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 21: HP tuning plot for the PTQ-NeurIPS baseline.

31


	Introduction
	Background
	Permanent and Transient Representations
	Theoretical results
	Small-Scale Experiments
	Prediction
	Control

	Non-parametric transient memory
	Experiments: Craftax-Classic
	Experiment: Generalization to image-based tasks
	Discussion and Conclusion
	Appendix
	Theoretical Results
	Small-Scale Experiments
	Craftax Experiments
	Image Experiments


