
CogniLoad: A Synthetic Natural Language Reasoning Benchmark With Tunable Length, Intrinsic Difficulty, and Distractor Density

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Current benchmarks for long-context reasoning in Large Language Models (LLMs)
2 often blur critical factors like intrinsic task complexity, distractor interference, and
3 task length. To enable more precise failure analysis, we introduce **CogniLoad**, a
4 novel synthetic benchmark grounded in Cognitive Load Theory (CLT). CogniLoad
5 generates natural-language logic puzzles with independently tunable parameters
6 that reflect CLT’s core dimensions: intrinsic difficulty (d) controls intrinsic load;
7 distractor-to-signal ratio (ρ) manipulates extraneous load; and task length (N)
8 serves as an operational proxy for conditions demanding germane load. Evaluating
9 14 SotA reasoning LLMs, CogniLoad reveals distinct performance sensitivities,
10 identifying task length as a dominant constraint and uncovering varied tolerances
11 to intrinsic complexity and U-shaped responses to distractor ratios. By offering
12 systematic, factorial control over these cognitive load dimensions, CogniLoad
13 provides a reproducible, scalable, and diagnostically rich tool for dissecting LLM
14 reasoning limitations and guiding future model development.

15 1 Introduction

16 Cognitive Load Theory (CLT) [Sweller, 1988] posits that working memory constraints [Lieder and
17 Griffiths, 2020] for problem solving in humans arise from three types [Paas et al., 2003] of cognitive
18 load: intrinsic (ICL), extraneous (ECL), and germane (GCL). ICL stems from the inherent complexity
19 and element interactivity of the task [Halford et al., 1998]. ECL is induced by suboptimal task
20 presentation requiring the processing of elements that are not task-relevant [Chandler and Sweller,
21 1991]. GCL pertains to remaining resources effectively allocated to engaging with the intrinsic task
22 demands for schema construction [Ericsson and Kintsch, 1995, Sweller, 2010].

23 Large language models (LLMs) face analogous demands on their finite computational resources. The
24 essential element interactivity of a reasoning chain mirrors ICL; distractor elements reflect ECL; and
25 sustained engagement with intrinsically relevant information over a long reasoning process acts as
26 an operational proxy for germane-like processing - the constructive effort to maintain a coherent
27 problem representation.

28 To the best of our knowledge, no study has based the evaluation of problem-solving capacities of
29 LLMs in CLT by distinguishing these three load types, and existing benchmarks often confound them:
30 LongBench [Bai et al., 2024a] and L-Eval [An et al., 2024] vary context length but not necessarily
31 the intrinsic reasoning depth; LogicBench [Parmar et al., 2024] probes ICL with minimal demands
32 on ECL or context-induced load; BABILong [Kuratov et al., 2024] mixes multi-step reasoning with
33 fixed distractor ratios, obscuring precise failure attribution.

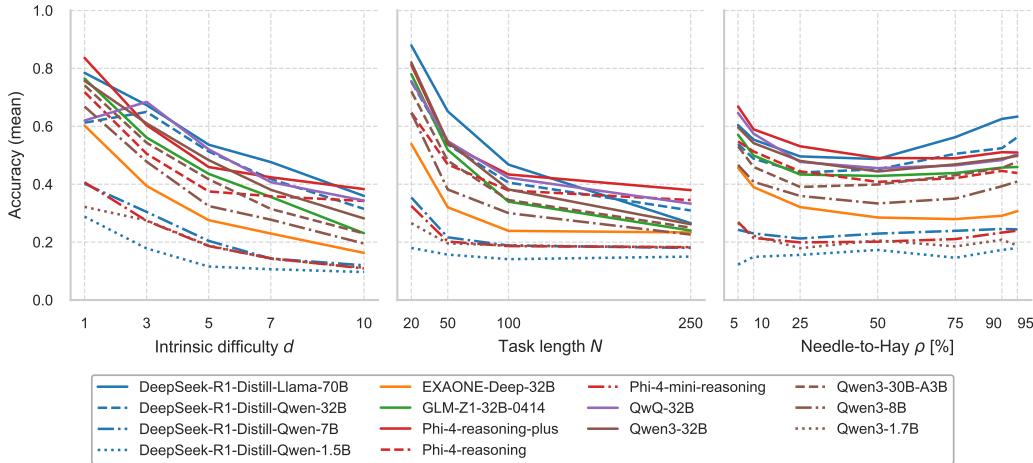


Figure 1: The average accuracy of models across the evaluated parameter space for $d \in \{1, 3, 5, 7, 10\}$ (left panel), $N \in \{20, 50, 100, 250\}$ (center panel), and $\rho \in \{5, \dots, 95\}$ (right panel). Each plot selects one dimension for the X-axis and averages the accuracy of all evaluated puzzles for the other two dimensions relative to it.

34 We introduce **CogniLoad**, a controllable synthetic benchmark for long-context reasoning, guided by
 35 CLT, that operationalizes these load types through tunable parameters in randomized natural-language
 36 logic puzzles: **(i) Intrinsic Load** via Intrinsic Difficulty d controls the number of interacting entities,
 37 attributes, and logical clauses, directly manipulating ICL by varying essential element interactivity
 38 and reasoning depth. **(ii) Extraneous Load** via Distractor Density ρ : Dictates distractor density;
 39 lower ρ increases irrelevant elements, manipulating ECL. **(iii) Germane Load Proxy** via Task
 40 Length N serves as an operational proxy for demanding germane-like cognitive work.

41 In this study we make the following contributions:

42 1. We ground the evaluation of LLMs in CLT, precisely defining benchmark parameters that
 43 control ICL, ECL, and an operational proxy for the conditions conducive to GCL.

44 2. We introduce *CogniLoad*, the first benchmark designed to independently control these three
 45 dimensions of cognitive load, while scaling to arbitrarily long contexts.

46 3. We provide an algorithm for the automatic randomized generation and evaluation of puzzle
 47 instances, enabling large-scale and reproducible comparison of LLM capabilities.

48 4. We report empirical results on 14 state-of-the-art (SotA) reasoning LLMs (see Figure 1),
 49 revealing distinct failure regimes across the (d, N, ρ) dimensions and highlighting specific
 50 targets for improving LLM design.

51 Together, these contributions translate CLT into a precise diagnostic framework for understanding
 52 and advancing long-context reasoning in LLMs.

53 1.1 Related work

54 **Long-Context Benchmarks (Working Memory Capacity).** A line of work starting with Long-
 55 Range Arena (LRA) [Tay et al., 2020] and followed by several recent benchmarks probe LLM
 56 performance on long sequences, often framed as testing “memory load” or context utilization. Earlier
 57 studies such as SCROLLS [Shaham et al., 2022], BookSum [Kryściński et al., 2021], and QMSum
 58 [Zhong et al., 2021] scale document length without manipulating intrinsic difficulty. LongBench
 59 [Bai et al., 2024a,b] and L-Eval [An et al., 2024] aggregate multi-task corpora up to 200k tokens,
 60 while BABILong [Kuratov et al., 2024], LongReason [Ling et al., 2025], RULER [Hsieh et al., 2024],
 61 ZeroSCROLLS [Shaham et al., 2023], and Michelangelo [Vodrahalli et al., 2024] increase context
 62 but the inherent difficulty of individual sub-tasks (ICL) may vary unsystematically while distractor
 63 density (ECL) is often not a controlled variable. Consequently, performance degradation could be due

64 to sheer length overwhelming processing capacity, or an inability to sustain germane-like cognitive
65 work over extended relevant information, but the precise cause of failure is not clear.

66 **Logical-Reasoning Benchmarks (Intrinsic Load).** A complementary line of benchmarks focuses
67 on ICL by presenting tasks with high inherent complexity but often within minimal context lengths
68 or distractors. Notable classical suites include ReClor [Yu et al., 2020], LogiQA [Liu et al., 2020],
69 and BIG-Bench-Hard (BBH) [Suzgun et al., 2022]. AutoLogic [Zhu et al., 2025] is a benchmark that
70 explicitly focuses on scaling ICL through controllable complexity. LogicBench [Parmar et al., 2024],
71 CLUTRR [Sinha et al., 2019], and ZebraLogic [Lin et al., 2025] also exemplify this by formulating
72 symbolic logic puzzles that demand processing many interacting elements (e.g., multi-step deductions,
73 handling negation, constraint satisfaction). Similarly, mathematical reasoning datasets like GSM8K
74 [Cobbe et al., 2021] and abstract rule induction tasks like ARC-AGI [Chollet et al., 2024] primarily
75 escalate ICL by increasing the complexity of essential rules and their interdependencies.

76 **Needle-in-A-Haystack Benchmarks (Extraneous Load).** Needle-in-a-Haystack (NIAH) designs
77 [Gkamradt, 2023] specifically target ECL by embedding relevant facts (“needles”) within large
78 volumes of distractor text (“hay”). Variants like Sequential NIAH [Yu et al., 2025] and Nolima
79 [Modarressi et al., 2025] investigate the impact of such distractors, which constitute non-essential ele-
80 ments requiring processing for filtering, thereby imposing ECL. While these benchmarks effectively
81 isolate the impact of distractors on information retrieval, the “needle” tasks themselves typically
82 involve low ICL (e.g., simple fact lookup).

83 **Need for Multi-Dimensional Evaluation.** CLT highlights the interplay of ICL, ECL, and germane
84 processing within finite working memory [Paas et al., 2003]. Existing LLM reasoning benchmarks,
85 however, typically manipulate only one dimension without systematic, independent control over
86 the others. Even benchmarks like MIR-Bench [Yan et al., 2025], which combine high ICL with
87 extensive input, do not offer the factorial control needed to disentangle these loads, hindering precise
88 diagnostics.

89 **Contribution of CogniLoad.** CogniLoad addresses this critical gap by providing a framework for
90 independently controlling parameters that influence: (i) ICL via intrinsic puzzle difficulty (d), (ii)
91 ECL via distractor density (ρ), and (iii) the demands for sustained, germane-like processing via
92 task length (N), all within a single synthetically generated natural language puzzle. This factorial
93 design enables a precise diagnosis of LLM failure modes — for instance, determining whether
94 performance degradation at long contexts stems from an inability to handle increased intrinsic
95 complexity, susceptibility to extraneous distractors, or an incapacity to maintain coherent reasoning
96 over extended sequences. By explicitly grounding these dimensions in Cognitive Load Theory,
97 CogniLoad offers the first benchmark to diagnostically map LLM capability surfaces across these
98 distinct cognitive demands, thereby complementing and extending the insights from evaluations that
99 focus on single factors.

100 2 Benchmark Design: CogniLoad Logic Puzzles

101 CogniLoad is a family of natural-language logic-grid puzzles expressly crafted to probe sequential
102 reasoning capabilities of LLMs. The design goals are threefold: each puzzle (i) necessitates sequential
103 multi-step deduction where order fundamentally matters; (ii) embeds a controllable number of relevant
104 “needle” facts within the context of a controllable number of “hay” distractor statements; and (iii)
105 provides parameters that control distinct dimensions of cognitive load. This section formalizes the
106 task, describes the puzzle generation process, details the control parameters, and motivates key design
107 choices.

108 2.1 Puzzle Definition

109 Each puzzle in CogniLoad (see Figure 2 for an example) consists of a set of people with independent
110 and mutable attributes. A series of statements, applied in strictly sequential order, updates these
111 attributes according to conditions specified in each statement. The puzzle generation is parameterized
112 by the three key parameters: the intrinsic difficulty d , the total number of statements N , and the
113 needle-to-hay ratio ρ .

(i) Puzzle Instruction: Solve this logic puzzle. You MUST finalize your response with a single sentence about the asked property (e.g., "Peter is in the livingroom.", "Peter is wearing blue socks",...). Solve the puzzle by reasoning through the statements in a strictly sequential order.
(ii) Initial State:
<ul style="list-style-type: none"> • Brent is wearing green socks and is wearing purple gloves and last listened to classical music. • Anthony is wearing purple socks and is wearing yellow gloves and last listened to disco music. • ...
(iv) Query: What color of socks is Brent wearing?

Figure 2: Example CogniLoad puzzle with intrinsic difficulty $d = 3$, statements $N = 20$, and needle-to-hay ratio $\rho = 50\%$. Only a subset of the initial state and update statements is shown.

114 **2.1.1 Basic Elements**

115 A puzzle is formally characterized by the following components:

116 • **People:** A set $P = \{p_1, p_2, \dots, p_n\}$ of persons in the puzzle, and $n = \max(d, 2)$.

117 • **Person of Interest (PoI):** A randomly selected person $p^* \in P$ about whom the final question
118 is asked.

119 • **Attribute Categories:** A set $A = \{c_1, c_2, \dots, c_d\}$ of attributes randomly selected from a
120 predefined taxonomy of 12 categories. Each category takes values in a Value Domain with a
121 given finite cardinality, larger or equal to 10.

122 • **Value Domains:** For each category $c \in A$, a value domain $V_c = \{v_{c,1}, v_{c,2}, \dots, v_{c,\ell_c}\}$
123 where $\ell_c = d + 1$ for $d > 1$ or $\ell_c = 3$ when $d = 1$. See Table 1 for examples.

124 • **State Function:** $S_t(p, c)$ representing the value of attribute c for person p at step t . Each
125 person has values for the d attribute of the selected attribute categories A , thus the state
126 value represents a vector of dimension d .

Table 1: Overview of the attribute ontology. The full ontology contains 12 categories of varying domain sizes and is detailed completely in the Supplementary Material.

Category Name (Code)	Domain Size	Examples of Values
location	50+	kitchen, balcony, zoo, museum, park...
clothes_socks	10	blue, red, yellow, green, purple...
clothes_gloves	10	(same as clothes_socks)
hair	10	(same as clothes_socks)
recent_listen	13	rock, jazz, disco, classical, funk...
recent_eat	10	pizza, pasta, burrito, sushi, taco...
...

127 **2.1.2 Initialization**

128 The puzzle starts with initialization statements ($t = 0$) that assigning unique attribute values to
129 each person: $\forall p \in P, \forall c \in A : S_0(p, c) \in V_c$ such that $\forall p_i, p_j \in P, i \neq j, \exists c \in A : S_0(p_i, c) \neq$
130 $S_0(p_j, c)$.

131 **2.1.3 Statement Generation Process**

132 For each step t from 1 to N , a statement is generated that changes the state of a person. If it updates
133 the PoI, the statement is called a *needle* and for a non-PoI it is called a *hay*.

134 1. **Statement Type Selection:** Given N and ρ , let n_{needle}^t and n_{hay}^t be the remaining numbers of needles
135 and hays to generate, to guarantee the desired proportion ρ in the complete puzzle. The probability of

136 selecting a needle statement is then $\mathbb{P}(T_t = \text{needle}) = n_{\text{needle}}^t / (N - t)$. The total number of needle
137 statements in the puzzle is calculated as $n_{\text{needle}}^0 = \max(1, \min(N, \text{round}(N \cdot \rho/100)))$.

138 2. **Reference Person Selection:** Given the selected statement type T_t , the algorithm selects the
139 reference person r_t : if $T_t = \text{needle} \implies r_t = p^*$ and if $T_t = \text{hay} \implies r_t \sim \text{Uniform}(P \setminus \{p^*\})$.

140 3. **Statement Structure:** For each statement sample a number of conditions $k_t \sim \text{Uniform}\{1, \dots, d\}$,
141 and a number of state updates $m_t \sim \text{Uniform}\{1, \dots, d\}$ and uniformly sample attribute categories
142 $C_t \subseteq A$, $|C_t| = k_t$ and state updates $U_t \subseteq A$, $|U_t| = m_t$.

143 4. **Condition and Update Value Specification:** For each category $c \in C_t$, the condition value is
144 determined by the reference person's current state: $v_{c,t} = S_{t-1}(r_t, c)$. For needles these conditions
145 target the PoI, for hays the conditions can match multiple people. For update values if $T_t =$
146 $\text{needle} \implies u_{c,t} \sim \text{Uniform}(V_c)$ and if $T_t = \text{hay} \implies u_{c,t} \sim \text{Uniform}(V_c \setminus \{S_{t-1}(p^*, c)\})$.

147 5. **Logical Form:** The statement at step t has the logical form:

$$\forall p \in P : \left(\bigwedge_{c \in C_t} S_{t-1}(p, c) = v_{c,t} \right) \Rightarrow \left(\bigwedge_{c \in U_t} S_t(p, c) = u_{c,t} \right).$$

148 Attributes not mentioned in the update set remain unchanged $\forall p \in P, \forall c \in A \setminus U_t : S_t(p, c) =$
149 $S_{t-1}(p, c)$. This is not specified in the prompt but implicitly assumed by the LLMs.

150 2.1.4 Validation Constraints

151 A sequence of validations verifies that the generated statement does not result in a state that prevents
152 the generation of further needles and hays. If all validations pass, the statement is appended to the
153 puzzle; otherwise a new statement is generated.

154 *For hay statements ($r_t \neq p^*$):* After the update, the state of affected non-PoIs must not become
155 identical to PoI $\forall p \in P \setminus \{p^*\}$ such that $\forall c \in C_t : S_{t-1}(p, c) = v_{c,t}, \exists c \in A : S_t(p, c) \neq S_t(p^*, c)$
156 and the update must not affect the PoI $\exists c \in C_t : S_{t-1}(p^*, c) \neq v_{c,t}$.

157 *For needle statements ($r_t = p^*$):* The update must not affect all non-PoI people $\exists p \in P \setminus \{p^*\} :$
158 $\exists c \in C_t : S_{t-1}(p, c) \neq v_{c,t}$ and after the update not all non-PoIs can equal the PoI $\exists p \in P \setminus \{p^*\} :$
159 $\exists c \in A : S_t(p, c) \neq S_t(p^*, c)$.

160 To prevent the distractors from becoming too trivial to track at lower difficulties we further validate
161 that a hay statement does not result in all non-PoIs becoming identical so the set $P \setminus \{p^*\}$ must
162 contain at least two persons with distinct attribute values. As a consequence of the algorithm design,
163 the hay statement $T_t = \text{hay}$ by definition must affect at least one non-PoI $\exists p \in P \setminus \{p^*\} : \forall c \in C_t :$
164 $S_{t-1}(p, c) = v_{c,t}$.

165 2.1.5 Final Question Generation

166 After all N statements have been generated, the puzzle concludes with a question about a random
167 attribute of the PoI, sampled as a random category $c_q \sim \text{Uniform}(A)$. The correct answer to the
168 puzzle is $S_N(p^*, c_q)$ obtained from the final state of the PoI.

169 2.1.6 Evaluation metrics

170 We evaluate the success of the solver M based on the exact string match of the final queried attribute
171 value in the last two sentences of the response. For each puzzle instance $z \in Z$ from our evaluation
172 set Z , we compare the model's answer ($\text{answer}_M(z)$) with the true value of the attribute derived
173 from the final state of the PoI. The accuracy of a model M across the evaluation set is calculated
174 as $\text{acc}(M) = \frac{1}{|Z|} \sum_{z \in Z} \mathbf{1}[\text{answer}_M(z) = S_N(p^*, c_q)]$ where $S_N(p^*, c_q)$ represents the final state
175 value of the queried attribute c_q for the PoI p^* after all N statements have been processed. This value
176 is computed by our puzzle generation algorithm.

177 2.2 Tunable Parameters

178 To systematically probe different facets of long-context reasoning, the CogniLoad generator employs
179 three independent parameters. These parameters are designed to operationalize distinct cognitive

Table 2: Key parameters controlling the puzzle generation.

Symbol	Name	Definition	Cognitive Load Affected
d	Intrinsic Difficulty	Controls cardinality of people set $ P = \max(d, 2)$, attribute categories $ A = d$, for each category $c \in A$ the cardinality of value domains $ V_c = \max(d + 1, 3)$, and the distribution of conditions and updates per statement: $k, m \sim \text{Uniform}\{1, \dots, d\}$.	ICL: Element interactivity, state space/rule complexity.
N	Task Length	Total number of sequential state transitions in the puzzle.	GCL Proxy / Task Length: Demands sustained engagement with core elements.
ρ	Needle-to-Hay Ratio	Percentage of statements directly influencing the PoI (needles) versus distractor statements (hay)	ECL: Distractor density challenges filtering, selective attention, and imposing load from processing non-essential elements.

180 load dimensions as defined by CLT [Paas et al., 2003], allowing the creation of puzzles with varying
 181 characteristics. Together, they define the load profile of a puzzle instance.

182 **Intrinsic Difficulty** (d) for $d \in \{1, 3, 5, 7, 10\}$ controls multiple facets of puzzle complexity (see
 183 Table 2), directly manipulating ICL which according to CLT hinges on element interactivity [Halford
 184 et al., 1998]. Higher d increases ICL via: (i) combinatorial growth in state space ($\approx (d + 1)^d$), (ii)
 185 increased interactivity between persons, attributes, and values, and (iii) increased rule complexity (up
 186 to d conditions/updates per statement).

187 **Task Length** (N) for $N \in \{20, 50, 100, 250\}$ sets the total number of sequential state-update
 188 statements. While directly determining sequence length, N serves as an operational proxy for
 189 conditions demanding GCL. Higher N , particularly with high d (intrinsic difficulty) and high
 190 ρ (relevance), compels deeper reasoning through more essential interacting elements [Sweller,
 191 2010]. Additionally, higher N also necessitates the maintenance of a coherent (stateful) problem
 192 representation over a longer term with the construction of an efficient schema for it [Ericsson and
 193 Kintsch, 1995].

194 **Needle-to-Hay Ratio** (ρ) for $\rho \in \{5, \dots, 95\}$ sets the percentage of PoI-relevant (“needle”) versus
 195 distractor (“hay”) statements, directly manipulating ECL. ECL arises from processing non-essential
 196 elements [Chandler and Sweller, 1991]. Lower ρ increases ECL via higher distractor density which
 197 challenges filtering. Higher ρ reduces ECL by focusing resources on relevant information. Critically,
 198 CogniLoad’s “hay” statements are syntactically similar to “needles” and involve valid state updates
 199 for non-PoIs, imposing a more challenging ECL than easy to distinguish distractor text.

200 3 Results

201 We evaluated the performance of 14 LLMs on 100 random CogniLoad puzzles per (d, N, ρ) configura-
 202 tion resulting in 14’000 puzzle instances per LLM in total. We attempted to include every currently
 203 available Open-Weights LLM that is specifically trained for reasoning, but the VRAM limitations of
 204 our single-node inference environment (i.e. AMD MI250X accelerators) prevents us from evaluating
 205 the full DeepSeek-R1 model with 685B parameters.

206 Figure 1 shows mean accuracy across models as each load dimension varies with trends corroborated
 207 by our regression analysis (Section 3.1).

208 **Intrinsic difficulty** (d) Performance generally declines monotonically with d . For instance, even
 209 top models show a significant drop between $d = 1$ and $d = 3$, while degradation is less pronounced

Table 3: Per-model quadratic- ρ GLM estimates with Wald z statistic for p-values alongside derived 50% load-capacity thresholds (see Section 3.1.3). The value $--$ for NT_{50} indicates that no real root exists in $[0, 1]$. ‘‘DS’’ abbreviates ‘‘DeepSeek-R1-Distill’’ in the model names. $***p<0.001$, $**p<0.01$, $*p<0.05$

Model	β_0	β_d	β_N	β_ρ	β_{ρ^2}	ECL_{50}	NT_{50}	ID_{50}
DS-Llama-70B	7.83***	-0.27***	-3.10***	-3.41***	3.80***	66.9	0.6	4.92
DS-Qwen-32B	4.58***	-0.18***	-1.88***	-2.01***	2.24***	51.1	0.8	3.71
DS-Qwen-7B	1.47***	-0.20***	-0.93***	-0.46	0.55	2.3	--	-1.71
DS-Qwen-1.5B	-0.72***	-0.16***	-0.23***	0.72*	-0.41	0.0	--	-5.41
Phi-4-reasoning-plus	5.61***	-0.23***	-1.91***	-3.10***	2.40***	63.7	0.88	4.83
Phi-4-reasoning	3.50***	-0.18***	-1.24***	-2.40***	1.95***	32.4	0.14	2.81
Phi-4-mini-reasoning	1.36***	-0.21***	-0.77***	-1.71***	1.68***	0.6	--	-2.47
QwQ-32B	5.00***	-0.18***	-1.80***	-3.52***	2.92***	49.2	0.93	3.6
EXAONE-Deep-32B	3.90***	-0.25***	-1.49***	-3.31***	2.57***	11.6	--	0.55
GLM-Z1-32B-0414	7.05***	-0.32***	-2.72***	-3.01***	2.56***	46.5	0.14	3.65
Qwen3-32B	7.12***	-0.29***	-2.72***	-3.21***	2.74***	53.7	0.94	4.08
Qwen3-30B-A3B	5.80***	-0.29***	-2.23***	-3.01***	2.91***	36.8	0.99	3.03
Qwen3-8B	4.88***	-0.27***	-1.95***	-2.99***	2.77***	23.7	--	1.76
Qwen3-1.7B	0.57***	-0.16***	-0.46***	-1.48***	1.19***	0.0	--	-4.5

210 beyond $d = 7$, suggesting diminishing marginal effects of this complexity type for many models. At
211 $d = 5, 10$ of 14 models are wrong in more than 50% of the puzzles.

212 **Memory load (N)** Memory load exhibits the steepest performance decline, with a substantial drop
213 observed for most models between $N = 20$ and $N = 50$. This underscores the role of task length as
214 a proxy for germane load as a primary contributor to cognitive load.

215 **Extraneous load (ρ)** Extraneous load often exhibits a U-shaped response, with performance minima
216 typically around $\rho = 25 - 50\%$. However, the curve’s depth and recovery at high ρ vary significantly
217 between models. Interestingly, DS-Llama-70B fully recovers and exceeds its initial performance
218 ($0.60 \rightarrow 0.63$) while Phi-4-reasoning-plus shows only a partial recovery ($0.67 \rightarrow 0.51$).

219 3.1 Load-sensitivity Regression

220 To quantify model-specific sensitivities of the accuracy to load dimensions and derive interpretable
221 capacity thresholds for each model, we employ a regression-based approach that allows us to isolate
222 the impact of each type of cognitive load (see Table 3).

223 3.1.1 Regression Model Specification

224 We model the performance of LLMs using a binomial generalized linear model (GLM) with a logit
225 link function:

$$226 \Pr(Y=1) = \sigma(\beta_0 + \beta_d d + \beta_N \log_{10} N + \beta_\rho \rho + \beta_{\rho^2} \rho^2),$$

227 where the binary outcome Y represents exact-match accuracy ($Y = 1$, when the model solves the
228 puzzle correctly), $\sigma(\cdot)$ is the inverse logit function, and the coefficients β_d , β_N and β_ρ quantify
229 sensitivity to intrinsic difficulty (ICL), task length (GCL), and distractor ratios (ECL), respectively.
230 The inclusion of a quadratic term for ρ , with the coefficient β_{ρ^2} , is motivated by the characteristic
231 U-shape observed in the third panel of Figure 1 and based on an improved Akaike Information
232 Criterion (AIC) value for 14 out of the 15 fitted models when included (see Supplementary Material).
233 Since N ranges up to 250, we apply \log_{10} to keep it at a similar scale as the other parameters of the
234 regression.

234 3.1.2 Significance of Main Effects

235 In all models, β_d and β_N are significant and highly negative, confirming performance degradation
236 with increased intrinsic cognitive load and task length. The quadratic term for ρ is also significant
237 (except for two models) confirming the U-shaped response for most models: models typically
238 perform worst at intermediate relevance ratios and recover as ρ approaches either extreme. Two
239 models (DS-Qwen-1.5B, DS-Qwen-7B) exhibit statistically insignificant coefficients for ρ

240 terms, likely reflecting their poor baseline performance rather than a genuine lack of association with
241 the needle/hay ratio.

242 3.1.3 Capacity Points at 50% Accuracy

243 The GLM coefficients (Table 3) allow us to derive interpretable capacity thresholds. These represent
244 the point at which a model’s accuracy is predicted to drop to 50% when varying a single load
245 parameter, while holding other load parameters at their estimated mean values:

246 **ECL₅₀** (Effective Context Length): Maximum number of statements a model can process while
247 maintaining 50% accuracy. Higher values indicate superior context handling.

248 **NT₅₀** (Needle-to-hay Threshold): Minimum proportion of relevant information required to maintain
249 50% accuracy. Crucially, *lower* values indicate greater robustness to distractors. If the estimated
250 NT₅₀ is missing, then the model accuracy is not expected to cross the 50% threshold for any value
251 $0 \leq \rho \leq 1$, under mean conditions for d and N .

252 **ID₅₀** (Intrinsic Difficulty): It is the maximum intrinsic complexity (number of interacting entities/attributes)
253 that a model can handle while maintaining 50% accuracy. Negative values indicate failure to
254 reach 50% accuracy even at the lowest difficulty setting under mean conditions for N and ρ .

255 Mathematically, these thresholds are derived by setting the logit in the GLM equation to zero (for
256 $\Pr(y = 1) = 0.5$) and solving for the parameter of interest, e.g.:

$$\text{ECL}_{50} = 10^{-(\beta_0 + \beta_d \bar{d} + \beta_\rho \bar{\rho} + \beta_{\rho^2} \bar{\rho}^2) / \beta_N}; \quad \text{ID}_{50} = -(\beta_0 + \beta_N \overline{\log_{10} N} + \beta_\rho \bar{\rho} + \beta_{\rho^2} \bar{\rho}^2) / \beta_d.$$

257 For NT₅₀, we solve the quadratic equation $\beta_0 + \beta_d \bar{d} + \beta_N \overline{\log_{10} N} + \beta_\rho \rho + \beta_{\rho^2} \rho^2 = 0$ for ρ .

258 3.1.4 Model Capacity

259 The regression analysis and estimated capacity thresholds (Table 3) reveal clear variations among
260 models that can be grouped into three classes:

261 *High-Capacity Models*: DS-Llama-70B (ECL₅₀=66.9, ID₅₀=4.92) and Phi-4-reasoning-plus
262 (ECL₅₀=63.7, ID₅₀=4.83) demonstrate exceptional context length tolerance and robust reasoning
263 capabilities across all dimensions.

264 *Mid-Capacity Models*: Models such as DS-Qwen-32B (ECL₅₀=51.1), Qwen3-32B (ECL₅₀=53.7),
265 QwQ-32B (ECL₅₀=49.2), and GLM-Z1-32B-0414 (ECL₅₀=46.5) constitute a middle tier. Their
266 ID₅₀ values typically fall between 3.5 and 4.1, suggesting competence on problems of moderate
267 complexity and length.

268 *Low-Capacity Models*: Smaller models, particularly DS-Qwen-1.5B and Qwen3-1.7B, exhibit
269 minimal effective context handling capacity (ECL₅₀=0.0) and negative ID₅₀ values. This indicates
270 that they fail to achieve 50% accuracy even at baseline difficulty and mean context/distractor levels,
271 deteriorating rapidly under any increasing load.

272 3.1.5 Differential Sensitivity to Load Dimensions

273 The estimated coefficients further reveal distinct sensitivity profiles:

274 *Sensitivity to context length* (β_N): Universally negative and potent, with larger models often showing
275 greater relative degradation from their higher baselines.

276 *Sensitivity to intrinsic difficulty* (β_d): Negative across models, but with a narrow range suggesting a
277 more uniform effect.

278 *Sensitivity to information relevance* (β_ρ and β_{ρ^2}): Confirms the U-shaped response, but NT₅₀ values
279 reveal nuanced distractor robustness differences masked by aggregate scores (e.g., DS-Llama-70B vs.
280 Qwen3-32B).

281 4 Discussion

282 CogniLoad, by operationalizing CLT, enables a multi-dimensional evaluation of LLM reasoning,
283 revealing nuanced failure patterns obscured by single-dimension benchmarks. Our empirical results

284 (Section 3) offer several key insights: task length (N) emerges as a dominant determinant, suggesting
285 challenges in sustained, germane-like processing for long, intrinsically demanding tasks; models
286 exhibit distinct sensitivities to intrinsic difficulty (d) versus extraneous load (ρ), with the latter
287 surprisingly showing U-shaped performance curves, indicating particular difficulties with intermediate
288 distractor densities, while performing better for lowest and highest needle-to-hay proportions; and
289 estimated capacity thresholds provide concise “cognitive fingerprints” for diagnostic LLM evaluation.

290 The limitations of our study are important to emphasize:

291 **Nuances of the CLT-LLM Analogy** While CLT provides a powerful analogous framework, it is
292 crucial to acknowledge that “cognitive load” in LLMs manifests as computational constraints (e.g.,
293 attention saturation, representational bottlenecks) rather than biological working memory limitations.
294 Our operationalization of N as a proxy for conditions demanding GCL, for example, is an abstraction.
295 Future research should aim to bridge CLT concepts with direct, mechanistic measures of LLM
296 computational processes to refine this analogy and deepen our understanding of artificial cognition.

297 **Scope of Reasoning and Generalizability** CogniLoad currently focuses on sequential, deductive
298 logic-grid puzzles. This controlled environment enables precise manipulation of load factors, but
299 the extent to which these specific load sensitivities generalize to other reasoning paradigms (e.g.,
300 abductive, inductive, mathematical, commonsense) remains an open question. Extending the CLT-
301 grounded multi-dimensional evaluation to diverse reasoning domains is a promising next step.

302 **Beyond Accuracy and Main Effects** The current evaluation relies on simple exact-match accuracy.
303 Future iterations could incorporate richer metrics (e.g., step-wise reasoning fidelity, solution coherence,
304 uncertainty of solutions) and systematically investigate interaction effects between d , N , ρ ,
305 which CogniLoad’s factorial design supports.

306 **Architectural Implications** Pinpointing the specific decisions in LLM architecture and training
307 regimes that result in our observed performance differential requires thorough analysis and experi-
308 ments that exceed the scope of this paper. Besides the observed differences for particular LLMs we
309 also notice patterns across model families (e.g., the strong recovery of all DeepSeek-R1-Zero models
310 with increasing ρ vs the weaker recovery of the Qwen3 models). The emergence of reinforcement
311 learning on verifiable rewards [Guo et al., 2025] presents a promising avenue to employ CogniLoad
312 in the training process of LLMs, as the generated metadata of each experiment allows the precise
313 verification of each reasoning step in light of the still scarce available training data of this type.

314 Despite these considerations, by decomposing the “task difficulty” into principled, controllable
315 dimensions derived from cognitive science, CogniLoad provides a more insightful perspective than
316 single-score benchmarks. It allows a more differentiated understanding of LLM reasoning capabilities
317 and limitations, paving the way for more targeted development of robust and generalizable AI systems.

318 5 Conclusion

319 We introduced **CogniLoad**, a novel synthetic benchmark grounded in Cognitive Load Theory, for
320 multi-dimensional evaluation of LLM long-context reasoning. By independently controlling param-
321 eters for intrinsic cognitive load (d), extraneous cognitive load (ρ), and task length (N as a proxy
322 for germane load demands), CogniLoad offers unprecedented diagnostic precision. Our evaluations
323 revealed task length as a dominant performance constraint and uncovered unique “cognitive finger-
324 prints” of LLM sensitivities to different load types, providing actionable insights beyond single-score
325 benchmarks. CogniLoad offers a reproducible, scalable, and theoretically-grounded tool to systemati-
326 cally dissect LLM reasoning limitations and guide the development of more capable and robust AI
327 systems. While human and artificial cognition are mechanistically distinct, applying frameworks like
328 CLT to AI evaluation can provide valuable perspectives for understanding and characterizing their
329 operational differences and capabilities.

330 References

331 C. An, S. Gong, M. Zhong, X. Zhao, M. Li, J. Zhang, L. Kong, and X. Qiu. L-eval: Instituting
332 standardized evaluation for long context language models. In *Proceedings of the 62nd Annual*
333 *Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 14388–
334 14411, 2024.

335 Y. Bai, X. Lv, J. Zhang, H. Lyu, J. Tang, Z. Huang, Z. Du, X. Liu, A. Zeng, L. Hou, et al. Longbench:
336 A bilingual, multitask benchmark for long context understanding. In *Proceedings of the 62nd*
337 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages
338 3119–3137, 2024a.

339 Y. Bai, S. Tu, J. Zhang, H. Peng, X. Wang, X. Lv, S. Cao, J. Xu, L. Hou, Y. Dong, et al. Longbench v2:
340 Towards deeper understanding and reasoning on realistic long-context multitasks. *arXiv preprint*
341 *arXiv:2412.15204*, 2024b.

342 P. Chandler and J. Sweller. Cognitive load theory and the format of instruction. *Cognition and*
343 *instruction*, 8(4):293–332, 1991.

344 F. Chollet, M. Knoop, G. Kamradt, and B. Landers. Arc prize 2024: Technical report. *arXiv preprint*
345 *arXiv:2412.04604*, 2024.

346 K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton,
347 R. Nakano, et al. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
348 2021.

349 K. A. Ericsson and W. Kintsch. Long-term working memory. *Psychological review*, 102(2):211,
350 1995.

351 Gkamradt. Needle in a haystack - pressure testing llms, 2023. URL https://github.com/gkamradt/LLMTest_NeedleInAHaystack.

353 D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, et al.
354 Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint*
355 *arXiv:2501.12948*, 2025.

356 G. S. Halford, W. H. Wilson, and S. Phillips. Processing capacity defined by relational complexity:
357 Implications for comparative, developmental, and cognitive psychology. *Behavioral and brain*
358 *sciences*, 21(6):803–831, 1998.

359 C.-P. Hsieh, S. Sun, S. Kriman, S. Acharya, D. Rekesh, F. Jia, Y. Zhang, and B. Ginsburg.
360 Ruler: What’s the real context size of your long-context language models? *arXiv preprint*
361 *arXiv:2404.06654*, 2024.

362 W. Kryściński, N. Rajani, D. Agarwal, C. Xiong, and D. Radev. Booksum: A collection of datasets
363 for long-form narrative summarization. *arXiv preprint arXiv:2105.08209*, 2021.

364 Y. Kuratov, A. Bulatov, P. Anokhin, I. Rodkin, D. Sorokin, A. Sorokin, and M. Burtsev. Babilong:
365 Testing the limits of llms with long context reasoning-in-a-haystack. *Advances in Neural*
366 *Information Processing Systems*, 37:106519–106554, 2024.

367 F. Lieder and T. L. Griffiths. Resource-rational analysis: Understanding human cognition as the
368 optimal use of limited computational resources. *Behavioral and brain sciences*, 43:e1, 2020.

369 B. Y. Lin, R. L. Bras, K. Richardson, A. Sabharwal, R. Poovendran, P. Clark, and Y. Choi. Zebralogic:
370 On the scaling limits of llms for logical reasoning. *arXiv preprint arXiv:2502.01100*, 2025.

371 Z. Ling, K. Liu, K. Yan, Y. Yang, W. Lin, T.-H. Fan, L. Shen, Z. Du, and J. Chen. Longreason: A syn-
372 *thetic long-context reasoning benchmark via context expansion. arXiv preprint arXiv:2501.15089*,
373 2025.

374 J. Liu, L. Cui, H. Liu, D. Huang, Y. Wang, and Y. Zhang. Logiqa: A challenge dataset for machine
375 reading comprehension with logical reasoning. *arXiv preprint arXiv:2007.08124*, 2020.

376 A. Modarressi, H. Deilamsalehy, F. Dernoncourt, T. Bui, R. A. Rossi, S. Yoon, and H. Schütze.
377 Nolima: Long-context evaluation beyond literal matching. *arXiv preprint arXiv:2502.05167*, 2025.

378 F. Paas, A. Renkl, and J. Sweller. Cognitive load theory and instructional design: Recent developments.
379 *Educational psychologist*, 38(1):1–4, 2003.

380 M. Parmar, N. Patel, N. Varshney, M. Nakamura, M. Luo, S. Mashetty, A. Mitra, and C. Baral.
381 Logicbench: Towards systematic evaluation of logical reasoning ability of large language models.
382 *arXiv preprint arXiv:2404.15522*, 2024.

383 U. Shaham, E. Segal, M. Ivgi, A. Efrat, O. Yoran, A. Haviv, A. Gupta, W. Xiong, M. Geva, J. Be-
384 rant, et al. Scrolls: Standardized comparison over long language sequences. *arXiv preprint*
385 *arXiv:2201.03533*, 2022.

386 U. Shaham, M. Ivgi, A. Efrat, J. Berant, and O. Levy. Zeroscrolls: A zero-shot benchmark for long
387 text understanding. *arXiv preprint arXiv:2305.14196*, 2023.

388 K. Sinha, S. Sodhani, J. Dong, J. Pineau, and W. L. Hamilton. Clutrr: A diagnostic benchmark for
389 inductive reasoning from text. *arXiv preprint arXiv:1908.06177*, 2019.

390 M. Suzgun, N. Scales, N. Schärli, S. Gehrman, Y. Tay, H. W. Chung, A. Chowdhery, Q. V. Le, E. H.
391 Chi, D. Zhou, et al. Challenging big-bench tasks and whether chain-of-thought can solve them.
392 *arXiv preprint arXiv:2210.09261*, 2022.

393 J. Sweller. Cognitive load during problem solving: Effects on learning. *Cognitive science*, 12(2):
394 257–285, 1988.

395 J. Sweller. Element interactivity and intrinsic, extraneous, and germane cognitive load. *Educational*
396 *psychology review*, 22:123–138, 2010.

397 Y. Tay, M. Dehghani, S. Abnar, Y. Shen, D. Bahri, P. Pham, J. Rao, L. Yang, S. Ruder, and D. Metzler.
398 Long range arena: A benchmark for efficient transformers. *arXiv preprint arXiv:2011.04006*,
399 2020.

400 K. Vodrahalli, S. Ontanon, N. Tripuraneni, K. Xu, S. Jain, R. Shivanna, J. Hui, N. Dikkala, M. Kazemi,
401 B. Fatemi, et al. Michelangelo: Long context evaluations beyond haystacks via latent structure
402 queries. *arXiv preprint arXiv:2409.12640*, 2024.

403 K. Yan, Z. Ling, K. Liu, Y. Yang, T.-H. Fan, L. Shen, Z. Du, and J. Chen. Mir-bench: Benchmarking
404 llm’s long-context intelligence via many-shot in-context inductive reasoning. *arXiv preprint*
405 *arXiv:2502.09933*, 2025.

406 W. Yu, Z. Jiang, Y. Dong, and J. Feng. Reclor: A reading comprehension dataset requiring logical
407 reasoning. *arXiv preprint arXiv:2002.04326*, 2020.

408 Y. Yu, Q.-W. Zhang, L. Qiao, D. Yin, F. Li, J. Wang, Z. Chen, S. Zheng, X. Liang, and X. Sun.
409 Sequential-niah: A needle-in-a-haystack benchmark for extracting sequential needles from long
410 contexts. *arXiv preprint arXiv:2504.04713*, 2025.

411 M. Zhong, D. Yin, T. Yu, A. Zaidi, M. Mutuma, R. Jha, A. H. Awadallah, A. Celikyilmaz, Y. Liu,
412 X. Qiu, et al. Qmsum: A new benchmark for query-based multi-domain meeting summarization.
413 *arXiv preprint arXiv:2104.05938*, 2021.

414 Q. Zhu, F. Huang, R. Peng, K. Lu, B. Yu, Q. Cheng, X. Qiu, X. Huang, and J. Lin. Autologi:
415 Automated generation of logic puzzles for evaluating reasoning abilities of large language models.
416 *arXiv preprint arXiv:2502.16906*, 2025.

417 **NeurIPS Paper Checklist**

418 **1. Claims**

419 Question: Do the main claims made in the abstract and introduction accurately reflect the
420 paper's contributions and scope?

421 Answer: **[Yes]**

422 Justification: The claims in the abstract match exactly what is in the paper: a synthetic
423 benchmark evaluating 14 open source LLMs according to the 3 parameters introduced in
424 the abstract and discussed throughout the paper.

425 Guidelines:

- 426 • The answer NA means that the abstract and introduction do not include the claims
427 made in the paper.
- 428 • The abstract and/or introduction should clearly state the claims made, including the
429 contributions made in the paper and important assumptions and limitations. A No or
430 NA answer to this question will not be perceived well by the reviewers.
- 431 • The claims made should match theoretical and experimental results, and reflect how
432 much the results can be expected to generalize to other settings.
- 433 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
434 are not attained by the paper.

435 **2. Limitations**

436 Question: Does the paper discuss the limitations of the work performed by the authors?

437 Answer: **[Yes]**

438 Justification: The limitations are discussed in the Discussion section of the paper.

439 Guidelines:

- 440 • The answer NA means that the paper has no limitation while the answer No means that
441 the paper has limitations, but those are not discussed in the paper.
- 442 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 443 • The paper should point out any strong assumptions and how robust the results are to
444 violations of these assumptions (e.g., independence assumptions, noiseless settings,
445 model well-specification, asymptotic approximations only holding locally). The authors
446 should reflect on how these assumptions might be violated in practice and what the
447 implications would be.
- 448 • The authors should reflect on the scope of the claims made, e.g., if the approach was
449 only tested on a few datasets or with a few runs. In general, empirical results often
450 depend on implicit assumptions, which should be articulated.
- 451 • The authors should reflect on the factors that influence the performance of the approach.
452 For example, a facial recognition algorithm may perform poorly when image resolution
453 is low or images are taken in low lighting. Or a speech-to-text system might not be
454 used reliably to provide closed captions for online lectures because it fails to handle
455 technical jargon.
- 456 • The authors should discuss the computational efficiency of the proposed algorithms
457 and how they scale with dataset size.
- 458 • If applicable, the authors should discuss possible limitations of their approach to
459 address problems of privacy and fairness.
- 460 • While the authors might fear that complete honesty about limitations might be used by
461 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
462 limitations that aren't acknowledged in the paper. The authors should use their best
463 judgment and recognize that individual actions in favor of transparency play an impor-
464 tant role in developing norms that preserve the integrity of the community. Reviewers
465 will be specifically instructed to not penalize honesty concerning limitations.

466 **3. Theory assumptions and proofs**

467 Question: For each theoretical result, does the paper provide the full set of assumptions and
468 a complete (and correct) proof?

Answer: [NA]

Justification: We don't present any theorems or proofs, it is a benchmark paper. The formulas in the paper just rigorously describe the generation algorithm of the dataset.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: A dedicated section of the paper rigorously explains and formalizes all the information needed to reproduce the generation algorithm of the dataset. The paper also fully specifies the regression and the definition of the capacity points at 50% accuracy for the results presented in the results section.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

524 **5. Open access to data and code**

525 Question: Does the paper provide open access to the data and code, with sufficient instruc-
526 tions to faithfully reproduce the main experimental results, as described in supplemental
527 material?

528 Answer: [\[Yes\]](#)

529 Justification: We provide links to the public Github repo containing the code and the
530 publicly accessible dataset hosted on huggingface in the required Croissant format.

531 Guidelines:

- 532 • The answer NA means that paper does not include experiments requiring code.
- 533 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 535 • While we encourage the release of code and data, we understand that this might not be
536 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
537 including code, unless this is central to the contribution (e.g., for a new open-source
538 benchmark).
- 539 • The instructions should contain the exact command and environment needed to run to
540 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 542 • The authors should provide instructions on data access and preparation, including how
543 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 544 • The authors should provide scripts to reproduce all experimental results for the new
545 proposed method and baselines. If only a subset of experiments are reproducible, they
546 should state which ones are omitted from the script and why.
- 547 • At submission time, to preserve anonymity, the authors should release anonymized
548 versions (if applicable).
- 549 • Providing as much information as possible in supplemental material (appended to the
550 paper) is recommended, but including URLs to data and code is permitted.

551 **6. Experimental setting/details**

552 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
553 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
554 results?

555 Answer: [\[Yes\]](#)

556 Justification: The parameters of the algorithm used to generate the benchmark dataset are all
557 fully specified in the paper to allow the fully reproducible generation of the dataset and the
558 results.

559 Guidelines:

- 560 • The answer NA means that the paper does not include experiments.
- 561 • The experimental setting should be presented in the core of the paper to a level of detail
562 that is necessary to appreciate the results and make sense of them.
- 563 • The full details can be provided either with the code, in appendix, or as supplemental
564 material.

565 **7. Experiment statistical significance**

566 Question: Does the paper report error bars suitably and correctly defined or other appropriate
567 information about the statistical significance of the experiments?

568 Answer: [\[Yes\]](#)

569 Justification: We provide statistical measures of significance for all parameters of the
570 quantitative analysis (i.e., the GLM regression) of the results. Since error bars would impede
571 the readability of the main chart (Figure 1) we do not plot them in the main section the paper
572 but we include a version with error bars in the appendix.

573 Guidelines:

- 574 • The answer NA means that the paper does not include experiments.

575 • The authors should answer "Yes" if the results are accompanied by error bars, confi-
 576 dence intervals, or statistical significance tests, at least for the experiments that support
 577 the main claims of the paper.
 578 • The factors of variability that the error bars are capturing should be clearly stated (for
 579 example, train/test split, initialization, random drawing of some parameter, or overall
 580 run with given experimental conditions).
 581 • The method for calculating the error bars should be explained (closed form formula,
 582 call to a library function, bootstrap, etc.)
 583 • The assumptions made should be given (e.g., Normally distributed errors).
 584 • It should be clear whether the error bar is the standard deviation or the standard error
 585 of the mean.
 586 • It is OK to report 1-sigma error bars, but one should state it. The authors should
 587 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
 588 of Normality of errors is not verified.
 589 • For asymmetric distributions, the authors should be careful not to show in tables or
 590 figures symmetric error bars that would yield results that are out of range (e.g. negative
 591 error rates).
 592 • If error bars are reported in tables or plots, The authors should explain in the text how
 593 they were calculated and reference the corresponding figures or tables in the text.

594 **8. Experiments compute resources**

595 Question: For each experiment, does the paper provide sufficient information on the com-
 596 puter resources (type of compute workers, memory, time of execution) needed to reproduce
 597 the experiments?

598 Answer: **[No]**

599 Justification: Reporting computational resources is not relevant to our work since we do not
 600 introduce a new machine learning method. The generation of the benchmark does not require
 601 resources beyond a single CPU as it just deterministically produces relatively short texts.
 602 Further, the inference speed of each LLM we evaluate in the experiments depends highly
 603 on the LLM architecture and the specific inference environment. Any given reasonable
 604 computational resources could be used to evaluate the LLMs.

605 Guidelines:

- 606 • The answer NA means that the paper does not include experiments.
- 607 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
 608 or cloud provider, including relevant memory and storage.
- 609 • The paper should provide the amount of compute required for each of the individual
 610 experimental runs as well as estimate the total compute.
- 611 • The paper should disclose whether the full research project required more compute
 612 than the experiments reported in the paper (e.g., preliminary or failed experiments that
 613 didn't make it into the paper).

614 **9. Code of ethics**

615 Question: Does the research conducted in the paper conform, in every respect, with the
 616 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

617 Answer: **[Yes]**

618 Justification: Our work does not involve humans participants and there are no data related
 619 concerns as the data is synthetically generated.

620 Guidelines:

- 621 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- 622 • If the authors answer No, they should explain the special circumstances that require a
 623 deviation from the Code of Ethics.
- 624 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
 625 eration due to laws or regulations in their jurisdiction).

626 **10. Broader impacts**

627 Question: Does the paper discuss both potential positive societal impacts and negative
628 societal impacts of the work performed?

629 Answer: [NA]

630 Justification: Since we just introduce a benchmark strictly for LLM evaluation our work
631 does not have a societal impact.

632 Guidelines:

- 633 • The answer NA means that there is no societal impact of the work performed.
- 634 • If the authors answer NA or No, they should explain why their work has no societal
635 impact or why the paper does not address societal impact.
- 636 • Examples of negative societal impacts include potential malicious or unintended uses
637 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
638 (e.g., deployment of technologies that could make decisions that unfairly impact specific
639 groups), privacy considerations, and security considerations.
- 640 • The conference expects that many papers will be foundational research and not tied
641 to particular applications, let alone deployments. However, if there is a direct path to
642 any negative applications, the authors should point it out. For example, it is legitimate
643 to point out that an improvement in the quality of generative models could be used to
644 generate deepfakes for disinformation. On the other hand, it is not needed to point out
645 that a generic algorithm for optimizing neural networks could enable people to train
646 models that generate Deepfakes faster.
- 647 • The authors should consider possible harms that could arise when the technology is
648 being used as intended and functioning correctly, harms that could arise when the
649 technology is being used as intended but gives incorrect results, and harms following
650 from (intentional or unintentional) misuse of the technology.
- 651 • If there are negative societal impacts, the authors could also discuss possible mitigation
652 strategies (e.g., gated release of models, providing defenses in addition to attacks,
653 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
654 feedback over time, improving the efficiency and accessibility of ML).

655 11. Safeguards

656 Question: Does the paper describe safeguards that have been put in place for responsible
657 release of data or models that have a high risk for misuse (e.g., pretrained language models,
658 image generators, or scraped datasets)?

659 Answer: [NA]

660 Justification: Since we generate a purely synthetic dataset there is no risk for misuse and no
661 data has been scraped from the internet.

662 Guidelines:

- 663 • The answer NA means that the paper poses no such risks.
- 664 • Released models that have a high risk for misuse or dual-use should be released with
665 necessary safeguards to allow for controlled use of the model, for example by requiring
666 that users adhere to usage guidelines or restrictions to access the model or implementing
667 safety filters.
- 668 • Datasets that have been scraped from the Internet could pose safety risks. The authors
669 should describe how they avoided releasing unsafe images.
- 670 • We recognize that providing effective safeguards is challenging, and many papers do
671 not require this, but we encourage authors to take this into account and make a best
672 faith effort.

673 12. Licenses for existing assets

674 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
675 the paper, properly credited and are the license and terms of use explicitly mentioned and
676 properly respected?

677 Answer: [Yes]

678 Justification: There are no concerns about licenses since all the code and data has been
679 produced originally by the authors.

680 Guidelines:

- 681 • The answer NA means that the paper does not use existing assets.
- 682 • The authors should cite the original paper that produced the code package or dataset.
- 683 • The authors should state which version of the asset is used and, if possible, include a
- 684 URL.
- 685 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 686 • For scraped data from a particular source (e.g., website), the copyright and terms of
- 687 service of that source should be provided.
- 688 • If assets are released, the license, copyright information, and terms of use in the
- 689 package should be provided. For popular datasets, paperswithcode.com/datasets
- 690 has curated licenses for some datasets. Their licensing guide can help determine the
- 691 license of a dataset.
- 692 • For existing datasets that are re-packaged, both the original license and the license of
- 693 the derived asset (if it has changed) should be provided.
- 694 • If this information is not available online, the authors are encouraged to reach out to
- 695 the asset's creators.

696 13. **New assets**

697 Question: Are new assets introduced in the paper well documented and is the documentation
698 provided alongside the assets?

699 Answer: [\[Yes\]](#)

700 Justification: The algorithm of the released code on GitHub is explained in the paper and
701 the evaluation dataset is provided and documented appropriately on Huggingface.

702 Guidelines:

- 703 • The answer NA means that the paper does not release new assets.
- 704 • Researchers should communicate the details of the dataset/code/model as part of their
- 705 submissions via structured templates. This includes details about training, license,
- 706 limitations, etc.
- 707 • The paper should discuss whether and how consent was obtained from people whose
- 708 asset is used.
- 709 • At submission time, remember to anonymize your assets (if applicable). You can either
- 710 create an anonymized URL or include an anonymized zip file.

711 14. **Crowdsourcing and research with human subjects**

712 Question: For crowdsourcing experiments and research with human subjects, does the paper
713 include the full text of instructions given to participants and screenshots, if applicable, as
714 well as details about compensation (if any)?

715 Answer: [\[NA\]](#)

716 Justification: The paper does not involve crowdsourcing nor research with human subjects.

717 Guidelines:

- 718 • The answer NA means that the paper does not involve crowdsourcing nor research with
- 719 human subjects.
- 720 • Including this information in the supplemental material is fine, but if the main contribu-
- 721 tion of the paper involves human subjects, then as much detail as possible should be
- 722 included in the main paper.
- 723 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
- 724 or other labor should be paid at least the minimum wage in the country of the data
- 725 collector.

726 15. **Institutional review board (IRB) approvals or equivalent for research with human**
727 **subjects**

728 Question: Does the paper describe potential risks incurred by study participants, whether
729 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
730 approvals (or an equivalent approval/review based on the requirements of your country or
731 institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: While we evaluate LLMs as part of the benchmark it is not an important, original, or non-standard component of the core methods in this research.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.