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Abstract

Current benchmarks for long-context reasoning in Large Language Models (LLMs)
often blur critical factors like intrinsic task complexity, distractor interference, and
task length. To enable more precise failure analysis, we introduce Cognil.oad, a
novel synthetic benchmark grounded in Cognitive Load Theory (CLT). Cognil.oad
generates natural-language logic puzzles with independently tunable parameters
that reflect CLT’s core dimensions: intrinsic difficulty (d) controls intrinsic load;
distractor-to-signal ratio (p) manipulates extraneous load; and task length (V)
serves as an operational proxy for conditions demanding germane load. Evaluating
14 SotA reasoning LLMs, CognilLoad reveals distinct performance sensitivities,
identifying task length as a dominant constraint and uncovering varied tolerances
to intrinsic complexity and U-shaped responses to distractor ratios. By offering
systematic, factorial control over these cognitive load dimensions, CogniLoad
provides a reproducible, scalable, and diagnostically rich tool for dissecting LLM
reasoning limitations and guiding future model development.

1 Introduction

Cognitive Load Theory (CLT) [Sweller} |1988] posits that working memory constraints [Lieder and
Griffiths, [2020]] for problem solving in humans arise from three types [Paas et al.| 2003] of cognitive
load: intrinsic (ICL), extraneous (ECL), and germane (GCL). ICL stems from the inherent complexity
and element interactivity of the task [Halford et al., [1998]]. ECL is induced by suboptimal task
presentation requiring the processing of elements that are not task-relevant [|Chandler and Sweller,
1991]]. GCL pertains to remaining resources effectively allocated to engaging with the intrinsic task
demands for schema construction [[Ericsson and Kintsch, [1995] [Sweller, 2010].

Large language models (LLMs) face analogous demands on their finite computational resources. The
essential element interactivity of a reasoning chain mirrors ICL; distractor elements reflect ECL; and
sustained engagement with intrinsically relevant information over a long reasoning process acts as
an operational proxy for germane-like processing - the constructive effort to maintain a coherent
problem representation.

To the best of our knowledge, no study has based the evaluation of problem-solving capacities of
LLMs in CLT by distinguishing these three load types, and existing benchmarks often confound them:
LongBench [Bai et al.| |2024al] and L-Eval [[An et al.| 2024] vary context length but not necessarily
the intrinsic reasoning depth; LogicBench [Parmar et al.,|2024] probes ICL with minimal demands
on ECL or context-induced load; BABILong [Kuratov et al.l 2024]] mixes multi-step reasoning with
fixed distractor ratios, obscuring precise failure attribution.
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Figure 1: The average accuracy of models across the evaluated parameter space ford € {1,3,5,7,10}
(left panel), N € {20, 50,100,250} (center panel), and p € {5, ...,95} (right panel). Each plot
selects one dimension for the X-axis and averages the accuracy of all evaluated puzzles for the other
two dimensions relative to it.

We introduce CogniLoad, a controllable synthetic benchmark for long-context reasoning, guided by
CLT, that operationalizes these load types through tunable parameters in randomized natural-language
logic puzzles: (i) Intrinsic Load via Intrinsic Difficulty d controls the number of interacting entities,
attributes, and logical clauses, directly manipulating ICL by varying essential element interactivity
and reasoning depth. (ii) Extraneous Load via Distractor Density p: Dictates distractor density;
lower p increases irrelevant elements, manipulating ECL. (iii) Germane Load Proxy via Task
Length N serves as an operational proxy for demanding germane-like cognitive work.

In this study we make the following contributions:

1. We ground the evaluation of LLMs in CLT, precisely defining benchmark parameters that
control ICL, ECL, and an operational proxy for the conditions conducive to GCL.

2. We introduce CogniLoad, the first benchmark designed to independently control these three
dimensions of cognitive load, while scaling to arbitrarily long contexts.

3. We provide an algorithm for the automatic randomized generation and evaluation of puzzle
instances, enabling large-scale and reproducible comparison of LLM capabilities.

4. We report empirical results on 14 state-of-the-art (SotA) reasoning LLMs (see Figure [I)),
revealing distinct failure regimes across the (d, N, p) dimensions and highlighting specific
targets for improving LLM design.

Together, these contributions translate CLT into a precise diagnostic framework for understanding
and advancing long-context reasoning in LLMs.

1.1 Related work

Long-Context Benchmarks (Working Memory Capacity). A line of work starting with Long-
Range Arena (LRA) [Tay et al., [2020] and followed by several recent benchmarks probe LLM
performance on long sequences, often framed as testing “memory load” or context utilization. Earlier
studies such as SCROLLS [Shaham et al.}[2022], BookSum [Kryscinski et al.l[2021]], and QMSum
[Zhong et al., 2021]] scale document length without manipulating intrinsic difficulty. LongBench
[Bai et al., 2024alb] and L-Eval [An et al., 2024]] aggregate multi-task corpora up to 200k tokens,
while BABILong [Kuratov et al., 2024], LongReason [Ling et al.,[2025], RULER [Hsieh et al., 2024]],
ZeroSCROLLS [Shaham et al.,[2023]], and Michelangelo [Vodrahalli et al., 2024]] increase context
but the inherent difficulty of individual sub-tasks (ICL) may vary unsystematically while distractor
density (ECL) is often not a controlled variable. Consequently, performance degradation could be due
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to sheer length overwhelming processing capacity, or an inability to sustain germane-like cognitive
work over extended relevant information, but the precise cause of failure is not clear.

Logical-Reasoning Benchmarks (Intrinsic Load). A complementary line of benchmarks focuses
on ICL by presenting tasks with high inherent complexity but often within minimal context lengths
or distractors. Notable classical suites include ReClor [Yu et al.| 2020]], LogiQA [Liu et al., |2020],
and BIG-Bench-Hard (BBH) [Suzgun et al.| 2022]]. AutoLogic [Zhu et al.;[2025] is a benchmark that
explicitly focuses on scaling ICL through controllable complexity. LogicBench [[Parmar et al.| [2024],
CLUTRR [Sinha et al.,2019], and ZebraLogic [Lin et al.,2025]] also exemplify this by formulating
symbolic logic puzzles that demand processing many interacting elements (e.g., multi-step deductions,
handling negation, constraint satisfaction). Similarly, mathematical reasoning datasets like GSM8K
[Cobbe et al., 2021]] and abstract rule induction tasks like ARC-AGI [[Chollet et al., 2024 primarily
escalate ICL by increasing the complexity of essential rules and their interdependencies.

Needle-in-A-Haystack Benchmarks (Extraneous Load). Needle-in-a-Haystack (NIAH) designs
[Gkamradt, 2023]] specifically target ECL by embedding relevant facts (“needles”) within large
volumes of distractor text (“hay”). Variants like Sequential NIAH [Yu et al., |2025]] and Nolima
[Modarressi et al.,2025|] investigate the impact of such distractors, which constitute non-essential ele-
ments requiring processing for filtering, thereby imposing ECL. While these benchmarks effectively
isolate the impact of distractors on information retrieval, the “needle” tasks themselves typically
involve low ICL (e.g., simple fact lookup).

Need for Multi-Dimensional Evaluation. CLT highlights the interplay of ICL, ECL, and germane
processing within finite working memory [Paas et al., 2003|]. Existing LLM reasoning benchmarks,
however, typically manipulate only one dimension without systematic, independent control over
the others. Even benchmarks like MIR-Bench [Yan et al., 2025|], which combine high ICL with
extensive input, do not offer the factorial control needed to disentangle these loads, hindering precise
diagnostics.

Contribution of CogniLoad. CogniLoad addresses this critical gap by providing a framework for
independently controlling parameters that influence: (i) ICL via intrinsic puzzle difficulty (d), (ii)
ECL via distractor density (p), and (iii) the demands for sustained, germane-like processing via
task length (IV), all within a single synthetically generated natural language puzzle. This factorial
design enables a precise diagnosis of LLM failure modes — for instance, determining whether
performance degradation at long contexts stems from an inability to handle increased intrinsic
complexity, susceptibility to extraneous distractors, or an incapacity to maintain coherent reasoning
over extended sequences. By explicitly grounding these dimensions in Cognitive Load Theory,
Cogniload offers the first benchmark to diagnostically map LLM capability surfaces across these
distinct cognitive demands, thereby complementing and extending the insights from evaluations that
focus on single factors.

2 Benchmark Design: Cognil.oad Logic Puzzles

CogniLoad is a family of natural-language logic-grid puzzles expressly crafted to probe sequential
reasoning capabilities of LLMs. The design goals are threefold: each puzzle (i) necessitates sequential
multi-step deduction where order fundamentally matters; (ii) embeds a controllable number of relevant
“needle” facts within the context of a controllable number of “hay” distractor statements; and (iii)
provides parameters that control distinct dimensions of cognitive load. This section formalizes the
task, describes the puzzle generation process, details the control parameters, and motivates key design
choices.

2.1 Puzzle Definition

Each puzzle in CogniLoad (see Figure [2 for an example) consists of a set of people with independent
and mutable attributes. A series of statements, applied in strictly sequential order, updates these
attributes according to conditions specified in each statement. The puzzle generation is parameterized
by the three key parameters: the intrinsic difficulty d, the total number of statements /N, and the
needle-to-hay ratio p.
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(i) Puzzle Instruction: Solve this logic puzzle. You MUST finalize your response with a single sentence
about the asked property (e.g., "Peter is in the livingroom.", "Peter is wearing blue socks",.. ). Solve the
puzzle by reasoning through the statements in a strictly sequential order.

(ii) Initial State: (iii) Update Statements:

* Brent is wearing green socks and is wearing pur- 1. The people wearing green socks listen to elec-
ple gloves and last listened to classical music. tronic music.

* Anthony is wearing purple socks and is wearing 2. The people who last listened to classical music
yellow gloves and last listened to disco music. and wearing purple gloves put on yellow gloves.

.« ... 3. ...

(iv) Query: What color of socks is Brent wearing?

Figure 2: Example Cognil.oad puzzle with intrinsic difficulty d = 3, statements N = 20, and
needle-to-hay ratio p = 50%. Only a subset of the initial state and update statements is shown.

2.1.1 Basic Elements

A puzzle is formally characterized by the following components:

* People: A set P = {p1,p2,...,pn} of persons in the puzzle, and n = max(d, 2).

* Person of Interest (Pol): A randomly selected person p* € P about whom the final question
is asked.

* Attribute Categories: A set A = {c1, ca, ..., cq} of attributes randomly selected from a
predefined taxonomy of 12 categories. Each category takes values in a Value Domain with a
given finite cardinality, larger or equal to 10.

* Value Domains: For each category ¢ € A, a value domain V, = {v¢1,v¢,2,---, Ve, }
where ¢, = d+ 1 ford > 1 or {. = 3 when d = 1. See Table|I|for examples.

* State Function: S;(p, ¢) representing the value of attribute ¢ for person p at step ¢. Each
person has values for the d attribute of the selected attribute categories A, thus the state
value represents a vector of dimension d.

Table 1: Overview of the attribute ontology. The full ontology contains 12 categories of varying
domain sizes and is detailed completely in the Supplementary Material.

Category Name (Code) Domain Size Examples of Values

location 50+ kitchen, balcony, zoo, museum, park...
clothes_socks 10 blue, red, yellow, green, purple...
clothes_gloves 10 (same as clothes_socks)

hair 10 (same as clothes_socks)
recent_listen 13 rock, jazz, disco, classical, funk...
recent_eat 10 pizza, pasta, burrito, sushi, taco...

2.1.2 Initialization

The puzzle starts with initialization statements (f = 0) that assigning unique attribute values to
each person: Vp € P,¥c € A : So(p,c) € Ve such that Vp;,p; € P,i # j,3c € A: Sy(p;,c) #
SO (pjv C)'

2.1.3 Statement Generation Process

For each step ¢ from 1 to IV, a statement is generated that changes the state of a person. If it updates
the Pol, the statement is called a needle and for a non-Pol it is called a hay.

1. Statement Type Selection: Given N and p, let nj.q and nj,, be the remaining numbers of needles

and hays to generate, to guarantee the desired proportion p in the complete puzzle. The probability of
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selecting a needle statement is then P(7; = needle) = n!,. 4./ (N — t). The total number of needle
statements in the puzzle is calculated as n?,.,. = max(1, min(N, round(N - p/100))).

needle
2. Reference Person Selection: Given the selected statement type 73, the algorithm selects the
reference person r;: if T; = needle =— r; = p* and if T; = hay = r; ~ Uniform(P \ {p*}).

3. Statement Structure: For each statement sample a number of conditions k; ~ Uniform{1, ..., d},
and a number of state updates m; ~ Uniform{1,...,d} and uniformly sample attribute categories
Cy C A, |Cy| = k; and state updates Uy C A, |U;| = my.

4. Condition and Update Value Specification: For each category ¢ € C}, the condition value is
determined by the reference person’s current state: v, ; = Sy—1(7¢, ¢). For needles these conditions
target the Pol, for hays the conditions can match multiple people. For update values if 7} =
needle = wu,; ~ Uniform(V;) and if T; = hay = w,; ~ Uniform(V, \ {S;—1(p*, ¢)}).

5. Logical Form: The statement at step ¢ has the logical form:

VpeP: ( /\ Si—1(p,c) = Uc,t> = </\ Si(p,c) = uc’t> .

ceCy celUy

Attributes not mentioned in the update set remain unchanged Vp € P,Ve € A\ U; : Si(p,c) =
S¢—1(p, ¢). This is not specified in the prompt but implicitly assumed by the LLMs.

2.1.4 Validation Constraints

A sequence of validations verifies that the generated statement does not result in a state that prevents
the generation of further needles and hays. If all validations pass, the statement is appended to the
puzzle; otherwise a new statement is generated.

For hay statements (ry # p*): After the update, the state of affected non-Pols must not become
identical to Pol Vp € P\ {p*} such that Ve € C; : S;_1(p,¢) = vey, Jc € A Se(p, ¢) # Si(p*, ¢)
and the update must not affect the Pol 3¢ € Cy : S;_1(p*, ¢) # ve,z.

For needle statements (r; = p*): The update must not affect all non-Pol people Ip € P\ {p*} :
Je € Cy : Si—1(p, ¢) # vt and after the update not all non-Pols can equal the Pol 3p € P\ {p*} :
de€ A: 5i(p,c) # Silp”, ).

To prevent the distractors from becoming too trivial to track at lower difficulties we further validate
that a hay statement does not result in all non-Pols becoming identical so the set P \ {p*} must
contain at least two persons with distinct attribute values. As a consequence of the algorithm design,
the hay statement 7; = hay by definition must affect at least one non-Pol 3p € P\ {p*} : Vc € C; :

St—l(pa c) = Ue,t-

2.1.5 Final Question Generation

After all N statements have been generated, the puzzle concludes with a question about a random
attribute of the Pol, sampled as a random category ¢, ~ Uniform(A). The correct answer to the
puzzle is S (p*, ¢q) obtained from the final state of the Pol.

2.1.6 Evaluation metrics

We evaluate the success of the solver M based on the exact string match of the final queried attribute
value in the last two sentences of the response. For each puzzle instance z € Z from our evaluation
set Z, we compare the model’s answer (answer;(z)) with the true value of the attribute derived
from the final state of the Pol. The accuracy of a model M across the evaluation set is calculated
as acc(M) = 77 30, ¢, 1[answerny (2) = Sy (p*, ¢q)] where Sy (p*, ¢ ) represents the final state
value of the queried attribute ¢, for the Pol p* after all IV statements have been processed. This value
is computed by our puzzle generation algorithm.

2.2 Tunable Parameters

To systematically probe different facets of long-context reasoning, the Cognil.oad generator employs
three independent parameters. These parameters are designed to operationalize distinct cognitive
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Table 2: Key parameters controlling the puzzle generation.

Symbol Name Definition Cognitive Load Affected

d Intrinsic Controls cardinality of people set |P| = ICL: Element interactivity,
Difficulty max(d, 2), attribute categories |A| = d, state space/rule complexity.
for each category ¢ € A the cardinal-
ity of value domains |V,.| = max(d +
1,3), and the distribution of conditions
and updates per statement: k,m -~
Uniform{1, ..., d}.

N Task Length  Total number of sequential state transi- GCL Proxy / Task Length:
tions in the puzzle. Demands sustained engage-

ment with core elements.
P Needle-to-  Percentage of statements directly influ- ECL: Distractor density
Hay Ratio encing the Pol (needles) versus distrac- challenges filtering, selective
tor statements (hay) attention, and imposing

load from processing non-
essential elements.

load dimensions as defined by CLT [Paas et al.,[2003]], allowing the creation of puzzles with varying
characteristics. Together, they define the load profile of a puzzle instance.

Intrinsic Difficulty (d) ford € {1,3,5,7,10} controls multiple facets of puzzle complexity (see
Table[2), directly manipulating ICL which according to CLT hinges on element interactivity [Halford
et al.L|1998]. Higher d increases ICL via: (i) combinatorial growth in state space (=~ (d + 1)%), (ii)
increased interactivity between persons, attributes, and values, and (iii) increased rule complexity (up
to d conditions/updates per statement).

Task Length (N) for N € {20,50,100,250} sets the total number of sequential state-update
statements. While directly determining sequence length, N serves as an operational proxy for
conditions demanding GCL. Higher IV, particularly with high d (intrinsic difficulty) and high
p (relevance), compels deeper reasoning through more essential interacting elements [Sweller,
2010]]. Additionally, higher IV also necessitates the maintenance of a coherent (stateful) problem
representation over a longer term with the construction of an efficient schema for it [Ericsson and
Kintschl 1995]].

Needle-to-Hay Ratio (p) for p € {5, ...,95} sets the percentage of Pol-relevant (“needle”) versus
distractor (“hay”) statements, directly manipulating ECL. ECL arises from processing non-essential
elements [Chandler and Sweller, [1991]]. Lower p increases ECL via higher distractor density which
challenges filtering. Higher p reduces ECL by focusing resources on relevant information. Critically,
CognilLoad’s “hay” statements are syntactically similar to “needles” and involve valid state updates
for non-Pols, imposing a more challenging ECL than easy to distinguish distractor text.

3 Results

We evaluated the performance of 14 LLMs on 100 random CogniLoad puzzles per (d, N, p) configu-
ration resulting in 14’000 puzzle instances per LLM in total. We attempted to include every currently
available Open-Weights LLM that is specifically trained for reasoning, but the VRAM limitations of
our single-node inference environment (i.e. AMD MI250X accelerators) prevents us from evaluating
the full DeepSeek-R1 model with 685B parameters.

Figure[I| shows mean accuracy across models as each load dimension varies with trends corroborated
by our regression analysis (Section [3.T).

Intrinsic difficulty (d) Performance generally declines monotonically with d. For instance, even
top models show a significant drop between d = 1 and d = 3, while degradation is less pronounced
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Table 3: Per-model quadratic-p GLM estimates with Wald z statistic for p-values alongside derived
50% load-capacity thresholds (see Section[3.1.3). The value —— for NTj5 indicates that no real root
exists in [0, 1]. “DS” abbreviates “DeepSeek-R1-Distill” in the model names. ***p<0.001, **p<0.01,
*p<0.05

Model 50 ﬂd ﬁN Bp sz ECL50 NT50 ID50
DS-Llama-70B 7.83***  —0.27"** —-3.10"" —3.41*"** 3.80"** 66.9 0.6 4.92
DS-Qwen-32B 4.58"*  —0.18"*" —1.88*"* —2.01"** 2.24™** 51.1 0.8 3.71
DS-Qwen-7B 1.47**  —0.20""* —0.93"*" —0.46 0.55 23 —— -—1.71
DS-Qwen-1.5B -0.72"**  —0.16""* —0.23"** 0.72* —0.41 0.0 —— —541
Phi-4-reasoning-plus ~ 5.61*** —0.23"** —1.91*** —-3.10*** 2.40"** 63.7 0.88 4.83
Phi-4-reasoning 3.50""  —0.18""* —1.24™*" —2.40""" 1.95"** 324 0.14 2.81
Phi-4-mini-reasoning ~ 1.36*** —0.21"** —0.77*** —1.71"** 1.68"** 0.6 —— —247
QwQ-32B 5.00"** —0.18""* —1.80"*" —3.52*"* 2.92*** 49.2  0.93 3.6
EXAONE-Deep-32B 3.90""*  —0.25"*" —1.49™* —3.31"** 2.57"** 116 —— 0.55
GLM-Z1-32B-0414 7.05%*F  —0.32**  —2.72"**  —3.01""* 2.56"** 46.5 0.14 3.65
Qwen3-32B 712 —0.29""  —2.72%*F —3.21%*" 274" 53.7 0.94 4.08
Qwen3-30B-A3B 5.80*** —0.29""* —2.23"** -3.01"** 2.91*** 36.8 0.99 3.03
Qwen3-8B 4.88"**  —0.27""* —1.95"** —2.99*** 277" 23.7 —— 1.76
Qwen3-1.7B 0.57*** —0.16""* —0.46""" —1.48""* 1.19"** 00 —— —45

beyond d = 7, suggesting diminishing marginal effects of this complexity type for many models. At
d = 5, 10 of 14 models are wrong in more than 50% of the puzzles.

Memory load (/) Memory load exhibits the steepest performance decline, with a substantial drop
observed for most models between N = 20 and N = 50. This underscores the role of task length as
a proxy for germane load as a primary contributor to cognitive load.

Extraneous load (p) Extraneous load often exhibits a U-shaped response, with performance minima
typically around p = 25 — 50%. However, the curve’s depth and recovery at high p vary significantly
between models. Interestingly, DS-Llama-70B fully recovers and exceeds its initial performance
(0.60—0.63) while Phi-4-reasoning-plus shows only a partial recovery (0.67—0.51).

3.1 Load-sensitivity Regression

To quantify model-specific sensitivities of the accuracy to load dimensions and derive interpretable
capacity thresholds for each model, we employ a regression-based approach that allows us to isolate
the impact of each type of cognitive load (see Table[3).

3.1.1 Regression Model Specification

We model the performance of LLMs using a binomial generalized linear model (GLM) with a logit
link function:

PY'=1) = o(Bo + Bad + B log1g N + B, p+ B2 p?),

where the binary outcome Y represents exact-match accuracy (Y = 1, when the model solves the
puzzle correctly), o(-) is the inverse logit function, and the coefficients 54, Sn and 3, quantify
sensitivity to intrinsic difficulty (ICL), task length (GCL), and distractor ratios (ECL), respectively.
The inclusion of a quadratic term for p, with the coefficient /3,2, is motivated by the characteristic
U-shape observed in the third panel of Figure [I] and based on an improved Akaike Information
Criterion (AIC) value for 14 out of the 15 fitted models when included (see Supplementary Material).
Since N ranges up to 250, we apply log;, to keep it at a similar scale as the other parameters of the
regression.

3.1.2 Significance of Main Effects

In all models, 8, and (B are significant and highly negative, confirming performance degradation
with increased intrinsic cognitive load and task length. The quadratic term for p is also significant
(except for two models) confirming the U-shaped response for most models: models typically
perform worst at intermediate relevance ratios and recover as p approaches either extreme. Two
models (DS-Qwen-1.5B, DS-Qwen-7B) exhibit exhibit statistically insignificant coefficients for p
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terms, likely reflecting their poor baseline performance rather than a genuine lack of association with
the needle/hay ratio.

3.1.3 Capacity Points at 50% Accuracy

The GLM coefficients (Table 3] allow us to derive interpretable capacity thresholds. These represent
the point at which a model’s accuracy is predicted to drop to 50% when varying a single load
parameter, while holding other load parameters at their estimated mean values:

ECL;, (Effective Context Length): Maximum number of statements a model can process while
maintaining 50% accuracy. Higher values indicate superior context handling.

NTj5o (Needle-to-hay Threshold): Minimum proportion of relevant information required to maintain
50% accuracy. Crucially, lower values indicate greater robustness to distractors. If the estimated
NTj5 is missing, then the model accuracy is not expected to cross the 50% threshold for any value
0 < p <1, under mean conditions for d and N.

ID5o (Intrinsic Difficulty): It is the maximum intrinsic complexity (number of interacting entities/at-
tributes) that a model can handle while maintaining 50% accuracy. Negative values indicate failure to
reach 50% accuracy even at the lowest difficulty setting under mean conditions for N and p.

Mathematically, these thresholds are derived by setting the logit in the GLM equation to zero (for
Pr(y = 1) = 0.5) and solving for the parameter of interest, e.g.:

ECLgg = 10~ (Pt 8adt80p+5,20% /05 . 1D5 = —(8y + finlogyg N + B + By )/ B
For NTs, we solve the quadratic equation 3y + Bq4d + Bnlogyq N + Bop + ﬁpapQ = 0 for p.

3.1.4 Model Capacity

The regression analysis and estimated capacity thresholds (Table [3)) reveal clear variations among
models that can be grouped into three classes:

High-Capacity Models: DS-Llama-70B (ECL5,=66.9, 1D50=4.92) and Phi-4-reasoning-plus
(ECL5¢=63.7, ID50=4.83) demonstrate exceptional context length tolerance and robust reasoning
capabilities across all dimensions.

Mid-Capacity Models: Models such as DS-Qwen-32B (ECL50=51.1), Qwen3-32B (ECL50=53.7),
QwQ-32B (ECL5¢=49.2), and GLM-Z1-32B-0414 (ECL5,=46.5) constitute a middle tier. Their
ID5( values typically fall between 3.5 and 4.1, suggesting competence on problems of moderate
complexity and length.

Low-Capacity Models: Smaller models, particularly DS-Qwen-1.5B and Qwen3-1.7B, exhibit
minimal effective context handling capacity (ECL5(=0.0) and negative ID5( values. This indicates
that they fail to achieve 50% accuracy even at baseline difficulty and mean context/distractor levels,
deteriorating rapidly under any increasing load.

3.1.5 Differential Sensitivity to Load Dimensions

The estimated coefficients further reveal distinct sensitivity profiles:

Sensitivity to context length (B ): Universally negative and potent, with larger models often showing
greater relative degradation from their higher baselines.

Sensitivity to intrinsic difficulty (B4): Negative across models, but with a narrow range suggesting a
more uniform effect.

Sensitivity to information relevance (3, and 3,2): Confirms the U-shaped response, but NTsq values
reveal nuanced distractor robustness differences masked by aggregate scores (e.g., DS-Llama-70B vs.
Qwen3-32B).

4 Discussion

Cognil.oad, by operationalizing CLT, enables a multi-dimensional evaluation of LLM reasoning,
revealing nuanced failure patterns obscured by single-dimension benchmarks. Our empirical results



284
285
286
287
288
289

290

291
292
293
294

296

297

299
300
301

302
303
304
305

306
307
308
309
310
311
312
313

314
315
316
317

318

319
320
321
322
323
324
325
326
327

329

330

331

333
334

(Section [3) offer several key insights: task length (V) emerges as a dominant determinant, suggesting
challenges in sustained, germane-like processing for long, intrinsically demanding tasks; models
exhibit distinct sensitivities to intrinsic difficulty (d) versus extraneous load (p), with the latter
surprisingly showing U-shaped performance curves, indicating particular difficulties with intermediate
distractor densities, while performing better for lowest and highest needle-to-hay proportions; and
estimated capacity thresholds provide concise “cognitive fingerprints” for diagnostic LLM evaluation.

The limitations of our study are important to emphasize:

Nuances of the CLT-LLM Analogy While CLT provides a powerful analogous framework, it is
crucial to acknowledge that “cognitive load” in LLMs manifests as computational constraints (e.g.,
attention saturation, representational bottlenecks) rather than biological working memory limitations.
Our operationalization of N as a proxy for conditions demanding GCL, for example, is an abstraction.
Future research should aim to bridge CLT concepts with direct, mechanistic measures of LLM
computational processes to refine this analogy and deepen our understanding of artificial cognition.

Scope of Reasoning and Generalizability Cognil.oad currently focuses on sequential, deductive
logic-grid puzzles. This controlled environment enables precise manipulation of load factors, but
the extent to which these specific load sensitivities generalize to other reasoning paradigms (e.g.,
abductive, inductive, mathematical, commonsense) remains an open question. Extending the CLT-
grounded multi-dimensional evaluation to diverse reasoning domains is a promising next step.

Beyond Accuracy and Main Effects The current evaluation relies on simple exact-match accuracy.
Future iterations could incorporate richer metrics (e.g., step-wise reasoning fidelity, solution coher-
ence, uncertainty of solutions) and systematically investigate interaction effects between d, N, p,
which CognilLoad’s factorial design supports.

Architectural Implications Pinpointing the specific decisions in LLM architecture and training
regimes that result in our observed performance differential requires thorough analysis and experi-
ments that exceed the scope of this paper. Besides the observed differences for particular LLMs we
also notice patterns across model families (e.g., the strong recovery of all DeepSeek-R1-Zero models
with increasing p vs the weaker recovery of the Qwen3 models). The emergence of reinforcement
learning on verifiable rewards [Guo et al.,|2025]] presents a promising avenue to employ CogniLoad
in the training process of LLMs, as the generated metadata of each experiment allows the precise
verification of each reasoning step in light of the still scarce available training data of this type.

Despite these considerations, by decomposing the “task difficulty” into principled, controllable
dimensions derived from cognitive science, Cognil.oad provides a more insightful perspective than
single-score benchmarks. It allows a more differentiated understanding of LLM reasoning capabilities
and limitations, paving the way for more targeted development of robust and generalizable Al systems.

5 Conclusion

We introduced CogniL.oad, a novel synthetic benchmark grounded in Cognitive Load Theory, for
multi-dimensional evaluation of LLM long-context reasoning. By independently controlling param-
eters for intrinsic cognitive load (d), extraneous cognitive load (p), and task length (/V as a proxy
for germane load demands), CognilLoad offers unprecedented diagnostic precision. Our evaluations
revealed task length as a dominant performance constraint and uncovered unique “cognitive finger-
prints” of LLM sensitivities to different load types, providing actionable insights beyond single-score
benchmarks. CogniLoad offers a reproducible, scalable, and theoretically-grounded tool to systemati-
cally dissect LLM reasoning limitations and guide the development of more capable and robust Al
systems. While human and artificial cognition are mechanistically distinct, applying frameworks like
CLT to Al evaluation can provide valuable perspectives for understanding and characterizing their
operational differences and capabilities.
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7 NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract match exactly what is in the paper: a synthetic
benchmark evaluating 14 open source LLMs according to the 3 parameters introduced in
the abstract and discussed throughout the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations are discussed in the Discussion section of the paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: We don’t present any theorems or proofs, it is a benchmark paper. The formulas
in the paper just rigorously describe the generation algorithm of the dataset.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: A dedicated section of the paper rigorously explains and formalizes all the
information needed to reproduce the generation algorithm of the dataset. The paper also
fully specifies the regression and the definition of the capacity points at 50% accuracy for
the results presented in the results section.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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524 5. Open access to data and code

525 Question: Does the paper provide open access to the data and code, with sufficient instruc-
526 tions to faithfully reproduce the main experimental results, as described in supplemental
527 material?

528 Answer: [Yes]

529 Justification: We provide links to the public Github repo containing the code and the
530 publically accessible dataset hosted on huggingface in the required Croissant format.

531 Guidelines:

532 * The answer NA means that paper does not include experiments requiring code.

533 * Please see the NeurIPS code and data submission guidelines (https://nips.cc/
534 public/guides/CodeSubmissionPolicy) for more details.

535 * While we encourage the release of code and data, we understand that this might not be
536 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
537 including code, unless this is central to the contribution (e.g., for a new open-source
538 benchmark).

539 * The instructions should contain the exact command and environment needed to run to
540 reproduce the results. See the NeurIPS code and data submission guidelines (https:
541 //nips.cc/public/guides/CodeSubmissionPolicy) for more details.

542 * The authors should provide instructions on data access and preparation, including how
543 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
544 * The authors should provide scripts to reproduce all experimental results for the new
545 proposed method and baselines. If only a subset of experiments are reproducible, they
546 should state which ones are omitted from the script and why.

547 * At submission time, to preserve anonymity, the authors should release anonymized
548 versions (if applicable).

549 * Providing as much information as possible in supplemental material (appended to the
550 paper) is recommended, but including URLSs to data and code is permitted.

551 6. Experimental setting/details

552 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
553 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
554 results?

555 Answer: [Yes]

556 Justification: The parameters of the algorithm used to generate the benchmark dataset are all
557 fully specified in the paper to allow the fully reproducible generation of the dataset and the
558 results.

559 Guidelines:

560 * The answer NA means that the paper does not include experiments.

561 * The experimental setting should be presented in the core of the paper to a level of detail
562 that is necessary to appreciate the results and make sense of them.

563 * The full details can be provided either with the code, in appendix, or as supplemental
564 material.

565 7. Experiment statistical significance

566 Question: Does the paper report error bars suitably and correctly defined or other appropriate
567 information about the statistical significance of the experiments?

568 Answer: [Yes]

569 Justification: We provide statistical measures of significance for all parameters of the
570 quantitative analysis (i.e., the GLM regression) of the results. Since error bars would impede
571 the readability of the main chart (Figure 1) we do not plot them in the main section the paper
572 but we include a version with error bars in the appendix.

573 Guidelines:

574 » The answer NA means that the paper does not include experiments.
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* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Reporting computational resources is not relevant to our work since we do not
introduce a new machine learning method. The generation of the benchmark does not require
resources beyond a single CPU as it just deterministically produces relatively short texts.
Further, the inference speed of each LLM we evaluate in the experiments depends highly
on the LLM architecture and the specific inference environment. Any given reasonable
computational resources could be used to evaluate the LLMs.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work does not involve humans participants and there are no data related
concerns as the data is synthetically generated.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Since we just introduce a benchmark strictly for LLM evaluation our work
does not have a societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Since we generate a purely synthetic dataset there is no risk for misuse and no
data has been scraped from the internet.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: There are no concerns about licenses since all the code and data has been
produced originally by the authors.
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15.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The algorithm of the released code on GitHub is explained in the paper and
the evaluation dataset is provided and documented appropriately on Huggingface.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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732 Answer: [NA]

733 Justification: The paper does not involve crowdsourcing not research with human subjects.
734 Guidelines:

735 * The answer NA means that the paper does not involve crowdsourcing nor research with
736 human subjects.

737 * Depending on the country in which research is conducted, IRB approval (or equivalent)
738 may be required for any human subjects research. If you obtained IRB approval, you
739 should clearly state this in the paper.

740 * We recognize that the procedures for this may vary significantly between institutions
741 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
742 guidelines for their institution.

743 * For initial submissions, do not include any information that would break anonymity (if
744 applicable), such as the institution conducting the review.

745 16. Declaration of LLM usage

746 Question: Does the paper describe the usage of LLMs if it is an important, original, or
747 non-standard component of the core methods in this research? Note that if the LLM is used
748 only for writing, editing, or formatting purposes and does not impact the core methodology,
749 scientific rigorousness, or originality of the research, declaration is not required.

750 Answer: [NA]

751 Justification: While we evaluate LLMs as part of the benchmark it is not an important,
752 original, or non-standard component of the core methods in this research.

753 Guidelines:

754 * The answer NA means that the core method development in this research does not
755 involve LLMs as any important, original, or non-standard components.

756 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
757 for what should or should not be described.
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