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Abstract

Current benchmarks for long-context reasoning in Large Language Models (LLMs)1

often blur critical factors like intrinsic task complexity, distractor interference, and2

task length. To enable more precise failure analysis, we introduce CogniLoad, a3

novel synthetic benchmark grounded in Cognitive Load Theory (CLT). CogniLoad4

generates natural-language logic puzzles with independently tunable parameters5

that reflect CLT’s core dimensions: intrinsic difficulty (d) controls intrinsic load;6

distractor-to-signal ratio (ρ) manipulates extraneous load; and task length (N )7

serves as an operational proxy for conditions demanding germane load. Evaluating8

14 SotA reasoning LLMs, CogniLoad reveals distinct performance sensitivities,9

identifying task length as a dominant constraint and uncovering varied tolerances10

to intrinsic complexity and U-shaped responses to distractor ratios. By offering11

systematic, factorial control over these cognitive load dimensions, CogniLoad12

provides a reproducible, scalable, and diagnostically rich tool for dissecting LLM13

reasoning limitations and guiding future model development.14

1 Introduction15

Cognitive Load Theory (CLT) [Sweller, 1988] posits that working memory constraints [Lieder and16

Griffiths, 2020] for problem solving in humans arise from three types [Paas et al., 2003] of cognitive17

load: intrinsic (ICL), extraneous (ECL), and germane (GCL). ICL stems from the inherent complexity18

and element interactivity of the task [Halford et al., 1998]. ECL is induced by suboptimal task19

presentation requiring the processing of elements that are not task-relevant [Chandler and Sweller,20

1991]. GCL pertains to remaining resources effectively allocated to engaging with the intrinsic task21

demands for schema construction [Ericsson and Kintsch, 1995, Sweller, 2010].22

Large language models (LLMs) face analogous demands on their finite computational resources. The23

essential element interactivity of a reasoning chain mirrors ICL; distractor elements reflect ECL; and24

sustained engagement with intrinsically relevant information over a long reasoning process acts as25

an operational proxy for germane-like processing - the constructive effort to maintain a coherent26

problem representation.27

To the best of our knowledge, no study has based the evaluation of problem-solving capacities of28

LLMs in CLT by distinguishing these three load types, and existing benchmarks often confound them:29

LongBench [Bai et al., 2024a] and L-Eval [An et al., 2024] vary context length but not necessarily30

the intrinsic reasoning depth; LogicBench [Parmar et al., 2024] probes ICL with minimal demands31

on ECL or context-induced load; BABILong [Kuratov et al., 2024] mixes multi-step reasoning with32

fixed distractor ratios, obscuring precise failure attribution.33
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Figure 1: The average accuracy of models across the evaluated parameter space for d ∈ {1, 3, 5, 7, 10}
(left panel), N ∈ {20, 50, 100, 250} (center panel), and ρ ∈ {5, ..., 95} (right panel). Each plot
selects one dimension for the X-axis and averages the accuracy of all evaluated puzzles for the other
two dimensions relative to it.

We introduce CogniLoad, a controllable synthetic benchmark for long-context reasoning, guided by34

CLT, that operationalizes these load types through tunable parameters in randomized natural-language35

logic puzzles: (i) Intrinsic Load via Intrinsic Difficulty d controls the number of interacting entities,36

attributes, and logical clauses, directly manipulating ICL by varying essential element interactivity37

and reasoning depth. (ii) Extraneous Load via Distractor Density ρ: Dictates distractor density;38

lower ρ increases irrelevant elements, manipulating ECL. (iii) Germane Load Proxy via Task39

Length N serves as an operational proxy for demanding germane-like cognitive work.40

In this study we make the following contributions:41

1. We ground the evaluation of LLMs in CLT, precisely defining benchmark parameters that42

control ICL, ECL, and an operational proxy for the conditions conducive to GCL.43

2. We introduce CogniLoad, the first benchmark designed to independently control these three44

dimensions of cognitive load, while scaling to arbitrarily long contexts.45

3. We provide an algorithm for the automatic randomized generation and evaluation of puzzle46

instances, enabling large-scale and reproducible comparison of LLM capabilities.47

4. We report empirical results on 14 state-of-the-art (SotA) reasoning LLMs (see Figure 1),48

revealing distinct failure regimes across the (d,N, ρ) dimensions and highlighting specific49

targets for improving LLM design.50

Together, these contributions translate CLT into a precise diagnostic framework for understanding51

and advancing long-context reasoning in LLMs.52

1.1 Related work53

Long-Context Benchmarks (Working Memory Capacity). A line of work starting with Long-54

Range Arena (LRA) [Tay et al., 2020] and followed by several recent benchmarks probe LLM55

performance on long sequences, often framed as testing “memory load” or context utilization. Earlier56

studies such as SCROLLS [Shaham et al., 2022], BookSum [Kryściński et al., 2021], and QMSum57

[Zhong et al., 2021] scale document length without manipulating intrinsic difficulty. LongBench58

[Bai et al., 2024a,b] and L-Eval [An et al., 2024] aggregate multi-task corpora up to 200k tokens,59

while BABILong [Kuratov et al., 2024], LongReason [Ling et al., 2025], RULER [Hsieh et al., 2024],60

ZeroSCROLLS [Shaham et al., 2023], and Michelangelo [Vodrahalli et al., 2024] increase context61

but the inherent difficulty of individual sub-tasks (ICL) may vary unsystematically while distractor62

density (ECL) is often not a controlled variable. Consequently, performance degradation could be due63
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to sheer length overwhelming processing capacity, or an inability to sustain germane-like cognitive64

work over extended relevant information, but the precise cause of failure is not clear.65

Logical-Reasoning Benchmarks (Intrinsic Load). A complementary line of benchmarks focuses66

on ICL by presenting tasks with high inherent complexity but often within minimal context lengths67

or distractors. Notable classical suites include ReClor [Yu et al., 2020], LogiQA [Liu et al., 2020],68

and BIG-Bench-Hard (BBH) [Suzgun et al., 2022]. AutoLogic [Zhu et al., 2025] is a benchmark that69

explicitly focuses on scaling ICL through controllable complexity. LogicBench [Parmar et al., 2024],70

CLUTRR [Sinha et al., 2019], and ZebraLogic [Lin et al., 2025] also exemplify this by formulating71

symbolic logic puzzles that demand processing many interacting elements (e.g., multi-step deductions,72

handling negation, constraint satisfaction). Similarly, mathematical reasoning datasets like GSM8K73

[Cobbe et al., 2021] and abstract rule induction tasks like ARC-AGI [Chollet et al., 2024] primarily74

escalate ICL by increasing the complexity of essential rules and their interdependencies.75

Needle-in-A-Haystack Benchmarks (Extraneous Load). Needle-in-a-Haystack (NIAH) designs76

[Gkamradt, 2023] specifically target ECL by embedding relevant facts (“needles”) within large77

volumes of distractor text (“hay”). Variants like Sequential NIAH [Yu et al., 2025] and Nolima78

[Modarressi et al., 2025] investigate the impact of such distractors, which constitute non-essential ele-79

ments requiring processing for filtering, thereby imposing ECL. While these benchmarks effectively80

isolate the impact of distractors on information retrieval, the “needle” tasks themselves typically81

involve low ICL (e.g., simple fact lookup).82

Need for Multi-Dimensional Evaluation. CLT highlights the interplay of ICL, ECL, and germane83

processing within finite working memory [Paas et al., 2003]. Existing LLM reasoning benchmarks,84

however, typically manipulate only one dimension without systematic, independent control over85

the others. Even benchmarks like MIR-Bench [Yan et al., 2025], which combine high ICL with86

extensive input, do not offer the factorial control needed to disentangle these loads, hindering precise87

diagnostics.88

Contribution of CogniLoad. CogniLoad addresses this critical gap by providing a framework for89

independently controlling parameters that influence: (i) ICL via intrinsic puzzle difficulty (d), (ii)90

ECL via distractor density (ρ), and (iii) the demands for sustained, germane-like processing via91

task length (N ), all within a single synthetically generated natural language puzzle. This factorial92

design enables a precise diagnosis of LLM failure modes — for instance, determining whether93

performance degradation at long contexts stems from an inability to handle increased intrinsic94

complexity, susceptibility to extraneous distractors, or an incapacity to maintain coherent reasoning95

over extended sequences. By explicitly grounding these dimensions in Cognitive Load Theory,96

CogniLoad offers the first benchmark to diagnostically map LLM capability surfaces across these97

distinct cognitive demands, thereby complementing and extending the insights from evaluations that98

focus on single factors.99

2 Benchmark Design: CogniLoad Logic Puzzles100

CogniLoad is a family of natural-language logic-grid puzzles expressly crafted to probe sequential101

reasoning capabilities of LLMs. The design goals are threefold: each puzzle (i) necessitates sequential102

multi-step deduction where order fundamentally matters; (ii) embeds a controllable number of relevant103

“needle” facts within the context of a controllable number of “hay” distractor statements; and (iii)104

provides parameters that control distinct dimensions of cognitive load. This section formalizes the105

task, describes the puzzle generation process, details the control parameters, and motivates key design106

choices.107

2.1 Puzzle Definition108

Each puzzle in CogniLoad (see Figure 2 for an example) consists of a set of people with independent109

and mutable attributes. A series of statements, applied in strictly sequential order, updates these110

attributes according to conditions specified in each statement. The puzzle generation is parameterized111

by the three key parameters: the intrinsic difficulty d, the total number of statements N , and the112

needle-to-hay ratio ρ.113
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(i) Puzzle Instruction: Solve this logic puzzle. You MUST finalize your response with a single sentence
about the asked property (e.g., "Peter is in the livingroom.", "Peter is wearing blue socks",.. ). Solve the
puzzle by reasoning through the statements in a strictly sequential order.

(ii) Initial State:
• Brent is wearing green socks and is wearing pur-

ple gloves and last listened to classical music.
• Anthony is wearing purple socks and is wearing

yellow gloves and last listened to disco music.
• . . .

(iii) Update Statements:
1. The people wearing green socks listen to elec-

tronic music.
2. The people who last listened to classical music

and wearing purple gloves put on yellow gloves.
3. . . .

(iv) Query: What color of socks is Brent wearing?

Figure 2: Example CogniLoad puzzle with intrinsic difficulty d = 3, statements N = 20, and
needle-to-hay ratio ρ = 50%. Only a subset of the initial state and update statements is shown.

2.1.1 Basic Elements114

A puzzle is formally characterized by the following components:115

• People: A set P = {p1, p2, . . . , pn} of persons in the puzzle, and n = max(d, 2).116

• Person of Interest (PoI): A randomly selected person p∗ ∈ P about whom the final question117

is asked.118

• Attribute Categories: A set A = {c1, c2, . . . , cd} of attributes randomly selected from a119

predefined taxonomy of 12 categories. Each category takes values in a Value Domain with a120

given finite cardinality, larger or equal to 10.121

• Value Domains: For each category c ∈ A, a value domain Vc = {vc,1, vc,2, . . . , vc,ℓc}122

where ℓc = d+ 1 for d > 1 or ℓc = 3 when d = 1. See Table 1 for examples.123

• State Function: St(p, c) representing the value of attribute c for person p at step t. Each124

person has values for the d attribute of the selected attribute categories A, thus the state125

value represents a vector of dimension d.126

Table 1: Overview of the attribute ontology. The full ontology contains 12 categories of varying
domain sizes and is detailed completely in the Supplementary Material.

Category Name (Code) Domain Size Examples of Values

location 50+ kitchen, balcony, zoo, museum, park...
clothes_socks 10 blue, red, yellow, green, purple...
clothes_gloves 10 (same as clothes_socks)
hair 10 (same as clothes_socks)
recent_listen 13 rock, jazz, disco, classical, funk...
recent_eat 10 pizza, pasta, burrito, sushi, taco...
... ... ...

2.1.2 Initialization127

The puzzle starts with initialization statements (t = 0) that assigning unique attribute values to128

each person: ∀p ∈ P,∀c ∈ A : S0(p, c) ∈ Vc such that ∀pi, pj ∈ P, i ̸= j, ∃c ∈ A : S0(pi, c) ̸=129

S0(pj , c).130

2.1.3 Statement Generation Process131

For each step t from 1 to N , a statement is generated that changes the state of a person. If it updates132

the PoI, the statement is called a needle and for a non-PoI it is called a hay.133

1. Statement Type Selection: Given N and ρ, let nt
needle and nt

hay be the remaining numbers of needles134

and hays to generate, to guarantee the desired proportion ρ in the complete puzzle. The probability of135
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selecting a needle statement is then P(Tt = needle) = nt
needle/(N − t). The total number of needle136

statements in the puzzle is calculated as n0
needle = max(1,min(N, round(N · ρ/100))).137

2. Reference Person Selection: Given the selected statement type Tt, the algorithm selects the138

reference person rt: if Tt = needle =⇒ rt = p∗ and if Tt = hay =⇒ rt ∼ Uniform(P \ {p∗}).139

3. Statement Structure: For each statement sample a number of conditions kt ∼ Uniform{1, . . . , d},140

and a number of state updates mt ∼ Uniform{1, . . . , d} and uniformly sample attribute categories141

Ct ⊆ A, |Ct| = kt and state updates Ut ⊆ A, |Ut| = mt.142

4. Condition and Update Value Specification: For each category c ∈ Ct, the condition value is143

determined by the reference person’s current state: vc,t = St−1(rt, c). For needles these conditions144

target the PoI, for hays the conditions can match multiple people. For update values if Tt =145

needle =⇒ uc,t ∼ Uniform(Vc) and if Tt = hay =⇒ uc,t ∼ Uniform(Vc \ {St−1(p
∗, c)}).146

5. Logical Form: The statement at step t has the logical form:147

∀p ∈ P :

( ∧
c∈Ct

St−1(p, c) = vc,t

)
⇒

( ∧
c∈Ut

St(p, c) = uc,t

)
.

Attributes not mentioned in the update set remain unchanged ∀p ∈ P,∀c ∈ A \ Ut : St(p, c) =148

St−1(p, c). This is not specified in the prompt but implicitly assumed by the LLMs.149

2.1.4 Validation Constraints150

A sequence of validations verifies that the generated statement does not result in a state that prevents151

the generation of further needles and hays. If all validations pass, the statement is appended to the152

puzzle; otherwise a new statement is generated.153

For hay statements (rt ̸= p∗): After the update, the state of affected non-PoIs must not become154

identical to PoI ∀p ∈ P \ {p∗} such that ∀c ∈ Ct : St−1(p, c) = vc,t, ∃c ∈ A : St(p, c) ̸= St(p
∗, c)155

and the update must not affect the PoI ∃c ∈ Ct : St−1(p
∗, c) ̸= vc,t.156

For needle statements (rt = p∗): The update must not affect all non-PoI people ∃p ∈ P \ {p∗} :157

∃c ∈ Ct : St−1(p, c) ̸= vc,t and after the update not all non-PoIs can equal the PoI ∃p ∈ P \ {p∗} :158

∃c ∈ A : St(p, c) ̸= St(p
∗, c).159

To prevent the distractors from becoming too trivial to track at lower difficulties we further validate160

that a hay statement does not result in all non-PoIs becoming identical so the set P \ {p∗} must161

contain at least two persons with distinct attribute values. As a consequence of the algorithm design,162

the hay statement Tt = hay by definition must affect at least one non-PoI ∃p ∈ P \ {p∗} : ∀c ∈ Ct :163

St−1(p, c) = vc,t.164

2.1.5 Final Question Generation165

After all N statements have been generated, the puzzle concludes with a question about a random166

attribute of the PoI, sampled as a random category cq ∼ Uniform(A). The correct answer to the167

puzzle is SN (p∗, cq) obtained from the final state of the PoI.168

2.1.6 Evaluation metrics169

We evaluate the success of the solver M based on the exact string match of the final queried attribute170

value in the last two sentences of the response. For each puzzle instance z ∈ Z from our evaluation171

set Z, we compare the model’s answer (answerM (z)) with the true value of the attribute derived172

from the final state of the PoI. The accuracy of a model M across the evaluation set is calculated173

as acc(M) = 1
|Z|
∑

z∈Z 1
[
answerM (z) = SN (p∗, cq)

]
where SN (p∗, cq) represents the final state174

value of the queried attribute cq for the PoI p∗ after all N statements have been processed. This value175

is computed by our puzzle generation algorithm.176

2.2 Tunable Parameters177

To systematically probe different facets of long-context reasoning, the CogniLoad generator employs178

three independent parameters. These parameters are designed to operationalize distinct cognitive179
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Table 2: Key parameters controlling the puzzle generation.

Symbol Name Definition Cognitive Load Affected

d Intrinsic
Difficulty

Controls cardinality of people set |P | =
max(d, 2), attribute categories |A| = d,
for each category c ∈ A the cardinal-
ity of value domains |Vc| = max(d +
1, 3), and the distribution of conditions
and updates per statement: k,m ∼
Uniform{1, ..., d}.

ICL: Element interactivity,
state space/rule complexity.

N Task Length Total number of sequential state transi-
tions in the puzzle.

GCL Proxy / Task Length:
Demands sustained engage-
ment with core elements.

ρ Needle-to-
Hay Ratio

Percentage of statements directly influ-
encing the PoI (needles) versus distrac-
tor statements (hay)

ECL: Distractor density
challenges filtering, selective
attention, and imposing
load from processing non-
essential elements.

load dimensions as defined by CLT [Paas et al., 2003], allowing the creation of puzzles with varying180

characteristics. Together, they define the load profile of a puzzle instance.181

Intrinsic Difficulty (d) for d ∈ {1, 3, 5, 7, 10} controls multiple facets of puzzle complexity (see182

Table 2), directly manipulating ICL which according to CLT hinges on element interactivity [Halford183

et al., 1998]. Higher d increases ICL via: (i) combinatorial growth in state space (≈ (d+ 1)d), (ii)184

increased interactivity between persons, attributes, and values, and (iii) increased rule complexity (up185

to d conditions/updates per statement).186

Task Length (N) for N ∈ {20, 50, 100, 250} sets the total number of sequential state-update187

statements. While directly determining sequence length, N serves as an operational proxy for188

conditions demanding GCL. Higher N , particularly with high d (intrinsic difficulty) and high189

ρ (relevance), compels deeper reasoning through more essential interacting elements [Sweller,190

2010]. Additionally, higher N also necessitates the maintenance of a coherent (stateful) problem191

representation over a longer term with the construction of an efficient schema for it [Ericsson and192

Kintsch, 1995].193

Needle-to-Hay Ratio (ρ) for ρ ∈ {5, ..., 95} sets the percentage of PoI-relevant (“needle”) versus194

distractor (“hay”) statements, directly manipulating ECL. ECL arises from processing non-essential195

elements [Chandler and Sweller, 1991]. Lower ρ increases ECL via higher distractor density which196

challenges filtering. Higher ρ reduces ECL by focusing resources on relevant information. Critically,197

CogniLoad’s “hay” statements are syntactically similar to “needles” and involve valid state updates198

for non-PoIs, imposing a more challenging ECL than easy to distinguish distractor text.199

3 Results200

We evaluated the performance of 14 LLMs on 100 random CogniLoad puzzles per (d,N, ρ) configu-201

ration resulting in 14’000 puzzle instances per LLM in total. We attempted to include every currently202

available Open-Weights LLM that is specifically trained for reasoning, but the VRAM limitations of203

our single-node inference environment (i.e. AMD MI250X accelerators) prevents us from evaluating204

the full DeepSeek-R1 model with 685B parameters.205

Figure 1 shows mean accuracy across models as each load dimension varies with trends corroborated206

by our regression analysis (Section 3.1).207

Intrinsic difficulty (d) Performance generally declines monotonically with d. For instance, even208

top models show a significant drop between d = 1 and d = 3, while degradation is less pronounced209
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Table 3: Per-model quadratic-ρ GLM estimates with Wald z statistic for p-values alongside derived
50% load-capacity thresholds (see Section 3.1.3). The value −− for NT50 indicates that no real root
exists in [0, 1]. “DS” abbreviates “DeepSeek-R1-Distill” in the model names. ∗∗∗p<0.001, ∗∗p<0.01,
∗p<0.05

Model β0 βd βN βρ βρ2 ECL50 NT50 ID50

DS-Llama-70B 7.83∗∗∗ −0.27∗∗∗ −3.10∗∗∗ −3.41∗∗∗ 3.80∗∗∗ 66.9 0.6 4.92
DS-Qwen-32B 4.58∗∗∗ −0.18∗∗∗ −1.88∗∗∗ −2.01∗∗∗ 2.24∗∗∗ 51.1 0.8 3.71
DS-Qwen-7B 1.47∗∗∗ −0.20∗∗∗ −0.93∗∗∗ −0.46 0.55 2.3 −− −1.71
DS-Qwen-1.5B −0.72∗∗∗ −0.16∗∗∗ −0.23∗∗∗ 0.72∗ −0.41 0.0 −− −5.41
Phi-4-reasoning-plus 5.61∗∗∗ −0.23∗∗∗ −1.91∗∗∗ −3.10∗∗∗ 2.40∗∗∗ 63.7 0.88 4.83
Phi-4-reasoning 3.50∗∗∗ −0.18∗∗∗ −1.24∗∗∗ −2.40∗∗∗ 1.95∗∗∗ 32.4 0.14 2.81
Phi-4-mini-reasoning 1.36∗∗∗ −0.21∗∗∗ −0.77∗∗∗ −1.71∗∗∗ 1.68∗∗∗ 0.6 −− −2.47
QwQ-32B 5.00∗∗∗ −0.18∗∗∗ −1.80∗∗∗ −3.52∗∗∗ 2.92∗∗∗ 49.2 0.93 3.6
EXAONE-Deep-32B 3.90∗∗∗ −0.25∗∗∗ −1.49∗∗∗ −3.31∗∗∗ 2.57∗∗∗ 11.6 −− 0.55
GLM-Z1-32B-0414 7.05∗∗∗ −0.32∗∗∗ −2.72∗∗∗ −3.01∗∗∗ 2.56∗∗∗ 46.5 0.14 3.65
Qwen3-32B 7.12∗∗∗ −0.29∗∗∗ −2.72∗∗∗ −3.21∗∗∗ 2.74∗∗∗ 53.7 0.94 4.08
Qwen3-30B-A3B 5.80∗∗∗ −0.29∗∗∗ −2.23∗∗∗ −3.01∗∗∗ 2.91∗∗∗ 36.8 0.99 3.03
Qwen3-8B 4.88∗∗∗ −0.27∗∗∗ −1.95∗∗∗ −2.99∗∗∗ 2.77∗∗∗ 23.7 −− 1.76
Qwen3-1.7B 0.57∗∗∗ −0.16∗∗∗ −0.46∗∗∗ −1.48∗∗∗ 1.19∗∗∗ 0.0 −− −4.5

beyond d = 7, suggesting diminishing marginal effects of this complexity type for many models. At210

d = 5, 10 of 14 models are wrong in more than 50% of the puzzles.211

Memory load (N ) Memory load exhibits the steepest performance decline, with a substantial drop212

observed for most models between N = 20 and N = 50. This underscores the role of task length as213

a proxy for germane load as a primary contributor to cognitive load.214

Extraneous load (ρ) Extraneous load often exhibits a U-shaped response, with performance minima215

typically around ρ = 25− 50%. However, the curve’s depth and recovery at high ρ vary significantly216

between models. Interestingly, DS-Llama-70B fully recovers and exceeds its initial performance217

(0.60→0.63) while Phi-4-reasoning-plus shows only a partial recovery (0.67→0.51).218

3.1 Load–sensitivity Regression219

To quantify model-specific sensitivities of the accuracy to load dimensions and derive interpretable220

capacity thresholds for each model, we employ a regression-based approach that allows us to isolate221

the impact of each type of cognitive load (see Table 3).222

3.1.1 Regression Model Specification223

We model the performance of LLMs using a binomial generalized linear model (GLM) with a logit224

link function:225

Pr
(
Y=1

)
= σ
(
β0 + βd d+ βN log10 N + βρ ρ+ βρ2 ρ2

)
,

where the binary outcome Y represents exact-match accuracy (Y = 1, when the model solves the226

puzzle correctly), σ(·) is the inverse logit function, and the coefficients βd, βN and βρ quantify227

sensitivity to intrinsic difficulty (ICL), task length (GCL), and distractor ratios (ECL), respectively.228

The inclusion of a quadratic term for ρ, with the coefficient βρ2 , is motivated by the characteristic229

U-shape observed in the third panel of Figure 1 and based on an improved Akaike Information230

Criterion (AIC) value for 14 out of the 15 fitted models when included (see Supplementary Material).231

Since N ranges up to 250, we apply log10 to keep it at a similar scale as the other parameters of the232

regression.233

3.1.2 Significance of Main Effects234

In all models, βd and βN are significant and highly negative, confirming performance degradation235

with increased intrinsic cognitive load and task length. The quadratic term for ρ is also significant236

(except for two models) confirming the U-shaped response for most models: models typically237

perform worst at intermediate relevance ratios and recover as ρ approaches either extreme. Two238

models (DS-Qwen-1.5B, DS-Qwen-7B) exhibit exhibit statistically insignificant coefficients for ρ239
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terms, likely reflecting their poor baseline performance rather than a genuine lack of association with240

the needle/hay ratio.241

3.1.3 Capacity Points at 50% Accuracy242

The GLM coefficients (Table 3) allow us to derive interpretable capacity thresholds. These represent243

the point at which a model’s accuracy is predicted to drop to 50% when varying a single load244

parameter, while holding other load parameters at their estimated mean values:245

ECL50 (Effective Context Length): Maximum number of statements a model can process while246

maintaining 50% accuracy. Higher values indicate superior context handling.247

NT50 (Needle-to-hay Threshold): Minimum proportion of relevant information required to maintain248

50% accuracy. Crucially, lower values indicate greater robustness to distractors. If the estimated249

NT50 is missing, then the model accuracy is not expected to cross the 50% threshold for any value250

0 ≤ ρ ≤ 1, under mean conditions for d and N .251

ID50 (Intrinsic Difficulty): It is the maximum intrinsic complexity (number of interacting entities/at-252

tributes) that a model can handle while maintaining 50% accuracy. Negative values indicate failure to253

reach 50% accuracy even at the lowest difficulty setting under mean conditions for N and ρ.254

Mathematically, these thresholds are derived by setting the logit in the GLM equation to zero (for255

Pr(y = 1) = 0.5) and solving for the parameter of interest, e.g.:256

ECL50 = 10−(β0+βdd̄+βρρ̄+βρ2 ρ̄
2)/βN ; ID50 = −(β0 + βN log10 N + βρρ̄+ βρ2 ρ̄2)/βd.

For NT50, we solve the quadratic equation β0 + βdd̄+ βN log10 N + βρρ+ βρ2ρ2 = 0 for ρ.257

3.1.4 Model Capacity258

The regression analysis and estimated capacity thresholds (Table 3) reveal clear variations among259

models that can be grouped into three classes:260

High-Capacity Models: DS-Llama-70B (ECL50=66.9, ID50=4.92) and Phi-4-reasoning-plus261

(ECL50=63.7, ID50=4.83) demonstrate exceptional context length tolerance and robust reasoning262

capabilities across all dimensions.263

Mid-Capacity Models: Models such as DS-Qwen-32B (ECL50=51.1), Qwen3-32B (ECL50=53.7),264

QwQ-32B (ECL50=49.2), and GLM-Z1-32B-0414 (ECL50=46.5) constitute a middle tier. Their265

ID50 values typically fall between 3.5 and 4.1, suggesting competence on problems of moderate266

complexity and length.267

Low-Capacity Models: Smaller models, particularly DS-Qwen-1.5B and Qwen3-1.7B, exhibit268

minimal effective context handling capacity (ECL50=0.0) and negative ID50 values. This indicates269

that they fail to achieve 50% accuracy even at baseline difficulty and mean context/distractor levels,270

deteriorating rapidly under any increasing load.271

3.1.5 Differential Sensitivity to Load Dimensions272

The estimated coefficients further reveal distinct sensitivity profiles:273

Sensitivity to context length (βN ): Universally negative and potent, with larger models often showing274

greater relative degradation from their higher baselines.275

Sensitivity to intrinsic difficulty (βd): Negative across models, but with a narrow range suggesting a276

more uniform effect.277

Sensitivity to information relevance (βρ and βρ2 ): Confirms the U-shaped response, but NT50 values278

reveal nuanced distractor robustness differences masked by aggregate scores (e.g., DS-Llama-70B vs.279

Qwen3-32B).280

4 Discussion281

CogniLoad, by operationalizing CLT, enables a multi-dimensional evaluation of LLM reasoning,282

revealing nuanced failure patterns obscured by single-dimension benchmarks. Our empirical results283
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(Section 3) offer several key insights: task length (N ) emerges as a dominant determinant, suggesting284

challenges in sustained, germane-like processing for long, intrinsically demanding tasks; models285

exhibit distinct sensitivities to intrinsic difficulty (d) versus extraneous load (ρ), with the latter286

surprisingly showing U-shaped performance curves, indicating particular difficulties with intermediate287

distractor densities, while performing better for lowest and highest needle-to-hay proportions; and288

estimated capacity thresholds provide concise “cognitive fingerprints” for diagnostic LLM evaluation.289

The limitations of our study are important to emphasize:290

Nuances of the CLT-LLM Analogy While CLT provides a powerful analogous framework, it is291

crucial to acknowledge that “cognitive load” in LLMs manifests as computational constraints (e.g.,292

attention saturation, representational bottlenecks) rather than biological working memory limitations.293

Our operationalization of N as a proxy for conditions demanding GCL, for example, is an abstraction.294

Future research should aim to bridge CLT concepts with direct, mechanistic measures of LLM295

computational processes to refine this analogy and deepen our understanding of artificial cognition.296

Scope of Reasoning and Generalizability CogniLoad currently focuses on sequential, deductive297

logic-grid puzzles. This controlled environment enables precise manipulation of load factors, but298

the extent to which these specific load sensitivities generalize to other reasoning paradigms (e.g.,299

abductive, inductive, mathematical, commonsense) remains an open question. Extending the CLT-300

grounded multi-dimensional evaluation to diverse reasoning domains is a promising next step.301

Beyond Accuracy and Main Effects The current evaluation relies on simple exact-match accuracy.302

Future iterations could incorporate richer metrics (e.g., step-wise reasoning fidelity, solution coher-303

ence, uncertainty of solutions) and systematically investigate interaction effects between d,N, ρ,304

which CogniLoad’s factorial design supports.305

Architectural Implications Pinpointing the specific decisions in LLM architecture and training306

regimes that result in our observed performance differential requires thorough analysis and experi-307

ments that exceed the scope of this paper. Besides the observed differences for particular LLMs we308

also notice patterns across model families (e.g., the strong recovery of all DeepSeek-R1-Zero models309

with increasing ρ vs the weaker recovery of the Qwen3 models). The emergence of reinforcement310

learning on verifiable rewards [Guo et al., 2025] presents a promising avenue to employ CogniLoad311

in the training process of LLMs, as the generated metadata of each experiment allows the precise312

verification of each reasoning step in light of the still scarce available training data of this type.313

Despite these considerations, by decomposing the “task difficulty” into principled, controllable314

dimensions derived from cognitive science, CogniLoad provides a more insightful perspective than315

single-score benchmarks. It allows a more differentiated understanding of LLM reasoning capabilities316

and limitations, paving the way for more targeted development of robust and generalizable AI systems.317

5 Conclusion318

We introduced CogniLoad, a novel synthetic benchmark grounded in Cognitive Load Theory, for319

multi-dimensional evaluation of LLM long-context reasoning. By independently controlling param-320

eters for intrinsic cognitive load (d), extraneous cognitive load (ρ), and task length (N as a proxy321

for germane load demands), CogniLoad offers unprecedented diagnostic precision. Our evaluations322

revealed task length as a dominant performance constraint and uncovered unique “cognitive finger-323

prints” of LLM sensitivities to different load types, providing actionable insights beyond single-score324

benchmarks. CogniLoad offers a reproducible, scalable, and theoretically-grounded tool to systemati-325

cally dissect LLM reasoning limitations and guide the development of more capable and robust AI326

systems. While human and artificial cognition are mechanistically distinct, applying frameworks like327

CLT to AI evaluation can provide valuable perspectives for understanding and characterizing their328

operational differences and capabilities.329
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NeurIPS Paper Checklist417

1. Claims418

Question: Do the main claims made in the abstract and introduction accurately reflect the419

paper’s contributions and scope?420

Answer: [Yes]421

Justification: The claims in the abstract match exactly what is in the paper: a synthetic422

benchmark evaluating 14 open source LLMs according to the 3 parameters introduced in423

the abstract and discussed throughout the paper.424

Guidelines:425

• The answer NA means that the abstract and introduction do not include the claims426

made in the paper.427

• The abstract and/or introduction should clearly state the claims made, including the428

contributions made in the paper and important assumptions and limitations. A No or429

NA answer to this question will not be perceived well by the reviewers.430

• The claims made should match theoretical and experimental results, and reflect how431

much the results can be expected to generalize to other settings.432

• It is fine to include aspirational goals as motivation as long as it is clear that these goals433

are not attained by the paper.434

2. Limitations435

Question: Does the paper discuss the limitations of the work performed by the authors?436

Answer: [Yes]437

Justification: The limitations are discussed in the Discussion section of the paper.438

Guidelines:439

• The answer NA means that the paper has no limitation while the answer No means that440

the paper has limitations, but those are not discussed in the paper.441

• The authors are encouraged to create a separate "Limitations" section in their paper.442

• The paper should point out any strong assumptions and how robust the results are to443

violations of these assumptions (e.g., independence assumptions, noiseless settings,444

model well-specification, asymptotic approximations only holding locally). The authors445

should reflect on how these assumptions might be violated in practice and what the446

implications would be.447

• The authors should reflect on the scope of the claims made, e.g., if the approach was448

only tested on a few datasets or with a few runs. In general, empirical results often449

depend on implicit assumptions, which should be articulated.450

• The authors should reflect on the factors that influence the performance of the approach.451

For example, a facial recognition algorithm may perform poorly when image resolution452

is low or images are taken in low lighting. Or a speech-to-text system might not be453

used reliably to provide closed captions for online lectures because it fails to handle454

technical jargon.455

• The authors should discuss the computational efficiency of the proposed algorithms456

and how they scale with dataset size.457

• If applicable, the authors should discuss possible limitations of their approach to458

address problems of privacy and fairness.459

• While the authors might fear that complete honesty about limitations might be used by460

reviewers as grounds for rejection, a worse outcome might be that reviewers discover461

limitations that aren’t acknowledged in the paper. The authors should use their best462

judgment and recognize that individual actions in favor of transparency play an impor-463

tant role in developing norms that preserve the integrity of the community. Reviewers464

will be specifically instructed to not penalize honesty concerning limitations.465

3. Theory assumptions and proofs466

Question: For each theoretical result, does the paper provide the full set of assumptions and467

a complete (and correct) proof?468
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Answer: [NA]469

Justification: We don’t present any theorems or proofs, it is a benchmark paper. The formulas470

in the paper just rigorously describe the generation algorithm of the dataset.471

Guidelines:472

• The answer NA means that the paper does not include theoretical results.473

• All the theorems, formulas, and proofs in the paper should be numbered and cross-474

referenced.475

• All assumptions should be clearly stated or referenced in the statement of any theorems.476

• The proofs can either appear in the main paper or the supplemental material, but if477

they appear in the supplemental material, the authors are encouraged to provide a short478

proof sketch to provide intuition.479

• Inversely, any informal proof provided in the core of the paper should be complemented480

by formal proofs provided in appendix or supplemental material.481

• Theorems and Lemmas that the proof relies upon should be properly referenced.482

4. Experimental result reproducibility483

Question: Does the paper fully disclose all the information needed to reproduce the main ex-484

perimental results of the paper to the extent that it affects the main claims and/or conclusions485

of the paper (regardless of whether the code and data are provided or not)?486

Answer: [Yes]487

Justification: A dedicated section of the paper rigorously explains and formalizes all the488

information needed to reproduce the generation algorithm of the dataset. The paper also489

fully specifies the regression and the definition of the capacity points at 50% accuracy for490

the results presented in the results section.491

Guidelines:492

• The answer NA means that the paper does not include experiments.493

• If the paper includes experiments, a No answer to this question will not be perceived494

well by the reviewers: Making the paper reproducible is important, regardless of495

whether the code and data are provided or not.496

• If the contribution is a dataset and/or model, the authors should describe the steps taken497

to make their results reproducible or verifiable.498

• Depending on the contribution, reproducibility can be accomplished in various ways.499

For example, if the contribution is a novel architecture, describing the architecture fully500

might suffice, or if the contribution is a specific model and empirical evaluation, it may501

be necessary to either make it possible for others to replicate the model with the same502

dataset, or provide access to the model. In general. releasing code and data is often503

one good way to accomplish this, but reproducibility can also be provided via detailed504

instructions for how to replicate the results, access to a hosted model (e.g., in the case505

of a large language model), releasing of a model checkpoint, or other means that are506

appropriate to the research performed.507

• While NeurIPS does not require releasing code, the conference does require all submis-508

sions to provide some reasonable avenue for reproducibility, which may depend on the509

nature of the contribution. For example510

(a) If the contribution is primarily a new algorithm, the paper should make it clear how511

to reproduce that algorithm.512

(b) If the contribution is primarily a new model architecture, the paper should describe513

the architecture clearly and fully.514

(c) If the contribution is a new model (e.g., a large language model), then there should515

either be a way to access this model for reproducing the results or a way to reproduce516

the model (e.g., with an open-source dataset or instructions for how to construct517

the dataset).518

(d) We recognize that reproducibility may be tricky in some cases, in which case519

authors are welcome to describe the particular way they provide for reproducibility.520

In the case of closed-source models, it may be that access to the model is limited in521

some way (e.g., to registered users), but it should be possible for other researchers522

to have some path to reproducing or verifying the results.523
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5. Open access to data and code524

Question: Does the paper provide open access to the data and code, with sufficient instruc-525

tions to faithfully reproduce the main experimental results, as described in supplemental526

material?527

Answer: [Yes]528

Justification: We provide links to the public Github repo containing the code and the529

publically accessible dataset hosted on huggingface in the required Croissant format.530

Guidelines:531

• The answer NA means that paper does not include experiments requiring code.532

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/533

public/guides/CodeSubmissionPolicy) for more details.534

• While we encourage the release of code and data, we understand that this might not be535

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not536

including code, unless this is central to the contribution (e.g., for a new open-source537

benchmark).538

• The instructions should contain the exact command and environment needed to run to539

reproduce the results. See the NeurIPS code and data submission guidelines (https:540

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.541

• The authors should provide instructions on data access and preparation, including how542

to access the raw data, preprocessed data, intermediate data, and generated data, etc.543

• The authors should provide scripts to reproduce all experimental results for the new544

proposed method and baselines. If only a subset of experiments are reproducible, they545

should state which ones are omitted from the script and why.546

• At submission time, to preserve anonymity, the authors should release anonymized547

versions (if applicable).548

• Providing as much information as possible in supplemental material (appended to the549

paper) is recommended, but including URLs to data and code is permitted.550

6. Experimental setting/details551

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-552

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the553

results?554

Answer: [Yes]555

Justification: The parameters of the algorithm used to generate the benchmark dataset are all556

fully specified in the paper to allow the fully reproducible generation of the dataset and the557

results.558

Guidelines:559

• The answer NA means that the paper does not include experiments.560

• The experimental setting should be presented in the core of the paper to a level of detail561

that is necessary to appreciate the results and make sense of them.562

• The full details can be provided either with the code, in appendix, or as supplemental563

material.564

7. Experiment statistical significance565

Question: Does the paper report error bars suitably and correctly defined or other appropriate566

information about the statistical significance of the experiments?567

Answer: [Yes]568

Justification: We provide statistical measures of significance for all parameters of the569

quantitative analysis (i.e., the GLM regression) of the results. Since error bars would impede570

the readability of the main chart (Figure 1) we do not plot them in the main section the paper571

but we include a version with error bars in the appendix.572

Guidelines:573

• The answer NA means that the paper does not include experiments.574
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-575

dence intervals, or statistical significance tests, at least for the experiments that support576

the main claims of the paper.577

• The factors of variability that the error bars are capturing should be clearly stated (for578

example, train/test split, initialization, random drawing of some parameter, or overall579

run with given experimental conditions).580

• The method for calculating the error bars should be explained (closed form formula,581

call to a library function, bootstrap, etc.)582

• The assumptions made should be given (e.g., Normally distributed errors).583

• It should be clear whether the error bar is the standard deviation or the standard error584

of the mean.585

• It is OK to report 1-sigma error bars, but one should state it. The authors should586

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis587

of Normality of errors is not verified.588

• For asymmetric distributions, the authors should be careful not to show in tables or589

figures symmetric error bars that would yield results that are out of range (e.g. negative590

error rates).591

• If error bars are reported in tables or plots, The authors should explain in the text how592

they were calculated and reference the corresponding figures or tables in the text.593

8. Experiments compute resources594

Question: For each experiment, does the paper provide sufficient information on the com-595

puter resources (type of compute workers, memory, time of execution) needed to reproduce596

the experiments?597

Answer: [No]598

Justification: Reporting computational resources is not relevant to our work since we do not599

introduce a new machine learning method. The generation of the benchmark does not require600

resources beyond a single CPU as it just deterministically produces relatively short texts.601

Further, the inference speed of each LLM we evaluate in the experiments depends highly602

on the LLM architecture and the specific inference environment. Any given reasonable603

computational resources could be used to evaluate the LLMs.604

Guidelines:605

• The answer NA means that the paper does not include experiments.606

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,607

or cloud provider, including relevant memory and storage.608

• The paper should provide the amount of compute required for each of the individual609

experimental runs as well as estimate the total compute.610

• The paper should disclose whether the full research project required more compute611

than the experiments reported in the paper (e.g., preliminary or failed experiments that612

didn’t make it into the paper).613

9. Code of ethics614

Question: Does the research conducted in the paper conform, in every respect, with the615

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?616

Answer: [Yes]617

Justification: Our work does not involve humans participants and there are no data related618

concerns as the data is synthetically generated.619

Guidelines:620

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.621

• If the authors answer No, they should explain the special circumstances that require a622

deviation from the Code of Ethics.623

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-624

eration due to laws or regulations in their jurisdiction).625

10. Broader impacts626
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Question: Does the paper discuss both potential positive societal impacts and negative627

societal impacts of the work performed?628

Answer: [NA]629

Justification: Since we just introduce a benchmark strictly for LLM evaluation our work630

does not have a societal impact.631

Guidelines:632

• The answer NA means that there is no societal impact of the work performed.633

• If the authors answer NA or No, they should explain why their work has no societal634

impact or why the paper does not address societal impact.635

• Examples of negative societal impacts include potential malicious or unintended uses636

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations637

(e.g., deployment of technologies that could make decisions that unfairly impact specific638

groups), privacy considerations, and security considerations.639

• The conference expects that many papers will be foundational research and not tied640

to particular applications, let alone deployments. However, if there is a direct path to641

any negative applications, the authors should point it out. For example, it is legitimate642

to point out that an improvement in the quality of generative models could be used to643

generate deepfakes for disinformation. On the other hand, it is not needed to point out644

that a generic algorithm for optimizing neural networks could enable people to train645

models that generate Deepfakes faster.646

• The authors should consider possible harms that could arise when the technology is647

being used as intended and functioning correctly, harms that could arise when the648

technology is being used as intended but gives incorrect results, and harms following649

from (intentional or unintentional) misuse of the technology.650

• If there are negative societal impacts, the authors could also discuss possible mitigation651

strategies (e.g., gated release of models, providing defenses in addition to attacks,652

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from653

feedback over time, improving the efficiency and accessibility of ML).654

11. Safeguards655

Question: Does the paper describe safeguards that have been put in place for responsible656

release of data or models that have a high risk for misuse (e.g., pretrained language models,657

image generators, or scraped datasets)?658

Answer: [NA]659

Justification: Since we generate a purely synthetic dataset there is no risk for misuse and no660

data has been scraped from the internet.661

Guidelines:662

• The answer NA means that the paper poses no such risks.663

• Released models that have a high risk for misuse or dual-use should be released with664

necessary safeguards to allow for controlled use of the model, for example by requiring665

that users adhere to usage guidelines or restrictions to access the model or implementing666

safety filters.667

• Datasets that have been scraped from the Internet could pose safety risks. The authors668

should describe how they avoided releasing unsafe images.669

• We recognize that providing effective safeguards is challenging, and many papers do670

not require this, but we encourage authors to take this into account and make a best671

faith effort.672

12. Licenses for existing assets673

Question: Are the creators or original owners of assets (e.g., code, data, models), used in674

the paper, properly credited and are the license and terms of use explicitly mentioned and675

properly respected?676

Answer: [Yes]677

Justification: There are no concerns about licenses since all the code and data has been678

produced originally by the authors.679
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Guidelines:680

• The answer NA means that the paper does not use existing assets.681

• The authors should cite the original paper that produced the code package or dataset.682

• The authors should state which version of the asset is used and, if possible, include a683

URL.684

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.685

• For scraped data from a particular source (e.g., website), the copyright and terms of686

service of that source should be provided.687

• If assets are released, the license, copyright information, and terms of use in the688

package should be provided. For popular datasets, paperswithcode.com/datasets689

has curated licenses for some datasets. Their licensing guide can help determine the690

license of a dataset.691

• For existing datasets that are re-packaged, both the original license and the license of692

the derived asset (if it has changed) should be provided.693

• If this information is not available online, the authors are encouraged to reach out to694

the asset’s creators.695

13. New assets696

Question: Are new assets introduced in the paper well documented and is the documentation697

provided alongside the assets?698

Answer: [Yes]699

Justification: The algorithm of the released code on GitHub is explained in the paper and700

the evaluation dataset is provided and documented appropriately on Huggingface.701

Guidelines:702

• The answer NA means that the paper does not release new assets.703

• Researchers should communicate the details of the dataset/code/model as part of their704

submissions via structured templates. This includes details about training, license,705

limitations, etc.706

• The paper should discuss whether and how consent was obtained from people whose707

asset is used.708

• At submission time, remember to anonymize your assets (if applicable). You can either709

create an anonymized URL or include an anonymized zip file.710

14. Crowdsourcing and research with human subjects711

Question: For crowdsourcing experiments and research with human subjects, does the paper712

include the full text of instructions given to participants and screenshots, if applicable, as713

well as details about compensation (if any)?714

Answer: [NA]715

Justification: The paper does not involve crowdsourcing nor research with human subjects.716

Guidelines:717

• The answer NA means that the paper does not involve crowdsourcing nor research with718

human subjects.719

• Including this information in the supplemental material is fine, but if the main contribu-720

tion of the paper involves human subjects, then as much detail as possible should be721

included in the main paper.722

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,723

or other labor should be paid at least the minimum wage in the country of the data724

collector.725

15. Institutional review board (IRB) approvals or equivalent for research with human726

subjects727

Question: Does the paper describe potential risks incurred by study participants, whether728

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)729

approvals (or an equivalent approval/review based on the requirements of your country or730

institution) were obtained?731
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Answer: [NA]732

Justification: The paper does not involve crowdsourcing not research with human subjects.733

Guidelines:734

• The answer NA means that the paper does not involve crowdsourcing nor research with735

human subjects.736

• Depending on the country in which research is conducted, IRB approval (or equivalent)737

may be required for any human subjects research. If you obtained IRB approval, you738

should clearly state this in the paper.739

• We recognize that the procedures for this may vary significantly between institutions740

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the741

guidelines for their institution.742

• For initial submissions, do not include any information that would break anonymity (if743

applicable), such as the institution conducting the review.744

16. Declaration of LLM usage745

Question: Does the paper describe the usage of LLMs if it is an important, original, or746

non-standard component of the core methods in this research? Note that if the LLM is used747

only for writing, editing, or formatting purposes and does not impact the core methodology,748

scientific rigorousness, or originality of the research, declaration is not required.749

Answer: [NA]750

Justification: While we evaluate LLMs as part of the benchmark it is not an important,751

original, or non-standard component of the core methods in this research.752

Guidelines:753

• The answer NA means that the core method development in this research does not754

involve LLMs as any important, original, or non-standard components.755

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)756

for what should or should not be described.757
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