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Abstract

Recent advances in diffusion models have enabled high-quality synthesis of spe-
cific subjects, such as identities or objects. This capability, while unlocking new
possibilities in content creation, also introduces significant privacy risks, as person-
alization techniques can be misused by malicious users to generate unauthorized
content. Although several studies have attempted to counter this by generating
adversarially perturbed samples designed to disrupt personalization, they rely on
unrealistic assumptions and become ineffective in the presence of even a few clean
images or under simple image transformations. To address these challenges, we
shift the protection target from the images to the diffusion model itself to hinder
the personalization of specific subjects, through our novel framework called Anti-
Personalized Diffusion Models (APDM). We first provide a theoretical analysis
demonstrating that a naive approach of existing loss functions to diffusion models
is inherently incapable of ensuring convergence for robust anti-personalization.
Motivated by this finding, we introduce Direct Protective Optimization (DPO), a
novel loss function that effectively disrupts subject personalization in the target
model without compromising generative quality. Moreover, we propose a new
dual-path optimization strategy, coined Learning to Protect (L2P). By alternating
between personalization and protection paths, L2P simulates future personaliza-
tion trajectories and adaptively reinforces protection at each step. Experimental
results demonstrate that our framework outperforms existing methods, achieving
state-of-the-art performance in preventing unauthorized personalization. The code
is available at https://github.com/KU-VGI/APDM.

1 Introduction

Diffusion models (DM) [33, 11] have become prominent generative models across various domains
and tasks, including image, video, and audio synthesis [30, 8, 21], image-to-image translation [27],
and image editing [9]. Among these, personalization techniques [4, 31, 15, 19]—enabling the
generation of images depicting specific subjects (e.g. individuals, objects) in varied contexts, such as

“an image of my dog on the moon”—have received significant attention. Several approaches, such as
DreamBooth [31] and Custom Diffusion [15], have demonstrated highly effective capabilities for
personalized image generation. However, such personalization also presents substantial privacy risks,
as malicious users could exploit it to create unauthorized images of specific individuals, for instance,
to generate and distribute fake news, thereby raising significant social and ethical concerns [32].
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Figure 1: Motivation Figure. Existing protection approaches face critical limitations: (a) impracti-
cality of applying data-poisoning to all images, (b) vulnerability to easy circumvention of protection
methods, (c) high entry barriers for non-expert users, and (d) incompatibility with service providers
who must comply with privacy regulations.

To prevent misuse of such personalization capability from a user’s request, several protection ap-
proaches [18, 34, 38, 37] based on data-poisoning have been proposed. They directly add impercepti-
ble noise perturbations to the images of the specific subject using the Projected Gradient Descent
(PGD) [25]. When a malicious user attempts to personalize using these perturbed images, the added
noise disrupts the stability of the training process, resulting in ineffective personalization convergence.

However, existing approaches suffer from several critical limitations in real-world scenarios (Figure 1).
Most importantly, their efficacy often hinges on the impractical assumption that users can apply
poisoning comprehensively across their personal image collections—including those already shared,
newly created, or even unintentionally captured—which is a practically unachievable task. This
limitation enables malicious users to easily bypass protection using unprotected images. Furthermore,
even if the images are perturbed, attackers can still circumvent defense by applying transformations
that weaken the perturbation effects [34, 23, 12]. On the other hand, data-poisoning is predominantly
a user-centric defense, placing the implementation burden on individuals who are often non-experts,
making widespread adoption unrealistic. Furthermore, this user-level design of existing approaches
conflicts with privacy regulations-such as the GDPR [35]-that assign service providers the obligation
to ensure anti-personalization upon user requests. As a result, such methods are inherently unsuitable
for provider-side deployment (see Appendix F for more details).
Taken together, these issues highlight the need to move beyond user-side defenses toward model-
level solutions that not only enable service providers to enforce anti-personalization directly within
their systems but also enhance robustness and practicality in real-world deployments. To address
this, we shift our focus from the data samples to the DMs themselves. In this paper, we propose
Anti-Personalized Diffusion Model (APDM), a novel framework designed to directly remove per-
sonalization capabilities for specific subjects within pre-trained DMs, without data-poisoning. The
primary goals of APDM are twofold: (i) preventing the unauthorized personalization attempts, result-
ing in failed or irrelevant generations, and (ii) preserving the generation performance and its ability
to personalize other, non-targeted subjects. To the best of our knowledge, APDM is the first approach
to directly update the model parameters for protection, inherently overcoming data dependency.
However, simply redirecting the protection effort to the model parameters does not guarantee success
if we naïvely adopt strategies from data-centric methods. Firstly, we theoretically prove that directly
applying loss—originally designed for creating adversarial perturbations on images—to the model
parameters fails to converge. To this end, we introduce a novel loss function, Direct Protective
Optimization (DPO), disrupting the personalization process. Moreover, simply applying a protection
loss uniformly is insufficient, since personalization involves iterative updates to model parameters.
Therefore, being aware of the personalization trajectory is essential for robust protection. For this
reason, we propose Learning to Protect (L2P), a dual-path optimization strategy. L2P alternates
between a personalization path, simulating potential future personalized model states, and a protection
path, which leverages these intermediate states to apply adaptive, trajectory-aware protective updates.
This dynamic approach allows the model to anticipate and counteract personalization attempts,
ensuring robust DM protection in across various scenarios.
Our contributions can be summarized as follows:

• For the first time, we propose a novel framework, called Anti-Personalized Diffusion Model
(APDM), for robust anti-personalization in DMs by directly updating model parameters, un-
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like existing data-centric methods. This approach fundamentally overcomes the impractical
assumptions and data dependency issues of prior works.

• We theoretically prove that a naive application of existing image perturbation losses directly
to model parameters fails to converge. To address this, we propose a novel objective, Direct
Protective Optimization (DPO) loss. DPO guides the model to remove the personalization
capability of a specific subject while preserving generation performance.

• To effectively counteract the iterative and adaptive process of personalization, we introduce
Learning to Protect (L2P), a dual-path optimization strategy that anticipates personalization
trajectories and reinforces protection accordingly, enabling robust defense.

• We empirically demonstrate that APDM can safeguard against personalization in real-world
scenarios, achieving state-of-the-art performance across various personalization subjects.

2 Related Work
Personalized Text-to-Image Diffusion Models. The advancement of diffusion-based image synthe-
sis, like Stable Diffusion (SD) [30], has enabled not only high-quality image generation but also the
creation that reflect desired contexts from the text. This advancement has accelerated the widespread
application of Text-to-Image (T2I) DMs [30], one of which is personalization, such as generating
images containing specific objects under the various situations (e.g. a particular dog or person on
the moon). Consequently, research on personalized models has emerged. The most widely used
method is DreamBooth [31], which fine-tunes a pre-trained SD using a small set of images depicting
a specific concept (e.g. a particular person). This allows users to generate desired images containing
the target object. Texture Inversion [4] achieves this by searching for an optimal text embedding that
can represent the target object based on pseudo-words. Custom Diffusion [15] optimizes the key and
value projection matrices in the cross-attention layers of the pre-trained SD, offering more efficient
and robust personalization performance. However, these methods are a double-edged sword, offering
powerful personalization but also posing risks, such as misuse in crimes or unintended applications.
Protection against Unauthorized Personalization. To prevent unauthorized usage, many pro-
tection methods have been developed based on adversarial attacks [7, 2, 25]. AdvDM [18] was
the first to extend classification-based adversarial attack methods to DMs, generating adversarial
samples for protecting personalization. Furthermore, Anti-DreamBooth [34] proposed protection
against more challenging fine-tuned DMs (e.g. DreamBooth). They used a fine-tuned surrogate
model as guidance to obtain optimal perturbations for adversarial images. SimAC [38] improved
this optimization process to better suit DMs, while CAAT [39] focused on reducing time costs by
updating cross-attention blocks. MetaCloak [23] and PID [17] have also been conducted to counter
text variation or image transformation techniques (e.g. filtering). The most recent work, PAP [37],
tries to predict potential prompt variations using Laplace approximation. However, existing works
have primarily focused on how to effectively add perturbations to images for protection. In contrast, as
we mentioned above, we apply protection directly at the model level, reflecting real-world demands.

3 Preliminaries
3.1 Text-to-Image Diffusion Models
T2I DMs [30], a popular variant of DMs [11, 33] generate an image x̂0 corresponding to a given text
prompt embedding c. T2I DMs operate via forward and reverse processes. In the forward process,
noise ϵ ∼ N (0, I) is added to input image x0 to produce noisy image xt at a timestep t ∈ [0, T ]:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (1)

where ᾱt = Πt
i=1αi is computed from noise schedule {αt}Tt=0. In the reverse process, DM, parame-

terized by θ, aims to denoise xt. DM is trained to predict the noise residuals added to xt:

Lsimple = Ex0,t,c,ϵ∼N (0,I)∥ϵθ(xt, t, c)− ϵ∥22. (2)

3.2 Personalized Diffusion Models

To generate images that include a specific subject, several works personalize pre-trained T2I DMs
[31, 15]. Given a small image set x0 ∈ X of the subject and a text embedding cper with a unique
identifier, e.g. “a photo of [V*] person”, they modify the loss function in Eq.(2) as follows:

Lper
simple = Ex0,t,cper,ϵ∼N (0,I)∥ϵθ(xt, t, c

per)− ϵ∥22, (3)
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where xt is a noisy image from Eq. (1). However, directly applying this modified loss can cause
language drift, where the personalized DM generates images related to target subject, even without
unique identifier. To mitigate this, DreamBooth [31] introduces a prior preservation loss function that
leverages the pre-trained DM. This encourages DM, using a class-specific text embedding cpr (e.g.

“a photo of person”), to retain its knowledge of the general class associated with the specific subject:
Lppl = Expr

0 ,t,cpr,ϵ∼N (0,I)∥ϵθ(x
pr
t , t, cpr)− ϵ∥22, (4)

where xpr
0 is a generated sample from the pre-trained T2I DM with the text embedding cpr, and xpr

t
is the noisy version of xpr

0 at timestep t. Alternatively, Custom Diffusion [15] utilizes images from
training dataset instead of generated images for xpr. The final objective for personalization becomes:

Lper = Lper
simple + Lppl. (5)

4 Method

4.1 Problem Formulation

Unlike prior approaches that perturb images, we directly update the parameters θ of the pre-trained
DM using only a small image set x0 ∈ X . Our goal is to transform θ into a safeguarded model θ̂
that inherently resists personalization of the subject appearing in these images. This process can be
viewed as optimizing the model parameters with respect to a protection objective:

θ̂ = argmin
θ
Lprotect, (6)

where Lprotect is a loss function to prevent personalization, which will be discussed in Section 4.3.1.
Subsequently, if an adversary attempts to personalize a subject in X with this safeguarded model θ̂,
the resulting personalized model θ̂per is obtained as follows:

θ̂per = argmin
θ̂
Lper. (7)

Our approach has two main objectives. For protection, the re-personalized model θ̂per should yield
low-quality images or images of subjects perceptually distinct from those in X . For stability, the
protected model θ̂ should be able to generate high-quality images and effectively personalize for the
other subjects, comparable to those produced by the pre-trained DM θ.

4.2 Analysis of Naïve Approach

A naive yet intuitive way to protect the model is to extend existing data-poisoning approaches [18,
34, 38, 37] to the model level. Specifically, their noise update process that maximizes Lper

simple using
PGD [25] can be naturally applied at the model level. In addition, the model’s generative performance
can be preserved by incorporating Lppl, as done in DreamBooth [31]. The overall objective for this
naïve approach can be expressed as follows:

Ladv = −Lper
simple + Lppl. (8)

To ensure effective protection using Ladv, the optimization process must converge. We analyze the
necessary conditions for convergence by examining the gradients of the loss with respect to θ. This
leads to the following Proposition 1 (proof in Appendix A.1).
Proposition 1. A necessary condition for Ladv to converge to a local minimum with respect to model
parameters θ is that the gradients of its constituent terms,∇θLper

simple and∇θLppl, must point in the
same direction.

To further understand how these gradients influence each other during optimization, we analyze their
interaction through the first-order Taylor approximation and derive the following relationships.

(∇θLper
simple(θ))

⊤ · (∇θLppl(θ))) < ∥∇θLppl(θ))∥2, (9)

(∇θLper
simple(θ))

⊤ · (∇θLppl(θ))) < ∥∇θLper
simple(θ)∥

2. (10)

Based on the Proposition 1, we can restrict the left terms in Eq. (9) and (10), as |∇θLper
simple(θ)| ·

|∇θLppl(θ)|. Using these results, we can rewrite the Eq. (9) and (10) as:

|∇θLper
simple(θ)| < |∇θLppl(θ))|, (11)

|∇θLppl(θ)| < |∇θLper
simple(θ)|. (12)
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Figure 2: Overview. To prevent personalization in the parameter level, we propose Anti-Personalized
Diffusion Model (APDM). (a) APDM first generates a paired image for each clean input image x0.
(b) APDM consists of two components - (i) Learning to Protect, a novel optimization algorithm
that makes the protection procedure aware of personalization trajectories, and (ii) Direct Protective
Optimization loss, designed to disrupt personalization while preserving the generation capabilities.

By combining Proposition 1 with the inequalities above, we observe that the required gradient align-
ment for convergence cannot hold, which we formalize in the following theorem (see Appendix A.2).
Theorem 1. If the objective is to simultaneously reduce both −Lper

simple and Lppl, the necessary
condition for convergence outlined in Proposition 1 leads to the contradictory requirements presented
in Eq.(11) and (12). Therefore, Ladv composed of such conflicting terms generally fails to converge
to a point that effectively optimizes both objectives.

Therefore, a new loss function is required to resolve this conflict and ensure that anti-personalization
updates stay consistent with the denoising process, maintaining both generation quality and protection.

4.3 Anti-Personalized Diffusion Models

To achieve the dual goals outlined in 4.1, we propose a novel framework, Anti-Personalized Diffusion
Models (APDM). APDM introduces a novel loss function, called Direct Protective Optimization
(DPO), which aims to prevent personalization in DMs while maintaining their original generative
performance (Section 4.3.1). DPO effectively mitigates the model collapse issue discussed in
Section 4.2. Furthermore, we propose a novel dual-path optimization scheme, Learning to Protect
(L2P), which considers the trajectory of personalization during training to apply the proposed loss
function more effectively (Section 4.3.2). The overview of APDM is presented in Figure 2.

4.3.1 Direct Protective Optimization
Instead of Ladv , which degrades the model’s distribution due to convergence failure (Section 4.2), we
directly guide the model on which information should be learned and which should be suppressed.
Inspired by Direct Preference Optimization [29], given a pair of images (x+

0 , x
−
0 ), we designate x+

0 as
a positive sample to be encouraged during the protection procedure and x−

0 as a negative sample to be
discouraged, i.e. an image containing a specific subject to be protected (x0 ∈ X ). By incorporating
the Bradley-Terry model, the probability of preferring x+

0 over x−
0 can be expressed as:

p(x+
0 > x−

0 ) = σ(r(x+
0 )− r(x−

0 )), (13)

where σ(·) denotes the sigmoid function and r(·) represents the reward function. Building upon
the formulation of Diffusion-DPO [36] (see Appendix A.3 for detailed derivation), we define a new
Direct Protective Optimization (DPO) as follows:

r+ = ∥ϵθ(x+
t , t, c)− ϵ∥22 − ∥ϵϕ(x+

t , t, c)− ϵ∥22,
r− = ∥ϵθ(x−

t , t, c)− ϵ∥22 − ∥ϵϕ(x−
t , t, c)− ϵ∥22,

LDPO = −Ex+
0 ,x−

0 ,c,t,ϵ∼N(0,I) log σ(−β(r
+ − r−)),

(14)

where r+ and r− denote the positive and negative rewards for preferred and non-preferred direction,
respectively, ϕ is a pre-trained DM, and β is a hyper-parameter that controls the extent to which
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Algorithm 1 Learning to Protect (L2P)
Input: pre-trained model θ, loss function for personalization Lper, loss function for protection
Lprotect, the number of personalization loops Nper, the number of protection loops Nprotect, learning
rate in for personalization γper, learning rate in protection γprotect.
Output: safeguarded model θ̂.
Procedure:

1: j ← 1, θj ← θ
2: for j to Nprotect do ▷ Protection Path
3: i← 1, θ′i ← θj .copy(), g ← ∅
4: for i to Nper do ▷ Personalization Path
5: θ′i+1 ← θ′i − γper∇θ′

i
Lper ▷ Eq. (17)

6: g.append(∇θ′
i+1
Lprotect)

7: end for
8: ∇protect ← g.sum() ▷ Eq. (19)
9: θj+1 ← θj − γprotect∇protect ▷ Eq. (20)

10: end for
11: return θ̂ ← θNprotect

θ can diverge from ϕ. In our DPO, we prepare x+
0 by synthesizing images from pre-trained T2I

DMs ϕ using a generic prompt cpr, and they are paired one-to-one with the negative samples X .
This approach naturally encourages the generation of generic (positive) images while effectively
suppressing the synthesis of negative images depicting the specific subject.

Finally, combining the proposed loss term with the preservation loss (Lppl), the final objective is:
Lprotect = LDPO + Lppl. (15)

4.3.2 Learning to Protect

Since the personalization of DMs involves iterative updates to model parameters, effective protection
should consider the evolving personalized states at different states [16, 5]. Therefore, instead of
simply applying our Lprotect uniformly to the model, we simulate the future personalization path
in advance, allowing the model to anticipate upcoming parameter changes during personalization.
To this end, we introduce a novel dual-path optimization algorithm, Learning to Protect (L2P).
L2P integrates personalization into the protection loop, enabling the model to learn from simulated
personalization behaviors and adjust its parameters for adaptive and robust protection.

L2P involves two optimization paths: personalization and protection. The personalization path
updates the model from the current protection state θj to intermediate state θ′i, using Eq. (5):

θ′i = θj , (16)

θ′i+1 = θ′i − γper∇θ′
i
Lper, (17)

where γper is the learning rate for personalization, and θ′i+1 is the intermediate state at step i + 1
during personalization. Using Eq. (17), we can simulate the future personalization trajectory via
updating the model θ′i iteratively, in the middle of protecting the DM.

For the protection path, we leverage these intermediate states acquired in the personalization path.
Specifically, we compute the gradient∇i of the model θ′i with respect to Lprotect, at each state i in
the personalization path as follows:

∇i = ∇θ′
i
Lprotect. (18)

We then accumulate∇i during the whole personalization path (total of Nper times) to compose a set
of gradients, g = {∇i}

Nper

i=1 . Using this set of gradients g, we can estimate the direction of protection
from the summation of these accumulated gradients as follows:

∇protect =

Nper∑
i=1

∇i. (19)

Finally, we update the intermediate protection model θj with∇protect to obtain θj+1:

θj+1 = θj − γprotect∇protect, (20)
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Table 1: Quantitative Comparison on Protection. We measured the protection performance via
DINO score [3] and BRISQUE [26]. We examined the baseline on different number of clean images.
If the number is 0, there are only perturbed images produced by data-poisoning approaches. The
experiments were mainly conducted on two different subjects: person and dog.

Methods # Clean
Images

DINO (↓) BRISQUE (↑)
“person” “dog” Avg. “person” “dog” Avg.

DreamBooth [31] N 0.6994 0.6056 0.6525 11.27 22.33 16.80

AdvDM [18]
0 0.5752 0.4247 0.4999 19.52 28.60 24.06
1 0.5436 0.4393 0.4915 17.82 28.58 23.20

N − 1 0.6417 0.4775 0.5596 20.30 27.36 23.83

Anti-DreamBooth [34]
0 0.5254 0.4106 0.4680 26.90 30.23 28.56
1 0.6081 0.4704 0.5393 23.76 27.49 25.63

N − 1 0.6951 0.5304 0.6127 15.48 25.26 20.37

SimAC [38]
0 0.4448 0.4374 0.4411 23.73 31.64 27.69
1 0.5824 0.4537 0.5181 18.04 29.54 23.79

N − 1 0.6991 0.5370 0.6181 14.28 27.05 20.67

PAP [37]
0 0.6556 0.5120 0.5838 22.61 30.20 26.41
1 0.6690 0.5032 0.5861 22.02 29.00 25.51

N − 1 0.7028 0.5270 0.6149 19.64 23.41 21.53

APDM (Ours) N 0.1375 0.0959 0.1167 40.25 60.74 50.50

where γprotect is the learning rate for protection. By repeating this process for Nprotect times, we
can obtain a safeguarded model θ̂, which is aware of the personalization path inherently for better
protection. Algorithm 1 illustrates the overall learning process of L2P for our APDM framework.

5 Experiments

5.1 Experimental Setup

Evaluation Metrics. To evaluate the effectiveness of APDM in protecting against personalization
on specific subjects, we used two metrics: (i) the DINO score [3] as a similarity-based metric and
(ii) BRISQUE [26] for assessing image quality. Additionally, we evaluated the preservation of the
pre-trained model’s generation capabilities by using (iii) the FID score [10] for image quality, (iv) the
CLIP score [28], (v) TIFA [13], and (vi) GenEval [6] for image-text alignment.
Baselines. We consider DreamBooth [31] and Custom Diffusion [15] as personalization methods.
The results of Custom Diffusion are presented in Appendix C. For baselines, we include the previous
protection approaches: (i) AdvDM [39], (ii) Anti-DreamBooth [34], (iii) SimAC [38], and (iv)
PAP [37]. Following Anti-DreamBooth, we set the perturbation intensity for all baselines to 5e-2.
Datasets. We used the datasets from both DreamBooth3 [31] and Anti-DreamBooth [34] to evaluate
the protection performance. The DreamBooth dataset contains 4-6 images per subject across various
object classes such as dog, cat, and toy. The Anti-DreamBooth dataset includes 4 images per person,
consisting of facial images collected from CelebA-HQ [14] and VGGFace2 [1]. To quantify the
preservation performance of the model, we also used the MS-COCO 2014 [20] validation split.
Implementation Details. We built APDM on Stable Diffusion 1.5 and Stable Diffusion 2.1 [30]
with 512x512 resolution. We used AdamW optimizer [24] with learning rates γper = γprotect =
5e− 6. In DPO, we set the hyperparameter β to 1. In L2P, we used Nper = 20 and Nprotect = 800.
We conducted all of our experiments on a single NVIDIA RTX A6000 GPU, and it took about 9 GPU
hours to protect DM. To synthesize images, we used PNDM scheduler [22] with 20 steps. For Stable
Diffusion 2.1, we have attached the experimental results in Appendix C.

5.2 Protection Performance

As shown in Figure 3 and Table 1, we first evaluated the baselines and APDM from the perspective
of protection. We first personalized the pre-trained Stable Diffusion using DreamBooth [31] as
a reference. In this experiment, we considered three scenarios to test baselines and APDM. For
DreamBooth and APDM, only N clean (i.e. non-perturbed) images were used throughout the entire

3https://github.com/google/dreambooth
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Figure 3: Qualitative Comparison on Protection. We examined the baselines and APDM on a
protective aspect. We tested baselines on different circumstance - “All Perturbed”, “One Clean”,
and “One Perturbed”. In the “All Perturbed” setting, the baselines added perturbations to all training
images. “One Clean” and “One Perturbed” settings are more difficult than “All Perturbed” setting,
where the dataset contains one clean image or one perturbed image.

experiment (“All Clean” in Figure 3). On the other hand, for data-poisoning baselines, we adopted
different personalization scenarios. For “All Perturbed” scenario, we utilized all perturbed images
from each data-poisoning baseline. Moreover, for “One Clean” scenario, we used 1 clean image
and N − 1 perturbed images for personalization. Lastly, the most challenging scenario, for “One
Perturbed” scenario, there were only 1 perturbed image and N − 1 clean images in the dataset.

In Figure 3, comparisons revealed their limitations as the scenarios become more challenging. When
only one perturbed image is used and the others remain clean, protection against personalization
for the subjects becomes ineffective. In contrast, despite the presence of clean images, APDM
consistently demonstrated its robustness in more challenging scenarios (additional qualitative results
in Appendix E). We also present a quantitative comparison in Table 1, highlighting that APDM
outperforms data-poisoning approaches even under the most difficult conditions. This is because
APDM protects personalization at the model-level, making it robust to variations in the input data. In
addition, we also tested APDM in different scenarios (transform, such as flipping and blurring) and
subjects such as “cat”, “sneaker”, “glasses”, and “clock” (results in Appendix B).

5.3 Preservation Performance

Table 2: Preservation Performance on Image Quality and
Image-Text Alignment. We measured the image quality via
FID score [10] and image-text alignment via CLIP score [28],
TIFA [13], and GenEval [6] on COCO 2014 [20] validation
dataset.

Methods FID (↓) CLIP (↑) TIFA (↑) GenEval (↑)
Stable Diffusion [30] 25.98 0.2878 78.76 0.4303
APDM (Ours) 28.85 0.2853 75.91 0.4017

As described in Section 4.3.2, we
updated the parameters of DM
initialized with a pre-trained DM
to obtain a safeguarded model.
To ensure its usability in future
applications, it is essential to pre-
serve the inherent capabilities of
the pre-trained DMs during the
protection process. In this sec-
tion, we evaluated the inherent
performance based on image quality, image-text alignment of generated images, and the success of
personalization for subjects not targeted by the protection.
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Table 3: Preservation Performance on Personalization of Different Subjects. We tried to per-
sonalize APDM to different subjects, such as “cat”, “sneaker”, and “glasses”. We reported the
personalization performance of DreamBooth [31] these subjects as a reference.

Methods DINO (↑) BRISQUE (↓)
“cat” “sneaker” “glasses” Avg. “cat” “sneaker” “glasses” Avg.

DreamBooth [31] 0.4903 0.6110 0.6961 0.5991 25.32 23.14 19.01 22.49
APDM (Ours) 0.4231 0.7573 0.7198 0.6334 27.72 18.10 27.41 24.41

Table 4: Ablation on the Effect of Image Pair-
ing between x+

0 and x−
0 . We compared the pro-

tection performance with and without pairing.

Paired DINO (↓) BRISQUE (↑)
“person” “dog” “person” “dog”

✗ 0.2770 0.3487 27.32 29.87
✓ 0.1375 0.0959 40.25 60.74

Table 5: Ablation on the Effect of L2P. We
compared the performance between protection
attempts without and with L2P.

L2P DINO (↓) BRISQUE (↑)
“person” “dog” “person” “dog”

✗ 0.4454 0.3689 24.70 30.62
✓ 0.1375 0.0959 40.25 60.74

Table 6: Ablation on the Effect of β. We com-
pared the protection performance with different
hyperparameter β.

β
DINO (↓) BRISQUE (↑)

“person” “dog” “person” “dog”

1 0.1375 0.0959 40.25 60.74
10 0.5392 0.3885 13.58 15.14
100 0.5962 0.4755 12.21 14.10

Table 7: Ablation on the Effect of Nper in L2P.
We measured the performance in a protection as-
pect by varying Nper of personalization path.

Nper
DINO (↓) BRISQUE (↑)

“person” “dog” “person” “dog”

5 0.3371 0.1923 37.89 39.48
10 0.2096 0.1342 38.14 47.15
20 0.1375 0.0959 40.25 60.74

Table 2 shows that APDM maintains high-quality image generation comparable to the pre-trained
model. Beyond image quality and image-text alignment, we also evaluated its ability to personalize
for different subjects using the protected DMs. Specifically, we tested personalization on models
protected for “person” or “dog”, using a new set of images featuring “cat”, “clock” and “glasses”. As
shown in Table 3, these protected models remain effective for personalizing other subjects. Overall,
APDM successfully protects specific subjects while preserving personalization capabilities for others,
making it suitable for handling diverse user requests in real-world applications.

5.4 Ablation Study

Ablation on Loss Functions. In Section 4.3, we introduced a novel objective, Direct Protective
Optimization (DPO), which effectively prevents personalization while minimally degrading the
model’s generation performance. In Table 4, we assessed the impact of pairing positive and negative
images on protection performance. The results demonstrate that constructing image pairs significantly
enhances performance by providing explicit guidance on which information should be encouraged or
discouraged. Additionally, we investigated the effect of the hyperparameter β, which governs the
strength of our DPO objective. As shown in Table 6, our findings indicate that reducing β allows
APDM to more effectively prevent personalization.

Ablation on Optimization Scheme. In Section 4.3.2, we proposed a novel optimization scheme,
Learning to Protect (L2P), which incorporates awareness of the personalization process during
protection. In Table 5, we compared the protection performance with and without L2P, and observed
that incorporating the personalization trajectory significantly improves protection performance.
Moreover, we examined the effect of the number of personalization paths (Nper). As shown in Table
7, increasing Nper consistently improves performance. Despite this trend, we set Nper = 20 as the
default in our overall experiments, since it already achieved state-of-the-art performance.
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Table 8: Protection performance of APDM on clean and perturbed data. We evaluate whether
APDM can maintain its protection capability regardless of input perturbations.

Methods # Clean
Images DINO (↓) BRISQUE (↑)

DreamBooth [31] N 0.6869 16.69
Anti-DreamBooth [34] 0 0.5646 22.50

APDM (Ours) N 0.1375 40.25
APDM (Ours, perturbed) 0 0.1702 40.20

5.5 Additional Experiments

As demonstrated in previous experiments, APDM effectively performs protection even in challenging
cases, such as when clean images are used. This robustness comes from its model-level defense
mechanism, which allows protection to be achieved independently of the input data. To further
demonstrate this robustness, we examined whether APDM can also protect against perturbed data
generated through data-poisoning methods. Specifically, we generated perturbed data using Anti-
DreamBooth [34] and evaluated APDM’s protection performance on these data. As shown in Table 8,
APDM successfully prevents personalization even on perturbed data, confirming that its effectiveness
is independent of the input variations.

Table 9: Protection performance of APDM under varying
numbers of unseen images. We evaluate whether APDM
can maintain its protection capability across different input
conditions and unseen data counts.

Methods # of unseen DINO (↓) BRISQUE (↑)
DreamBooth [31] − 0.6869 16.69

APDM (Ours)

− 0.1375 40.25
4 0.1616 38.14
8 0.1994 38.87
12 0.1873 38.87

Building upon the previous analysis
on perturbed data, we further inves-
tigated whether APDM maintains its
protection capability when both the
number and type of personalization
data vary. Specifically, this evalua-
tion examined the generalization and
scalability of APDM by considering
two factors: (i) the use of unseen data
that were not included during the pro-
tection stage, and (ii) the increased
amount of personalization data per
subject. As shown in Table 9, APDM
consistently maintains protection performance even when 4–12 unseen images are introduced, con-
firming that its defense mechanism generalizes well to unseen samples and remains robust as the data
volume increases.

To further assess the robustness of APDM under diverse personalization conditions, we additionally
conducted experiments using varied text prompts and different unique identifiers, as well as an inde-
pendent user study designed to evaluate real users’ preferences. Due to the page limit, these extended
results are provided in Appendix B (diverse prompt and identifier experiments) and Appendix D (user
study).

6 Conclusion

In this paper, we address privacy concerns in personalized DMs. We highlight critical limitations of
existing approaches, which depend on impractical assumptions (e.g. exhaustive data poisoning) and
fail to comply with privacy regulations. Furthermore, we demonstrate that these approaches are easily
circumvented when attackers use clean images or apply transformations to weaken the perturbation
effects. Therefore, we shifted the focus from data-centric defenses to model-level protection, aiming
to directly prevent personalization through optimization rather than input modification. To this end,
we propose a novel framework APDM (Anti-Personalized Diffusion Models), which consists of a
novel loss function, DPO (Direct Protective Optimization), and a new dual-path optimization scheme,
L2P (Learning to Protect). With APDM, we successfully prevented personalization while preserving
the generative quality of the original model. Experimental results demonstrate the effectiveness
and robustness of APDM with promising outputs. We hope our work extends the scope of anti-
personalization towards more practical and appropriate real-world solutions.

10



Acknowledgments and Disclosure of Funding

This work was supported by Korea Planning & Evaluation Institute of Industrial Technology (KEIT)
grant funded by the Korea government (MOTIE) (RS-2024-00444344), and in part by Institute of
Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) under Grant No. RS2019-II190079 (Artificial Intelligence Graduate School
Program (Korea University)), No. RS-2024-00457882 (AI Research Hub Project), and 2019-0-00004
(Development of Semi-Supervised Learning Language Intelligence Technology and Korean Tutoring
Service for Foreigners). Additionally, it was supported in part by the Institute of Information and
Communications Technology Planning and Evaluation (IITP) Grant funded by the Korea Government
(MSIT) ((Artificial Intelligence Innovation Hub) under Grant RS-2021-II212068).

References
[1] Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: Vggface2: A dataset for recognising faces across

pose and age. In: 2018 13th IEEE international conference on automatic face & gesture recognition (FG
2018). pp. 67–74. IEEE (2018)

[2] Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium
on Security and Privacy (sp). pp. 39–57. Ieee (2017)

[3] Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties
in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). pp. 9650–9660 (2021)

[4] Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano, A.H., Chechik, G., Cohen-or, D.: An image is
worth one word: Personalizing text-to-image generation using textual inversion. In: The Eleventh Interna-
tional Conference on Learning Representations (ICLR) (2023), https://openreview.net/forum?id=
NAQvF08TcyG

[5] Gao, H., Pang, T., Du, C., Hu, T., Deng, Z., Lin, M.: Meta-unlearning on diffusion models: Preventing
relearning unlearned concepts. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 2131–2141 (2025)

[6] Ghosh, D., Hajishirzi, H., Schmidt, L.: Geneval: An object-focused framework for evaluating text-to-image
alignment. Advances in Neural Information Processing Systems (NeurIPS) 36, 52132–52152 (2023)

[7] Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: International
Conference on Learning Representations (ICLR) (2015), https://arxiv.org/abs/1412.6572

[8] Guo, Y., Yang, C., Rao, A., Liang, Z., Wang, Y., Qiao, Y., Agrawala, M., Lin, D., Dai, B.: Animatediff:
Animate your personalized text-to-image diffusion models without specific tuning. In: The Twelfth Inter-
national Conference on Learning Representations (ICLR) (2024), https://openreview.net/forum?
id=Fx2SbBgcte

[9] Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-or, D.: Prompt-to-prompt image
editing with cross-attention control. In: The Eleventh International Conference on Learning Representations
(ICLR) (2023), https://openreview.net/forum?id=_CDixzkzeyb

[10] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale
update rule converge to a local nash equilibrium. Advances in Neural Information Processing Systems
(NeurIPS) 30 (2017)

[11] Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in Neural Information
Processing Systems (NeurIPS) 33, 6840–6851 (2020)

[12] Hönig, R., Rando, J., Carlini, N., Tramèr, F.: Adversarial perturbations cannot reliably protect artists from
generative ai. In: The Thirteenth International Conference on Learning Representations (ICLR) (2025)

[13] Hu, Y., Liu, B., Kasai, J., Wang, Y., Ostendorf, M., Krishna, R., Smith, N.A.: Tifa: Accurate and inter-
pretable text-to-image faithfulness evaluation with question answering. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). pp. 20406–20417 (2023)

[14] Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability and
variation. In: Proceedings of the International Conference on Learning Representations (ICLR) (2018)

11

https://openreview.net/forum?id=NAQvF08TcyG
https://openreview.net/forum?id=NAQvF08TcyG
https://arxiv.org/abs/1412.6572
https://openreview.net/forum?id=Fx2SbBgcte
https://openreview.net/forum?id=Fx2SbBgcte
https://openreview.net/forum?id=_CDixzkzeyb


[15] Kumari, N., Zhang, B., Zhang, R., Shechtman, E., Zhu, J.Y.: Multi-concept customization of text-to-image
diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 1931–1941 (2023)

[16] Lee, T.Y., Park, S., Jeon, M., Hwang, H., Park, G.M.: Esc: Erasing space concept for knowledge deletion.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp.
5010–5019 (2025)

[17] Li, A., Mo, Y., Li, M., Wang, Y.: Pid: Prompt-independent data protection against latent diffusion models.
In: Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J., Berkenkamp, F. (eds.)
Proceedings of the 41st International Conference on Machine Learning (ICML). Proceedings of Machine
Learning Research, vol. 235, pp. 28421–28447. PMLR (21–27 Jul 2024), https://proceedings.mlr.
press/v235/li24ay.html

[18] Liang, C., Wu, X., Hua, Y., Zhang, J., Xue, Y., Song, T., Xue, Z., Ma, R., Guan, H.: Adversarial example
does good: Preventing painting imitation from diffusion models via adversarial examples. In: Krause, A.,
Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., Scarlett, J. (eds.) Proceedings of the 40th International
Conference on Machine Learning (ICML). Proceedings of Machine Learning Research, vol. 202, pp.
20763–20786. PMLR (23–29 Jul 2023), https://proceedings.mlr.press/v202/liang23g.html

[19] Lim, H., Won, Y., Seo, J., Park, G.M.: Conceptsplit: Decoupled multi-concept personalization of diffusion
models via token-wise adaptation and attention disentanglement. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). pp. 18421–18430 (2025)

[20] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft
coco: Common objects in context. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part V 13. pp. 740–755. Springer (2014)

[21] Liu, H., Chen, Z., Yuan, Y., Mei, X., Liu, X., Mandic, D., Wang, W., Plumbley, M.D.: AudioLDM:
Text-to-audio generation with latent diffusion models. In: Krause, A., Brunskill, E., Cho, K., Engelhardt,
B., Sabato, S., Scarlett, J. (eds.) Proceedings of the 40th International Conference on Machine Learning
(ICML). Proceedings of Machine Learning Research, vol. 202, pp. 21450–21474. PMLR (23–29 Jul 2023),
https://proceedings.mlr.press/v202/liu23f.html

[22] Liu, L., Ren, Y., Lin, Z., Zhao, Z.: Pseudo numerical methods for diffusion models on manifolds.
In: International Conference on Learning Representations (ICLR) (2022), https://openreview.net/
forum?id=PlKWVd2yBkY

[23] Liu, Y., Fan, C., Dai, Y., Chen, X., Zhou, P., Sun, L.: Metacloak: Preventing unauthorized subject-driven
text-to-image diffusion-based synthesis via meta-learning. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 24219–24228 (2024)

[24] Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning
Representations (ICLR) (2019)

[25] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant
to adversarial attacks. In: International Conference on Learning Representations (ICLR) (2018), https:
//openreview.net/forum?id=rJzIBfZAb

[26] Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE
Transactions on Image Processing 21(12), 4695–4708 (2012). https://doi.org/10.1109/TIP.2012.2214050

[27] Parmar, G., Kumar Singh, K., Zhang, R., Li, Y., Lu, J., Zhu, J.Y.: Zero-shot image-to-image translation. In:
ACM SIGGRAPH 2023 Conference Proceedings. pp. 1–11 (2023)

[28] Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P.,
Clark, J., et al.: Learning transferable visual models from natural language supervision. In: International
Conference on Machine Learning (ICML). pp. 8748–8763. PMLR (2021)

[29] Rafailov, R., Sharma, A., Mitchell, E., Manning, C.D., Ermon, S., Finn, C.: Direct preference optimization:
Your language model is secretly a reward model. Advances in Neural Information Processing Systems
(NeurIPS) 36, 53728–53741 (2023)

[30] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with
latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 10684–10695 (2022)

12

https://proceedings.mlr.press/v235/li24ay.html
https://proceedings.mlr.press/v235/li24ay.html
https://proceedings.mlr.press/v202/liang23g.html
https://proceedings.mlr.press/v202/liu23f.html
https://openreview.net/forum?id=PlKWVd2yBkY
https://openreview.net/forum?id=PlKWVd2yBkY
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb


[31] Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: Dreambooth: Fine tuning text-to-
image diffusion models for subject-driven generation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 22500–22510 (2023)

[32] Seo, J., Lee, S.H., Lee, T.Y., Moon, S., Park, G.M.: Generative unlearning for any identity. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 9151–9161 (2024)

[33] Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using
nonequilibrium thermodynamics. In: International Conference on Machine Learning (ICML). pp. 2256–
2265. PMLR (2015)

[34] Van Le, T., Phung, H., Nguyen, T.H., Dao, Q., Tran, N.N., Tran, A.: Anti-dreambooth: Protecting users
from personalized text-to-image synthesis. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). pp. 2116–2127 (2023)

[35] Voigt, P., Bussche, A.v.d.: The EU General Data Protection Regulation (GDPR): A Practical Guide.
Springer Publishing Company, Incorporated (2017)

[36] Wallace, B., Dang, M., Rafailov, R., Zhou, L., Lou, A., Purushwalkam, S., Ermon, S., Xiong, C., Joty,
S., Naik, N.: Diffusion model alignment using direct preference optimization. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 8228–8238 (2024)

[37] Wan, C., He, Y., Song, X., Gong, Y.: Prompt-agnostic adversarial perturbation for customized diffusion
models. Advances in Neural Information Processing Systems (NeurIPS) 37, 136576–136619 (2024)

[38] Wang, F., Tan, Z., Wei, T., Wu, Y., Huang, Q.: Simac: A simple anti-customization method for protecting
face privacy against text-to-image synthesis of diffusion models. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 12047–12056 (June 2024)

[39] Xu, J., Lu, Y., Li, Y., Lu, S., Wang, D., Wei, X.: Perturbing attention gives you more bang for the buck:
Subtle imaging perturbations that efficiently fool customized diffusion models. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 24534–24543 (2024)

13



In this appendix, we provide detailed proofs and derivations, and additional experimental results that
were not included in the main paper due to page limits. The contents of the appendix are as follows:

• Appendix A: Derivation and proof of Proposition 1, Theorem 1, and Direct Protective
Optimization (DPO) objective.

• Appendix B: Additional experiments including empirical results about naïve approach,
comparison on protection with image transformations, and protection performance for
different subjects.

• Appendix C: Generalizability of APDM on different personalization methods, Stable Diffu-
sion version, unique identifier, and diverse test prompts.

• Appendix D: User study about protection performance.
• Appendix E: Additional qualitative results extending to the experimental results in the main

paper.
• Appendix F: Additional explanation about our motivation.
• Appendix G: The limitations and broader impacts of APDM, and a discussion of future

work.

A Proofs and Derivation

In this section, we present the formal proofs and derivations supporting our main theoretical con-
tributions discussed in the main paper. We begin by providing a rigorous proof for Proposition 1
(Appendix A.1), followed by the complete proof for Theorem 1 (Appendix A.2). Subsequently, we
detail the step-by-step derivation of our proposed DPO loss function in Appendix A.3.

A.1 Proof of Proposition 1

The primary goal of Proposition 1 is to identify and establish the necessary conditions under which
naïve approach converges. We begin the proof by recalling the loss function of naïve approach,
Equation (8) in our main paper:

Ladv = −Lper
simple + λLppl, (21)

where λ is positive scalar (λ > 0) to weight the Lppl, and each term is defined as follows:

Lper
simple = Ex0,t,c,ϵ∼N (0,I)∥ϵθ(xt, t, c)− ϵ∥22, (22)

Lppl = Expr
0 ,t,cpr,ϵ∼N (0,I)∥ϵθ(x

pr
t , t, cpr)− ϵ∥22. (23)

In optimization theory, a fundamental necessary condition for a differentiable function to attain a
local minimum is that its derivative with respect to the optimization variables must be zero. This is
often referred to as the first-order necessary condition for optimality. Applying this principle to our
case, for Ladv to converge to a stable point with respect to the model parameters θ, the derivative
must be zero as:

∇θLadv = 0. (24)

To address the condition in Equation (24), we compute the gradient of Ladv with respect to θ. To
simplify the computation, we first recall the MSE loss term as:

∥u− v∥22 = u⊤u− 2u⊤v + v⊤v. (25)

Using the expansion of Equation (25), we can rewrite the MSE terms of Equation (22) and Equa-
tion (23) as follows:

∥ϵθ(xt, t, c)− ϵ∥22 = ϵperθ
⊤
ϵperθ − 2ϵperθ

⊤
ϵ+ ϵ⊤ϵ, (26)

∥ϵθ(xpr
t , t, cpr)− ϵ∥22 = ϵpplθ

⊤
ϵpplθ − 2ϵpplθ

⊤
ϵ+ ϵ⊤ϵ, (27)

where ϵperθ = ϵθ(xt, t, c) and ϵpplθ = ϵθ(x
pr
t , t, cpr). For notational simplicity in the subsequent

derivations, we will omit the input variables (e.g. xt, t, c) and use the superscripts per and ppl to
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distinguish both terms in Lper
simple and Lppl respectively. Now, substituting the expanded forms from

Equation (26) and Equation (27) back into Lper
simple and Lppl, we can rewrite these.

For Lper
simple, using Equation (26):

Lper
simple = Ex0,t,c,ϵ∼N (0,I)[ϵ

per
θ

⊤
ϵperθ − 2ϵperθ

⊤
ϵ+ ϵ⊤ϵ]. (28)

Moreover, by the linearity of expectation, which includes the property E[A + B] = E[A] + E[B]
(additivity principle), we can distribute expectation as follows:

Lper
simple = E[ϵperθ

⊤
ϵperθ ]− 2E[ϵperθ

⊤
ϵ] + E[ϵ⊤ϵ]. (29)

Please note that for readability, we also omit the explicit subscript variables of the expectation.

Similarly, for Lppl, using Equation (27) and linearity of expectation:

Lppl = Expr
0 ,t,cpr,ϵ∼N (0,I)[ϵ

ppl
θ

⊤
ϵpplθ − 2ϵpplθ

⊤
ϵ+ ϵ⊤ϵ]

= E[ϵpplθ

⊤
ϵpplθ ]− 2E[ϵpplθ

⊤
ϵ] + E[ϵ⊤ϵ].

(30)

These expanded expressions (Equation (29) and Equation (30)) simplify the subsequent gradient
derivations. To compute the gradients of these loss functions, we will differentiate the terms within
the expectation, which is permissible under suitable regularity conditions by applying the Leibniz
Rule. We first consider the derivatives of the core components that appear inside the expectations,
with respect to the model parameters θ.

∇θ(ϵ
⊤
θ ϵθ) = 2J⊤

θ ϵθ, (31)

∇θ(ϵ
⊤
θ ϵ) = J⊤

θ ϵ, (32)

∇θ(ϵ
⊤ϵ) = 0, (33)

where Jθ = ∂
∂θ ϵθ and ϵ is independent of θ, the derivative of any term solely dependent on ϵ (i.e.

ϵ⊤ϵ) with respect to θ is zero. Using these results, we can now express the gradient of MSE loss term
inside the expectations. For the term in Lper

simple:

∇θ∥ϵθ(xt, t, c)− ϵ∥22 =
∂

∂θ
(ϵperθ

⊤
ϵperθ )− 2

∂

∂θ
(ϵperθ

⊤
ϵ) +

∂

∂θ
(ϵ⊤ϵ)

= 2Jper
θ

⊤
ϵθ − 2Jper

θ
⊤
ϵ.

(34)

And for the term in Lppl:

∇θ∥ϵθ(xpr
t , t, cpr)− ϵ∥22 =

∂

∂θ
(ϵpplθ

⊤
ϵpplθ )− 2

∂

∂θ
(ϵpplθ

⊤
ϵ) +

∂

∂θ
(ϵ⊤ϵ)

= 2Jppl
θ

⊤
ϵθ − 2Jppl

θ

⊤
ϵ.

(35)

Since Lper
simple and Lppl are expectations of the terms whose gradients were derived in Equation (34)

and Equation (35), and we apply the Leibniz Rule. This allows us to take the expectation of those
gradients to find the final gradients of the loss functions:

∇θLper
simple = 2E[Jper

θ
⊤
ϵ]− 2E[Jper

θ
⊤
ϵ], (36)

∇θLppl = 2E[Jppl
θ

⊤
ϵ]− 2E[Jppl

θ

⊤
ϵ]. (37)

Consequently, using the gradients (Equation (36) and Equation (37)), we can determine the conver-
gence condition for Ladv with respect to θ as:

∇θLadv = −∇θLper
simple + λ∇θLppl

= −{2E[Jper
θ

⊤
ϵ]− 2E[Jper

θ
⊤
ϵ]}+ λ{2E[Jppl

θ

⊤
ϵ]− 2E[Jppl

θ

⊤
ϵ]}.

(38)

Based on Equation (24), rearranging Equation (38) yields the final condition for Proposition 1:

∇θLper
simple = λ∇θLppl. (39)

The result in Equation (39) indicates that for Ladv to converge, the gradients of Lper
simple and Lppl

must point in the same direction, as λ > 0. This completes the proof of Proposition 1.
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A.2 Proof of Theorem 1

In Proposition 1, we establish that for Ladv to converge, a necessary condition is ∇θLper
simple =

λ∇θLppl. Based on this proposition, we now prove Theorem 1. Our proof will demonstrate how
the aforementioned convergence condition (Equation (39)) inherently conflicts with the goal of
simultaneously decreasing both −Lper

simple and Lppl.

To figure this out, we analyze the impact of a parameter update, ∆θ, on each loss term using a
first-order Taylor Expansion. A parameter update ∆θ derived from a gradient descent step on Ladv ,
and assuming the scalar λ = 1 for simplicity in this derivation. ∆θ can be defined as:

∆θ = −η ∂

∂θ
Ladv, (40)

where η > 0 is the learning rate. The change in Lper
simple due to ∆θ can be approximated by first-order

Taylor Expansion:

Lper
simple(θ +∆θ)− Lper

simple(θ) ≈ [
∂

∂θ
Lper
simple(θ)]

⊤∆θ

≈ [
∂

∂θ
Lper
simple(θ)]

⊤{−η[− ∂

∂θ
Lper
simple(θ) +

∂

∂θ
Lppl(θ)]}

≈ η∥ ∂
∂θ
Lper
simple(θ)∥

2 − η[
∂

∂θ
Lper
simple(θ)]

⊤[
∂

∂θ
Lppl(θ)],

(41)

where L(θ) means the the loss calculated with the parameter θ. Our objective is to minimize
−Lper

simple, which is equivalent to increasing Lper
simple. For this reason, the difference of Lper

simple in
Equation (41) is greater than zero. Using this condition, we can obtain the final inequality from
Equation (41) as:

∥ ∂
∂θ
Lper
simple(θ)∥

2 > [
∂

∂θ
Lper
simple(θ)]

⊤[
∂

∂θ
Lppl(θ)]. (42)

This inequality (Equation (42)) represents the condition under which the parameter update leads to
an increase in Lper

simple. Similarly, we derive the impact of the parameter update ∆θ on Lppl.

Lppl(θ +∆θ)− Lppl(θ) ≈ [
∂

∂θ
Lppl(θ)]

⊤∆θ

≈ [
∂

∂θ
Lppl(θ)]

⊤{−η[− ∂

∂θ
Lper
simple(θ) +

∂

∂θ
Lppl(θ)]}

≈ η[
∂

∂θ
Lppl(θ)]

⊤[
∂

∂θ
Lper
simple(θ)]− η∥ ∂

∂θ
Lppl(θ)∥2.

(43)

To minimize Lppl, it should decrease, which means that the change approximated by Equation (43)
must be less than zero. We can also derive the condition as:

[
∂

∂θ
Lppl(θ)]

⊤[
∂

∂θ
Lper
simple(θ)] < ∥

∂

∂θ
Lppl(θ)∥2. (44)

Equation (42) and Equation (44) share the common inner product term [ ∂
∂θLppl(θ)]

⊤[ ∂
∂θL

per
simple(θ)].

Recall from Proposition 1, for converging Ladv , the gradients of the two terms must point in the same
direction. This relationship allows us to remove the cosine term in the inner product (∵ cos(0) = 1).
Based on this, we can rewrite the inequalities as below:

| ∂
∂θ
Lper
simple(θ)| · |

∂

∂θ
Lppl(θ)| < ∥

∂

∂θ
Lper
simple(θ)∥

2, (45)

| ∂
∂θ
Lppl(θ)| · |

∂

∂θ
Lper
simple(θ)| < ∥

∂

∂θ
Lppl(θ)∥2. (46)

We can further rearrange the above inequality as:

| ∂
∂θ
Lppl(θ)| < |

∂

∂θ
Lper
simple(θ)|, (47)

| ∂
∂θ
Lppl(θ)| > |

∂

∂θ
Lper
simple(θ)|. (48)
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This rearrangement relies on the assumption that both individual gradients are non-zero, i.e.
| ∂∂θL

per
simple(θ)| > 0 and | ∂∂θLppl(θ)| > 0. This assumption holds for any θ that is not already

a local optimum for both individual objectives.

Recall the objectives: to increase Lper
simple, the condition in Equation (47) must hold for the current

parameter update. On the other hand, to decrease Lppl, the condition in Equation (48) must satisfy
for the same parameter update. These two conditions are mutually exclusive. This contradiction
demonstrates that if the system is at a point satisfying the convergence condition for Ladv (Proposition
1), the objective of simultaneously decreasing −Lper

simple and Lppl cannot be achieved. Therefore,
the naïve approach Ladv, as composed of these conflicting objectives under its own convergence
condition, generally fails to converge to a point that effectively optimizes both. This completes the
proof of Theorem 1.

A.3 Derivation of Objective

Starting from Equation (13) in the main paper, the loss function for the reward function r(·) can be
expressed as:

Lr = −Ex+
0 ,x−

0
log σ(r(x+

0 )− r(x−
0 )). (49)

Reinforcement Learning from Human Feedback (RLHF) aims to maximize the distribution pθ(x0)
under regularization using KL-divergence:

max
pθ

Ex0
r(x0)− βDKL(pθ(x0)∥pϕ(x0)), (50)

where ϕ is reference distribution. From Equation (50), we can obtain a unique solution p∗θ(x0):

p∗θ(x0) = pϕ(x0) exp(r(x0)/β)/Z, (51)

where Z =
∑

x0
pϕ(x0) exp(r(x0)/β) is the partition function. The reward function can be re-

written using Equation (51):

r(x0) = β log
p∗θ(x0)

pϕ(x0)
+ β logZ. (52)

From Equation (49) and Equation (52), the reward objective is:

Lr = −Ex+
0 ,x−

0
[log σ(β log

p∗θ(x
+
0 )

pϕ(x
+
0 )
− β log

p∗θ(x
−
0 )

pϕ(x
−
0 )

)]. (53)

However, this objective cannot directly applied to diffusion models since the parameterized distri-
bution pθ(x0) is intractable. Therefore, Diffusion-DPO [36] introduces the latents x1:T to consider
possible diffusion paths from xT to x0, and re-defines the reward function as follows:

r(x0) = Epθ(x1:T |x0)R(x0). (54)

Following Equation (54), Equation (50) can also be written as follows:

max
pθ

Ex0:T∼p(x0:T )r(x0)− βDKL(pθ(x0:T )∥pϕ(x0:T )). (55)

Similar to the expansion from Equation (50) to Equation (53), we can obtain the reward objective as:

Lr = −Ex+
0 ,x−

0
[log σ{Epθ(x

+
1:T |x+

0 ),pθ(x
−
1:T |x−

0 )(β log
p∗θ(x

+
0:T )

pϕ(x
+
0:T )
− β log

p∗θ(x
−
0:T )

pϕ(x
−
0:T )

)}]. (56)

Since − log σ(·) is a convex function, we can leverage Jensen’s inequality:

Lr ≤ −Ex+
0 ,x−

0 ,pθ(x
+
1:T |x+

0 ),pθ(x
−
1:T |x−

0 )

[log σ{β log
p∗θ(x

+
0:T )

pϕ(x
+
0:T )
− β log

p∗θ(x
−
0:T )

pϕ(x
−
0:T )
}].

(57)

Note that pθ(x1:T |x0) is intractable. Therefore, we utilize q(x1:T |x0) to approximate pθ(x1:T |x0):

Lr ≤ −Ex+
0 ,x−

0 ,q(x+
1:T |x+

0 ),q(x−
1:T |x−

0 )[log σ{β log
p∗θ(x

+
0:T )

pϕ(x
+
0:T )
− β log

p∗θ(x
−
0:T )

pϕ(x
−
0:T )
}]. (58)
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Since pθ(x0:T ) = pθ(xT )
∏⊤

t=1 pθ(xt−1|xt) can be expressed as a Markov chain, we can derive the
above equation as:

Lr ≤ −Ex+
0 ,x−

0 ,q(x+
1:T |x+

0 ),q(x−
1:T |x−

0 )

[log σ{β
⊤∑
t=1

log
p∗θ(x

+
t−1|x

+
t )

pϕ(x
+
t−1|x

+
t )
− log

p∗θ(x
−
t−1|x

−
t )

pϕ(x
−
t−1|x

−
t )
}],

= −Ex+
0 ,x−

0 ,q(x+
1:T |x+

0 ),q(x−
1:T |x−

0 )

[log σ{β
⊤∑
t=1

(log
p∗θ(x

+
t−1|x

+
t )

q(x+
t−1|x

+
t )
− log

pϕ(x
+
t−1|x

+
t )

q(x+
t−1|x

+
t )

)

− (log
p∗θ(x

−
t−1|x

−
t )

q(x−
t−1|x

−
t )
− log

pϕ(x
−
t−1|x

−
t )

q(x−
t−1|x

−
t )

)}],

= −Ex+
0 ,x−

0 ,q(x+
1:T |x+

0 ),q(x−
1:T |x−

0 )

[log σ{β
⊤∑
t=1

(DKL(q(x
+
t−1|x

+
t )∥p∗θ(x+

t−1|x
+
t ))

−DKL(q(x
+
t−1|x

+
t )∥pϕ(x+

t−1|x
+
t )))

− (DKL(q(x
−
t−1|x

−
t )∥p∗θ(x−

t−1|x
−
t ))

−DKL(q(x
−
t−1|x

−
t )∥pϕ(x−

t−1|x
−
t )))}].

(59)

By leveraging ELBO, we can obtain our final objective, Equation (14) in the main paper:

LDPO =− Ex+
0 ,x−

0 ,c,t,ϵ∼N(0,I)

log σ(−β((∥ϵθ(x+
t , t, c)− ϵ∥22

− ∥ϵϕ(x+
t , t, c)− ϵ∥22)

− (∥ϵθ(x−
t , t, c)− ϵ∥22

− ∥ϵϕ(x−
t , t, c)− ϵ∥22))).

(60)

Figure 4: FID variation during the training with Ladv. We measured the image quality via FID
score [10] on COCO 2014 [20] validation dataset. We also plot the FID score of Stable Diffusion 1.5
and APDM.
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Table 10: Quantitative comparison on protection with image transformations. We compared
APDM with transformed images. For data poisoning baselines, we applied image transformation to
perturbed images and we personalized Stable Diffusion on these transformed images. For APDM,
we protected diffusion models on clean images and we conduct personalization on images that is
transformed from clean images.

Methods Transform. DINO (↓) BRISQUE (↑)
“person” “dog” Avg. “person” “dog” Avg.

DreamBooth [31] - 0.6994 0.6056 0.6525 11.27 22.33 16.80

AdvDM [18]
- 0.5752 0.4247 0.4999 19.52 28.60 24.06

flip 0.5436 0.4538 0.4987 24.37 27.07 25.72
blur 0.6417 0.4524 0.5470 18.28 26.35 22.32

Anti-DreamBooth [34]
- 0.5254 0.4106 0.4680 26.90 30.23 28.56

flip 0.5976 0.4665 0.5321 26.76 29.19 27.97
blur 0.5487 0.4414 0.4951 24.37 28.91 26.64

SimAC [38]
- 0.4448 0.4374 0.4411 23.73 31.64 27.69

flip 0.5083 0.4475 0.4779 26.56 29.46 28.01
blur 0.5323 0.4390 0.4856 20.40 31.27 25.83

PAP [37]
- 0.6556 0.5120 0.5838 22.61 30.20 26.41

flip 0.6564 0.5139 0.5852 22.51 27.81 25.16
blur 0.6708 0.5222 0.5965 24.37 27.83 26.10

APDM (Ours)
- 0.1375 0.0959 0.1167 40.25 60.74 50.50

flip 0.1714 0.1194 0.1454 39.13 40.34 39.74
blur 0.1042 0.0823 0.0933 40.47 45.13 42.80

Table 11: Protection performance on other subjects. In addition to experiments in the main paper,
we evaluated APDM on different subjects. We tried to prevent personalization on “cat”, “sneaker”,

“glasses”, and “clock”.

Methods DINO (↓) BRISQUE (↑)
“cat” “sneaker” “glasses” “clock” “cat” “sneaker” “glasses” “clock”

DreamBooth [31] 0.4903 0.6110 0.6961 0.5359 25.32 23.14 19.01 13.82
APDM (Ours) 0.0414 0.2276 0.2893 0.1969 47.65 35.23 31.75 32.01

B Additional Experiments

Empirical Results about the limitation of Naïve Approach. In Section A, we theoretically
demonstrated the fundamental limitations of naïve approach. In the following part, we empirically
validate those findings. We applied the loss function of naïve approach, Ladv (Equation (21)), to
Stable Diffusion 1.5 with Nprotect = 800, as APDM. We measured FID score every 100 iterations.
As shown in Figure 4, as the optimization progresses, the FID score consistently increases across all
tested λ values. This degradation in quality occurs because the primary objective of Ladv , minimizing
−Lper

simple (i.e. actively erasing related to the target for anti-personalization), becomes overly dominant.
Even though Lppl is intended to preserve the generation performance, its effectiveness is clearly
restricted by the optimized condition of −Lper

simple. This result aligns with our Theorem 1, which
suggests that the loss of each term in Ladv cannot be satisfied simultaneously. Furthermore, when the
weight λ increases, one might expect a better preservation of the generative performance. Although
FID scores are relatively low with high λ values (e.g. λ = 10.0, 15.0) in initial iterations, they still
remain significantly high and can exhibit instability as training progresses. This suggests that our
theorem is still valid in various λ.

Protection with Image Transformations. In Figure 3 and Table 1 of the main paper, we compared
APDM with baselines considering the existence and quantity of clean images. Additionally, we also
compared APDM with baselines using transformed images such as flipping and blurring. Table 10
demonstrates that baselines fail to effectively protect personalization when transformations are applied
to perturbed images. In contrast, APDM exhibits robustness even under such image transformations.
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Figure 5: Protection on other subjects. We attempted to protect personalization on “cat”, “sneaker”,
“glasses”, and “clock”.

Protection on Other Subjects. In the experiments presented in the main paper, we primarily
considered two types of subjects: “person” and “dog”. In Table 11 and Figure 5, we explored the
prevention of personalization on other subjects, such as “cat”, “sneaker”, “glasses”, and “clock”,
demonstrating that APDM can be generally applied to protection of various subjects.

C Generalizability of APDM

Custom Diffusion. In our main paper, we mainly consider DreamBooth [31] as a personalization
method. Additionally, we utilized Custom Diffusion [15] as a variation of the personalization
approach. In Table 12, we present the results of the Custom Diffusion experiments, and we conducted
protection about “person” and “dog” similar to our main paper. The results demonstrated that
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Table 12: Protection performance of APDM on different personalization method, Custom Diffu-
sion [15]. Unlike the experiments in the main paper, which used DreamBooth for personalization, we
replaced the personalization method with Custom Diffusion.

Methods DINO (↓) BRISQUE (↑)
“person” “dog” “person” “dog”

Custom Diffusion [15] 0.5320 0.5460 16.03 8.98
APDM (Ours) 0.2158 0.3202 34.61 33.09

Table 13: Protection performance of APDM on different Stable Diffusion version, Stable
Diffusion 2.1. In the experiments of the main paper, we primarily used Stable Diffusion 1.5.
Additionally, we evaluated APDM based on different Stable Diffusion version.

Methods DINO (↓) BRISQUE (↑)
“person” “dog” “person” “dog”

DreamBooth [31] 0.5773 0.5293 13.99 23.03
APDM (Ours) 0.2739 0.2178 39.72 42.69

Table 14: Protection performance on different unique identifier for personalization. We con-
ducted protection on “a photo of sks person” or “a photo of sks dog” and we tried to personalize
diffusion models on “a photo of t@t person” or “a photo of t@t dog”.

Methods [V ∗]
DINO (↓) BRISQUE (↑)

“person” “dog” “person” “dog”

DreamBooth [31] “t@t” 0.6774 0.4668 16.64 28.49
APDM (Ours) “sks”→“t@t” 0.3958 0.1981 29.90 40.69

Table 15: Protection performance for diverse text prompts. Unlike the experiments in the main
paper, we evaluated APDM on diverse test prompts. Protection and personalization are conducted
using “a photo of [V*] person” or “a photo of [V*] dog”, and we sampled images using the different
set of text prompts.

Methods DINO (↓) BRISQUE (↑)
“person” “dog” “person” “dog”

DreamBooth [31] 0.4081 0.4233 12.57 29.65
APDM (Ours) 0.1357 0.1564 36.40 41.66

APDM can successfully prevent the personalization of Custom Diffusion, and show the applicability
of APDM to other personalization methods.

Stable Diffusion 2.1. APDM prevents personalization at the model level, and its applicability to
different versions of the Stable Diffusion model is also important. In Table 13, we present experiments
conducted on Stable Diffusion 2.1 to demonstrate the effectiveness of our approach on other diffusion
models. We applied APDM to Stable Diffusion 2.1 and performed personalization with clean images
using DreamBooth. The results indicate that APDM also performs robustly on Stable Diffusion 2.1,
showing that our method is not restricted to a specific version of the diffusion model.

Prompt (Identifier) Mismatch. When an attacker performs personalization, they may use a
different unique identifier (e.g. “t@t”) to capture the target subject. For example, during the
protection process, we only show “a photo of sks person”, while a different unique identifier may
be used for personalization, such as “a photo of t@t person”. Similar to Van Le et al. [34], we also
considered this prompt mismatch. As shown in Table 14, APDM can successfully protect against
personalization attempts using “t@t”. APDM successfully confuses the personalization process,
preventing the identifier from capturing the target subject (i.e. identity).
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’’a [V*] person in the snow”

“a [V*] with a mountain in the background” 

“a [V*] person wearing a red hat”

“a [V*] person wearing a pink glasses”

Figure 6: Protection performance for diverse text prompts. We visualized the generated outputs
from diverse text prompts, such as “a [V*] person in the snow” and “a [V*] person wearing a red
hat”.

Protection on Diverse Text Prompts. In the experiments presented in the main paper, we utilized
simple text prompts for inference, such as “a photo of [V*] person” and “a portrait of [V*] person.”
In contrast to these experiments, we evaluated APDM using diverse prompts, such as “a photo of
[V*] person in the jungle” and “a [V*] person with a mountain background.” We adopted text
prompts from the DreamBooth dataset [31]. Figure 6 and Table 15 illustrate that APDM successfully
prevents personalization, even under diverse prompt variations that differ from the text prompts used
during the protection procedure. This result highlights that APDM is even robust to diverse text
prompt variation.
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Figure 7: A sample interface for our user study. Left term is the descriptions of explanation about
study. Middle term is a given reference images which used to capture the identity from participants.
Right term is choices.

Table 16: Results of user study. We count the percentage of votes for the comparisons and our
method respectively. Every participants selected a sample that looks most different from the clean
images.

Methods Anti-DreamBooth [34] SimAC [38] PAP [37] APDM (Ours)
Protection 7.08 % 5.83 % 1.04 % 86.04 %

D User Study

We conducted a user study to evaluate the preference of various protection methods in preventing
subject recognition. The specific questions and interface are illustrated in Figure 7. We presented
four reference images for each subject to provide participants with clear identity information. After
viewing these, each participant chose an image based on the following question:

Which of the candidate images (A, B, C, D) is the HARDEST
to recognize as depicting the SAME PERSON shown in the reference images?

Candidate images were generated using a personalized diffusion model with different protection
methods applied. We utilized Stable Diffusion 1.5 and Dreambooth [31] as personalization method,
which is the same as our experimental setting in main paper. In this user study, we compared
our proposed method, APDM, against Anti-Dreambooth [34], SimAC [38], and PAP [37]. For
comparisons, we first generated perturbed images using each approach, and conducted personalization
with these perturbed images. For APDM, we applied personalization using the model protected by
our method. After personalization, all images were generated using the prompt “a photo of [V*]
person”. To ensure fairness, the same randomly sampled seed was used for generating all candidate
images. The image sequence and the arrangement of choices are randomized to eliminate any bias.

We collected responses from 25 voluntary adult participants regardless of gender. Participants were
compensated $0.125 USD per question, totaling $2.50 USD, corresponding to hourly rate of $7.26
USD. On average, participants completed the study in about 20 minutes. We did not collect any
personal information from the participants.

As shown in Table 16, APDM achieved significantly higher user preference (i.e. was selected more
often as the hardest to recognize) than other comparisons. These results indicate that our method not
only addresses limitations of data-centric approaches but also achieves a substantial improvement in
protection performance.

E Additional Qualitative Results

Additional Protection Results. In Figure 3 and Table 1 of the main paper, we conducted quantita-
tive and qualitative experiments, respectively. We attached additional qualitative results in Figure 8
and Figure 9, including protection results on various subjects of person and dog. The experimental
results highlight again that APDM can effectively protect personalization against diverse subjects,
producing images of a lot of artifacts or containing different instances.

23



Training
Images

Training
Images

Training
Images

Training
Images

Figure 8: Additional Qualitative Results on Protection (“person”).
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Figure 9: Additional Qualitative Results on Protection (“dog”).
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F Additional Explanation of Motivation
Figure 1 in our main paper presents the motivation for our work and briefly describes key issues,
including the impractical assumptions of existing approaches, easy circumvention, user burdens, and
conflict with regularization. This section provides a more detailed explanation of these limitations to
facilitate clearer understanding.

We first criticize the impracticality of the existing literature. In daily life, individuals frequently
take pictures or are photographed. For example, they often take selfies for social media or capture
images of their identification documents. Such images, which we refer to as “User’s Photos” (as
depicted in Figure 1 of our main paper), are those that users are consciously aware of and possess.
Consequently, users have the opportunity to apply protection methods (i.e. data poisoning approach)
to these photos if they want. In contrast, “Unintended Capture” refers to images of individuals taken
without their explicit recognition or control over their subsequent use. This scenario presents a critical
vulnerability, as these unintentionally captured images can be exploited as unprotected, “clean” data
by malicious users.

As shown in Table 1 of our main paper, the presence of clean (unprotected) images can significantly
degrade the effectiveness of data poisoning techniques, allowing for easy bypass of protection.
Furthermore, even when images are perturbed (i.e. poisoned), their protective effect is vulnerable to
various common image transformations that frequently occur in real-world scenarios (as also shown
in Table 10). These transformations can weaken or negate the intended poisoning effect. These
limitations reveal that, without strong (and often impractical) assumptions about the unavailability
of clean images or the absence of transformations, existing protection methods exhibit restricted
performance.

Regarding the user burden associated with implementing such techniques, most individuals are
unfamiliar with implementation of AI technique. Establishing appropriate hardware environments
(e.g. GPU servers) and configuring complex software environments (e.g. managing numerous
libraries and their dependencies) present a significant initial hurdle. Even if these challenges are
overcome, non-expert users still face substantial obstacles in utilizing protection methods. These
include a lack of fundamental understanding of the protection mechanisms themselves, insufficient
understanding in necessary programming languages (such as Python), and inadequate debugging
skills to troubleshoot issues. These technical components are crucial for successful implementation
of protection methods, yet their complexity also acts as a significant barrier, preventing widespread
adoption by the general public.

The user-centric nature of existing data poisoning methods inherently conflicts with privacy regula-
tions such as the General Data Protection Regulation (GDPR) [35]. The GDPR places the duty for
privacy protection on service providers (i.e. model owners) to ensure a user’s request. However, data
poisoning approaches are ill-suited for service providers to fulfill this responsibility. These methods
typically operate at the individual image level, requiring modifications to user data before they interact
with the model. Service providers, in contrast, primarily manage the model itself. This operational
disparity highlights why such user-side defenses are impractical for providers, underscoring the
critical need for alternative approaches. To alleviate this, we propose a novel framework APDM,
which empowers service providers to effectively manage and enforce anti-personalization directly
within their systems, aligning with their responsibilities under privacy regulations and enabling a
more scalable and reliable means of privacy protection.

G Limitation and Broader Impacts
In this work, we focused on protecting the personalization of a specific subject at the model level.
APDM offers a significant step towards more robust and practical privacy protection in personalization
of diffusion model. By enabling direct, model-level anti-personalization, it empowers service
providers to better comply with privacy regulations and reduces the burden on individual users to
protect their own data. This could foster greater trust and safer use of powerful generative models in
various applications.

While APDM effectively safeguards personalization for a single subject, real-world scenarios often
require the protection of multiple subjects simultaneously. Additionally, there may be a need to
incorporate protection for new subjects into models that are already safeguarded. Addressing these
challenges presents an opportunity for future research, including multi-concept personalization
protection and continual personalization safeguarding.
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Justification: We discuss the limitations of our work in the Supplementary Material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We describe detailed derivations of each component in the Supplementary
Material.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the details of each component, such as dataset, environment setup,
parameter setting, version of SD, and any other details, in Section 5.1 in our main paper to
ensure the reproducibility of our experiments. Furthermore, we also represent the ablation
results for various hyper-parameters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We did not use any private data. Therefore, all data used in this paper is publicly
accessible. Our code is not yet publicly available but will be released upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the details in Section 5.1 in our main paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Although standard deviations are not explicitly reported in our tables, all
presented results represent the average performance across multiple sets to ensure reliability.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the environments setup, such as GPU, in Section 5.1 in our main
paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed the NeurIPS Code of Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broad impacts of our work in the Supplementary Material.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We consider the task about safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited all the different methods, models, and data used as baselines in
our experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We propose a novel framework and loss functions for anti-personalization.
Furthermore, we also provide the details for training setting.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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