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1. Introduction

Optimal Transport is a widely used technique for distribution alignment, providing a rigor-
ous framework to learn a transport plan that moves mass from one distribution to match
another. It is playing an increasing role in machine learning, due to applications in transfer
learning (Alvarez-Melis and Fusi, 2020), domain adaptation (Courty et al., 2017), genera-
tive modeling (Arjovsky et al., 2017; Bousquet et al., 2017), generalization bounds (Chuang
et al., 2021), and imitation learning (Luo et al., 2023). In symmetry-rich settings, however,
OT alignments based solely on pairwise geometric distances can ignore the intrinsic coher-
ence structure of the data (e.g., labels in supervised settings). For example, in an image
dataset with rotational symmetries, naive OT on the raw features can match images based
upon orientation, rather than the shape of the object depicted. Thus, we seek a transport
plan that is symmetry-aware: one that compares distributions in a way that is invariant to
natural transformations of the data while retaining selectivity to informative structure.

We introduce Bispectral Optimal Transport (BOT), a symmetry-aware extension of dis-
crete OT that compares elements through their representation under the bispectrum—a
complete invariant from group Fourier analysis that simultaneously encodes signal struc-
ture and invariance to group actions (Kakarala, 1993), first introduced to machine learning
by Kondor (2007). By computing couplings in this bispectral embedding, BOT produces
correspondences that are invariant to transformations induced by symmetry groups acting
on the data, without discarding discriminative information. To the authors knowledge, this
is the first work that encodes symmetry awareness into OT, with a more extended discus-
sion of related work included in Appendix A. We demonstrate that BOT better preserves
label information than standard OT on datasets augmented via symmetry transformations,
effectively encoding relevant symmetries in the learned transport plans. This is critical in
settings where the symmetries acting on the two distributions do not align: for example,
matching images captured by cameras at different poses or orientations. In such cases, we
want the comparison to reflect the distribution of semantic labels rather than the distribu-
tion of camera angles; BOT achieves this and substantially outperforms standard OT on
datasets perturbed by synthetic transformations.

2. Background

Optimal Transport Optimal transport provides an elegant mathematical framework for
aligning probability distributions (Villani et al., 2008). At a high level, OT seeks to transfer
probability mass between distributions while minimizing a cost function of transportation,
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yielding a notion of distance from the coupling. We are interested in the problem’s discrete
formulation, which considers two finite collections of points {x(i)}ni=1 ∈ X n and {y(j)}mj=1 ∈
Yn represented as empirical distributions: µ =

∑n
i=1 piδx(i) , ν =

∑m
j=1 qjδy(j) where p and

q are probability vectors (non-negative and sum to one). Given a transportation cost C ∈
Rn×m (also known as the ground metric) between pairs of points (e.g., Cij = ∥xi−yj∥), OT
finds a correspondence between µ and ν that minimizes this cost. Formally, Kantorovich’s
formulation of optimal transport (Kantorovich, 1942) finds a coupling Γ ∈ Rn×m that solves

OTc(µ, ν) = min
Γ∈Rn×m

+

⟨Γ, C⟩ s.t. Γ1 = p, Γ⊤1 = q. (1)

This coupling Γ can be interpreted as a soft matching between elements of µ and ν, in
the sense that Γij is high if x(i) and y(j) are in correspondence, and low otherwise. In
practice, the entropic-regularized Sinkhorn distance (Cuturi, 2013) is widely used, as it can
be solved more efficiently via the Sinkhorn-Knopp algorithm. Specifically, the Sinkhorn
distance solves minΓ∈Π(p,q)⟨Γ, C⟩ − ϵH(Γ), where H(Γ) = −

∑
ij Γij log Γij is an entropic

regularizer that smooths the transportation plan.

Bispectrum and Group-Invariant Fourier Embeddings We encode symmetries via
the bispectrum, a Fourier invariant that is complete, removing specified group actions while
preserving relative phase structure. To do this, we describe the group Fourier Transform
(Rudin, 2017), with additional background deferred to Appendix B. Let f : G → C be a
signal on a group G with set of irreducible representations Irr(G). The Generalized Fourier
Transform (GFT) is the linear map f 7→ f̂ , where the Fourier frequencies are indexed by
ρ ∈ Irr(G), defined in the discrete case as

f̂ρ =
∑
g∈G

f(g)ρ(g). (2)

In particular, for G = Z/nZ, the ρ(g) are the n discrete Fourier frequencies: ρk(g) =
e−i2πkg/n, for k = 0, . . . , n− 1 and g ∈ Z/nZ. For translation by t ∈ G, defined as f t(x) :=
f(t−1x), the GFT, like the classical FT, obeys the Fourier shift property : f̂ t

ρ = ρ(t)f̂ρ. This

equivariance is exploited in the well-known power spectrum qρ = f̂ †
ρ f̂ρ, which is invariant to

translation but discards relative phase, losing structural information.
The bispectrum is a lesser known Fourier invariant restoring this structure. For 1D sig-

nals f ∈ Rn with Fourier coefficients f̂ = (f̂0, . . . , f̂n−1), the translation-invariant bispectrum
is the complex matrix B ∈ Cn×n with entries

Bi,j = f̂if̂j f̂
†
i+j (mod n), (3)

which is invariant to phase shifts due to translation, but does so while preserving the signal’s
relative phase structure. For compact commutative groups, the bispectrum is defined as

Bρi,ρj = f̂ρi f̂ρj f̂ρiρj . (4)

The non-commmutative bispectrum (Appendix C) is defined analogously, but accounts for
matrix-valued irreps. Foundational work (Kakarala, 1993) shows that the bispectrum is
the lowest-degree spectral invariant that is complete: it factors out specified group actions
without losing signal structure. In labeled image datasets, this yields invariance to natural
transformations (e.g., rotations) while preserving shape information—exactly the behavior
required for symmetry-aware OT.
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3. Bispectral OT

The Bispectral OT framework combines the symmetry-invariant properties of the bispec-
trum with the alignment capabilities of OT. The key idea is to compute an OT plan on
symmetry-aware bispectral features, ensuring that the resulting correspondence respects
the symmetries of the underlying data. Concretely, we propose a framework to construct
the bispectral representation of grids (e.g., images) acted on by SO(2), the group of planar
rotations. For many non-commutative groups like SO(3), bispectral feature embeddings
as described in Kondor (2007) become computationally prohibitive for OT settings, which
require us to compute and store a pairwise cost matrix between all bispectral features. The
selective G-bispectrum (Mataigne et al., 2024) reduces this complexity, but it is unclear
whether distances between its compressed features are expressive enough of global geome-
try for OT. Balancing efficiency with faithful geometry remains the central challenge. The
rotation-invariant features are constructed as follows:

1. Convert each M ×N pixel image into a discretized polar representation of size R×K
(where R is the number of radial bins and K the number of angular bins).

2. For each fixed radius r, extract the 1 ×K angular slice and compute its 1D discrete
Fourier transform (DFT) along the angular dimension (fr(θ1), . . . , fr(θK)).

3. Compute the bispectrum of each slice. Since cyclic shifts of the angular dimension
correspond to actions by Z/KZ (i.e. discrete rotations), the bispectrum provides
invariance to such transformations. Concretely, this maps our R ×K polar image to
CR×K×K by mapping each DFT

(fr(θ1), . . . , fr(θK)) 7→ (fr(θi)fr(θj)fr(θi + θj)
†)i,j∈1,...,K .

4. Concatenate the bispectral features across radii to obtain a global SO(2)-invariant
representation of the image.

These bispectral representations are used as inputs to the OT problem, using pairwise
distance as cost. By aligning data in this invariant feature space, BOT computes transport
plans that respect rotational symmetries, removing nuisance variation not affecting class or
content while preserving the structural relationships needed for meaningful correspondences.

4. Experiments

Understanding the Geometry of Bispectral Feature Space We conduct prelimi-
nary experiments on rotated mnist (Deng, 2012) to visualize the geometry of bispectral
features. Figure 1 shows 2D MDS embeddings of raw pixel and bispectral representations.
While pixel space scatters rotated digits uniformly, the rotation-invariant bispectral space
clusters them by label. Moreover, rotationally symmetric digits (e.g., 6 and 9) are brought
closer in bispectral space, and the digit with the most rotational symmetries (0) yields the
most tightly-packed cluster, while others with fewer symmetries (e.g., 2) are more spread
out (Subfigure 1(a)). Appendix E details configurations and additional distance statistics
for raw and bispectral features.

Evaluating Bispectral OT We evaluate the performance of Bispectral OT using four
benchmarks for classification: themnist, kuzushiji-mnist (kmnist), fashion-mnist (fmnist),
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(a) 1 Digit per Class, rotated by Z/40Z (b) 10 Digits per Class, rotated by Z/40Z

Figure 1: MDS visualization of raw and Z/40Z-bispectral features for rotated mnist digits

and emnist datasets (Deng, 2012; Clanuwat et al., 2018; Xiao et al., 2017; Cohen et al.,
2017). Details about the datasets and experimental setup are included in Appendix D and
F, respectively. We split each dataset in half, applying rotations sampled uniformly at ran-
dom to the first half of images and leaving the second half unrotated. We then compute
the optimal transport plan using naive OT and BOT from the rotated images to the unro-
tated images using various pairwise distances in the latent embedding space as the ground
metric for OT. To convert the OT plan into a mapping, we assign each source image to
the target class receiving the largest transported mass under its row of the coupling Γ:
ŷi = argmaxk∈{1,...,K}(ΓH)i,k, where H is the one-hot encoding of the labels. Table 1 mea-
sures the fraction of images that are mapped to a image of the same class in each dataset
under each coupling, showing the greatly improved ability of BOT to preserve semantic la-
bel structure on datasets transformed with rotation. Statistics for raw OT using all metrics
and more detailed confusion matrices with per-class matching statistics are in Appendix F.

Table 1: Class preservation accuracies for raw pixel OT vs. Bispectral OT

Matching Unrotated to Rotated Baseline (Unrotated to Unrotated)
Dataset OT Bispectral OT OT Bispectral OT

(L1) L1 L2 L2
2 cos (L1) L1 L2 L2

2 cos

mnist 0.3297 0.8405 0.8020 0.8155 0.8155 0.9725 0.8603 0.8242 0.8329 0.8329

kmnist 0.2420 0.7815 0.7225 0.7354 0.7354 0.9724 0.8143 0.7468 0.7597 0.7597

fmnist 0.3003 0.7617 0.7662 0.7319 0.7319 0.8726 0.7982 0.7913 0.7576 0.7576

emnist 0.1969 0.5983 0.5693 0.5693 0.5716 0.8754 0.6416 0.6032 0.6032 0.6054

5. Discussion

In this work, we propose Bispectral OT, a symmetry-aware extension of optimal transport
that computes distribution-wise distances and correspondences from bispectral representa-
tions of data invariant under group actions. Across benchmarks, we show BOT preserves se-
mantic structure while discarding variability from transformations such as rotations. While
encouraging, open challenges remain about scaling to complex non-gridded structures and
richer groups or measuring distances between bispectral representations that respect their
complex algebraic structure beyond common norms (L1, L2, cos) without losing tractabil-
ity. Overall, Bispectral OT provides a promising direction for symmetry-aware distribution
alignment through OT, with potential applications in transfer learning and dataset compari-
son in symmetry-rich domains, opening the door to a family of transport methods leveraging
algebraic structure to improve robustness and interpretability of dataset comparisons.
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Reproducibility Statement

The code for all experiments can be found at https://anonymous.4open.science/r/

bispectral-ot-8D12/, with the specific configurations (random seeds and hyperparam-
eters) detailed in the appendices.
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Appendix A. Extended Related Works

Representing collections of objects as empirical measures and comparing them via OT
is an active area of research, with costs typically defined directly from features or via
latent embeddings. For example, Muzellec and Cuturi (2018) models objects as elliptical
distributions, and Frogner et al. (2019) represents the embeddings as discrete measures. In
supervised settings, label information can be injected into the cost (Courty et al., 2014;
Alvarez-Melis et al., 2018), and hierarchical formulations address discrete labels (Alvarez-
Melis and Fusi, 2020). We seek to build upon this line of work by using a bispectral
representation of an object to encode symmetries within a dataset.

In another line of work, the theory of the group-invariant bispectrum was primarily
developed in Kakarala (1993, 2009, 2012) for signal processing contexts. The invariant
bispectrum was first introduced to machine learning in Kondor (2007, 2008), utilizing em-
beddings of the non-commutative bispectrum in vision tasks. More recently, Sanborn et al.
(2022) described a neural network architecture using the bispectrum to learn groups from
the data, and Mataigne et al. (2024) introduced an algorithm to reduce the computational
cost of the group bispectrum and other similar invariants. To the authors knowledge, this is
the first work that encodes symmetry awareness into OT, bridging these two lines of work.

Appendix B. Background on Group Representation Theory

We introduce the fundamentals of group representation theory, which serves as the founda-
tion of the theory of the group bispectrum.

Definition 1 (Group) A group (G, ·) is a set G with a binary operation referred to as the
group product that satisfies the following axioms:

1. Closure: For all a, b ∈ G, we have ab ∈ G.

2. Associativity: For any a, b, c ∈ G, we have that (ab)c = a(bc).

3. Identity: There exists some identity element e such that for all g ∈ G, we have
eg = ge = g.

4. Inverse: For every element g, there exists an inverse element g−1 such that gg−1 =
g−1g = e.

Concretely, a group G can define a class of transformations like rotations or translations
in the plane, with each element of the group defining a particular transformation. Groups
that are important to us in this paper include the planar rotation group SO(2), also known as
the special orthogonal group, and its discrete analog, the cyclic group Z/nZ = {0, 1, . . . , n−
1} with group product addition modulo n, which is the group of all rotational symmetries
of a regular n-gon. These groups are commutative or abelian, which means that the order
of operations does not matter: for all a, b ∈ G for G commutative, we have ab = ba. This
is in contrast to non-commutative groups G, where there exists some a, b ∈ G such that
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ab ̸= ba. Examples of non-commutative symmetry group include O(2), the group of all
planar rotations and reflections, SO(3), the group of all 3D rotations, and Dn, the group
of symmetries of an n-gon, which can be viewed as the discrete version of O(2).

Definition 2 (Group Homomorphism) A group homomorphism between two groups G
and H with operations · and ∗, respectively, is a map ρ : G → H that respects the underlying
group structure of G and H, i.e. ρ(u · v) = ρ(u) ∗ ρ(v). If such a map exists, then G and H
are called homomorphic. If such a map is a bijection, it is then called an isomorphism.

Note that isomorphic groups are essentially the same group, but arising in different
contexts. This motivates representation theory, which studies groups via linear actions on
vector spaces, using linear algebra to make abstract structures concrete.

Definition 3 (Group Representation) A representation of a group G is a group ho-
momorphism ρ : G → GL(V ) assiging elements of G to elements of the group of linear
transformations over a vector space V. In most contexts, V is Rn or Cn.

A representation is reducible if there exists a change of basis that decomposes the repre-
sentation into a direct sum of other representations. An irreducible representation cannot
be decomposed in this way, and the set of them Irr(G) are often called the irreps of
G. For all finite groups and compact groups, which is the only classes of groups we will
consider, the irreps consist only of unitary transformations, so throughout this paper, we
assume ρ(g−1) = ρ(g)−1 = ρ(g)† for † the conjugate transpose. For commutative groups,
the irreducible representations are scalars and in bijection with the group elements. This
nice characterization does not extend to non-commutative groups, where the irreducible
representations are matrix valued of variable dimension.

The discussion of using symmetry groups to explain natural transformations in datasets
motivates the definition of a group action, which we provide now:

Definition 4 (Group Action) For G a group and X a set, a group action is a map
T : G×X → X with the following properties:

1. The identity e maps an element x ∈ X to itself: for all x ∈ X,, we have T (e, x) = x.

2. For all g1, g2 ∈ G, we have T (g1, T (g2, x)) = T (g1g2, x).

For simplicity, given a group action T, we often say that a point x maps to gx (= T (g, x)).
Then, if X is a space on which a group G acts, we define the orbit of a point x ∈ X to
be the set {gx : g ∈ G}. In the context of image transformations, the orbit is the set of all
transformed versions of an image. For example, if G = SO(2), the orbit contains all rotated
versions of that image. Using group actions, we can also define the concepts of invariance
and equivariance, which are critical to literature in geometric machine learning.

Definition 5 (Invariance) For sets X,Y , a function f : X 7→ Y is G-invariant if f(x) =
f(gx) for all g ∈ G and x ∈ X. In other words, group actions on the input space have no
effect on the output.
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Definition 6 (Equivariance) For sets X,Y , a function f : X 7→ Y is G-equivariant if
f(gx) = g′f(x) for all g ∈ G and x ∈ X, where g′ ∈ G′, a group homomorphic to G. In
other words, group actions on the input space results in a corresponding group action on the
output space.

The bispectrum of the group G is an example of a G-invariant function, which we exploit
in the representations of images used in the paper.

Appendix C. The Non-Commutative Bispectrum

The bispectrum has an analogous form in the setting of non-commutative groups, but is
adjusted to account for the fact that the irreducible representations of a non-commutative
group are not necessarily one dimensional, unlike in the compact commutative case. This
more general form of the bispectrum is defined to be

βρi,ρj = [f̂ρi ⊗ f̂ρj ]Cρi,ρj

 ⊕
ρ∈ρi⊗ρj

f̂ †
ρ

C†
ρi,ρj , (5)

where ⊕ is a direct sum over irreducible representations, ⊗ is a tensor product, and Cρi,ρj

is a unitary matrix defining a Clebsch-Gordan decomposition on the tensor product of a
pair of irreducible representations (Kondor, 2007).

Appendix D. Dataset Details

Information about the datasets used, including references, are provided in Table 2. mnist
has one class for each digit, kuzushiji-mnist has classes corresponding to distinct cursive
Japanese calligraphy characters, fashion-mnist has classes corresponding to different arti-
cles of clothing, and the letters split of emnist has one class for each letter of the alphabet.

Table 2: Summary of all the datasets used in this work. For all experiments, we normalize
the dataset to have mean 0 and standard deviation 1.

Dataset Input Dimension Number of Classes Train Examples Test Examples Source

mnist 28× 28 10 60K 10K (Deng, 2012)
kuzushiji-mnist 28× 28 10 60K 10K (Clanuwat et al., 2018)
fashion-mnist 28× 28 10 60K 10K (Xiao et al., 2017)
emnist (letters) 28× 28 26 145K 10K (Cohen et al., 2017)

Appendix E. O(2)-mnist Preliminary Experiments

E.1. Experimental Setup

Throughout this paper, we use R = min(M,N)
2 radial bins and K = 40 angular bins in the

discretized polar representation of our images of size M ×N for the sake of computational
feasibility. Thus, the bispectrum we compute is the Z/40Z bispectrum, which is invariant
to group actions that define rotations by 360◦

40 = 9◦. Due to the discrete grid structure of
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features in pixel space, increasing K does not necessarily give us better symmetry-invariant
representations – our discrete polar representation is of size R × K, and reflects at most
M ×N pixels of information. Since R ∼ min(M,N), the number of angular bins must be
on the order of K ∼ max(M,N), which in the case of mnist, is M = N = 28.

To construct the 2D MDS embeddings of the pixel and bispectral representations, we
randomly sampled representative images from each class of the train split of mnist, and
rotated each by all multiples of 9◦ from 0◦ to 360◦. Specifically, Figure 1(a) depicts MDS
embeddings of the pixel and bispectral representations of rotations of one representative
image for clearer visualization of cluster structure (for a total of 10 · 40 = 400 embedded
features), and Figure 1(b) depicts MDS embeddings of the pixel and bispectral represen-
tations of rotations of ten representative images per class for a more global visualization
of the embeddings with intra-class variation (for a total of 10 · 10 · 40 = 4000 embedded
features). The code to generate these plots is included in the linked repository (seed 8).

E.2. Additional Inter-Class Distance Statistics

We also include the following confusion matrices in Figure 2 depicting the average inter-
class and intra-class distance statistics for the raw and bispectral representations of ten
randomly sampled images of each class of mnist rotated by multiples of 9◦ using different
geometric distances. Euclidean distance denotes the L2 norm

√∑
i(xi − yi)2, cityblock

distance denotes the L1 norm
∑

i |xi−yi|, sqeuclidean denotes the squared L2 norm
∑

i(xi−
yi)

2, and cosine denotes the cosine distance, defined as 1 − u·v
∥u∥2∥v∥2 between two vectors

where · denotes the dot product and ∥ ∗ ∥2 is the L2 norm.

(a) Pixels, L2 (b) Bispectral, L2 (c) Pixels, L1 (d) Bispectral, L1

(e) Pixels, L2
2 (f ) Bispectral, L2

2 (g) Pixels, cos (h) Bispectral, cos

Figure 2: Average inter-class and intra-class distances for pixel and bispectral representa-
tions of MNIST digits using different metrics.
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E.3. Additional Per-Digit Distance Statistics

In addition to the confusion matrices in Figure 2, we include the average distance between
images of the same class that are rotated by different angles for a better understanding of
the local geometry within each class of the bispectral features, in comparison to the raw
pixel representations of images. For greater ease of visualization, we rotate each of our 10
sampled images from each class by each multiple of 15◦ from 0◦ to 360◦, and continue to
use the Z/40Z-bispectrum in the bispectral representation of images. The grid-like patterns
are likely a function of how we handled clipping due to rotations.

The distance statistics using the L2 distance are depicted in Figure 3, the distance
statistics using the L1 distance are depicted in Figure 4, the distance statistics using the
L2
2 distance are depicted in Figure 5, and the distance statistics using cosine similarity are

depicted in Figure 6.

(a) Raw feature representations

(b) Bispectral feature representations

Figure 3: Average distance between bispectral and pixel representations of rotated images
from the same class of mnist using euclidean norm.
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(a) Raw feature representations

(b) Bispectral feature representations

Figure 4: Average distance between bispectral and pixel representations of rotated mnist
images using L1 norm.
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(a) Raw feature representations

(b) Bispectral feature representations

Figure 5: Average distance between bispectral and pixel representations of rotated mnist
images using squared euclidean distance.
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(a) Raw feature representations

(b) Bispectral feature representations

Figure 6: Average distance between bispectral and pixel representations of rotated mnist
images using cosine similarity.
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Appendix F. Benchmark Dataset Experiments

F.1. Experimental Setup

As described in Appendix E for the preliminary experiments, we use R = min(M,N)
2 radial

bins and K = 40 angular bins in the discretized polar representation of our images of size
M ×N . Thus, the bispectral representations of our features are Z/40Z rotation invariant,
and constructed using the group bispectrum of Z/40Z.

We perform OT between two disjoint halves of the torchvision’s1 training split of each
of mnist, kmnist, fashion-mnist, and the letters split of emnist, randomly splitting (with
seed 0) each class in each dataset’s training set into two disjoint halves to construct the two
datasets that we perform OT between. For kmnist and fashion-mnist, the training split
is perfectly balanced between classes, so we obtain two datasets of size 30,000, with exactly
3,000 images per class. The mnist training split is only approximately balanced, so splitting
each class in half yields two datasets of size 29,997, with class sizes distributed as follows:
{0 : 2961, 1 : 3371, 2 : 2979, 3 : 3065, 4 : 2921, 5 : 2710, 6 : 2959, 7 : 3132, 8 : 2925, 9 : 2974}.
For emnist (letters), which contains 26 classes with a total of 124,800 training examples,
we similarly split each class in half, yielding two datasets of size 62,400 with exactly 2,400
images per class.

For the main experiment, we perform OT from a set of images with rotations sampled
uniformly at random from 0◦ to 360◦ to a disjoint unrotated set. As a baseline, also compute
the class preservation statistics for the transport plan computed on two sets of unrotated
raw and bispectral features. We calculate OT using greenkhorn greedy implementation
of the entropically regularized version of OT in the Sinkhorn implementation of the pot2

package (Flamary et al., 2021; Altschuler et al., 2017) for computational feasibility using
a regularization of 0.01 (which maximizes class preservation accuracy while ensuring con-
vergene). Table 1 includes only the class preservation accuracies for raw OT using the L1

pairwise cost between images (since this performs the best overall), so for completeness, we
include the statistics for the other ground metrics in Table 3.

Table 3: Class preservation accuracies for naive OT using L1, L2, L
2
2 and cosine pairwise

metrics for cost.

Unrotated to Rotated Baseline
Dataset L1 L2 L2

2 cos L1 L2 L2
2 cos

mnist 0.3297 0.3322 0.3289 0.3239 0.9725 0.9697 0.9742 0.9705

kmnist 0.2420 0.2408 0.2348 0.2412 0.9724 0.9698 0.9712 0.9666

fmnist 0.3003 0.2787 0.2680 0.2615 0.8726 0.8748 0.8466 0.8736

emnist 0.1969 0.1991 0.1991 0.1966 0.8754 0.8678 0.8678 0.8730

F.2. Per-Class OT Matching Statistics

For a more granular understanding of the how BOT preserves semantic label structure in
each dataset, we include confusion matrices that separate the class preservation accuracies

1. https://docs.pytorch.org/vision/stable/index.html
2. pythonot.github.io/
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for raw feature OT and Bispectral OT in Table 1 by class, detailing the fraction of each
class matched to elements in each other class for each of our benchmark datasets.

F.2.1. MNIST

We include the confusion matrices for OT on mnist for the OT matching between rotated
and unrotated images in Figures 7 (bispectral features) and 8 (raw pixel features), and for
the baseline experiment (matching unrotated images) in Figures 9 (bispectral features) and
10 (raw pixel features)

(a) L1 Cost (b) L2 Cost

(c) L2
2 Cost (d) cos Cost

Figure 7: Class matching statistics for OT plan from rotated mnist to unrotated mnist on
bispectral features.
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(a) L1 Cost (b) L2 Cost

(c) L2
2 Cost (d) cos Cost

Figure 8: Class matching statistics for OT plan from rotated mnist to unrotated mnist on
raw pixel features.
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(a) L1 Cost (b) L2 Cost

(c) L2
2 Cost (d) cos Cost

Figure 9: Class matching statistics for OT plan from unrotated mnist to unrotated mnist
(baseline) on bispectral features.
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(a) L1 Cost (b) L2 Cost

(c) L2
2 Cost (d) cos Cost

Figure 10: Class matching statistics for OT plan from unrotated mnist to unrotated mnist
(baseline) on raw pixel features.
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F.2.2. KMNIST

We include the confusion matrices for OT on kmnist for the OT matching between rotated
and unrotated images in Figures 11 (bispectral features) and 12 (raw pixel features), and
for the baseline experiment (matching unrotated images) in Figures 13 (bispectral features)
and 14 (raw pixel features).

(a) L1 Cost (b) L2 Cost

(c) L2
2 Cost (d) cos Cost

Figure 11: Class matching statistics for OT plan from rotated kmnist to unrotated kmnist
on bispectral features.

F.2.3. Fashion-MNIST

We include the confusion matrices for OT on fashion-mnist for the OT matching between
rotated and unrotated images in Figures 15 (bispectral features) and 16 (raw pixel features),
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(a) L1 Cost (b) L2 Cost

(c) L2
2 Cost (d) cos Cost

Figure 12: Class matching statistics for OT plan from rotated kmnist to unrotated kmnist
on raw pixel features.
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(a) L1 Cost (b) L2 Cost

(c) L2
2 Cost (d) cos Cost

Figure 13: Class matching statistics for OT plan from unrotated kmnist to unrotated
kmnist (baseline) on bispectral features.
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(a) L1 Cost (b) L2 Cost

(c) L2
2 Cost (d) cos Cost

Figure 14: Class matching statistics for OT plan from unrotated kmnist to unrotated
kmnist (baseline) on raw pixel features.
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and for the baseline experiment (matching unrotated images) in Figures 17 (bispectral
features) and 18 (raw pixel features).

(a) L1 Cost (b) L2 Cost

(c) L2
2 Cost (d) cos Cost

Figure 15: Class matching statistics for OT plan from rotated fashion-mnist to unrotated
fashion-mnist on bispectral features.

F.2.4. EMNIST

We include the confusion matrices for OT on fashion-mnist for the OT matching between
rotated and unrotated images in Figures 19 (bispectral features) and 20 (raw pixel features),
and for the baseline experiment (matching unrotated images) in Figures 21 (bispectral
features) and 22 (raw pixel features).

24



Bispectral Optimal Transport

(a) L1 Cost (b) L2 Cost

(c) L2
2 Cost (d) cos Cost

Figure 16: Class matching statistics for OT plan from rotated fashion-mnist to unrotated
fashion-mnist on raw pixel features.
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(a) L1 Cost (b) L2 Cost

(c) L2
2 Cost (d) cos Cost

Figure 17: Class matching statistics for OT plan from unrotated fashion-mnist to unro-
tated fashion-mnist (baseline) on bispectral features.
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(a) L1 Cost (b) L2 Cost

(c) L2
2 Cost (d) cos Cost

Figure 18: Class matching statistics for OT plan from unrotated fashion-mnist to unro-
tated fashion-mnist (baseline) on raw pixel features.
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(a) L1 Cost

(b) L2 Cost

Figure 19: Class matching statistics for OT plan from rotated emnist to unrotated emnist
on bispectral features.
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(c) L2
2 Cost

(d) cos Cost

Figure 19: Class matching statistics for OT plan from rotated emnist to unrotated emnist
on bispectral features (continued).
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(a) L1 Cost

(b) L2 Cost

Figure 20: Class matching statistics for OT plan from rotated emnist to unrotated emnist
on raw pixel features.

30



Bispectral Optimal Transport

(c) L2
2 Cost

(d) cos Cost

Figure 20: Class matching statistics for OT plan from rotated emnist to unrotated emnist
on raw pixel features (continued).
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(a) L1 Cost

(b) L2 Cost

Figure 21: Class matching statistics for OT plan from unrotated emnist to unrotated
emnist (baseline) on bispectral features.
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(c) L2
2 Cost

(d) cos Cost

Figure 21: Class matching statistics for OT plan from unrotated emnist to unrotated
emnist (baseline) on bispectral features (continued).
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(a) L1 Cost

(b) L2 Cost

Figure 22: Class matching statistics for OT plan from unrotated emnist to unrotated
emnist (baseline) on raw pixel features.
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(c) L2
2 Cost

(d) cos Cost

Figure 22: Class matching statistics for OT plan from unrotated emnist to unrotated
emnist (baseline) on raw pixel features (continued).
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