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ABSTRACT

Matrix factorization is a popular method to investigate the hidden elements in ob-
served data for tasks such as speech separation and muscle synergy analysis. The
hidden elements may be closely related to the source phenomenon that cause the
observed phenomenon. However, conventional methods do not always factorize
the observed phenomenon elements with the connectivity between the observed
and source phenomena because they only use the observed phenomenon. This
paper proposes a matrix decomposition method that constrains the connectivity
between observed and source data by using the representations from a decoding
model from source data to observed data. The proposed method factorizes matri-
ces by extracting and combining representations and weights from the regression
model in the regression process. We applied our method to the corticomuscular
system, which is made up of corticospinal pathways between the primary motor
cortex and muscles in the body and creates muscle synergies that enable efficient
connections between the brain and muscles. In this context, muscle activities are
the observed phenomenon and brain activities are the source. Many previous stud-
ies have analyzed muscle synergies using only observed muscle activity, but there
may be unrevealed muscle synergies under the constraint of the connectivity be-
tween brain and muscle activity. We therefore simultaneously recorded the brain
activity from multiple regions of an extensive cortical area and the activity of mul-
tiple muscles of a monkey’s forelimb while it performed a reach and grasp task
throughout the course of recovery from a partial spinal cord injury (SCI). Analysis
from a dataset of the monkey before SCI showed that some of the muscle syner-
gies calculated from the proposed method using brain and muscle activities, did
not exhibit a high degree of similarity to synergies obtained from the conventional
method. The proposed method results obtained from the monkey after SCI showed
an adaptive change in the number of muscle synergies associated with the degree
of functional recovery. Specifically, the numbers of muscle synergies obtained by
the proposed method initially increased immediately after SCI and then gradually
decreased, while those obtained by a conventional method maintained the same
number before and after SCI. These results suggest that our method is able to cap-
ture the unrevealed connectivity in the corticomuscular system that contributes to
functional recovery: in other words, that it can factorize the observed data under
the constraint of the connectivity between the observed and source data. Our work
thus demonstrates the importance of using not only observed data but also source
data to reveal unknown hidden elements.

1 INTRODUCTION

As human beings, we observe a complex mixture of real-world events as phenomena, and each
observed phenomenon contains elements of the events in the real-world. For example, the sounds
we hear may contain the one voice we are listening to, the voices of other speakers, and various
environmental sounds. Separating the elements in the observed phenomena helps us to understand
the events individually. Matrix factorization is used to investigate the elements in observed phe-
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nomena. For example, a specific speech sound can be extracted from a sound containing a mixture
of multiple sounds (Smaragdis, 2007), the appropriate recommendation can be calculated from a
customer’s purchase history (Li et al., 2006), and muscle synergies can be extracted from multiple
muscle activities (Shourijeh et al., 2016).

In some cases, the observed phenomenon is caused by a functional connection with the source phe-
nomenon. This connectivity is a functional connection that causes an observed phenomenon from a
source phenomenon, and the factors of connectivity include such as human connections and anatom-
ical connections. In the case of muscle synergy analysis, the corticospinal pathways between the pri-
mary motor cortex and muscles function as a corticomuscular system (Liu et al., 2019), and cortical
events normally propagate to the peripheral muscles. Studies on humans and monkeys have reported
that brain and muscle activity are closely associated with cortico-motoneuronal connections(Lemon,
2008; Baldissera & Cavallari, 1993; Lemon & Griffiths, 2005). In this case, muscle activities are the
observed phenomenon and brain activities are the source. The corticomuscular system enables us to
perform complex body movements by neurologically combining sets of simpler movements. These
sets are observed as the basic pattern of muscle activity, namely, muscle synergies. Muscle activity
can be observed by using electromyography (EMG), a technique that reveals bioelectric potential
signals. Since the framework of conventional matrix factorization uses only observed data to factor-
ize observed data, it might not factorize the observed phenomenon elements with the connectivity
between the observed and source phenomena.

We have therefore developed a method to capture the elements in the observed data by considering
the connectivity between both the observed data and the source data. Our basic idea is to use the
representations in a deep neural network (DNN) model to predict the observed data from the source
data. In this paper, we assume both source and observed data can be measured. Specifically, the
factorized matrices can function as an activation scalar value and a vector of weights for the observed
data at each sample. We can then obtain the factorized matrix under the connectivity constraints
between the observed and source data by extracting these values.

In this paper, we report the results of applying the proposed method to muscle synergy analysis.
As stated earlier, the corticomuscular system is composed of corticospinal pathways between the
primary motor cortex and muscles (Liu et al., 2019), and we can consider the muscle activities as
observed data and the brain activities as source data. To obtain brain activities closely related to mus-
cle activity, we simultaneously measured a monkey’s brain signals using both electrocorticography
(ECoG) and electromyography (EMG). We measured the muscle and brain activities of a monkey
before and after partial spinal cord injury to investigate the potential of the proposed method under
the conditions of a stable and a dynamically changing nervous system.

Our main contributions are as follows.

• We show a novel matric factorization framework under the constraint of connectivity be-
tween both observed data and source data, in contrast to the conventional approach that
uses only observed data.

• We propose a method that utilizes a model representation to predict the observed data from
the source data as a factorization matrix.

• We demonstrate the potential of the proposed method to capture unrevealed matrix factors
by applying it to muscle synergy analysis with a comparison to the non-negative matrix
approach.

2 RELATED WORKS

Matrix Factorization in Statistics: One approach taken in statistics is to factorize the data by ex-
tracting the components that best represent the variation in the data. Principal component analysis
(PCA) is typically used for this, where the dimensionality-reduced data representation is a factor-
ized matrix (Lee & Seung, 1999). Another approach is to separate independent components by
assuming that the data contains multiple data originating from independent sources. Independent
component analysis (ICA) separates signals by independence on the basis of higher-order statistics
or temporal correlations (Comon, 1994). The fast fixed-point algorithm for independent component
analysis (FastICA) was proposed as a method to improve the convergence of ICA (Hyvärinen & Oja,
2000). Non-negative matrix factorization (NMF) factorizes the matrix and restricts it to be positive
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(Lee & Seung, 2000; Wang & Zhang, 2013). Since the real-world events we observe are often com-
posed of linear sums of non-negative values, they have a high affinity with NMF analysis, so it
has accordingly been used in a variety of applications (Rajapakse & Wyse, 2003; Smaragdis, 2007;
Shourijeh et al., 2016). One study on muscle synergy analysis showed that NMF is the most popular
method for analysis (Rabbi et al., 2020). However, these methods factorize the observed data using
only the observed data.

Deep Matrix Factorization: The deep matrix factorization approach has shown promise in studies
that focus on interpretability. Several methods to improve the interpretability by using representa-
tions in an autoencoder process as multi-factorized matrices have been proposed (Ye et al., 2018;
Song et al., 2015; Wang & Zhang, 2021). To ensure meaning in the multilayered factor matrix,
Trigeorgis et al. (2014) proposed a method that pre-trains each layered factor matrix to represent
elements such as facial pose, expressions, and identity. Sparseness is also essential to capture the
essence of the data. Chang et al. (2021) proposed making the factorized matrix sparse in not only
decoding but also encoding. One concept similar to our own is the use of implicit feedback (e.g.,
purchase history and unobserved ratings) in recommendation systems (Xue et al., 2017). While we
feel that such feedback can contribute to improving accuracy, it is not the same as a source phe-
nomenon. And technically, there are few approaches for matrix factorization to use both parameters
in the regression process and the weights inside the model.

Applications: There are a variety of general applications of the matrix factorization approach. In
the biological field, metagenes and molecular pattern discovery have been studied by applying NMF
(Brunet et al., 2004; Devarajan, 2008). In the engineering field, image processing tasks such as
face recognition (Rajapakse & Wyse, 2003), acoustic processing (e.g., speech-music separation)
(Smita et al., 2007), and speech separation (Chien & Chen, 2006) have been studied. As for medical
applications, fetal heart rate determination has been explored (Szalai & Mozes, 2014). In the kine-
matics and kinetics field, muscle synergy analysis is a significant application of matrix factorization
Shourijeh et al. (2016). Matrix factorization has also been applied to community structure detection
(e.g., social networks, collaboration networks, and citation networks) to study interaction (Ye et al.,
2018).

3 MATRIX FACTORIZATION UNDER CONSTRAINTS BETWEEN OBSERVED AND
SOURCE DATA

Suppose that the observed data are arranged as a matrix Y = [y1, . . . ,yT ]
T ∈ Rn×T , which

is n channels sampled T times in time series. The observed vector at time t represents yt =
[y1t , y

2
t , . . . , y

n
t ]. The goal of the proposed method is to approximately factorize the observed data as

Y ≈ V U . (1)

where V = [v1, . . . , vr]
T ∈ Rn×r and U = [u1, . . . ,ur] ∈ Rr×T are the factor matrices to

reconstruct the matrix Y , and r is the number of factorized components. Suppose the source data
is the m channels sampled T times in time series, and the source data at time t is represented as
the matrix Xt = [x(1,t), . . . ,x(m,t)] ∈ Rm×T , which is m channels sampled T times in time series.
Considering the time difference (τ ) between observed and source data, the vector of source data
at time t consists of data from time t to t − τ . The i-th source data vector at time t is x(i,t) =
[x(i,t), x(i,t−1), x(i,t−2), . . . , x(i,t−τ)].

The basic idea underlying the factorization of matrices under constraints between observed and
source data is to factor matrices from a model that includes connectivity constraints between ob-
served and source data. We obtain this model by constructing a DNN prediction model from the
source data to the observed data, where the factorized vectors v and u can be assigned as the weight
for each channel of observed data and the activation for the weights, respectively.

3.1 FRAMEWORK AND ARCHITECTURE

We designed a regression model M that computes the observed data yt from the source data Xt.
As shown in the Fig. 1, the representation in the model is designed to contain activation (scalar) and
weights (vector).
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Figure 1: Network architecture of proposed method. Activation (scalar) ut is obtained from the
Sigmoid layer. Vector v is obtained from the weights in the Linear layer.

It is not only the source data that contributes to the factorization at time t; data over a certain
time range up to t is also considered to be involved in some cases. Temporal convolutional networks
(TCN) have outperformed recurrent networks such as LSTM and GRU (Bai et al., 2018) for handling
multi-channel time-series data and have been applied to gesture recognition using muscle activity
(Rahimian et al., 2021; 2022). Inspired by such research, we utilize TCN to incorporate the time-
series features in our method.

TCNet: We implement TCNet as the TCN in the regression model to capture the
features from sequence data. As in (Bai et al., 2018; Rahimian et al., 2021; 2022),
the TCNet layer consists of a sequence of TBlock layers, as shown in Fig. 2.

Figure 2: Architecture of temporal convolutional
network.

The TBlock is the dilated causal convolution,
with the dilation factor exponentially increased
(1, 2, 4, ...) and the number of filters c and the
kernel size k. Each TBlock consists of two re-
peated sequences consisting of extended causal
convolutions (“DCconv”), weight norm, ReLU
and Dropout, and finally a residual connection.

The parameters for TCNet are the number of fil-
ters c, the kernel size k, and the number of di-
lations d. When d is set to three, the dilation of
TBlock is 1, 2, and 4 sequentially. This layer
outputs a matrix ∈ R(c×r) to Mean for each in-
put data Xt.

Mean, Scalarization, and Sigmoid layers: We
designed these layers so that the captured fea-
tures from TCNet would have a positive scalar
value (activation ut). The Mean layer calcu-
lates a vector (Rc) by averaging each filter’s re-
sult. The Scalarization layer is a linear layer to
calculate a scalar value from a vector. The Sigmoid layer is set to keep the computed scalar value ut

within a positive range. This scalar value ut is calculated at each time by sliding the window of the
source data.

Linear layer: The Linear layer inputs a positive scalar value and calculates the reconstructed ob-
served vector ŷt = [ŷ1t , ŷ

2
t , . . . , ŷ

n
t ] as

ŷt = utw, (2)

where w = [w1, w2, . . . , wn] is the weight for each element of an observed vector. When acquiring
a vector of non-negative weights, the weights are clipped so that they are between 0 and 1 during
training.

3.2 MATRIX FACTORIZATION THROUGH REGRESSION CALCULATIONS

First, the regression model M is trained using Xt and yt t ∈ (1, . . . , T ). Similar to the previous
approach, (Shourijeh et al., 2016; Rajapakse & Wyse, 2003), the proposed matrix factorization is
verified by the restoration degree of the observed data, so there is no need to separate source and
observed data into training and test data. The regression model M predicts the observed data yt

from the source data Xt as M(Xt). An activation ut is obtained from the representation (scalar)
from the layer of Sigmoid, and a weights vector v is obtained by extracting the weights at the Linear
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layer in a model M. ut is the activation of the component at time t. Xt is a sample extracted from
the time series source data with a τ -width time window. When the window locates at t = 1, X1

is extracted from the time series source data. Regression model M inputs X1 and outputs y1, and
u1 is obtained from this calculation process. By sliding the window, regression model M inputs
Xt, t ∈ (1, . . . , T ) and outputs yt, t ∈ (1, . . . , T ). ut, t ∈ (1, . . . , T ) is obtained from each time.
By concatenating ut from each time, we get the activation vector u = [u1, u2, . . . , uT ]. In this way,
we can obtain an activation and a weight vector of a component.

Algorithm 1 Factorization procedure
Input: Xt and yt, t ∈ {1, . . . , T}, and r.
repeat

Update parameters in Mi, i ∈ {1, . . . , r}
Clip w in Linear: 0 < w < 1

until objective function is converged
ui ⇐ [ut], t ∈ {1, . . . , T} from Sigmoid in Mi

vi ⇐ w from Linear in Mi

V ⇐ [vi], i ∈ {1, . . . , r}
U ⇐ [ui], i ∈ {1, . . . , r}
Output: Ŷ = V U

Algo. 1 explains the factorization procedure.
The reconstructed observed data ŷt can be more
accurately reconstructed by ensembling M as

ŷt =

r∑
i=1

Mi(Xt). (3)

where r is the number of factorized components
and Mi is the i-th model. In computing ma-
trix factorization, the number of components
r needs to be given. The appropriate number
of factorized components r is determined ac-
cording to evaluation indices such as the degree
of restoration. Mi, i ∈ (1, . . . , r) are trained
in parallel to minimize the objective function
using the same dataset across models. From
each Mi, we obtain the activation vector ui

and the weight vector vi. The factorized matrix V is obtained by combining the weight vectors
as [v1, . . . , vr]. The factorized matrix U is also obtained by combining the activation vectors as
[u1, . . . ,ur]

The objective function is

min L(yt,

r∑
i=1

Mi(Xt)) +R(w) (4)

where L(yt,
∑r

i=1 Mi(Xt)) is the reconstruction loss and R(w) is the regularization term for the
weight. The parameters of the models are updated to minimize the objective function are denoted as
Mi. At each iteration of learning model, each element of the weights is clipped from 0 to 1 to obtain
the positive factors of the matrix. The weight vector w in Mi is used as vi. V and U are obtained
by concatenating of vectors vi and ui, i ∈ {1, . . . , r}, respectively. Reconstructed observed data
Ŷ = [yt], t ∈ {1, . . . , T} is reconstructed by V and U .

4 EXPERIMENT

We applied the proposed method to muscle synergy analysis. As stated in the introduction, our bod-
ies contain corticospinal pathways between the primary motor cortex and muscles that function as
a corticomuscular system (Liu et al., 2019). Normally, cortical events propagate to the peripheral
muscles, and the corticomuscular system enables us to perform complex body movements by neuro-
logically combining sets of simpler movements. These simpler movements are observed as the basic
pattern of muscle activity, namely, muscle synergies. Muscle synergy analysis is designed to capture
this efficient neural connection between the brain and muscle. However, the conventional approach
uses only muscle activities (observed phenomena) to capture the muscle synergies, and there may
still be unexplored muscle synergies that remain hidden. In applying the proposed method to muscle
synergy analysis in this experiment, we consider the muscle activities as the observed phenomenon
and the brain activities as the source phenomenon. To test the proposed method, we measured the
muscle and brain activities simultaneously in a monkey.

4.1 DATA MEASUREMENT

We measured the biopotential signals derived from the muscles and brain activities. The invasively
measured electrocorticographic (ECoG) signal was selected as the brain activity data because it
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contains more detailed brain activity than a non-invasively measured signal. Thus, to obtain both
the brain activity and the muscle activity, we recorded ECoG and electromyographic (EMG) signals
simultaneously from the contralateral hemisphere and the ipsilateral forelimb muscles of a monkey,
respectively.

The monkey used in this experiments was an adult Japanese macaque monkey (Macaca fuscata;
Monkey D: female, 6.0 kg, 7 years old). The Ethical description is in A.1.

Processing: ECoG signals were down-sampled to 500 samples per second, similar to previous works
(Shin et al., 2012; Hidenori et al., 2012). Fourth-order Butterworth bandpass filters were applied to
each ECoG signal, dividing them into multiple specific bands (δ(1.5 − 4Hz), θ(4 − 8Hz), α(8 −
14Hz), β1(14− 20Hz), β2(20− 30Hz), γ1(30− 50Hz), γ2(50− 90Hz), γ3(90− 120Hz) and
γ4(120 − 150Hz)). The nine bandpass filters split each of the 15-channel ECoG signals into nine
signals to produce 135 channels of bandpass-filtered signals. We performed normalization and
smoothing the same as in (Shin et al., 2012; Hidenori et al., 2012). A bandpass filter that passes
a 20–500-Hz frequency was applied to the EMG signals for removing motion artifacts. Bandpassed
signals were then rectified and passed through a fourth-order low-pass filter with a cut-off frequency
of 4 Hz. Finally, the signals were down-sampled to 500 Hz. To account for the nerve signal transmis-
sion delay between brain and muscles, delayed signal values is also used. The value of discrete-time
step-size ∆t is set to 20 ms as in the previous study (Shin et al., 2012). The muscle activity at time t
is predicted using 10 time points starting 200 ms before the target time t. The i-th ECoG data vector
at time t is x(i,t) = [x(i,t), x(i,t−20), x(i,t−40), . . . , x(i,t−200)], and the ECoG data matrix at time t
is Xt = [x(1,t), . . . ,x(135,t)].

Baseline: We utilized non-negative matrix factorization (NMF) as a baseline and used the Python
library scikit-learn. All parameters were set to the same as those for the pre-set.

Metric: Variance accounted for (VAF) is the main metric of the degree of reconstruction and used
to determine the number of synergies (Steele et al., 2013; Delis et al., 2013), where the dimension
of factors is determined when VAF exceeds 0.9. The dimension of factors is used as the synergy
number in some cases (Hug et al., 2010; Frère & Hug, 2012; Chvatal & Ting, 2013). The specific
calculation is decribed in A.4. In our analysis, the similarity of the muscle synergy components
resulting from the two methods (proposed and NMF) is calculated by the cosine similarity of the
weights of the synergies.

Model selection: We performed three times optimization and adopted the model with the largest
VAF because the VAF of the proposed method varies slightly each time.

4.2 MUSCLE SYNERGY ACQUISITION POTENTIAL USING ONLY MUSCLE ACTIVITY
(CONVENTIONAL FRAMEWORK)

Figure 3: VAF of proposed and NMF methods
for each number of synergies. In the proposed
method, we experimentally explored the number
of filters from [1, 1] to [128, 128].

First, we examined the proposed method’s
availability of muscle synergies by using only
muscle activities (conventional framework).
The muscle synergies were determined based
on the degree of reconstruction (VAF) and the
number of synergies. Theoretically, as the num-
ber of synergies increases, the VAF becomes
higher because the reconstruction accuracy im-
proves. Researchers have shown that the VAF
of NMF increases with the increase of the num-
ber of muscle synergies in the case of us-
ing only muscle activities (Rabbi et al., 2020;
Gui & Zhang, 2016). If the proposed method
can calculate muscle synergies by factorizing
the input matrix, the VAF should increase with
the number of muscle synergies. We tested the
VAF of the proposed method to see if it would
increase and exceed 0.9, as the number of syn-
ergies increases only when using muscle activ-
ity. The proposed method inputs an EMG vec-
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tor yt = [y1t , . . . , y
14
t ], and the output is also supposed to be yt without changing the architecture as

following

ŷt =

r∑
i=1

Mi(yt). (5)

We used data from a one-day experiment that included 90 trials in the intact state (no neurological
disorders). In the proposed method, the number of filters c of the temporal convolutional networks
in the activation layer is a key parameter to determine the potential of synergy acquisition. Thus,
we experimentally tested eight types of filters here: [1, 1], [2, 2], [4, 4], [8, 8], [16, 16], [32, 32],
[64, 64], and [128, 128]. The vector length of the number of filters is the number of dilations in the
temporal convolutional network, which is two in all eight types. For example, in the case of [8, 8],
the first“8”is the number of filters at the first dilation, and the second“8”is the number of filters
for the second dilation.

Figure 3 shows the VAF results of the proposed method (eight different numbers of filters) and
NMF by increasing the synergy number for the same data. Most of the VAF results calculated by the
proposed method increased with the synergy number, as did those of NMF. The dashed horizontal
line indicates a VAF of 0.9, which determines the muscle synergy number. For the same number
of muscle synergies, VAF tended to be higher for a larger number of filters. By confirming that
VAF increases with increasing the number of synergies, we verified the possibility that the proposed
method can analyze muscle synergies.

4.3 NUMBER OF FILTERS

Figure 4: Muscle synergy analysis by factoriza-
tion using brain and muscle activities in the pro-
posed method.

We also tested whether the proposed method
can acquire muscle synergy under connectivity
constraints between brain and muscle activity.
Fig. 4 shows the VAF per muscle synergy num-
ber for the proposed method and NMF. Most
of the proposed method’s VAF values increased
with the number of muscle synergies not de-
pending on the number of filters. The higher
number of filters tended to make VAF higher.

We can see that the determined number of mus-
cle synergies, where VAF exceeds 0.9 at first,
depends on the number of filters. At the num-
bers of filters [32, 32] and [64, 64], the deter-
mined number of muscle synergies is eight. At
the number of filters [128, 128], the determined
number of muscle synergies is six. Defining the
number of filters depends on how the muscle
synergies are used. To compare the components
of muscle synergies from the proposed method
and NMF, we set the number of filters to [32, 32], which is the minimum number of filters when the
number of muscle synergies is eight.

4.4 COMPARISON OF MUSCLE SYNERGY COMPONENTS

We examined whether the proposed method can capture the unrevealed muscle synergy components
that are difficult for the conventional approach to extract. As a muscle synergy component, a vector
of weights and activations is obtained from a muscle synergy. A, B, and C in Fig. 5 respectively
indicate the eight components from the proposed method using only EMG, NMF, and the proposed
method using ECoG and EMG. The left panels in the figure show the weight of the muscles of
each synergy, while the right panels show the activation of each synergy, which is calculated by
averaging all trials. To compare the similarity of each component, we calculate the similarity matrix.
D in Fig. 5 shows the similarity matrix using the weights from these three approaches. The upper
panel in D shows the similarity matrix of the weights between the proposed method (only using
EMG) and the NMF method, while the lower panel in D shows that between the proposed method
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Figure 5: Weights and activations of muscle synergy components from the proposed method (using
only EMG), NMF (using only EMG), and the proposed method (using EMG and ECoG).

using ECoG and the EMG and NMF methods. Using only EMG data, the similarity of almost all
components of muscle synergy was close to 1, meaning that they were all identical for the proposed
and NMF methods. The averaged computation times of the proposed method (basically using GPU:
NVIDIA RTX3090) and NMF (CPU: AMD Ryzen Threadripper 3970X) are 6209.3 sec and 12.0
sec, respectively. The computational complexity of the proposed method is higher than that of the
NMF. The low similarity of synergies of 6 in both the proposed method (using only EMG) and NMF
may have been due to the high degree of freedom of activation in the proposed method. As a result,
synergies 4 and 7 of the proposed method represent the corresponding synergies in NMF, while also
representing synergy 6 in NMF by the cooperative activation of the two synergies. It may be possible
to solve this problem by setting a constraint term such that the activation acts independently between
the synergies.

Some of the similarities between the proposed components (using ECoG and EMG) and NMF did
not exhibit a high degree of similarity. For example, the similarities of the proposed method’s
synergy 1 and 2 to synergy 1 in NMF were 0.76 and 0.82, respectively. The results indicate that
the proposed method separates synergy 1 of NMF into two synergies. These separated components
may be the result of capturing the connectivity between brain and muscle activities. The same can
be said for synergy 2 and 3 of the proposed method.

4.5 ADAPTIVE CHANGE ANALYSIS

We next investigated whether the proposed method can capture the adaptive change of muscle syn-
ergy components during nervous recovery. First, brain and muscle activity was measured from an
intact (no neurological disorders) monkey. Then, we performed partial SCI surgery on the monkey
and measured its activity for 30 days (not every day) after the surgery. We explored the number of
components of each of the experiment days in the proposed and NMF methods.
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Figure 6: Number of components (upper panel) and task precision (lower panel) in each day. The
numbers of components of the proposed and NMF methods are plotted in red and blue lines, respec-
tively, in the upper panel. The days depicted by the red dashed lines are those for which no muscle
synergy was computed below 14. The vertical dashed green line indicates the SCI surgery day.

Figure 6 shows the number of components (upper panel) and task precision (lower panel) in each
day. We can see the precisions during the intact period were almost 100 %, then moved to nearly 0
% for a month after the surgery, and then improved to around 80 % after three months. These results
suggest that the monkey performed the task before the surgery based on the pathways between the
brain and muscles acquired so far. Immediately after the partial SCI surgery, it was difficult for the
monkey to use the pathways because many of the previously acquired pathways were disconnected
and it was more difficult to move the upper limb. The monkey regained the function to perform the
task by adaptively changing the pathways using the residual nervous connections, and improved the
precision of the task. The numbers of components of the proposed and NMF methods are plotted in
red and blue lines, respectively. The days dashed in red (proposed) are days where muscle synergy
was not calculated below 14 (the number of measured muscles).

The numbers of components of NMF’s muscle synergy were stable both before and after SCI (Fig.
6). While those of the proposed method were similar during the intact period, they exceeded 14
about a month after the surgery and then gradually decreased and converged around three months
after the surgery. We presume that the number of components increased immediately after the
surgery because the monkey could not use the pathways obtained so far, and had to use the residual
pathways (not sophisticated). The number of components decreases and converges in the adaptive
change of the nervous system, so the transition of the proposed method’s results might be explainable
from the neurological point of view. This result indicates that the proposed method can potentially
be used to analyze muscle synergy with adaptive nervous change, which is difficult to extract in the
conventional approach.

5 CONCLUSION

In this paper, we proposed a matrix factorization method under the constraint of connectivity be-
tween observed and source data. The core idea of our method is to use the representation in a model
that predicts the observed data from the source data as a factored matrix. Applying the proposed
method to muscle synergy analysis using a monkey’s brain and muscle activities demonstrated its
potential to reveal unknown muscle synergy components, which are difficult for the conventional
approach to capture. Specifically, the proposed method’s transitions of the number of components
after partial SCI surgery indicated the adaptive changes in the corticomuscular system. Through
two analysis experiments, we demonstrated the importance of using not only observed data but also
source data to extract the elements hidden in observed data, and showed that the proposed method’s
potential to capture these hidden elements.
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A APPENDIX

A.1 ETHICS

All animal experimental procedures were performed in accordance with the guidelines of the Na-
tional Institute of Health and the Ministry of Education, Culture, Sports, Science, and Technology
of Japan, and were approved by the Institutional Animal Care and Use Committee of the Tokyo
Metropolitan Institute of Medical Science (Approval No. 18034). The monkey was monitored
closely, and animal welfare was assessed daily or, if necessary, several times a day.

A.2 ECOG AND EMG SIGNALS

We implanted a 15-channel grid electrode array in which the diameter of each electrode was 1 mm
and the inter-electrode distance was 5 mm (Unique Medical, Japan) beneath the dura mater. To im-
plant the grid electrode array on the cortical surface over the sensorimotor cortex, the cortices around
the arcuate sulcus and the central sulcus on the right side were exposed by a craniotomy. As to the
muscle activity, electrodes were implanted in 14 muscles of the left forelimb: three elbow muscles
[triceps brachii (TRI), biceps brachii (BB), brachialis (BR)], five wrist muscles [extensor carpi ra-
dialis (ECR), extensor carpi ulnaris (ECU), flexor carpi radialis (FCR), flexor carpi ulnaris (FCU),
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palmaris longus (PL)], five digit muscles [extensor digitorum communis (EDC), extensor digito-
rum 4,5 (ED45), flexor digitorum superficialis (FDS), flexor digitorum profundus (FDP), abductor
pollicis longus (APL)], and one intrinsic hand muscle [adductor pollicis (ADP)]. ECoG and EMG
signals were recorded simultaneously using a CerebusTM data acquisition system (BLACKROCK
MICROSYSTEMS, Utah, USA) at a sampling rate of 2,000 Hz.

A.3 BEHAVIOR TASK

The monkey performed the task of reaching and grasping for a piece of food multiple times in
one experimental day. On each day, the decision to perform the measurement experiment and the
number of trials were determined on the basis of the monkey’s condition. In total, we conducted the
measurement experiment for 41 days. Each recording session consisted of ˜100 trials.

A.4 VAF CALCULATION

Variance accounted for (VAF) is a metric of the degree of reconstruction. This calculation
uses true value vectors ym = [ym1 , . . . , ymT ],m ∈ (1, . . . , 14) and reconstructed vectors ŷ =
[ŷm1 , . . . , ŷmT ],m ∈ (1, . . . , 14), where m is the number of measure muscles. The VAF is calcu-
lated as following

V AF = 1−
∑14

m=1 V ar(ym − ŷm)∑14
m=1 V ar(ym)

, (6)

where V ar(ym − ŷm) is the variance of ym − ŷm, the square of the standard deviation. V ar(ym)
is the variance of ym.
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