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ABSTRACT

Foundation models have recently emerged as a promising approach for learning
generalizable EEG representations for brain–computer interfaces (BCIs). Yet,
their true advantages over traditional methods—particularly classical non-
neural approaches—remain unclear. In this work, we present a comprehensive
benchmark of state-of-the-art EEG foundation models, evaluated across diverse
datasets, decoding tasks, and six evaluation protocols, with rigorous statistical
testing. We introduce spatiotemporal EEGFormer (ST-EEGFormer), a simple
yet effective Vision Transformer (ViT)-based baseline, pre-trained solely with
masked autoencoding (MAE) on over 8M EEG segments. Our results show that
while fine-tuned foundation models perform well in data-rich, population-level
settings, they often fail to significantly outperform compact neural networks
or even classical non-neural decoders in data-scarce scenarios. Furthermore,
linear probing remains consistently weak, and performance varies greatly across
downstream tasks, with no clear scaling law observed among neural network
decoders. These findings expose a substantial gap between pre-training and
downstream fine-tuning, often diminishing the benefits of complex pre-training
tasks. We further identify hidden architectural factors that affect performance and
emphasize the need for transparent, statistically rigorous evaluation. Overall, this
study calls for community-wide efforts to construct large-scale EEG datasets and
for fair, reproducible benchmarks to advance EEG foundation models.

1 INTRODUCTION

Electroencephalography (EEG) is a non-invasive brain recording technique widely used in Brain-
Computer Interface (BCI) research to improve the quality of life for patients and to augment the
capabilities of healthy individuals. Various EEG paradigms have been explored to advance BCI de-
velopment. For example, motor imagery (MI)—the mental simulation of physical movement—can
be employed to control exoskeletons (Soekadar et al., 2016; Choi et al., 2020), navigate real or vir-
tual environments (Choi & Cichocki, 2008; Tsui et al., 2011; Yang & Van Hulle, 2023), or facilitate
rehabilitation (Baniqued et al., 2021; Liao et al., 2023). Event-related potentials (ERPs), such as the
P300 response—a positive deflection elicited by infrequent events—have been leveraged for user
attention decoding and smart home applications (Holzner et al., 2009; Masud et al., 2017). Visual-
evoked potentials (VEPs), including steady-state visual-evoked potentials (SSVEPs), are amplitude
changes in EEG elicited by visual stimuli, enabling high-speed spelling devices (Wittevrongel &
Van Hulle, 2017; Nakanishi et al., 2018a; Xing et al., 2018).

Despite the rapid progress of deep learning in BCI, which has led to state-of-the-art performance
across many tasks, variations in experimental paradigms, hardware setups, and limited dataset sizes
often necessitate training separate models for each task (Murad & Rahimi, 2025). A promising
solution is the development of EEG foundation models—models pre-trained on large-scale EEG
datasets to learn generalizable representations that can be adapted to a variety of downstream tasks.
In recent years, numerous EEG foundation models have reported strong performance across diverse
BCI applications. However, many of these studies lack systematic comparisons to classical BCI
decoding methods and typically evaluate performance on only one or two protocols—such as leave-
one-out zero-shot or population decoding—often without statistical testing. While existing work
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demonstrates the feasibility of applying foundation models to EEG decoding, the practical benefits
remain uncertain, especially given the substantial computational and time costs associated with pre-
training and fine-tuning.

Contributions: In this work, we present a comprehensive benchmark of EEG foundation mod-
els, introducing a six-dimensional evaluation framework that encompasses seven classification tasks
and two regression tasks. Our dense experimental setup involves training over 20,000 models, en-
abling statistically rigorous comparisons across decoders and evaluation protocols. We systemati-
cally compare foundation models against both classical non-neural and neural network-based EEG
decoders across diverse paradigms. Additionally, we introduce spatiotemporal EEGFormer (ST-
EEGFormer)—a simple, transparent Vision Transformer-based (Dosovitskiy et al., 2021) founda-
tion model pre-trained solely with masked autoencoding (MAE) (He et al., 2022) on more than 8
million raw EEG segments—serving as a strong baseline. Our key findings are as follows:
1. Simple pre-training can be effective. Challenging the prevailing view from LaBraM (Jiang

et al., 2024) that masked autoencoding (MAE) on raw EEG is ineffective, we demonstrate that
direct MAE pre-training on raw signals can in fact produce top-performing models.

2. Linear probing remains weak and task-dependent. Across all models, linear probing yields
consistently poor results, highlighting the limited robustness and generalization of current pre-
trained representations.

3. Foundation models are not universally better. While fine-tuned foundation models perform
well in data-rich, population-level settings, they often fail to significantly outperform compact
neural networks or even classical non-neural methods in data-scarce or subject-specific settings.

4. Scaling does not guarantee success. Although larger foundation models have more capacity,
they do not reliably outperform smaller neural decoders, particularly on complex and data-limited
tasks such as motor imagery or inner speech.

Our findings reveal critical gaps between common pre-training assumptions and real-world BCI per-
formance, underscoring the strength of simple, often-overlooked classical baselines. They also high-
light the urgent need for a large-scale, standardized EEG dataset—analogous to ImageNet (Deng
et al., 2009)—for both pre-training and downstream evaluation. Such a resource is essential to
explore scaling behavior, rather than pursuing marginal gains on limited datasets. To support trans-
parent benchmarking and future research, we release all code and models to the community.

2 RELATED WORK

Recent years have seen a surge of EEG foundation models leveraging large-scale self-supervised
pre-training to learn transferable neural representations (Kostas et al., 2021; Yang et al., 2023; Wang
et al., 2024; Jiang et al., 2024; Wang et al., 2025). While these approaches claim improved gen-
eralization, they are typically benchmarked under limited evaluation protocols and seldom com-
pared against classic non-neural network decoders, which often remain competitive in practical BCI
tasks (Chevallier et al., 2024). For example, classical methods like CSP/FBCSP (Ramoser et al.,
2000; Ang et al., 2008), Riemannian classifiers (Congedo et al., 2017), FBCCA (Chen et al., 2015),
and TRCA (Nakanishi et al., 2018b) continue to provide robust baselines for their respective tasks,
often outperforming compact neural network models (Schirrmeister et al., 2017; Lawhern et al.,
2018) in data-limited scenarios. However, systematic comparisons across paradigms and with rig-
orous statistical testing are still lacking. To address these gaps, we provide the first comprehensive
benchmark spanning foundation models, classic neural networks, and non-neural decoders across
diverse classification and regression tasks. A detailed review of prior EEG foundation, neural, and
non-neural methods is provided in Appendix C.

3 METHODS

3.1 EVALUATION PROTOCOLS

In this paper, we propose six evaluation protocols that provide a comprehensive view of model
generalization, transferability, and practical utility in real-world BCI settings, as demonstrated and
explained in Figure 1 (a). Population decoding quantifies a model’s ability to capture global neural
patterns that generalize across individuals, valuable to study population-level features and to ap-
plications where a single universal model is desired. Per-Subject Self reflects the traditional BCI
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Figure 1: (a) Graphical representation of the six evaluation protocols. In population decoding, data
from all subjects are pooled to train a single model, which is then tested on each subject individually, yielding
the (1) Population performance. In per-subject decoding, a separate model is trained for each subject and tested
both on itself—giving (2) Per-Subject (Self) performance—and on other subjects for (3) Per-Subject (Trans-
fer) performance. In leave-one-subject-out (LOO) decoding, a population model is trained on all subjects
except the LOO subject. This model is evaluated on all subjects, with its performance on the LOO subject rep-
resenting (4) LOO Zero-Shot performance. After fine-tuning the model on the LOO subject, it is again tested
on all subjects. Performance on the LOO subject after fine-tuning gives (5) LOO Fine-Tune performance,
while changes in population subjects’ performance before and after fine-tuning quantify the generalization ca-
pability, denoted as (6) LOO Drop. (b) Graphical representation of the proposed ST-EEGFormer.
During pre-training, the input EEG data are divided into segments along spatial and temporal dimensions. Each
segment is tokenized through a linear projection layer, with each token receiving its corresponding temporal
positional encoding (TPE) and spatial positional encoding (SPE). After randomly masking 75% of all tokens,
the encoder processes the remaining unmasked tokens. The mask tokens, with their added temporal and spa-
tial positional embeddings, are then concatenated with the encoder output to form a full set of tokens. This
full set of tokens is input to a small decoder comprising a transformer followed by a linear projection layer,
which reconstructs the original EEG signal. Once the model is pre-trained, only the encoder is utilized as the
ST-EEGFormer model for fine-tuning on a downstream dataset.

approach, assessing performance when the model is tailored for individual users (also known as
subject-dependent or subject-specific models). Per-Subject Transfer and leave-one-subject-out zero-
shot (LOO Zero-Shot) decoding both interrogate the transferability of learned representations: the
former asks how well a subject-specific model works on another individual, while the latter tests
whether a model trained on a cohort can be directly deployed to a novel subject without further
adaptation, providing insight into real-world model robustness and scalability. Finally, LOO gener-
alization drop (LOO Drop) evaluates the extent to which model fine-tuning on a new subject erodes
prior knowledge—akin to catastrophic forgetting—highlighting the balance between subject adap-
tation and preservation of generalized population knowledge. Together, these dimensions offer a
comprehensive benchmark for EEG foundation models, addressing both scientific interpretability
and translational viability.

3.2 DOWNSTREAM BENCHMARK TASKS

We selected seven classification tasks and two regression tasks to comprehensively evaluate EEG
foundation models across diverse EEG paradigms with varying complexity levels. The classi-
fication tasks include: an error-related negativity (ERN) classification task (Error-ERN) (Kueper
et al., 2024); a three-class Alzheimer’s Disease classification task distinguishing Alzheimer’s, fron-
totemporal dementia, and healthy subjects (Alzheimer’s) (Miltiadous et al., 2023); a four-class inner
speech classification task (Inner Speech) (Nieto et al., 2022); a four-class motor imagery task from
the classic BCI Competition IV 2a dataset (BCI-IV-2A) (Tangermann et al., 2012); a seven-class
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upper limb motor execution task (Motor-Execution) and a seven-class upper limb motor imagery
task (Motor-Imagination), both derived from the same dataset (Ofner et al., 2017); and a challeng-
ing 40-target binocular steady-state visual evoked potential (SSVEP) classification task (Binocular-
SSVEP) (Yike et al., 2024). Except for BCI-IV-2A, which is a widely used motor imagery bench-
mark, all datasets are novel and were not part of the pre-training datasets utilized by the cited foun-
dation models. Additionally, the selected tasks vary significantly in complexity, ranging from the
relatively simple binary ERN task to the intricate 40-target binocular SSVEP task, characterized by
complex inter-modulation components arising from binocular swap stimulation (Yan et al., 2011;
Sun et al., 2024). For classification tasks, top-1 accuracy (Acc1), top-2 accuracy (Acc2), balanced
accuracy (BAcc), area under the curve (AUC), and Cohen’s kappa coefficient (Kappa) were used
as evaluation metrics for model performance. In addition to the seven tasks described above, we
also benchmarked two widely used datasets—FACED (9-class emotion recognition) (Chen et al.,
2023a) and TUEV (6-class EEG event classification) (Obeid & Picone, 2016)—under the conven-
tional cross-subject zero-shot evaluation protocol.

For regression, we evaluate on two datasets. The DTU auditory attention decoding dataset targets
reconstruction of the attended speech envelope from EEG recordings (Fuglsang et al., 2018). SEED-
VIG (Zheng & Lu, 2017) predicts vigilance level in a virtual, monotonous driving task. Model
performance is assessed using mean squared error (MSE) and Pearson correlation coefficient (R).

All benchmarked datasets underwent minimal and standardized pre-processing steps. EEG signals
were band-pass filtered between 0.1–128 Hz and downsampled to 256 Hz if the original sampling
rate is higher. During model training, epochs were further resampled to match each foundation
model’s native sampling rate. For most classification datasets, we applied a 5-fold cross-validation
scheme within each subject. Exceptions are the BCI-IV-2A and ERN datasets, for which we strictly
followed the original competition-style train/validation splits. For TUEV and FACED, we followed
the conventional cross-subject split approach, where 80% subjects were used as the training subjects,
and the remaining 20% as the test subjects. For the two regression datasets, we used the first 80% of
each subject’s recording as the training set and the remaining 20% as the test set. Detailed dataset
descriptions and train/test split strategies are provided in Appendix D.

3.3 BENCHMARK MODELS

3.3.1 FOUNDATION MODELS

For all benchmark datasets, we evaluated a range of EEG foundation models, including
BENDR (Kostas et al., 2021), BIOT (Yang et al., 2023), LaBraM (Jiang et al., 2024), EEGPT (Wang
et al., 2024), and CBraMod (Wang et al., 2025). In addition, we pre-trained our proposed model,
ST-EEGFormer, using a straightforward masked autoencoding (MAE) strategy on raw EEG signals
to provide a transparent baseline (Figure 1b). Detailed pre-training procedures for ST-EEGFormer
are described in Appendix E, while additional intermediate benchmark experiments validating its ef-
fectiveness are presented in Appendix E.9. For all foundation models, we systematically evaluated
both linear probing and fine-tuning, with implementation details provided in Appendix F.1.

3.3.2 CLASSIC NEURAL NETWORK MODELS

We benchmarked two well-established convolutional neural network (CNN)-based EEG decoders:
DeepConvNet (Schirrmeister et al., 2017) and EEGNet (Lawhern et al., 2018). Additionally, we
included more recent, transformer-based architectures, EEG Conformer (Song et al., 2023) and CT-
Net (Zhao et al., 2024), which have demonstrated state-of-the-art performance yet remain compu-
tationally simpler compared to larger foundation models. Implementation details for these models
can be found in Appendix F.2.

3.3.3 CLASSIC NON-NEURAL NETWORK MODELS

Depending on the specific downstream task, we benchmarked the most widely used classical models
accordingly. For movement and speech classification tasks, we included CSP- (Ramoser et al., 2000)
and FBCSP- (Ang et al., 2008) based pipelines (CSP-LDA, CSP-SVM, FBCSP-LDA, and FBCSP-
SVM), as well as Riemannian geometry-based classifiers, including Minimum Distance to Mean
(MDM) (Barachant et al., 2012b), Fisher Geodesic MDM (FgMDM) (Barachant et al., 2012b), and
tangent space mapping (TS) with ElasticNet (TS-ElasticNet) (Corsi et al., 2022). For Alzheimer’s
diagnosis, we included four decoding pipelines used in the dataset paper of (Miltiadous et al., 2023),
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Figure 2: Comparison of linear-probing and fine-tuning foundation models across evaluation proto-
cols. (a) Per-model performance. Classification accuracy for each foundation model, aggregated across
all subjects and downstream tasks, under the Population, Per-Subject (Self), and LOO Fine-Tune protocols.
(b) Within-subject performance. Comparison of all foundation models (pooled) across Per-Subject (Self),
Population, and LOO Fine-Tune protocols. (c) Cross-subject transfer performance. Comparison for
Per-Subject (Transfer) and LOO Zero-Shot protocols. (d) LOO Drop. Accuracy drop on population subjects
after subject-specific fine-tuning, comparing linear probing and full fine-tuning. In all panels, light grey indi-
cates linear probing and dark gray indicates fine-tuning. Box plots show median (red line), mean (white dot),
and interquartile range; violin plots illustrate the full data distribution. Asterisks in (b)-(d) indicate statistically
significant differences (Wilcoxon signed-rank test, Bonferroni-corrected; ∗∗∗: p < 0.001, ns: not significant).

which extract Relative Band Power (RBP) features as input for Random Forest (RBP-RF), SVM
(RBP-SVM), k-Nearest Neighbors (RBP-kNN), and LightGBM (RBP-LightGBM) classifiers. For
ERN detection, we included xDAWN-LDA (Rivet et al., 2009), xDAWNCov-MDM (Barachant,
2014), xDAWNCov-TS-SVM (Chevallier et al., 2018), ERPCov-MDM (Barachant & Congedo,
2014), and DCPM (Xiao et al., 2020). For SSVEP target recognition, we included the two decoding
models FBCCA and TRCA used in the dataset paper (Yike et al., 2024). Implementation details for
these models can also be found in Appendix F.3.

4 RESULTS

In this section, we present findings addressing our key research questions. For detailed results for
each dataset, please refer to Appendix G.

4.1 DO FOUNDATION MODELS LEARN ROBUST REPRESENTATIONS AFTER PRE-TRAINING?

Figure 2 summarizes the performance of foundation models under both linear probing and fine-
tuning across all subjects and downstream classification tasks. The corresponding summary table is
listed in Appendix Tables G.1 and G.2. In Figure 2 (a), fine-tuning generally yields higher accuracy
than linear probing for all foundation models, with the exception of EEGPT. Figure 2 (b) compares
within-subject evaluation protocols, showing that classic per-subject training results in significantly
lower accuracy than both population-level and LOO fine-tuned models, while no significant differ-
ence is observed between the latter two. Figure 2 (c) highlights transfer performance, demonstrating
that population-trained models achieve substantially better cross-subject generalization (LOO-zero-
shot) than models trained individually per subject (per-subject-transfer), for both linear probing and
fine-tuning. Finally, Figure 2 (d) illustrates that subject-specific fine-tuning leads to a larger accu-
racy drop (generalization drop) on the population subjects compared to linear probing, suggesting
a tendency for fine-tuned models to “forget” information learned from the broader population (i.e.,
increased catastrophic forgetting).
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Figure 3: Comparison of classic neural network (NN) decoders and foundation models using
aggregated ranks across six evaluation protocols. The bar plot on top shows the average rank (lower
is better) across metric, subject, dataset, and protocol. Green bars denote classic NN models, while purple and
red indicate linear-probed (l) and fine-tuned (f) foundation models, respectively. The heatmap at the bottom
shows the rank (lower in red is better) averaged across metric, subject, and dataset per protocol.

4.2 DO FOUNDATION MODELS OUTPERFORM CLASSIC NN-BASED DECODERS?

Figure 3 provides a comparison between classic neural network (NN) decoders and foundation
models across six distinct evaluation protocols, using aggregated rank as the performance met-
ric. Per-dataset result can be obtained in Appendix G.3. The results reveal that, while certain
linear-probed foundation models perform competitively in specific evaluation contexts, classic NN
models—particularly CTNet—consistently outperform all linear-probed foundation models across
most evaluation protocols, except for the LOO Drop protocol. Notably, among fine-tuned foun-
dation models, only the largest fully fine-tuned foundation architectures (i.e., ST-EEGFormer-l)
achieve performance levels equal to or surpassing those of the best-performing classic NN mod-
els. This underscores that despite their promise, foundation models do not inherently outperform
well-established, classic neural network approaches.

4.3 DO FOUNDATION MODELS OUTPERFORM CLASSIC NON-NN-BASED DECODERS?

Figure 4 compares the best-performing decoders from each group across six evaluation protocols.
A detailed per-dataset result can be found in Appendix G.4. Overall, fine-tuned foundation mod-
els—particularly the largest variant, ST-EEGFormer-l—consistently achieve the highest or compa-
rable top performance. In contrast, classic neural and non-neural decoders show more variable re-
sults depending on the evaluation setting. Linear-probed foundation models generally underperform
across all protocols. Detailed observations are as follows:

• Population Both fine-tuned foundation models and ST-EEGFormer-l achieve the highest accu-
racy, with no statistical difference between them. Both groups significantly outperform classic
NN and non-NN decoders, while classic NN decoders perform better than linear-probed founda-
tion models.

• Per-Subject (Self) ST-EEGFormer-l shows a notable performance advantage, but with no statis-
tically significant differences between the classic non-NN decoders.

• Per-Subject (Transfer) ST-EEGFormer-l remains the top performer, with no statistically signifi-
cant differences observed among the remaining model groups.

• LOO Zero-Shot Classic non-NN decoders yield the lowest mean accuracy. Classic NN decoders,
fine-tuned foundation models, and ST-EEGFormer-l perform similarly, with no significant differ-
ences among them.

• LOO Fine-Tune Classic NN decoders perform comparably to both fine-tuned foundation models
and ST-EEGFormer-l, and all three significantly outperform linear-probed foundation models.

• LOO Drop Classic NN decoders exhibit the most pronounced generalization drop after subject-
specific fine-tuning, performing significantly worse than all foundation model groups.
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Figure 4: Comparison of best-performing models across decoder groups and evaluation pro-
tocols. Violin plots show the distribution of accuracy scores for the best model within each decoder
group—classic non-NN decoders (blue), classic NN decoders (green), linear-probed foundation models (pur-
ple), fine-tuned foundation models (red), and the large ST-EEGFormer-l (orange)—under each evaluation pro-
tocol: (a) Population, (b) Per-Subject (Self), (c) Per-Subject (Transfer), (d) LOO Zero-Shot, (e)
LOO Fine-Tune, and (f) LOO Drop. LOO Fine-Tune and LOO Drop are not applicable for classic non-
NN decoders. Accuracy is used instead of rank to highlight meaningful performance differences and facilitate
rigorous statistical comparison. For each group, the best-performing model may vary across datasets. Statis-
tical significance is assessed using permutation testing (ntextresamples = 50,000) with Bonferroni correction
(∗∗∗: p < 0.001, ∗∗: p < 0.01, ∗: p < 0.05). Box plots within violins indicate the median (red line), mean
(white dot), and interquartile range.

4.4 DO EEG CLASSIFICATION MODELS TRANSFER TO REGRESSION?

Table 1 summarizes the regression performance of all neural network–based models on DTU
and SEED-VIG under the LOO Zero-Shot protocol; full per-model results are provided in Ap-
pendix G.1.10 and Appendix G.1.11. For DTU, the task is to predict a single continuous target
from 1-s EEG epochs, evaluated with mean squared error (MSE) and Pearson correlation (R). For
SEED-VIG, the task is to predict vigilance level from 5-s EEG epochs. On DTU, the best models
are CTNet and the linear-probed EEGPT, both reaching R ≈ 0.05. On SEED-VIG, EEGNet and
DeepConvNet exceed R > 0.45.

Figure 5 further compares model families. On DTU, classic decoders outperform fine-tuned foun-
dation models, and linear-probed foundation models also outperform fine-tuned foundation models;
however, the top model from each family does not differ significantly from the others. On SEED-
VIG, although the average performance of classic models exceeds that of foundation-model variants,
the difference is not statistically significant.

4.5 CAN WE OBSERVE ANY SCALING LAW IN EEG CLASSIFICATION TASKS?

Figure 6 illustrates the relationship between NN-based EEG decoder size and both classification
performance and training time. Panel (a) shows that, although there is a slight upward trend in
normalized accuracy with increasing model size, the poor logarithmic fit suggests that a clear scaling
law does not exist for downstream EEG classification tasks. In contrast, Panel (b) demonstrates that
training time per EEG epoch grows exponentially with model size, achieving a reasonably good fit
(R2 = 0.60), indicating that computational cost scales much faster than accuracy improvements.

5 DISCUSSION

5.1 STRENGTHS AND LIMITATIONS OF EEG FOUNDATION MODELS

Fine-Tuning vs. Linear Probing Fine-tuning enables foundation models—particularly larger
variants like ST-EEGFormer-l—to achieve strong performance in population-level decoding. In con-
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Table 1: Average LOO Zero-Shot Perfor-
mance Across All Subjects on DTU and
SEED-VIG. The best and second-best MSE
and Pearson scores are in bold, with the high-
est one surrounded by a box.

DTU SEED-VIG

Model MSE Pearson MSE Pearson

DeepConvnet
0.999
±0.020

0.039
±0.033

0.055
±0.035

0.452
± 0.352

EEGNet
0.994
±0.018

0.042
±0.029

0.095
±0.077

0.471
± 0.296

Conformer
1.024
±0.028

0.017
±0.025

0.056
±0.060

0.398
±0.338

CTNet
0.993

± 0.017
0.048

± 0.032
0.065
±0.052

0.435
±0.313

BIOT (f)
1.315
±0.052

0.006
±0.015

0.065
±0.060

0.360
±0.342

BIOT (l)
1.000
±0.019

-0.000
±0.018

0.056
±0.042

0.440
±0.283

BENDR (f)
1.616
±0.055

0.010
±0.021

0.050
± 0.037

0.347
±0.330

BENDR (l)
0.995
±0.018

0.039
±0.019

0.104
±0.077

0.037
±0.141

CBraMod (f)
1.431
±0.065

0.005
±0.024

0.062
±0.067

0.408
±0.361

CBraMod (l)
0.996
±0.018

0.039
±0.024

2.951
±2.877

0.232
±0.262

EEGPT (f)
0.994
±0.017

0.043
±0.032

0.051
± 0.040

0.413
±0.343

EEGPT (l)
0.994
±0.017

0.047
± 0.033

0.063
±0.059

0.443
±0.332

LaBraM (f)
1.638
±0.055

0.011
±0.013

0.057
±0.061

0.421
±0.319

LaBraM (l)
0.993
±0.018

0.024
±0.021

0.061
±0.057

0.418
±0.305

ST-EEGformer-s (f)
1.237
±0.039

0.010
±0.020

0.055
±0.061

0.441
±0.370

ST-EEGformer-s (l)
0.993

± 0.019
0.016
±0.031

0.064
±0.062

0.372
±0.367

Figure 5: LOO Zero-Shot performance for re-
gression on (a) DTU and (b) SEED-VIG. Left
panels compare classic NN decoders, linear-
probed foundation models, and fine-tuned foun-
dation models; right panels show the best model
from each family. Group differences use the
Mann–Whitney U test; paired top-model com-
parisons use the Wilcoxon signed-rank test
(Bonferroni corrected, ∗∗∗: p < 0.001).

Figure 6: Cross-model scaling trends in NN-based EEG decoders. (a) Normalized accuracy
versus total trainable parameters. For each dataset, accuracies are rescaled so the dataset’s best model
equals 1. A pooled logarithmic fit a ln(lnx) + b is applied; the coefficient of determination (R2) is reported
above the panel. (b) Training time per EEG epoch versus total trainable parameters, computed on a
single NVIDIA H100 as Time per Batch/Batch Size. An exponential fit a ebx + c is applied to the pooled
data, with R2 shown above the panel. Each point denotes a distinct model (unique marker); colors
indicate the three model families.

trast, linear probing consistently yields poor performance across all models and evaluation protocols
(except for LOO Drop), as shown in Figure 2 and Figure 3. This suggests that current pre-training
strategies do not produce EEG representations that are sufficiently generalizable and discrimina-
tive across a broad range of BCI tasks. Supporting evidence is provided in Appendix G.5, where
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attention-weight visualizations reveal that the regions of interest change substantially after fine-
tuning, underscoring the dependence of learned representations on task-specific adaptation. How-
ever, this does not imply that foundation models fail to learn any useful representations. For in-
stance, in ERN detection, all linear-probed foundation models perform relatively well, suggesting
that the utility of pre-trained features may be highly task-dependent. These results imply that the
effectiveness of pre-training can vary significantly across EEG paradigms, potentially due to funda-
mental differences in the underlying neural representations. Moreover, the strong performance of
our simple yet top-performing ST-EEGFormer model indicates that complex pre-training objectives
may not yield substantial downstream benefits, especially when models are fine-tuned. Fine-tuning
appears to overwrite or adjust much of what is learned during pre-training, thereby narrowing the
performance gap between models with simple versus sophisticated pre-training tasks.

Data Sensitivity and Generalization Gaps Foundation models perform best when enough train-
ing data is available—such as in population decoding—but their advantage diminishes in low-data
settings like per-subject decoding. In these scenarios, classic neural network models, such as CTNet,
remain highly competitive. Non-neural decoders also achieve performance comparable to founda-
tion models in certain evaluation protocols (e.g., Per-Subject (Self)), although they perform statis-
tically worse than NN-based models in LOO Zero-Shot decoding. Interestingly, while foundation
models often achieve higher mean accuracy than classic NN models in LOO Zero-Shot and LOO
Fine-Tune settings (Figure 4 d, e), these differences are not statistically significant. These find-
ings highlight the value of simpler baselines, which are frequently overlooked in current foundation
model research.

On the Transferability of EEG Classification Models to Regression Our regression case study
underscores limits to the transferability of EEG foundation model representations. On the con-
ventional SEED-VIG dataset, fine-tuned foundation models are competitive and often rank highest
overall (Figure G.12); however, under specific protocols—such as LOO Zero-Shot (Table 1)—clas-
sic neural networks still produce the best results. In contrast, on the more challenging DTU auditory
dataset—where foundation models have not previously been benchmarked—classic decoders out-
perform both fine-tuned and linear-probed foundation models. Taken together, these findings sug-
gest that feature representations for regression are not universally robust across tasks and protocols,
highlighting the need for task-aware adaptation (beyond linear probing) and potentially regression-
oriented pre-training objectives.

Scaling Behavior and Task Dependence Figure 6 (a) indicates that a simple “bigger-is-better”
rule does not generally hold across EEG decoders. Within a single architecture, however, we do
observe conventional scaling: for ST-EEGFormer, the large variant outperforms the base and small
variants (Figure 2). When we widen the comparison to all neural networks in the benchmark, large
foundation models often deliver performance that is merely comparable to classic, smaller NN de-
coders. We report this intentionally as a benchmark-level finding rather than a tuning artifact: if a
large foundation model only matches a compact classic model, then within-family scaling gains have
limited practical value—especially given the substantial computational and training costs of large
models. A primary factor is downstream data scarcity: most downstream BCI datasets include fewer
than 50 subjects, which constrains the benefits of large foundation models. This echoes results in re-
lated modalities, where an increasing number of training data leads to substantial performance gains
for sEMG decoding (cf., Figure 2: over 40% error rate when training with less than 50 subjects,
whereas below 10% error rate when scaling up the training subjects to more than 6,000) (Kaifosh
et al., 2025). Task dependence further compounds the picture. Easier paradigms (e.g., ERN) reach
near-ceiling accuracy (≈ 99.9%) even with small models, leaving little headroom for scaling; harder
paradigms (e.g., inner speech) show minimal improvement regardless of model size. Collectively,
these observations highlight fundamental limits in EEG decoding: foundation models can help, but
they are not a universal remedy in data-scarce regimes. Progress will require not only architec-
tural advances and task-aware objectives, but also substantially larger and more diverse datasets,
alongside a deeper understanding of the theoretical and physiological limits of scalp EEG.

5.2 HIDDEN IMPLEMENTATION FACTORS

Performance differences between foundation models arise not only from pre-training, but also from
downstream architectural and training choices—factors that are often underreported yet materially
affect results.
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Head Capacity under Linear Probing EEGPT and CBraMod employ multi-layer classification
heads even in settings described as linear probing, effectively increasing capacity relative to ap-
proaches that freeze the backbone and attach a single linear layer. This likely contributes to EEGPT’s
strong linear-probing performance and illustrates how the term “linear probing” can conceal sub-
stantial variation in head complexity. In Appendix H.1, we show that more complex heads can
significantly improve linear-probing accuracy.

Token Fusion Strategy The way token features are aggregated before the head is likewise critical.
CBraMod feeds all tokens into its head; LaBraM supports either class-token or full-token fusion
but tends to exhibit convergence issues when trained directly on raw EEG; ST-EEGFormer adopts a
ViT-style average-token fusion by default. These choices alter the effective receptive field and the
information delivered to the head. As demonstrated in Appendix H.1, simple fusion coupled with
a single linear layer typically underperforms more expressive heads (e.g., multi-layer or full-token
designs), even when backbone and data are held fixed. Additional overlooked factors are discussed
in Appendix C.4.

Takeaway Seemingly minor implementation details, such as head depth/width, fusion scheme, can
induce substantial performance gaps and complicate cross-model comparisons. We therefore recom-
mend that future foundation model studies (i) explicitly specify head architecture and fusion strategy
for every setting, and (ii) adopt a reporting checklist to standardize linear-probing vs. fine-tuning
protocols and ensure fair, reproducible benchmarks.

5.3 NEED FOR FAIR AND REPRODUCIBLE BENCHMARKING

Current evaluation practices often rely on selective downstream tasks and evaluation protocols, en-
abling overly optimistic claims. Statistical testing is frequently absent or insufficiently emphasized.
To truly assess progress, foundation models must be compared against strong classic baselines across
diverse tasks and protocols, with rigorous significance testing.

5.4 CALL FOR COMMUNITY-WIDE COLLABORATION

The current landscape of EEG foundation models is fragmented—models often adopt differing pre-
training strategies, evaluation protocols, and reporting practices, making direct comparison difficult
and reducing transparency. At the same time, the limited size and diversity of downstream EEG
datasets hinder large-scale benchmarking and generalization analyses.

To advance the field meaningfully, we call for a coordinated community effort to: 1) Develop and
share large-scale EEG datasets suitable for both pre-training and standardized evaluation. 2) Estab-
lish common evaluation protocols and strong, consistent baselines to enable fair and reproducible
comparisons. Without such shared resources and benchmarking standards, progress in EEG foun-
dation models risks being incremental, domain-specific, and unlikely to generalize to new subjects,
tasks, or datasets.

6 CONCLUSION

This study presents a comprehensive benchmark of EEG foundation models across diverse tasks,
evaluation protocols, and model types. In addition, we introduce ST-EEGFormer—a simple yet
effective foundation model based on the Vision Transformer architecture and pre-trained solely us-
ing masked autoencoding (MAE). Our results demonstrate that while foundation models can offer
clear advantages in high-data settings, they are not universally superior—particularly in low-data
scenarios such as per-subject decoding. In such cases, classic neural and non-neural models remain
strong contenders and should not be underestimated. Moreover, the generally poor performance
of linear probing and the sensitivity to implementation details highlight the need for greater trans-
parency and standardization in evaluation. Moving forward, progress in EEG foundation modeling
will depend on community-wide efforts to establish large-scale datasets and adopt fair, statistically
rigorous benchmarking practices.
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APPENDIX

A CLARIFICATION ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, Large Language Models (LLMs) (GPT-4o and GPT-5) were used as auxiliary tools
to support writing and implementation. For manuscript preparation, LLMs were used for grammar
checking and text refinement only. A typical prompt example is:
“Refine the following paragraph to improve clarity and conciseness while preserving technical
meaning.”
For experiments, LLMs were occasionally consulted to assist in coding tasks such as generating a
specific function using Python. Importantly, all code produced with LLM assistance was carefully
reviewed, validated, and tested by the authors to ensure correctness. Thus, the scientific contribu-
tions, experimental design, and data analyses presented in this work are entirely the responsibility
of the authors.

B REPRODUCIBILITY

To ensure transparency and reproducibility, we commit to publicly releasing all code and model
weights upon publication of this work. The full repository will be made available on GitHub, ac-
companied by detailed documentation and usage examples to facilitate community adoption. The
release will include:

• Pre-training framework: source code and pre-trained model weights for the proposed
ST-EEGFormer.

• Downstream benchmarks: training and evaluation code for both foundation models and
classic neural networks.

• Classical baselines: implementations of non-neural methods (e.g., FBCSP, TRCA, CCA,
Riemannian classifiers) used in this benchmark.

• Utilities: example SLURM scripts for job submission, reflecting our HPC-based experi-
mental setup, to help others reproduce large-scale training efficiently.

During the review period, we provide a complete code package in the supplementary material. This
includes the ST-EEGFormer pre-training implementation, downstream benchmark code for both
neural and non-neural models, and minimal runnable examples. Together, these resources ensure
that all reported results can be independently verified and extended.

C RELATED WORK

C.1 EEG FOUNDATION MODELS

EEG foundation models have attracted significant attention as they provide generalizable EEG rep-
resentations transferable across various tasks and datasets. BENDR (Kostas et al., 2021) was among
the earliest to apply masked pre-training and contrastive learning to EEG data, utilizing a transformer
backbone to learn from large-scale unlabeled datasets. Building upon this approach, BIOT (Yang
et al., 2023) and LaBraM (Jiang et al., 2024) adopted similar transformer architectures combined
with extensive masked pre-training strategies. Specifically, BIOT introduced flexible channel to-
kenization to enhance cross-dataset transferability, while LaBraM proposed ”neural tokens” and
argued that straightforward masked autoencoding on raw EEG data failed to converge effectively,
thereby encouraging further exploration into more sophisticated pre-training objectives instead of
a simple raw-signal reconstruction task. More recently, CBraMod (Wang et al., 2025) advanced
LaBraM’s paradigm by employing a criss-cross transformer architecture alongside local and global
masked reconstruction losses, significantly enhancing the transferability of EEG feature represen-
tations. Similarly, EEGPT (Wang et al., 2024) adds spatio-temporal representation alignment, con-
structing a self-supervised task on EEG representations with high SNR and rich semantic infor-
mation instead of raw signals. A detailed comparison of these foundation models is presented in
Appendix Table C.1
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Despite methodological differences, most existing EEG foundation models share the underlying
assumption that large-scale, self-supervised pre-training leads to better generalization in downstream
tasks. However, these models are rarely evaluated against traditional non-neural baselines and are
typically tested using limited evaluation protocols—such as population decoding or leave-one-out
zero-shot decoding. As a result, prior studies often report isolated high-performing numbers without
statistical verification, leaving the true advantages of foundation models largely unsubstantiated.

C.2 CLASSIC NEURAL NETWORK MODELS

Parallel to the advancements in foundation models, the BCI community has actively developed
compact neural architectures specifically tailored for EEG decoding. Early deep-learning models
such as DeepConvNet (Schirrmeister et al., 2017) and EEGNet (Lawhern et al., 2018) demon-
strated that convolutional architectures can effectively capture spatio-temporal EEG features with
relatively low complexity. More recently, hybrid designs like EEG Conformer (Song et al., 2023)
and CTNet (Zhao et al., 2024)—which combine convolutional modules with Transformer-based at-
tention—have achieved state-of-the-art performance on diverse tasks while maintaining significantly
lower computational demands than foundation models. Due to the inherent coupling of EEG signals
with the specific tasks performed by participants, many existing neural network architectures are
tailored to incorporate explicit task-specific priors (or knowledge). For instance, in tasks involv-
ing emotion, fatigue, or Alzheimer’s disease etc., where cross-brain-region information transfer is
prevalent, graph-based architectures have proven effective in modeling this underlying functional
connectivity (Zhong et al., 2020; Ding et al., 2022; Klepl et al., 2024). Conversely, for SSVEP
detection, where the brain response to the stimulation is relatively well-defined, stimulation priors
are incorporated into the neural network architecture design, leading to improved decoding perfor-
mance (Li et al., 2020; Zhang et al., 2022; Deng et al., 2024). These developments highlight that
well-designed compact models can capture rich EEG representations across a variety of BCI tasks,
often matching or exceeding the performance of larger models while remaining more efficient and
interpretable.

C.3 CLASSIC NON-NEURAL NETWORK MODELS

Classic machine learning models—those not based on neural networks—remain the most widely
used for EEG decoding, though they are often overlooked in recent foundation model research. Ac-
cording to a recent comprehensive study on EEG decoder reproducibility, classic approaches often
exhibit superior performance, even outperforming neural networks on various BCI tasks (Cheval-
lier et al., 2024). For instance, Common Spatial Patterns (CSP) (Ramoser et al., 2000), filter bank
CSP (FBCSP) (Ang et al., 2008), and Riemannian geometry-based classifiers (Congedo et al.,
2017), continue to demonstrate competitiveness in various motor imagery BCI applications. In the
context of SSVEP decoding, traditional methods such as filter bank Canonical Correlation Analy-
sis (FBCCA) (Chen et al., 2015), Task-Related Component Analysis (TRCA) (Nakanishi et al.,
2018b), and Spatiotemporal Beamforming (Wittevrongel & Van Hulle, 2017) remain dominant due
to their robustness and high efficiency with limited training data. For event-related potential (ERP)
classification, xDAWN is widely used as a pre-processing step for improving signal-to-noise ratio
(Rivet et al., 2009). Additionally, classic machine learning techniques employing carefully designed
EEG features and explainable classifiers such as Linear Discriminant Analysis (LDA), Random For-
est (RF), and Support Vector Machines (SVM) are still popular in scenarios characterized by limited
data availability and a preference for interpretability, such as Alzheimer’s diagnosis (Miltiadous
et al., 2023).

C.4 METHODOLOGICAL GAPS AND IMPLEMENTATION ISSUES IN PRIOR EEG FOUNDATION
MODELS

While Table C.1 outlines the key methodological differences across EEG foundation models, sev-
eral important implementation details have been largely overlooked in prior work. For instance, as
discussed in Section 5.2, the choice of token fusion strategy can substantially affect downstream
performance, yet it is rarely examined systematically. During our benchmarking, a careful review
of publicly available code revealed additional overlooked factors and inconsistencies in implemen-
tation, which may partly explain discrepancies in reported results. We summarize and discuss these
issues below to highlight the importance of transparent and reproducible evaluation practices.
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Beyond the differences summarized in Table C.1, several methodological details warrant emphasis.
EEGPT employs an encoder that restricts attention to tokens within the same time step, treating
tokens from different time steps as independent. This design prevents the model from explicitly
capturing temporal dependencies. Furthermore, EEGPT discards all patch tokens after the encoder,
relying solely on the [CLS] token for both pre-training and downstream tasks. In downstream ap-
plications, an additional convolutional layer is inserted before the encoder to remap input channels,
which may inadvertently diminish the role of channel embeddings.

For CBraMod, positional information is introduced through ACPE embeddings, constructed via
two-dimensional convolutions over the spatio-temporal neighborhood of each patch. However, the
model was pre-trained exclusively on a fixed 19-channel dataset. Consequently, when applied to
datasets with different channel configurations, it requires fine-tuning to learn new channel embed-
dings and representations. This limitation is reflected in their reported results: as shown in Table 4
of the original paper, the downstream performance differences between the pre-trained model and
the model trained directly on downstream tasks without pre-training are very marginal, suggesting
limited transferability of the learned representations.

BIOT, in contrast, adopts a bipolar montage during pre-training rather than a standard single-channel
montage. As a result, downstream datasets must either be remapped into a consistent bipolar mon-
tage or supplemented with a convolutional layer before the encoder to automatically learn this map-
ping.

Finally, we also identified potential implementation issues in the official EEGPT codebase that were
not documented in the paper. Specifically, the authors employed the torcheeg library to extract
EEG segments from datasets such as TSU, M3CV, and SEED. By default, this library generates
1-second epochs, which were subsequently interpolated to match the longer durations reported in
the paper (e.g., 4 s for TSU and 10 s for SEED).

C.5 GAPS AND MOTIVATION

Despite recent advances, current EEG foundation model studies remain limited in scope. Most fo-
cus narrowly on tasks like leave-one-out zero-shot decoding, often overlooking real-world scenarios
such as per-subject evaluation and omitting comparisons with classical non-neural methods. Sta-
tistical testing is rarely performed, and regression tasks are largely unexplored. To address these
gaps, we present a comprehensive, statistically rigorous benchmark across diverse classification and
regression tasks, comparing foundation models against both classical and compact neural decoders.
Notably, we show that top performance can be achieved with a simple MAE-pre-trained model,
challenging the need for overly complex pre-training strategies.
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D BENCHMARK DATASETS

In this section, we introduce all downstream benchmark datasets used in this study and their pre-
processing and data-split strategies.

D.1 BENCHMARKED DOWNSTREAM DATASETS

D.1.1 BCI COMPETITION IV-2A (4-CLASS MOTOR IMAGERY)

The BCI Competition IV-2a dataset (Tangermann et al., 2012) is a widely used benchmark for
motor imagery (MI) classification. It contains EEG recordings from 9 subjects performing four
distinct imagined movements: left hand, right hand, both feet, and tongue. Each subject participated
in two sessions on separate days, each consisting of 288 trials (576 trials in total per subject). EEG
was recorded from 22 electrodes (international 10–20 system) at 250 Hz, with each trial comprising
a 4-second MI period following a visual cue. In the original competition design, the first session is
designated as the training set and the second as the test set. This dataset’s well-controlled protocol
and multi-class setting (4 classes) have made it a canonical benchmark for MI decoding. In our
study, we strictly follow the original competition split: models are trained on the first session and
evaluated on the second.

D.1.2 UPPER-LIMB MOTOR EXECUTION/IMAGERY DATASET (7-CLASS MOTOR
EXECUTION/IMAGERY)

The Upper-Limb Motor Execution/Imagery dataset (Ofner et al., 2017) contains EEG recordings
from 15 healthy subjects performing both executed and imagined upper-limb movements. Each
subject completed two sessions on separate days: one with actual motor execution (ME) and one
with motor imagery (MI) of the same tasks. In both conditions, subjects performed six distinct
sustained movements of the right arm (elbow flexion/extension, forearm supination/pronation, and
hand open/close), plus a rest condition, yielding seven classes in total. Tasks were visually cued,
and subjects either executed the movement (ME) or vividly imagined it (MI) for several seconds
per trial. Each session comprised 10 runs of 42 trials, resulting in 60 trials per class (420 trials
per session). EEG was recorded from 61 electrodes (motor coverage) at 512 Hz. This dataset
enables multi-class decoding across overt and imagined movements, while also supporting analysis
of execution–imagery differences. In this study, we apply a 5-fold cross-validation strategy within
each subject and modality.

D.1.3 INNER SPEECH EEG DATASET (4-CLASS INNER SPEECH)

The Thinking Out Loud dataset (Nieto et al., 2022) is an open-access benchmark for inner speech
classification. It contains EEG recordings from 10 native Spanish speakers instructed to silently
imagine saying four command words (“arriba, abajo, izquierda, derecha” meaning up, down, left,
right). For comparison, the same participants also performed overt speech (speaking the words
aloud) and a visual imagery control task, though here we focus only on the inner speech condition.
Each subject completed multiple runs across three sessions, yielding about 200 trials per word for in-
ner speech. EEG was acquired using a 136-channel system (128 scalp electrodes plus 8 EOG/EMG
channels) at 1024 Hz. During inner speech trials, participants were asked to repeatedly imagine
pronouncing the target word in their own voice while avoiding overt articulation. This dataset pro-
vides a four-class classification challenge in the inner speech paradigm, offering a benchmark for
developing BCIs aimed at natural, speech-based communication. In this study, we adopt a 5-fold
cross-validation strategy within subjects to train and evaluate models.

D.1.4 ERROR-RELATED EEG DATASET (2-CLASS ERN CLASSIFICATION)

The Error-Related EEG Dataset (Kueper et al., 2024) captures brain responses to unexpected
movement errors during human–robot interaction. Eight subjects wore an active robotic orthosis on
the right arm, which guided elbow flexion/extension movements. In ∼20% of trials, the orthosis
briefly (250 ms) moved in the opposite direction before returning to the correct trajectory, inducing
a detectable error. Subjects remained passive but reported errors by squeezing a ball with the left
hand. Each subject performed 10 runs of 30 trials (15 flexion, 15 extension), with 6 error trials
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per run, resulting in ∼300 total trials and 60 error events per subject. EEG was recorded from
64 scalp channels (extended 10–20 montage, Brain Products LiveAmp) at 500 Hz, along with 8
EMG channels on arm muscles. Impedances were kept below 5 kΩ. The dataset is designed to
study Error-Related Potentials (ErrPs), providing a binary classification task (error vs. correct
movement). In this study, we use 1-s EEG epochs following the error onset and adopt the same
train-test split strategy as the original work for evaluation.

D.1.5 BINOCULAR DUAL-FREQUENCY SSVEP DATASET (40-CLASS BINOCULAR SSVEP)

The Binocular SSVEP Dataset (Yike et al., 2024) introduces a novel paradigm where distinct flick-
ering stimuli are presented separately to the left and right eyes using a polarized light system. The
benchmarked subset corresponds to the binocular-swap experiment, involving 35 healthy subjects.
A total of 40 visual targets were defined by different binocular frequency combinations. In each trial,
participants fixated on a single target for 2 s, with each target repeated 5 times. EEG was recorded
with a 64-channel Neuroscan Quik-Cap, following the international 10–20 electrode placement sys-
tem. This dataset provides a large-scale multi-class SSVEP benchmark under binocular stimulation.
In this study, we adopt a 5-fold cross-validation strategy, ensuring that held-out test trials are never
used during training to avoid data leakage.

D.1.6 ALZHEIMER’S DIAGNOSIS EEG DATASET (3-CLASS CLASSIFICATION)

The Alzheimer’s EEG Dataset (Miltiadous et al., 2023) provides resting-state EEG recordings for
studying Alzheimer’s disease (AD) and Frontotemporal dementia (FTD). It includes 88 elderly
subjects: 36 with probable AD, 23 with FTD, and 29 cognitively healthy age-matched controls.
EEGs were collected during routine clinical assessments, with each recording consisting of 12–14
minutes of eyes-closed resting-state activity. Signals were acquired from 19 scalp electrodes (10–20
system) at 500 Hz and are shared in BIDS format with preprocessing and accompanying metadata,
including Mini-Mental State Exam (MMSE) scores. This dataset supports both binary (e.g., AD vs.
Control) and multi-class classification (AD vs. FTD vs. Control), offering a valuable resource for
developing machine learning models for early dementia diagnosis from non-invasive EEG. In this
study, we adopt a leave-one-subject-out split, reflecting the clinical goal of diagnosing an unseen
patient.

D.1.7 FACED (9-CLASS EMOTION RECOGNITION)

The Finer-grained Affective Computing EEG Dataset (FACED) (Chen et al., 2023a) is a large-
scale benchmark for multi-class EEG-based emotion recognition. It contains EEG recordings from
123 healthy subjects who watched 28 emotion-eliciting video clips spanning nine discrete emotion
categories: amusement, inspiration, joy, tenderness; anger, fear, disgust, sadness; and neutral. After
each clip, participants provided self-reported ratings on eight target emotions plus valence, arousal,
liking, and familiarity. EEG was recorded from 32 electrodes (10-20 system) at 250 or 1000 Hz and
subsequently standardized to 250 Hz; for each trial, the last 30 s of the video were retained and pre-
processed, and both raw and feature-level (DE/PSD) representations are released. In this study, we
treat FACED as a 9-class emotion recognition benchmark and adopt a conventional cross-subject
zero-shot protocol on the processed 250Hz data, where models are trained on 80% of subjects and
evaluated on the remaining 20% test subjects.

D.1.8 TUH EEG EVENTS CORPUS (TUEV, 6-CLASS EEG EVENTS)

The TUH EEG Events Corpus (TUEV) (Obeid & Picone, 2016) is a clinically collected bench-
mark derived from the Temple University Hospital EEG (TUEG) database. It consists of short
EEG segments extracted from routine clinical recordings and labeled as one of six event types:
spike and sharp wave (SPSW), generalized periodic epileptiform discharges (GPED), periodic lat-
eralized epileptiform discharges (PLED), eye movement (EYEM), artifact (ARTF), and background
(BCKG). In common benchmark settings, THE EEG signals are recorded at 250Hz with 23 chan-
nels. The corpus has become a standard dataset for automatic detection of epileptic discharges and
general EEG event classification in clinical environments. In this study, we formulate TUEV as a
6-class EEG event classification task and follow the conventional cross-subject protocol provided
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Table D.1: Summary of benchmarked EEG datasets used in this study.

Dataset #Subj. Classes / Target EEG Ch. fs (Hz) Trial Dur. Trials / Subj. Task Type
BCI-IV-2A 9 4 classes (L/R hand, feet, tongue) 22 250 4 s 576 Motor Imagery
Upper-limb ME/MI 15 7 classes (6 arm movements + rest) 61 512 3 s 420 Motor Exec./Imagery
Inner Speech 10 4 classes (silent words) 128 1024 3 s ∼200/word Inner Speech
Error-related (ErN) 8 2 classes (error vs. correct) 64 500 1 s epoch ∼300 Error Monitoring
Binocular SSVEP 35 40 targets (binocular freq. combos) 64 250 2 s 200 SSVEP
Alzheimer’s/FTD/HC 88 3 classes (AD, FTD, HC) 19 500 12–14 min 1 session Clinical Diagnosis
FACED 123 9 classes (discrete emotions) 32 250 30 s 28 Emotion Recognition
TUEV (Events) 290 6 classes (SPSW, GPED, PLED, EYEM, ARTF, BCKG) 23 250 variable (event segments) EEG Event Detection
DTU Cocktail Party 18 Regression (speech envelope) 64 512 ∼50 s 6 trials (∼30 min) Auditory Attention
SEED-VIG 23 Regression (vigilance level) 17 200 5 s ∼750 Vigilance

by the dataset, training on the official training partition and evaluating on the held-out evaluation
partition without subject overlap.

D.1.9 AUDITORY ATTENTION (DTU “COCKTAIL PARTY” DATASET, REGRESSION)

The DTU “Cocktail Party” Dataset (Fuglsang et al., 2018) is a benchmark for auditory attention
decoding (AAD), formulated here as a regression task. It contains EEG recordings from 18 subjects
listening to continuous speech in a dual-speaker setting. In each ∼50 s trial, two concurrent speech
streams (one male, one female, presented from different spatial locations) were played, and subjects
were instructed to attend to one speaker while ignoring the other. Some baseline trials featured
only a single speaker. EEG was recorded at 512 Hz with a 64-channel BioSemi system (plus EOG),
and the speech waveforms of both speakers were simultaneously recorded and temporally aligned
with the EEG. Each subject contributed ∼30 min of data across six trials with varying attention
conditions.

Unlike categorical BCI datasets, this dataset provides a continuous regression target: the temporal
envelope of the attended speech. Models are evaluated by reconstructing the attended envelope
from EEG and comparing it against the true attended vs. unattended audio streams. This paradigm
captures realistic neural tracking of continuous stimuli and assesses a model’s ability to decode
selective attention in naturalistic listening environments. In this study, we regress EEG to the
attended auditory envelope, using the first 80% of each subject’s recording for training and the
remaining 20% for testing.

D.1.10 SEED-VIG (VIGILANCE ESTIMATION)

The SEED-VIG dataset (Zheng & Lu, 2017) is a multimodal benchmark for driver vigilance esti-
mation. It was collected from 23 participants performing a ∼2 h sustained simulated driving task on
a monotonous four-lane highway designed to induce fatigue. EEG and forehead EOG were recorded
with a Neuroscan system; for EEG, 17 scalp electrodes were placed according to the international
10–20 system, and signals were downsampled to 200 Hz. Continuous vigilance labels in the range
[0, 1] were derived from PERCLOS (percentage of eyelid closure). SEED-VIG has become a stan-
dard benchmark for EEG-based drowsiness and vigilance estimation in automotive safety research.
In this study, we use SEED-VIG as a regression benchmark.

To ensure a comprehensive evaluation of EEG decoders, we benchmark across datasets spanning
a broad range of paradigms, including motor imagery/execution, inner speech, error monitoring,
visual (SSVEP), auditory attention, and clinical diagnosis. This diversity captures both laboratory
and real-world BCI scenarios, testing models under varying cognitive tasks, electrode montages, and
recording conditions. A summary of all benchmarked datasets is provided in Table D.1.

D.2 DATA PRE-PROCESSING

We apply minimal and standardized pre-processing across all benchmarked datasets to ensure com-
parability while preserving raw signal characteristics. EEG signals are band-pass filtered between
0.1–128 Hz and notch filtered at the power-line frequency using the mne.filter module. All
datasets are downsampled to a baseline rate of 256 Hz, chosen to align with EEGPT (which natively
operates at 256 Hz). For foundation models requiring lower sampling rates, additional resampling
is applied at data-fetch time using mne.resample, followed by their own normalization schemes.
A summary of preprocessing steps is provided in Table D.2. Note that for the Binocular SSVEP
dataset, recordings originally sampled at 250 Hz are kept at 250 Hz, only being upsampled to 256 Hz
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Table D.2: Default preprocessing pipeline applied across all datasets.

Step Description

Band-pass filtering 0.1–128 Hz using mne.filter
Notch filtering Power-line frequency (50/60 Hz) using mne.filter
Downsampling 256 Hz (baseline rate)
Resampling Model-specific rate via mne.resample

Table E.1: Details of ST-EEG-MAE variants, all with an EEG segment (patch) size of 16 samples
and a mask ratio of 0.75.

Model Encoder
layers

Encoder
embed size

Encoder
MLP size

Encoder
heads

Decoder
layers

Decoder
embed size

Decoder
MLP size

Decoder
heads Params

small 8 512 2048 8 4 384 1536 16 32.7M
base 12 768 3072 12 8 512 2048 16 110.9M
large 24 1024 4096 16 8 512 2048 16 328.4M

when training EEGPT. Additionally, the Binocular SSVEP and DTU datasets undergo task-specific
segmentation, described below.

Binocular SSVEP To increase the number of training examples and to evaluate asynchronous
classification, we segment each 2-s trial into overlapping windows. A sliding window of 1 s with a
0.1 s step size is used, yielding 11 segments per trial. With 40 targets and 5 repetitions each, this
results in 11 × 40 × 5 = 2200 samples. In each fold, 1760 samples are used for training and 440
for testing. The first segment of each trial (stimulus onset) is considered a synchronous trial (40 in
total), while the remaining 400 segments serve as asynchronous trials.

DTU (Auditory Attention) For regression benchmarking, we adopt a simple formulation: given
a 1-s EEG segment, the model predicts one sample of the attended speech envelope. Recordings
are segmented into 3-s windows with a 0.1-s step size. Within each window, the model is trained
to reconstruct the envelope using the abovementioned 1-s sliding window approach. The training
objective combines mean squared error (MSE) and Pearson correlation loss between the predicted
and true envelopes.

E ST-EEGFOMER

In this section, we introduce the proposed ST-EEGFormer, including its model architecture, pre-
training task, implementation details, and results.

E.1 MODEL ARCHITECTURE

The proposed ST-EEGFomer is based on the ViT architecture (Dosovitskiy et al., 2021), pre-trained
using MAE (He et al., 2022). The pre-training task involves reconstructing the original EEG inputs
from masked tokens, as illustrated in Figure 1 (b). During pre-training, raw EEG signals are divided
into spatial and temporal segments, which are tokenized through a linear projection layer. Each token
is augmented with temporal and spatial positional embeddings to preserve structural information. A
random masking strategy is applied, with 75% of tokens hidden, and the encoder processes only
the remaining visible tokens. To enable reconstruction, the masked tokens—together with their
positional embeddings—are concatenated with the encoder output to form the full token sequence,
which is then passed through a lightweight decoder to reconstruct the original EEG signal. After
pre-training, only the encoder is retained and used as the ST-EEGFormer backbone for fine-tuning
on downstream tasks. Three different ST-EEGFormers (small, base, and large models) were pre-
trained in this study. The base and large models have the same architecture as the base, large models
proposed in the ViT implementation, while the corresponding decoders have the same architecture
as in the MAE implementation. Details about the benchmarked model can be found in table E.1.
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E.2 PRE-TRAINING DATASETS

The MAE reconstruction task is conducted on 11 public datasets. These datasets include:
1) EEG-MI-BCI (Cho et al., 2017): This dataset contains 52 subjects performing 2-class imagined
left and right-hand movements, recorded with 64 EEG channels using a Biosemi ActiveTwo system.
It includes approximately 5,000 trials of 3-second motor imagery (MI) data per class.

2) HGD (Schirrmeister et al., 2017): The High Gamma Dataset comprises 20 subjects performing
4-second trials of executed movements with four classes (left hand, right hand, both feet, and rest).
The data were recorded with 128 high-density EEG caps (WaveGuard Original, ANT, Enschede,
NL) and sampled at 5 kHz using a NeurOne amplifier (Mega Electronics Ltd, Kuopio, FI). It
includes roughly 3,000 trials per class.

3) BCI-Comp-IV2a (Tangermann et al., 2012): This dataset includes nine subjects performing
four-second trials of four classes (imagined left hand, right hand, feet, and tongue movements),
recorded with 22-electrode EEG caps. It contains a training set and a test set from two separate
sessions, each with roughly 600 trials per class.

4) BCI-Comp-IV2b (Tangermann et al., 2012): This dataset consists of nine subjects performing
2-class imagined left and right-hand movements, recorded with three EEG channels. It contains a
training set of approximately 1,800 trials per class and a separate test set of approximately 1400
trials per class.

5) Large-MI-Classic (Kaya et al., 2018): This dataset comprises 13 subjects performing 1-second
trials of six classes (imagined left hand, right hand, left foot, right foot, tongue, and rest). The data
were recorded with 19-channel EEG caps plus 2 ground lead channels (Electro-Cap International,
USA) and were mostly sampled at 200 Hz, with some recordings sampled at 1000 Hz using the
EEG-1200 system. In total, it includes approximately 50,000 trials (different classes have an
unequal number of trials).

6) Large-MI-5F (Kaya et al., 2018): From the same study as 5) but different experiments, this
dataset comprises 13 subjects performing 1-second trials of five classes of finger movements
(imagined thumb, index, middle, ring, pinkie). In total, it includes around 18000 trials.

7) P300 (Won et al., 2022): This dataset consists of 55 participants performing a P300 speller
experiment and 50 participants viewing a rapid serial visual representation (RSVP). In total, it
includes 99000 training P300 trials and 277200 test trials.

8) SSVEP (Liu et al., 2020): This dataset consists of 70 participants performing cue-guided SSVEP
target-selecting experiments, comprising 40 flickering stimuli ranging between 8 Hz to 15.8 Hz
with an interval of 0.2 Hz. For each target, it contains 20 trials of 5-s stimulation data.

9) Online MI BCI Classification (Stieger et al., 2021): This dataset contains 600 hours of
62-channel EEG recordings, sampled at 1000 Hz, collected during online and continuous BCI
control from 62 healthy adults, spanning multiple sessions across different days. The BCI paradigm
involves imagining left, right, and both hand movements (opening and closing), as well as a resting
state condition, to control a virtual cursor. The provided data consists of epoched trials of varying
lengths, structured with a 2-second inter-trial interval, followed by a 2-second target presentation.
The task imagination phase varies in length, with a maximum duration of up to 6.04 seconds,
followed by a 1-second post-trial interval.

10) KUL Auditory Decoding Dataset (Bollens et al., 2023): This dataset consists of 64-channel
EEG recordings from 85 young participants, each exposed to 90–150 minutes of continuous natural
speech. Data were acquired with a BioSemi 64-channel system at a sampling rate of 1024 Hz,
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providing a large-scale resource for auditory attention and speech decoding research.

11) SEED-V Emotion EEG Dataset (Liu et al., 2022): This dataset provides multimodal EEG and
eye-tracking data for emotion recognition. It includes recordings from 16 subjects who participated
in three sessions, each watching 15 movie clips spanning five emotional categories: happy, sad,
fear, disgust, and neutral (3 clips per emotion per session, totaling 45 trials per subject). EEG was
acquired using a 62-channel NeuroScan system (10–20 layout) at 1000 Hz (typically downsampled
to 200 Hz), while eye movement was captured with SMI tracking glasses. Each trial includes stim-
ulus presentation followed by a rest/self-assessment period. SEED-V stands out as a rich resource
for emotion decoding from EEG–eye multimodal data, offering both raw signals and precomputed
differential entropy features across standard frequency bands.

The dataset selection followed two main criteria: (i) size and quality, as highlighted in a recent
review (Gwon et al., 2023), and (ii) benchmark relevance. Specifically, the MI datasets were chosen
for their robustness and widespread use, with Datasets 3 and 4 serving as classic benchmarks in
motor imagery research. The P300 dataset was included as it represents one of the largest publicly
available collections for event-related potential decoding. Similarly, the SSVEP dataset was selected
due to its established role as a standard benchmark in visual BCI studies. Finally, the auditory
decoding dataset was incorporated given its scale and its unique position as the largest EEG resource
in the auditory domain. In addition, we integrated an in-house EEG dataset covering multiple
paradigms (e.g., MI and SSVEP) with diverse channel configurations. This enriched the model’s
exposure to a wide range of electrode montages, ultimately enabling it to learn from 142 unique
EEG channels and improving its adaptability to future datasets.

E.3 DATA PREPROCESSING

All datasets underwent minimal preprocessing to ensure comparability while preserving raw
signal characteristics. Specifically, power-line noise was removed when present using the
mne.filter.notch filter() function (Python 3.8.19, MNE 1.6.1). Next, a band-pass filter
between 0.1–64 Hz was applied to all channels via mne.filter.filter data() with a win-
dowed FIR design (fir design=‘firwin’). The signals were then downsampled to 128 Hz
using mne.filter.resample() and finally standardized to zero mean and unit variance per
channel.

E.4 DATA SEGMENTATIONS FOR PRE-TRAINING

The benchmark datasets differ in whether they provide continuous EEG recordings or only task-
related epochs. To unify pre-training data construction, dataset-specific sliding-window strategies
were applied:

1) For continuous datasets (e.g., EEG-MI-BCI (Cho et al., 2017), HGD (Schirrmeister et al., 2017),
BCI-Comp-IV2a (Tangermann et al., 2012), BCI-Comp-IV2b (Tangermann et al., 2012), P300 (Won
et al., 2022), SEED-V (Liu et al., 2022), and KUL Auditory (Bollens et al., 2023)), 6-s windows
with 0.5-s hops were used.

2) For large MI datasets (Large-MI-Classic (Kaya et al., 2018), Large-MI-5F (Kaya et al., 2018),
Online MI BCI (Stieger et al., 2021)), a 6-s window with a 2.5-s hop was applied to reduce redun-
dancy.

3) For the SSVEP dataset (Liu et al., 2020), which consists only of 5-s stimulation epochs, 2-s
windows with 0.125-s hops were extracted.

4) We also included EEG data recorded in our own lab to enrich electrode coverage. By combining
heterogeneous datasets, the encoder was exposed to 142 unique EEG channels, improving robust-
ness for transfer to unseen datasets.

A validation split was retained for each dataset: for BCI-Comp-IV2a, the official test set was used,
while for others, 20% of the data was held out. Overall, this yielded more than 8 million overlap-
ping EEG segments.
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E.5 MAE PRE-TRAINING METHODOLOGY

The pre-training procedure follows the original MAE framework. EEG data are first divided into
spatial–temporal segments, which are linearly projected into embeddings with added spatial (SPE)
and temporal positional encoding (TPE). For the spatial positional embeddings, a learned embedding
per channel was used, similar to the learned positional embedding in (Gehring et al., 2017), while
for the temporal positional embeddings, a sine-cosine positional embedding approach was used, as
shown in Eq E.1. A fixed ratio of 75% of tokens is randomly masked, and the remaining tokens
are passed through a ViT-based encoder. Mask tokens with their positional embeddings are then
concatenated with the encoder output and processed by a lightweight decoder. The decoder recon-
structs the original EEG, and the objective is the mean squared error (MSE) between reconstructed
and original signals over the masked segments.

p⃗
(i)
t = f(t)(i) :=

{
sin(ωk · t), if i = 2k

cos(ωk · t), if i = 2k + 1
, where ωk =

1

10000
2k
d

(E.1)

E.6 MAE PRE-TRAINING SETTINGS

The model is initialized with xavier uniform (Glorot & Bengio, 2010). Optimization follows
AdamW (Loshchilov & Hutter, 2019) with a base learning rate of 3e-4, weight decay of 0.05, batch
size of 256, cosine learning rate decay (Loshchilov & Hutter, 2017), and a 10-epoch warmup (Goyal
et al., 2018). The learning rate scales linearly with batch size according to Eq. E.2.

lr = base lr × batch size

256
(E.2)

E.7 PRACTICAL CONSIDERATIONS FOR MAE PRE-TRAINING

We conducted pre-training on a high-performance computing (HPC) cluster equipped with NVIDIA
A100 GPUs (80 GB). Before the production run, benchmark experiments were performed to evaluate
scaling efficiency and estimate wall-time under different job sizes. Each benchmark ran for one
epoch across the full dataset, and the average epoch wall-time was extrapolated to 400 epochs,
consistent with the original MAE setting.

Figure E.1 summarizes these benchmarks. The blue line shows relative efficiency compared to a
single-GPU baseline (green dashed line), while the red dashed line indicates estimated wall-time
in days. Panels (a–d) correspond to different model–hardware configurations: (a) small model on
40 GB A100, (b) small model on 80 GB A100, (c) base model on 80 GB A100, and (d) large model
on 80 GB A100. Efficiency was defined as:

Efficiency =
Bbaseline · Tbaseline

Bcurrent · Tcurrent

where B is the number of CPU cores and T the wall-time.

We ultimately selected the 16×A100-80GB configuration, which offered the best trade-off between
efficiency (Efficiency > 50%) and throughput. The benchmarks highlight that larger GPU mem-
ory enables larger batch sizes, reducing per-epoch training time. However, they also illustrate the
extreme resource demands of large-scale EEG pre-training: even with optimized scaling, our pro-
duction run consumed 32,614 GPU hours. This underscores both the cost of developing EEG
foundation models and the importance of transparent reporting of their computational footprint.

E.8 MAE PRE-TRAINING RESULTS

The pre-training learning curves for the small, base, and large models are shown in Figure E.2.
As expected, the large model achieves the lowest reconstruction loss, followed by the base model,
and the small model yields the highest loss. The small and base models exhibit smooth and stable
convergence, whereas the large model shows some instability during the early epochs before even-
tually converging. Overall, all model variants successfully converge, which directly contrasts with
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Figure E.1: GPU scaling benchmark for MAE pre-training. The blue line shows efficiency relative
to the single-GPU baseline (green dashed line), while the red dashed line indicates estimated total
wall-time in days for 400 epochs. Panels: (a) small model on A100-40GB, (b) small model on A100-
80GB, (c) base model on A100-80GB, and (d) large model on A100-80GB. The chosen production
configuration is indicated by the orange dashed line.

Figure E.2: Learning curves of the small, base, and large ST-EEG MAE models during the MAE
pertaining phase.

the claim made in LaBraM (Jiang et al., 2024) that masked autoencoding is difficult to train on raw
EEG signals.

Some examples of the reconstructed signals compared to the original ones are presented in fig-
ures E.3 and E.4. It is noteworthy that the model was able to effectively reconstruct the low-
frequency trends, though it encountered difficulties in accurately reconstructing high-frequency
spikes. This could be attributed to the lower signal-to-noise ratio (SNR) of high-frequency EEG
components, making them more challenging to learn.
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Original MAE-small MAE-base MAE-large Original MAE-small MAE-base MAE-large

BCI Comp Iv2a Large MI Classic
Figure E.3: Random samples from the BCI-IV-2A (the first 4 columns), Large-MI-Classic (the last
4 columns). For each example (4 rows), the following are shown, from left to right: the original sig-
nals with masked segments highlighted in white and unmasked segments in grey; the reconstructed
signals in red produced by the MAE-Small model, overlaid on the original signals in white; the
reconstructed signals in red produced by the MAE-Base model, overlaid on the original signals in
white; and the reconstructed signals in red produced by the MAE-Large model, overlaid on the orig-
inal signals in white. The corresponding mean squared error (MSE) loss is displayed at the bottom
of each figure.

E.9 ADDITIONAL MODEL VALIDATION ON PRE-TRAINING DATASETS

After MAE pre-training and before the large-scale benchmarks described in Appendix D, we con-
ducted intermediate evaluations to assess the effectiveness of the pre-trained ST-EEGFormer. Popu-
lation decoding was performed on four motor imagery/execution datasets (EEG-MI-BCI (Cho et al.,
2017), HGD (Schirrmeister et al., 2017), Large-MI-Classic (Kaya et al., 2018), and Large-MI-
5F (Kaya et al., 2018)), one P300 dataset (Won et al., 2022), ONE SSVEP dataset (Liu et al., 2020),
and a single-channel seizure classification dataset (Andrzejak et al., 2001). The seizure dataset is not
included in the pre-training corpora. ST-EEGFormer was compared against representative baselines,
including EEGNet, EEG Conformer, BIOT, and LaBraM. Additionally, we implemented a simple
linear model (Table E.2), consisting of a spatial filter, a feature extractor, and a fully connected layer
without nonlinear activations. This model serves as a minimal yet informative baseline, with the
extracted feature set summarized in Table E.3.
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EEG MI BCI SSVEP

Original MAE-small MAE-base MAE-large Original MAE-small MAE-base MAE-large

Figure E.4: Random samples from the EEG-MI-BCI (the first 4 columns), and SSVEP datasets
(the last 4 columns). For each example (4 rows), the following are shown, from left to right: the
original signals with masked segments highlighted in white and unmasked segments in grey; the
reconstructed signals in red produced by the MAE-Small model, overlaid on the original signals in
white; the reconstructed signals in red produced by the MAE-Base model, overlaid on the original
signals in white; and the reconstructed signals in red produced by the MAE-Large model, overlaid
on the original signals in white. The corresponding mean squared error (MSE) loss is displayed at
the bottom of each figure.

E.9.1 EXPERIMENT DETAILS

For all MI datasets, we employed a 5-fold cross-validation strategy, using the StratifiedKFold
function from sklearn.model selection to ensure class balance within each fold. This
approach was applied individually to each recording. During the 5-fold cross-validation, 4 folds are
used as the current training set, and the remaining set is the test set for this fold:
1) Training and Validation Split: For each fold, 20% of the training data was set aside as a validation
set, used for model selection.
2) Model Selection: The model achieving the highest classification accuracy on this validation set
was chosen as the best model during different training epochs.
3) Testing: The selected model was then evaluated on the test set of the current fold.
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Table E.2: Linear model architecture. Input EEG data consist of Nch channels and L time samples.
The output corresponds to Nclass, representing the number of different classes to classify.

Layer Name Type Layer specific settings Output shape

0 Input NA NA (Nch×L)
1 Spatial filter Conv1d kernel size:(Nch, 1)

number of kernels:8
(8×L)

2 Drop out Dropout p=0.2 (8×L)
3 Feature extractor NA see table E.3 (8× 12)
4 Flatten NA NA (1× 96)

5 Classification head Linear weights and bias shape:
(96, Nclass)

(1, Nclass)

Table E.3: Features calculated in the feature extractor layer.

Feature Definition Remark

Mean x̄ = 1
n

∑n
i=1 xi

n: total number of samples,
xi: the i-th sample.

Variance σ2 = 1
n

∑n
i=1(xi − x̄)2 x̄: the mean value

Power P = 1
n

∑n
i=1 x

2
i NA

Skewness µ̃3 =
∑n

i=1(xi−x̄)3

(n−1)·σ3 σ: the standard deviation

Kurtosis K = 1
n

∑n
i=1

(
xi−x̄

σ

)4
NA

Entropy H = −
∑n

i=1 p(xi) log (p(xi) + ϵ)
n = 256: the number of intensity bins

p(xi): the probability of the i-th intensity bin
ϵ = 10−8: a small constant for stability

Maximum max(x) = maxn
i=1 xi NA

Minimum min(x) = minn
i=1 xi NA

The first quartile Q1 = Quantile(x, 0.25) NA
The secoond quartile Q2 = Quantile(x, 0.50) NA
The third quartile Q3 = Quantile(x, 0.75) NA

Zero cross rate

ZCR = 1
2n

∑n
i=2 |sgn(xi)− sgn(xi−1)|,

sgn(x) =


1, if x > 0

0, if x = 0

−1, if x < 0

NA

Additionally, for the HGD (Schirrmeister et al., 2017) dataset, a separate hidden test set was avail-
able. This hidden test set was used as additional test set, and the models selected from the cross-
validation step were further evaluated on this set to assess their performance comprehensively.

For the SSVEP (Liu et al., 2020) dataset, we followed the approach outlined in the SSVEP DNN
paper (Guney et al., 2022), using a sliding window method to generate training samples of 1-second
and 2-second lengths, with a hop size of 0.1 seconds. The test set also contains small segments of
EEG data generated using the same sliding window on the hidden test trial data. We employed the
same leave-one-session-out validation strategy for the experiment, as in (Guney et al., 2022), and
the model selection process was consistent with that used in the MI experiments.

For the P300 (Won et al., 2022) dataset, we utilized the provided training and test sets. As in
other P300 decoding experiments, we evaluated the model’s performance under varying numbers of
trial averaging. These trials were averaged based on the flashing of rows and columns during the
experiment.

Remark that the training data in each fold were kept the same when training different models.

E.9.2 MODEL IMPLEMENTATION AND TRAINING DETAILS

This intermediate benchmark was designed as a validation step; thus, only a subset of models was
evaluated. The main objective was to examine the token fusion strategy in ST-EEGFormer. Follow-
ing the ViT paradigm, we compared two variants: using the class token (Cls) or the average of all
tokens (Avg) as input to the final classification layer. Training followed the general settings in Ap-
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pendix F.1.2, except that we used a larger batch size (128) and a higher base learning rate (3×10−4)
to accelerate convergence.

E.9.3 INTERMEDIATE BENCHMARK RESULTS

Movement-related datasets The benchmark results on all movement-related datasets are sum-
marized in Table E.4. Overall, the pre-trained ST-EEGFormer consistently achieved the highest
classification accuracies across multiple BCI datasets. Among the model variants, the large version
outperformed both the base and small models on most datasets. For all movement-related bench-
marks, the fine-tuned base models yielded higher accuracies than their linearly probed counterparts,
although the latter performed similarly to supervised linear models trained from scratch. Further-
more, the mean accuracies obtained with subject-specific linear models reported in Figure 3 of Gwon
et al. (2023) (approximately 60%) were comparable to those achieved by our population-trained lin-
ear models. These findings highlight the effectiveness of our proposed approach: self-supervised
pre-training on large-scale EEG recordings enables the foundation model to learn robust neural rep-
resentations, yielding performance competitive with, or superior to, traditional linear classifiers.

P300 The benchmark results on the P300 dataset are shown in Figure E.5. Model performance
was evaluated under different numbers of row–column trial averages, a standard strategy in P300
decoding. Multiple runs were conducted with increasing repetitions, and the results are reported
as performance curves. Training and test sets followed the official dataset split. Trial averaging
was performed by aggregating EEG responses across repeated flashes of the same rows or columns,
thereby enhancing the signal-to-noise ratio. As expected, performance consistently improved with
the number of repetitions. Notably, BIOT underperformed even the simple linear baseline, while the
best results were achieved by ST-EEGFormer-l, followed by EEGNet. EEG Conformer and LaBraM
showed comparable performance, ranking below the top models.

SSVEP For the SSVEP dataset, we benchmarked asynchronous decoding performance using the
small segmented windows generated by the sliding-window method. The results are shown in Ta-
ble E.5. The best-performing model was ST-EEGFormer-l, followed by LaBraM. As expected,
performance improved when longer window lengths were used, reflecting the benefit of increased
temporal context. In contrast, the linear model performed poorly, achieving less than 10% accuracy
in the 40-target classification task.

Seizure classification Additionally, we tested our approach on a single-channel seizure classifi-
cation task using the famous Bonn dataset (Andrzejak et al., 2001). This dataset consists of hu-
man expert-selected single-channel EEG data from five healthy volunteers and five individuals with
epilepsy. The data are divided into two classes for healthy volunteers, including scalp EEG seg-
ments recorded while the volunteers were relaxed and awake with eyes closed and open, respec-
tively (Dataset A and B, referred to as “Eyes Closed” and “Eyes Open” in figure E.6 (b). Three
classes of data are from epileptic patients, consisting of intracranial EEG (iEEG) segments recorded
during pre-surgical evaluation. Specifically, one class contains interictal iEEG segments from the
epileptogenic zone in the opposite hemisphere (dataset C, referred to as “NSeizure-Opposite” in
figure E.6 (b), while another class includes interictal iEEG segments from the epileptogenic zone
itself (dataset D, referred to as “NSeizure-Epileptogenic” in figure E.6 (b). The final class consists
of iEEG segments recorded from the epileptogenic zone during seizure activity (dataset E, referred
to as “Seizure” in figure E.6 (b). Each subset contains 100 single-channel EEG segments, each 23.6
seconds in duration (4096 samples). The data were sampled at 173.61 Hz, and any artifacts caused
by muscle activity or eye movement were manually removed by the database owners after visual
inspection.

The hypothesis is that if the model learns robust EEG representations from normal EEG-BCI record-
ings during the pre-training step, it should be able to classify abnormal EEG data as well. There-
fore, in the first experiment, we varied the amount of learning examples from only 5% to 60% and
compared the classification accuracies among different models. In this experiment, we tested the
performance of 1) directly applying linear probing on the pre-trained model; 2) directly fine-tuning
the pre-trained model; 3) further calibrating the model by performing the MAE task, followed by
linear probing on the seizure dataset, and 4) further calibrating the model by performing the MAE
task and then fine-tuning on the seizure dataset. This was done to determine which approach yields
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Table E.4: Movement datasets benchmark results (reversed). “-cv” represents the average k-fold
cross-validation accuracy, while “-test” represents the average accuracy on the hidden test set. The
highest and second-highest accuracies are in bold, with the highest one marked in bold and sur-
rounded by a box. For ST-EEGFormer, the default fine-tuning strategy is end-to-end fine-tuning
with the average token, “lp” denotes a linear probed model, and “cls” refers to an end-to-end fine-
tuned model using the class token.

Model EEG-MI-
BCI-cv HGD-cv HGD-test Large-MI-

Classic-cv Large-MI-5F-cv

Linear 0.683±0.007 0.631±0.017 0.593±0.021 0.442± 0.009 0.320± 0.015
EEGNet 0.781±0.011 0.899±0.010 0.859±0.003 0.644± 0.004 0.479± 0.006
Conformer 0.821±0.012 0.914 ± 0.003 0.878±0.010 0.722± 0.004 0.529 ± 0.004
BIOT 0.718±0.020 0.651±0.005 0.612±0.015 0.455± 0.012 0.287± 0.008
LaBraM 0.736±0.010 0.892±0.007 0.902 ± 0.040 0.763 ± 0.005 0.464± 0.023
ST-EEGFormer-s 0.905±0.020 0.888±0.010 0.858±0.011 0.763 ± 0.008 0.500± 0.008

ST-EEGFormer-b 0.937 ± 0.005 0.874±0.011 0.838±0.006 0.754± 0.006 0.483± 0.010

ST-EEGFormer-b-lp 0.693±0.011 0.630±0.014 0.579±0.014 0.439± 0.004 0.294± 0.008
ST-EEGFormer-b-cls 0.936 ± 0.010 0.873±0.009 0.817±0.007 0.731± 0.004 0.462± 0.003

ST-EEGFormer-l 0.931±0.005 0.954 ± 0.004 0.935 ± 0.002 0.831 ± 0.003 0.627 ± 0.013

the best performance. The results are presented in figure E.6 (a). The confusion matrix of the base
model is shown in figure E.6 (b). Moreover, we also checked the effects of the mask ratio in the
MAE pre-training step by varying the mask ratio and comparing the finetuned model and linear
probing model performance under different mask ratios with only 5% training data. The results
are presented in figure E.6 (c). Figure E.6 (a) demonstrates that all pre-trained ST-EEGFormer
models outperformed both EEGNet and Conformer, particularly when training data were limited.
Moreover, performance could be further improved by calibration, as the highest accuracy was ob-
tained by the ST-EEGFormer base-cali model. In contrast to results from previous datasets, where
linear-probed models significantly underperformed finetuned models, the linear-probed models in
this study achieved satisfactory results, especially after calibration, surpassing other models. This
success can be attributed not only to the robust EEG representations learned during the MAE pre-
training stage that help classify abnormal EEG data but also to the relatively straightforward classifi-
cation task, which exhibits distinguishable characteristics that are easily visually inspected, making
linear probing more effective. These findings provide a solid foundation for the future application
of ST-EEGFormer in seizure classification, as the model could potentially learn even better repre-
sentations from large open public seizure datasets not included in this study.

Summary The above benchmark experiments yield the following insights:
1) Effectiveness of SSL pre-training: Both the benchmarks on pre-training datasets and the cal-
ibration experiment on the seizure dataset demonstrate that self-supervised pre-training improves
downstream task performance. This provides strong evidence for the utility of large EEG founda-
tion models. However, the performance gap between calibrated and non-calibrated models suggests
that certain useful representations are not fully captured during pre-training. This may be attributed
to the limited availability of seizure-related data in pre-training or to representation shifts between
the pre-training and downstream tasks.
2) Weak linear probing performance: Across all movement-related datasets, linear-probed ST-
EEGFormer performed poorly, comparable to the simple linear baseline. This indicates that the
representations learned during pre-training do not transfer effectively to downstream classification
tasks, even when the same data were part of the pre-training corpus.
3) Inferior class-token fusion: In all experiments, using the class token for classification yielded
worse results than averaging over all tokens. This suggests that the class token did not play a mean-
ingful role during pre-training. Based on this finding, we adopt the average-token fusion strategy
exclusively in all downstream benchmark experiments.

F MODEL IMPLEMENTATION DETAILS

In this section, we present all benchmarked models and implementation details used across the
downstream tasks.
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Figure E.5: P300 benchmark results. Row-column selection accuracy of the P300 BCI. The orig-
inal interface consists of 6 rows and 6 columns. A prediction is made for the row in which the
attended character is present after all rows have flashed for the specified number of repetition rounds
and, similarly, for the columns. EEG data of the same row or column, but from different repetition
rounds, are averaged to create an averaged epoch for classification. The chance level for selection
accuracy is therefore 1/6 (16.7%).

Figure E.6: (a) Top-1 and top-2 classification accuracy on the seizure dataset with varying training
data sizes, comparing EEGNet, EEG Conformer, LaBraM, BIOT, fine-tuned ST-EEGFormer models
(small, base, and large), and the linearly-probed base model (ST-EEGFormer-b-lp). Additionally,
the base model was further calibrated on the seizure dataset by performing the MAE SSL task
using a mask ratio of 0.75, then fine-tuned and linearly-probed, referred to as ST-EEGFormer-b-cali
and ST-EEGFormer-b-cali-lp, respectively. (b) Confusion matrix of the ST-EEGFormer base model
trained with 60% of the data. (c) Accuracy of fine-tuned and linearly-probed ST-EEGFormer base-
cali models with varying mask ratios during the calibration stage. The chance level is 1/5 (20.0%).
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Table E.5: SSVEP dataset benchmark results. The average accuracies from the leave-one-session-
out experiment are reported. The highest and second-highest accuracies are in bold, with the highest
one marked in bold and surrounded by a box. For ST-EEGFormer, the default fine-tuning strategy
is end-to-end fine-tuning using the average token. Models denoted by “-cls” indicate end-to-end
fine-tuned models utilizing the class token. The chance level is 1/40 (2.5%).

Model Window = 1s Window = 2s
Top1-Acc Top2-Acc Top1-Acc Top2-Acc

Linear 0.047 0.088 0.047 0.087
EEGNet 0.433 0.625 0.646 0.785
Conformer 0.328 0.517 0.419 0.618
BIOT 0.316 0.449 0.492 0.627
LaBraM 0.518 0.669 0.700 0.818
SSVEP-DNN 0.385 0.570 0.442 0.606
ST-EEGFormer-s 0.387 0.551 0.441 0.604
ST-EEGFormer-b 0.218 0.344 0.217 0.342
ST-EEGFormer-l 0.590 0.748 0.807 0.893
ST-EEGFormer-b-cls 0.251 0.385 0.267 0.404

F.1 FOUNDATION MODELS

In this study, the following foundation models are benchmarked across all downstream tasks.

F.1.1 MODEL INTRODUCTION

BENDR (BERT-inspired Neural Data Representations) (Kostas et al., 2021) is one of the earliest
Transformer-based foundation models for EEG signals. Introduced by Kostas et al. (2021), BENDR
combines a convolutional encoder with a Transformer decoder and adapts the self-supervised train-
ing strategy from wav2vec 2.0 (Baevski et al., 2020) to multi-channel EEG data. In pre-training,
contiguous spans of the input EEG are masked and the model learns to reconstruct their latent rep-
resentations using a contrastive objective. This approach enables BENDR to learn general-purpose
EEG features from large unlabeled corpora, which can then be fine-tuned on specific tasks. In our
implementation, we leverage the official BENDR code and pre-trained weights provided by its au-
thors as a baseline foundation model (https://github.com/SPOClab-ca/BENDR).

BIOT (Biosignal Transformer) (Yang et al., 2023) is a Transformer-based encoder designed for
cross-dataset biosignal learning, demonstrated on EEG data. The BIOT architecture tokenizes each
EEG channel into fixed-length segments (local signal “patches”) and then concatenates these seg-
ments from all channels into a long “sentence” representation. Channel-specific embeddings and
relative positional encodings are added to each token to preserve spatial and temporal context, al-
lowing BIOT to handle mismatched electrode montages, variable sequence lengths, and even miss-
ing channels across different datasets. Pre-trained on multiple EEG datasets in the wild, BIOT has
shown superior performance over task-specific models by learning from diverse data sources. The
BIOT model used in this study is the version pre-trained on all six EEG datasets, obtained from the
official repository (https://github.com/ycq091044/BIOT).

LaBraM (Large Brain Model) (Jiang et al., 2024) is a large-scale EEG foundation model that
aims to learn generic representations from tremendous amounts of EEG data. To enable cross-
dataset learning, LaBraM segments raw EEG signals into channel-wise patches and employs a
vector-quantized autoencoder to convert each patch into a discrete neural code (acting as a “to-
ken”). A Transformer model is then pre-trained to predict masked patch codes from their sur-
rounding context, similar in spirit to masked language modeling in NLP. This two-step approach
(neural tokenizer + masked code prediction) allows the model to capture rich semantic information
from the EEG. The published LaBraM models were pre-trained on approximately 2,500 hours of
EEG recordings drawn from about 20 different datasets encompassing various BCI tasks, achieving
state-of-the-art results on diverse downstream evaluations. In our study, we utilize the base ver-
sion of LaBraM (“labram-base” checkpoint) released by the authors (https://github.com/
935963004/LaBraM/tree/main).
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EEGPT (Wang et al., 2024) is a recently proposed Transformer-based foundation model for EEG
that strives to produce universal and reliable EEG feature representations. The model introduces a
dual masked self-supervised learning strategy: it performs simultaneous masking in both the spatial
(electrode) dimension and the temporal dimension, and learns to predict the high-level representa-
tions of these masked portions. By focusing the learning objective on higher-level latent representa-
tions (with higher signal-to-noise ratio) rather than raw signal reconstruction, EEGPT’s pre-training
task emphasizes more robust and salient EEG features. Additionally, the EEGPT architecture uses
a hierarchical design that processes spatial correlations and temporal dynamics in separate stages,
which improves training efficiency and adaptability to various EEG paradigms. The model is pre-
trained on a large-scale compilation of EEG data from multiple tasks, and it achieves top-tier per-
formance on a range of downstream benchmarks (often evaluated via linear probing on the learned
features). We integrate EEGPT into our pipeline using the official implementation and pre-trained
weights provided by its authors (https://github.com/BINE022/EEGPT).

CBraMod (Criss-Cross Brain Model) (Wang et al., 2025) is an EEG foundation model that em-
ploys a specialized criss-cross Transformer architecture to capture EEG’s distinct spatial and tempo-
ral dependencies. In contrast to standard Transformers that entangle spatial and temporal attention,
CBraMod’s design uses two parallel self-attention streams: one operates across the channel di-
mension to model spatial relationships between electrodes, while the other operates along the time
dimension to model temporal dynamics. This separated attention mechanism addresses the het-
erogeneity of EEG signals and allows the model to learn rich spatiotemporal features. CBraMod
is pre-trained on a large EEG corpus using a patch-based masked reconstruction objective, where
patches of the input are masked and the model learns to reconstruct them, akin to a masked autoen-
coder for EEG. Furthermore, it introduces an asymmetric conditional positional encoding scheme to
effectively handle varying EEG channel layouts and session formats. Thanks to these innovations,
CBraMod has achieved state-of-the-art performance across a broad range of BCI tasks (evaluated on
up to 10 different EEG datasets), demonstrating excellent generalizability. In our experiments, we
employ the official CBraMod code and pre-trained model checkpoint made available by the authors
(https://github.com/wjq-learning/CBraMod).

ST-EEGFormer Three different ST-EEGFormers (small, base, and large models) were pre-trained
using the method described in Appendix E. Details about the benchmarked model can be found in
table E.1.

F.1.2 MODEL TRAINING STRATEGIES

We evaluate two training strategies for foundation models: linear probing and fine-tuning. In the lin-
ear probing setting, the pre-trained backbone is kept frozen, and only a classification head is trained
on the downstream task, thereby directly assessing the representational quality of the pretrained em-
beddings. In the fine-tuning setting, all model parameters—including the backbone—are updated
jointly with the classification head, allowing the model to adapt its internal representations to the
specific downstream dataset.

As detailed in Table F.1, the classification head architecture varies considerably across foundation
models, which may strongly influence downstream performance. Two main sources of variation
are: (i) token fusion strategy and (ii) classification head design. For token fusion, some models
(e.g., BENDR, EEGPT, CBraMod) flatten all tokens without compression, while others compute the
average token embedding. For classification heads, while LaBraM and our ST-EEGFormer adopt
the simplest ViT-style design (average pooling followed by a linear layer), BIOT and CBraMod in-
troduce non-linear activations (ELU), and EEGPT and CBraMod employ multiple stacked layers.
Notably, CBraMod combines a flattening strategy with a multi-layer head, resulting in an exception-
ally large head (22.44M parameters)—even exceeding the size of its backbone (4.88M).

These architectural inconsistencies across models have not been systematically compared in prior
work, and have often been ignored, yet they likely introduce significant performance differences
in downstream tasks. Motivated by this observation, our proposed ST-EEGFormer adopts a con-
sistent and minimal design: averaging token embeddings followed by a single linear layer, thereby
eliminating potential confounds from large and heterogeneous classification heads.
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Table F.1: Implementation details of EEG foundation models. The classification head parameters
are computed for a 62-channel, 3-second input with a 4-class output.

Model Sampling rate (Hz) Data Normalization Classification Head Head Params

BENDR 256 [-1, 1] standardization Flatten-Linear 0.016388M
BIOT 200 95-percentile standardization Avg-ELU-Linear 0.001028M
LaBraM 200 rescale to 0.1mV Avg-Linear 0.000804M
EEGPT 256 rescale to 1mV Flatten-Linear-Flatten-Linear 0.033556M
CBraMod 200 rescale to 0.1mV Flatten-Linear-ELU-Linear-ELU-Linear 22.441604M
ST-EEGFormer-s 128 z-standardization Avg-Linear 0.002052M
ST-EEGFormer-b 128 z-standardization Avg-Linear 0.003076M
ST-EEGFormer-l 128 z-standardization Avg-Linear 0.004100M

Table F.2: ST-EEGFormer training configurations under two strategies.

(a) Fine-tuning

CONFIG VALUE

Optimizer AdamW
Base learning rate 5e-4
Weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.999
Layer-wise LR decay (Bao
et al., 2022; Clark et al.,
2020)

0.75

Batch size 64
LR schedule Cosine decay
Warmup epochs 10
Training epochs 100
Label smoothing (Szegedy
et al., 2015) 0.1

Drop path (Huang et al.,
2016) 0.1

(b) Linear probing

CONFIG VALUE

Optimizer AdamW
Base learning rate 0.005
Weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.999
Batch size 64
LR schedule Cosine decay
Warmup epochs 10
Training epochs 100
Label smoothing 0.1

During the training of foundation models, we adopt several optimization strategies summarized be-
low. For ST-EEGFormer, both fine-tuning and linear probing follow the standard Vision Transformer
(ViT) practice, as shown in Table F.2. For LaBraM, fine-tuning additionally incorporates layer-wise
learning rate decay (LRD) and skips weight decay on specific parameters, as detailed in Table F.3.
For all other foundation models, a default fine-tuning and linear-probing strategy is used, summa-
rized in Table F.5. Finally, for LOO fine-tuning experiments, we adopt a lighter configuration with
reduced learning rate, smaller batch size, and fewer epochs, as shown in Table F.4.

F.2 CLASSIC NN MODELS

In this study, the following classic neural network EEG decoders are benchmarked across all down-
stream tasks.

F.2.1 MODEL INTRODUCTION

DeepConvNet (Schirrmeister et al., 2017) is a deep convolutional neural network architecture
developed for EEG signal decoding. It consists of a series of convolutional layers (for temporal
feature extraction and spatial filtering), each typically followed by a nonlinear activation and pool-
ing, which progressively transform raw multi-channel EEG data into higher-level representations.
By leveraging a deeper hierarchy of conv-pooling blocks, DeepConvNet can automatically learn
complex discriminative patterns from the data without any handcrafting features. It has become a
standard baseline in brain–computer interface research, demonstrating that sufficiently deep CNNs
can achieve strong performance on tasks like motor imagery classification and EEG-based pathology
detection. The corresponding model architecture can be found in Table F.6.
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Table F.3: LaBraM fine-tuning configura-
tion.

CONFIG VALUE

Optimizer AdamW
Base learning rate 5e-4
Weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.999
Layer-wise LR decay 0.75
Batch size 64
LR schedule Cosine decay
Warmup epochs 10
Training epochs 100
Label smoothing 0.1

Table F.4: LOO fine-tuning configuration for
foundation models.

CONFIG VALUE

Optimizer AdamW
Base learning rate 5e-5
Weight decay 0.01
Optimizer momentum β1, β2 = 0.9, 0.999
Batch size 32
Training epochs 50
Warmup epochs 5
Label smoothing 0.1

Table F.5: Default training configurations under two strategies.

(a) Fine-tuning

CONFIG VALUE

Optimizer AdamW
Base learning rate 5e-4
Weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.999
Batch size 64
LR schedule Cosine decay
Warmup epochs 10
Training epochs 100
Label smoothing 0.1

(b) Linear probing

CONFIG VALUE

Optimizer AdamW
Base learning rate 0.005
Weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.999
Batch size 64
LR schedule Cosine decay
Warmup epochs 10
Training epochs 100
Label smoothing 0.1

EEGNet (Lawhern et al., 2018) is a compact CNN architecture specifically tailored for EEG-
based brain–computer interfaces. It employs depthwise separable convolutions to efficiently extract
features, essentially splitting the filtering operation into temporal convolution (to capture frequency-
specific patterns in each channel) and spatial convolution (to learn relationships across channels).
This lightweight design drastically reduces the number of trainable parameters while still capturing
key temporal-spectral characteristics of EEG signals. In practice, EEGNet has proven effective
across many EEG decoding tasks and is widely used as a benchmark model, valued for its balance
of simplicity, efficiency, and strong classification performance. In this study, the architecture of
EEGNet follows the original implementation as shown in Table F.7

EEG Conformer (Song et al., 2023) is a hybrid convolutional–Transformer network designed
to capture both local features and long-range dependencies in EEG data. Its architecture integrates
an initial convolutional module that learns low-level temporal patterns and spatial features from the
input signals, followed by a self-attention based Transformer module that models global temporal
correlations. By uniting CNN and Transformer components in this way, the EEG Conformer can
leverage the strengths of both: identifying fine-grained short-term EEG patterns as well as broader
context across time. This approach has achieved state-of-the-art results on various EEG classifica-
tion benchmarks, establishing the EEG Conformer as a leading example of modern EEG decoding
architectures. The corresponding model architecture can be found in Table F.8.

CTNet (Convolutional Transformer Network) (Zhao et al., 2024) is another hybrid model com-
bining convolutional feature extraction with Transformer-based attention, introduced for high-
performance EEG signal classification (with a particular focus on motor imagery decoding). In
this architecture, a front-end convolutional module—inspired by earlier EEG-specific networks like
EEGNet—first extracts temporally filtered and spatially filtered features from the raw EEG, produc-
ing a condensed feature sequence. That sequence is then passed into a Transformer encoder module,
which uses self-attention to capture global temporal dependencies and refine the representation be-
fore final classification. By integrating CNN-driven local pattern learning with global sequence
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Table F.6: DeepConvNet architecture. Input EEG data consist of Nch channels and L time samples
(with sampling rate fs, so L = fs× trial duration). The network comprises four convolutional-
pooling blocks with increasing filters (25, 50, 100, 200). A dropout layer (p = 0.5) follows each
pooling.

Layer Type Input shape Output shape Kernels Kernel size Stride Padding

0 Input (Nch × L) (Nch × L) NA NA NA NA
1 Conv2d (temporal) (Nch × L) (25×Nch × L) 25 (1, 5) (1, 1) same
2 Conv2d (spatial) (25×Nch × L) (25× 1× L) 25 (Nch, 1) (1, 1) (0,0)
3 BatchNorm2d (25× 1× L) (25× 1× L) NA NA NA NA
4 ELU (25× 1× L) (25× 1× L) NA NA NA NA
5 MaxPool2d (25× 1× L) (25× 1× L/3) NA (1, 3) (1, 3) (0,0)
6 Dropout (25× 1× L/3) (25× 1× L/3) NA NA NA NA
7 Conv2d (25× 1× L/3) (50× 1× L/3) 50 (1, 5) (1, 1) same
8 BatchNorm2d (50× 1× L/3) (50× 1× L/3) NA NA NA NA
9 ELU (50× 1× L/3) (50× 1× L/3) NA NA NA NA
10 MaxPool2d (50× 1× L/3) (50× 1× L/9) NA (1, 3) (1, 3) (0,0)
11 Dropout (50× 1× L/9) (50× 1× L/9) NA NA NA NA
12 Conv2d (50× 1× L/9) (100× 1× L/9) 100 (1, 5) (1, 1) same
13 BatchNorm2d (100× 1× L/9) (100× 1× L/9) NA NA NA NA
14 ELU (100× 1× L/9) (100× 1× L/9) NA NA NA NA
15 MaxPool2d (100× 1× L/9) (100× 1× L/27) NA (1, 3) (1, 3) (0,0)
16 Dropout (100× 1× L/27) (100× 1× L/27) NA NA NA NA
17 Conv2d (100× 1× L/27) (200× 1× L/27) 200 (1, 5) (1, 1) same
18 BatchNorm2d (200× 1× L/27) (200× 1× L/27) NA NA NA NA
19 ELU (200× 1× L/27) (200× 1× L/27) NA NA NA NA
20 MaxPool2d (200× 1× L/27) (200× 1× L/81) NA (1, 3) (1, 3) (0,0)
21 Dropout (200× 1× L/81) (200× 1× L/81) NA NA NA NA
22 Linear (Softmax) (200 ∗ L/81) (Nclass) NA NA NA NA

Table F.7: EEGNet architecture. Input EEG data consist of Nch channels and L time samples. The
output corresponds to Nclass, representing the number of different classes to classify. The dropout
ratio is set to 0.40.

Layer Type Input shape Output shape Kernels Kernel size Stride Padding

0 Input (Nch × L) (Nch × L) NA NA NA NA
1 Conv2d (Nch × L) (8×Nch × L) 8 (1, fs/2) (1, 1) same
2 BatchNorm2d (8×Nch × L) (8×Nch × L) NA NA NA NA
3 Depthwise Conv2d (8×Nch × L) (32× 1× L) 32 (Nch, 1) (1, 1) (0, 0)
4 BatchNorm2d (32× 1× L) (32× 1× L) NA NA NA NA
5 ELU (32× 1× L) (32× 1× L) NA NA NA NA
6 AvgPool2d (32× 1× L) (32× 1× L/(fs/32)) NA (1, fs/32) (1, fs/32) (0, 0)
7 Dropout (32× 1× L/(fs/32)) (32× 1× L/(fs/32)) NA NA NA NA
8 Seperable Conv2d (32× 1× L/(fs/32)) (32× 1× L/(fs/32)) 32 (1, 16) (1, 1) same
9 BatchNorm2d (32× 1× L/(fs/32)) (32× 1× L/(fs/32)) NA NA NA NA
10 ELU (32× 1× L/(fs/32)) (32× 1× L/(fs/32)) NA NA NA NA
11 AvgPool2d (32× 1× L/(fs/32)) (32× 1× L/(fs/8)) NA (1, 4) (1, 4) (0, 0)
12 Dropout (32× 1× L/(fs/8)) (32× 1× L/(fs/8)) NA NA NA NA
13 Linear (1× (256L/fs)) (1×Nclass) NA NA NA NA

modeling, CTNet effectively leverages both fine-scale EEG features and long-range context, leading
to improved accuracy in EEG decoding and exemplifying the advance of CNN–Transformer hybrids
in brain signal analysis. The corresponding model architecture can be found in Table F.9.

F.2.2 MODEL TRAINING STRATEGIES

For all classic NN models (DeepConvNet, EEGNet, EEG Conformer, and CTNet), we adopt a
unified and straightforward training strategy, as summarized in Table F.10. The table reports the
settings for two scenarios side by side: the left panel corresponds to population training (full training
from scratch), while the right panel corresponds to fine-tuning (adaptation on held-out subjects).
To ensure fair comparison in the LOO performance-drop setting, the fine-tuning protocol for these
models is aligned with that of the foundation models. This design choice avoids confounding factors
such as differences in learning rate or training epochs, ensuring that performance differences can be
attributed to the models themselves rather than to training hyperparameters.
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Table F.8: EEG Conformer architecture. Input EEG data consist of Nch channels and L time sam-
ples. The output corresponds to Nclass, representing the number of different classes to classify.

Layer Name Type Layer specific settings Output shape

0 Input NA NA (Nch×L)

1 CNN-module Conv2d kernel size:(1, 25)
number of kernels:40 (40×Nch × L)

2 CNN-module Conv2d kernel size:(Nch, 1)
number of kernels:40 (40× 1× L)

3 CNN-module BatchNorm2d NA (40× 1× L)
4 CNN-module ELU NA (40× 1× L)

5 CNN-module AvgPool2d kernel size:(1, 37)
stride:(1, 7) (40,

⌊
L−37

7

⌋
+ 1)

6 CNN-module Dropout dropout p=0.5 (40,
⌊
L−37

7

⌋
+ 1)

7 CNN-module Conv2d kernel size:(1, 1)
number of kernels:40 (40,

⌊
L−37

7

⌋
+ 1)

8 Transformer-module Transformer encoder layers

embed size:40
number of heads:10

drop p:0.5
forward expansion:4
forward drop p:0.5

depth:6

(40,
⌊
L−37

7

⌋
+ 1)

9 Classification head Linear
weights and bias shape:
(40×

⌊
L−37

7

⌋
+ 1, 256)

(1, 256)

10 Classification head ELU NA (1, 256)
11 Classification head Dropout dropout p=0.5 (1, 256)

12 Classification head Linear weights and bias shape:
(256, 32)

(1, 32)

13 Classification head Elu NA (1, 32)
14 Classification head Dropout dropout p=0.3 (1, 32)

15 Classification head Linear weights and bias shape:
(32, Nclass)

(1, Nclass)

Table F.9: CTNet architecture. Input EEG data consist of Nch channels and L time samples (with
sampling rate fs). The convolutional front-end applies temporal, spatial, and separable convolutions
to extract local features, followed by a Transformer encoder for global dependencies, and a fully
connected classifier.

Layer Name Type Layer specific settings Output shape

0 Input NA NA (Nch × L)
1 CNN-module Conv2d (temporal) kernel size: (1, 64), kernels: 20 (20 ×Nch × L)
2 CNN-module Conv2d (spatial) kernel size: (Nch, 1), kernels: 40 (40 ×1× L)
3 CNN-module BatchNorm2d NA (40 ×1× L)
4 CNN-module ELU NA (40 ×1× L)
5 CNN-module AvgPool2d kernel size: (1, 8), stride: (1, 8) (40 ×1× L/8)
6 CNN-module Dropout p = 0.5 (40 ×1× L/8)
7 CNN-module Separable Conv2d kernel size: (1, 16), kernels: 40 (40 ×1× L/8)
8 CNN-module BatchNorm2d NA (40 ×1× L/8)
9 CNN-module ELU NA (40 ×1× L/8)
10 CNN-module AvgPool2d kernel size: (1, 8), stride: (1, 8) (40 ×1× L/64)
11 CNN-module Dropout p = 0.5 (40 ×1× L/64)
12 Transformer-module Transformer encoder embed=40, heads=4, depth=6, drop=0.5 (40 ×L/64)
13 Classification head Linear (40 ∗ L/64, 256) (1, 256)
14 Classification head ELU NA (1, 256)
15 Classification head Dropout p = 0.5 (1, 256)
16 Classification head Linear (Softmax) (256, Nclass) (1, Nclass)

F.3 CLASSIC NON-NN MODELS

We included different classic non-neural network models for each type of downstream tasks.
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Table F.10: Training settings for classic NN models under different strategies.

(a) Population training

Config Value

Optimizer AdamW
Base learning rate 3× 10−3

Weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.999
Batch size 64
Epochs 100
Learning rate schedule cosine decay
Warmup epochs 10
Label smoothing 0.1

(b) Fine-tuning

Config Value

Optimizer AdamW
Base learning rate 5× 10−5

Weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.999
Batch size 32
Epochs 50
Label smoothing 0.1

F.3.1 MOVEMENT AND SPEECH CLASSIFICATION TASKS

For the BCI-IV-2A, Upper Limb Motor Execution, Upper Limb Motor Imagination, and Inner
Speech datasets, which involve movement or speech tasks, we implemented two types of decoding
pipelines. The first category was CSP-based methods, including CSP-LDA, CSP-SVM (Ramoser
et al., 2000), FBCSP-LDA, and FBCSP-SVM (Ang et al., 2008). The second category was Rieman-
nian geometry-based classifiers, including Minimum Distance to Mean (MDM) (Barachant et al.,
2012a), Fisher Geodesic MDM (FgMDM) (Barachant et al., 2012a), and tangent space mapping
with ElasticNet (TS-ElasticNet) (Corsi et al., 2022). The input EEG signals were first band-pass
filtered (3rd-order Butterworth filter) into the 4-40 Hz frequency band. Alternatively, when using
filter banks, we band-passed the EEG signals into 9 consecutive frequency bands according to the
formula: 4k - 4(k+1) Hz, k = 1, 2, 3, . . . , 9. After preprocessing, the filtered signals were sub-
jected to feature extraction. CSP learns spatial filters by minimizing the variance of power features
within each class while maximizing the variance between classes in a supervised manner. In this
study, we used four spatial filters, resulting in a four-dimensional feature vector for each EEG epoch.
FBCSP extends this approach by applying CSP to multiple frequency bands, thereby producing nine
times more features per epoch. The extracted features were used as inputs to LDA and SVM with a
radial basis function kernel. In addition, the filtered EEG signals were transformed into covariance
matrices, which are Symmetric Positive Definite (SPD) and reside in the Riemannian space. The
MDM classifier computes the class centers in the Riemannian space and assigns unseen samples
based on the geodesic distance between their covariance matrices and the class centers. FgMDM
incorporates Fisher LDA into MDM, thereby enhancing robustness against noise. Furthermore,
samples on the Riemannian manifold can be projected onto the tangent space, yielding vectorized
feature representations. TS-ElasticNet then applies the ElasticNet model to these projected features.
For all covariance matrix computations, the Oracle Approximating Shrinkage (OAS) estimator was
employed to ensure robust estimation.

Signal band-pass filtering and CSP feature extraction were implemented using the MNE tool-
box (MNE v1.9.0: https://mne.tools/stable/generated/mne.filter.filter_
data.html). LDA, SVM, and ElasticNet were based on scikit-learn (Scikit-learn v1.4.2:
https://scikit-learn.org/1.4/modules/classes.html), while MDM, FgMDM,
and covariance estimation were implemented using pyRiemann (pyRiemann v0.6: https://
pyriemann.readthedocs.io/en/latest/api.html).

F.3.2 ERN DETECTION TASK

For the ERN detection task on the ERN dataset, we implemented five baseline models: xDAWN-
LDA (Rivet et al., 2009), xDAWNCov-MDM (Barachant, 2014), xDAWNCov-TS-SVM (Cheval-
lier et al., 2018), ERPCov-MDM (Barachant & Congedo, 2014), and DCPM (Xiao et al., 2020). All
models were trained on EEG signals that were band-pass filtered between 1–20 Hz using a 3rd-order
Butterworth filter. xDAWN is a widely used spatial filtering technique that improves the signal-to-
noise ratio of evoked potentials (Rivet et al., 2009). For xDAWN-LDA, we applied xDAWN with
two spatial filters to enhance signal quality, followed by downsampling to 32 Hz. Temporal features
from all channels were then concatenated into vector representations and used to train an LDA clas-
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sifier. For xDAWNCov-MDM, the band-pass filtered EEG signals were augmented with prototype
matrices (trial-averaged template) spatially filtered by xDAWN (four spatial filters). The augmented
signals were subsequently transformed into covariance matrices, which were classified using MDM.
For xDAWNCov-TS-SVM, the same data augmentation procedure was applied, after which the co-
variance matrices were projected onto the tangent space to obtain vectorized representations. These
features were then used to train an SVM classifier with a radial basis function kernel. ERPCov-
MDM is a simplified version of xDAWNCov-MDM that omits the spatial filtering step. Finally,
DCPM is an ensemble method that integrates variations of LDA and canonical correlation analysis
(CCA) for ERP classification (Xiao et al., 2020).

The xDAWN algorithm, covariance estimation, and MDM classifier were implemented using pyRie-
mann , while LDA, SVM, and CCA were based on scikit-learn.

F.3.3 ALZHEIMER’S DIAGNOSIS TASK

For Alzheimer’s diagnosis using the Alzheimer’s dataset, we implemented four decoding pipelines
described in the dataset paper (Miltiadous et al., 2023). Each pipeline extracts Relative Band Power
(RBP) features and applies them to different classifiers: Random Forest (RBP-RF), SVM (RBP-
SVM), k-Nearest Neighbors (RBP-kNN), and LightGBM (RBP-LightGBM). For each trial, EEG
signals from all channels were decomposed using the Welch method to estimate the power spectral
density (PSD). RBP features were computed by integrating the PSD within standard frequency bands
(Delta: 0.5–4 Hz, Theta: 4–8 Hz, Alpha: 8–13 Hz, Beta: 13–25 Hz, Gamma: 25–45 Hz) and
normalizing by the total power across 0.5–45 Hz. The resulting relative powers from all channels
and frequency bands were concatenated to form a feature vector for each trial. The extracted RBP
features were used to train RF (100 trees), SVM (Polynomial kernel), kNN, and LightGBM (100
boosted trees with a learning rate of 0.05).

The implementations of RF, SVM, and kNN were based on scikit-learn , while LightGBM was
implemented using the official LightGBM package (LightGBM v4.6.0: https://lightgbm.
readthedocs.io/en/v4.6.0/Python-API.html).

F.3.4 SSVEP TARGET RECOGNITION TASK

For SSVEP target recognition on the Binocular SSVEP dataset, we implemented two decoding mod-
els—Filter Bank Canonical Correlation Analysis (FBCCA) and Task-Related Component Analysis
(TRCA)—as described in the dataset paper (Yike et al., 2024). Both models relied on filter banks
for EEG preprocessing, with five frequency bands defined as [5, 95] Hz, [12, 95] Hz, [19, 95] Hz,
[27, 95] Hz, and [35, 95] Hz. For FBCCA, sinusoidal templates with five harmonics were con-
structed for each target according to its stimulation frequencies. It should be noted that we used
the binocular swap dataset for evaluation, which is not ideal for FBCCA since half of the targets
share identical stimulation frequencies. Nevertheless, FBCCA was included to examine the poten-
tial of a training-free model. For TRCA, we adopted the ensemble version, where class-specific
filters were combined to form a universal spatial filter. The filter bank weights followed the rule
k−1.25 + 0.25, k = 1, 2, 3, . . . , 5.

The implementations followed the provided code demo (https://gigadb.org/dataset/
102557) and relied on the MEEGkit (MEEGkit v0.1.9:https://github.com/nbara/
python-meegkit)).

G BENCHMARK RESULTS

G.1 BENCHMARK DATASET RESULTS

In this section, we show the results for each downstream task.

G.1.1 ERN

Figure G.1 presents the benchmark results on the ERN dataset, reporting balanced accuracy across
six evaluation protocols, along with aggregated model rankings and statistical significance analysis.
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Figure G.1: Benchmark results on the ERN dataset. (a) Balanced accuracy of each model across
six evaluation protocols: Population, Per-Subject (Self), Per-Subject (Transfer), LOO Zero-Shot,
LOO Fine-Tune, and LOO Drop. Each dot represents one subject, with box plots summariz-
ing distributions. Colors indicate model groups: blue—classic non-neural network decoders;
green—classic neural networks; purple—foundation models (linear probing); red—foundation mod-
els (fine-tuning). (b) Aggregated average rank per model, ordered from best (left) to worst (right).
Circles show mean rank, colored bars indicate ± standard deviation, and grey whiskers represent
the minimum and maximum range. (c) Pairwise statistical significance matrix in the same model
order as (b), computed via permutation tests (nresamples = 50,000) with Bonferroni correction;
red—significant (p < 0.05), blue—non-significant.

The task appears relatively simple, with many models achieving near-perfect accuracy. Neverthe-
less, several classic non-NN models and most linear-probed foundation models perform noticeably
worse than the top performers. All models show reduced performance when transferred to unseen
subjects, with a clear drop under the Per-Subject-Transfer and LOO Zero-Shot protocols. In the
overall ranking, both the small and large variants of our proposed ST-EEGFormer achieve the high-
est scores, followed by the classic NN models DeepConvNet and CTNet. In general, almost all
linear-probed foundation models—except EEGPT—rank among the lowest-performing methods.

G.1.2 BCI-IV-2A

Figure G.2 summarizes the benchmark results on the BCI-IV-2A dataset. The results show that
certain classic non-NN models (e.g., TS-ElasticNet) achieve top performance in the Per-Subject-
Self and Per-Subject-Transfer protocols, but perform worse in the Population and LOO Zero-Shot
settings. Classic NN models remain highly competitive across all protocols. Ranking and statistical
analyses indicate that the best NN model, CTNet, is not statistically different from the overall top-
ranked model, fine-tuned ST-EEGFormer-l, with both significantly outperforming all other models.
All linear-probed foundation models perform the worst, ranking significantly below even the classic
non-NN methods, except EEGPT.

G.1.3 INNER SPEECH

Figure G.3 presents the benchmark results on the Inner Speech dataset. This task appears highly
challenging, with most models achieving accuracies close to random chance. The best results are
predominantly achieved by classic NN models, which occupy three of the top four positions, with
fine-tuned CBraMod ranking second. However, overall performance differences across models are
small, suggesting that the inner speech decoding task remains intrinsically difficult.
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Figure G.2: Benchmark results on the BCI-IV-2A dataset, using the same notation and panel layout
as in Figure G.1. Results are reported across six evaluation protocols, with colors denoting model
groups and statistical significance assessed via permutation testing with Bonferroni correction.

Figure G.3: Benchmark results on the Inner Speech dataset, using the same notation and panel layout
as in Figure G.1. Results are reported across six evaluation protocols, with colors denoting model
groups and statistical significance assessed via permutation testing with Bonferroni correction.
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Figure G.4: Benchmark results on the Upper Limp Motor Execution dataset, using the same notation
and panel layout as in Figure G.1. Results are reported across six evaluation protocols, with colors
denoting model groups and statistical significance assessed via permutation testing with Bonferroni
correction.

Figure G.5: Benchmark results on the Upper Limp Motor Imagination dataset, using the same no-
tation and panel layout as in Figure G.1. Results are reported across six evaluation protocols, with
colors denoting model groups and statistical significance assessed via permutation testing with Bon-
ferroni correction.

G.1.4 UPPER LIMB MOTOR EXECUTION

Figure G.4 presents the benchmark results on the Upper Limb Motor Execution dataset. Overall,
classic non-NN methods perform worse than classic NN models, while our proposed ST-EEGFormer
achieves the highest performance. A large degree of subject variability is evident, with accuracies
ranging from above 90% to near chance level. Most foundation models—both fine-tuned and linear-
probed—are statistically equivalent to each other and generally underperform compared to classic
NN models.
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Figure G.6: Benchmark results on the Binocular SSVEP dataset, using only the synchronous trials
(the first 1-s trial post-onset) using the same notation and panel layout as in Figure G.1. Results are
reported across six evaluation protocols, with colors denoting model groups and statistical signifi-
cance assessed via permutation testing with Bonferroni correction.

Figure G.7: Benchmark results on the Binocular SSVEP dataset, using the asynchronous trials (1-s
trials cut by a sliding window) using the same notation and panel layout as in Figure G.1. Results
are reported across six evaluation protocols, with colors denoting model groups and statistical sig-
nificance assessed via permutation testing with Bonferroni correction.

G.1.5 UPPER LIMB MOTOR IMAGINATION

Figure G.5 presents the benchmark results on the Upper Limb Motor Imagination dataset. Overall,
a similar trend to that in Section G.1.4 is observed: classic non-NN methods perform worse than
classic NN models, while our proposed ST-EEGFormer achieves the highest performance. However,
overall accuracy drops substantially compared to the execution task, with the best subjects achieving
below 40% accuracy, indicating that motor imagery is more variable and challenging. In this difficult
setting, there is no statistically significant difference among the top-performing models, except for
the fine-tuned large variant of ST-EEGFormer, which outperforms the rest.
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Figure G.8: Benchmark results on the Alzheimer’s dataset. This figure summarizes subject-level di-
agnostic performance of different models under multiple evaluation views. (a) Model performance
under the LOO Zero-Shot evaluation protocol. (b–d) Threshold–Accuracy curves for diagnosing
Alzheimer’s disease (A), frontal dementia (F), and healthy controls (C). Diagnosis is determined
when the percentage of trials from a subject classified as the target class exceeds the diagnosis
threshold. (e) Aggregated ranking of all models. (f) Pairwise statistical significance matrix, fol-
lowing the same format as Figure G.1. Model groups are color-coded, and statistical significance is
assessed via permutation testing with Bonferroni correction.

G.1.6 BINOCULAR SSVEP

For the Binocular SSVEP dataset, we evaluated two settings: synchronous trial classification (using
the first 1-second trial post-onset) and asynchronous trial classification (using 1-second windows
extracted via a sliding window). This design allows a fair comparison with classic non-NN meth-
ods, which are typically evaluated in synchronous settings. Results are shown in Figure G.6 and
Figure G.7, respectively. We observe that TRCA performs exceptionally well in synchronous classi-
fication but degrades substantially in the asynchronous setting. In contrast, NN-based decoders, in-
cluding foundation models, show stronger performance in the more challenging asynchronous con-
dition, indicating better generalization to difficult tasks. Notably, in both settings, the training-free
FB-CCA method outperforms many foundation models. These results illustrate that well-developed
classic methods can achieve comparable—or even superior—performance on specific downstream
BCI tasks with limited data, whereas NN-based approaches tend to generalize better when task
difficulty increases, suggesting potential gains with larger downstream datasets.

G.1.7 ALZHEIMER’S

Figure G.8 summarizes the benchmark results on the Alzheimer’s dataset. Since this task is designed
to mimic a clinical diagnostic application, we evaluated models only under the LOO Zero-Shot
protocol. As shown in Figure G.8a, all models achieve similar performance, with some linear-
probed foundation models showing slightly lower average accuracy. A closer look at the diagnosis
accuracy for each group in Figures G.8b–d reveals that all models classify the Alzheimer’s group
(A) and the healthy control group (C) more easily than the frontal dementia group (F). Overall, most
models do not differ significantly in performance on this dataset, with the weakest results observed
for several linear-probed foundation models and the EEG Conformer.

G.1.8 TUEV

Figure G.9 presents the benchmark results on TUEV. Fine-tuned foundation models perform signifi-
cantly better than classic neural decoders; notably, the top seven models are all fine-tuned foundation
models, with no significant differences among them. By contrast, linear-probed foundation models
remain comparatively weak.

47



2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570

Under review as a conference paper at ICLR 2026

Figure G.9: Benchmark results on the TUEV dataset, using the same notation and panel layout as
in Figure G.1. Results are reported using the conventional cross-subject protocol (LOO Zero-Shot),
with colors denoting model groups and statistical significance assessed via permutation testing with
Bonferroni correction.

Figure G.10: Benchmark results on the FACED dataset, using the same notation and panel layout as
in Figure G.1. Results are reported using the conventional cross-subject protocol (LOO Zero-Shot),
with colors denoting model groups and statistical significance assessed via permutation testing with
Bonferroni correction.

G.1.9 FACED

Figure G.10 reports the benchmark results on FACED. The EEG Conformer is the top-performing
model and significantly outperforms all others, followed by a fine-tuned CBraMod. Classic neural
decoders remain highly competitive on this dataset, whereas linear-probed foundation models lag
behind.

G.1.10 DTU

Figure G.11 presents the benchmark results on the auditory regression DTU dataset. In this rela-
tively simple regression task—predicting a single value at a time—classic NN models outperform
all foundation models, with the notable observation that linear-probed foundation models surpass
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Figure G.11: Benchmark results on the DTU dataset, following the same notation and panel layout
as in Figure G.1. In panel (a), scatter plots display the Pearson correlation coefficient (R). Panel (b)
shows aggregated rankings computed from both MSE and Pearson R. Results are reported across
six evaluation protocols, with colors indicating model groups, and statistical significance assessed
via permutation testing with Bonferroni correction.

Figure G.12: Benchmark results on the SEED-VIG dataset, following the same notation and panel
layout as in Figure G.1. In panel (a), scatter plots display the Pearson correlation coefficient (R).
Panel (b) shows aggregated rankings computed from both MSE and Pearson R. Results are reported
across six evaluation protocols, with colors indicating model groups, and statistical significance
assessed via permutation testing with Bonferroni correction.

their fine-tuned counterparts. This trend may be due to the limited subject-specific data available
for fine-tuning. However, even the best-performing NN model (CTNet) substantially underperforms
compared to state-of-the-art regression models such as Sea-Wave (Yang et al., 2024), which achieve
Pearson R values around 0.2, whereas all benchmarked models remain below 0.1. These findings
suggest that representations learned by EEG classification-oriented models transfer poorly to re-
gression tasks. Future progress may require foundation models with dedicated encoder–decoder
architectures explicitly designed for regression.
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G.1.11 SEED-VIG

Figure G.12 reports the benchmark results on the SEED-VIG vigilance regression task. Overall,
fine-tuned foundation models outperform classic neural decoders, and there is no statistically sig-
nificant difference among the seven best-performing models. On average, methods achieve Pearson
correlations above 0.4 on this dataset, suggesting it is comparatively less challenging than the audi-
tory regression task.

G.1.12 SUMMARY OF ALL BENCHMARK RESULTS

Overall, the benchmark results vary considerably across datasets. Based on statistically evaluated
performance rankings, the models can generally be grouped into three tiers. In most cases, the
lowest tier consists of linear-probed foundation models. The top tier often includes the large fine-
tuned ST-EEGFormer together with a few classic NN models such as CTNet, while certain classic
non-neural methods achieve strong results but more often fall into the middle tier alongside other
foundation models.

These findings underscore a critical point: performance gaps between models are highly task-
dependent, and reporting a single accuracy value—as is common in many foundation model pa-
pers—can be misleading. Without statistical analysis, such reporting may obscure the fact that ob-
served differences are not significant. For example, in the Alzheimer’s dataset results (Figure G.2),
one might conclude from accuracy alone that ST-EEGFormer-s (f) is the best model; however, it is
statistically indistinguishable from 11 other models.

G.2 LINEAR PROBING VS. FINE-TUNING

We compare the average performance of foundation models under linear probing and fine-tuning
strategies. Table G.1 reports results aggregated across all six evaluation schemes for each model,
while Table G.2 presents results for each evaluation scheme aggregated across models.

Table G.1: Accuracy (Mean ± Std) and Paired Wilcoxon Test p-values for Linear Probe and Fine-
Tuning Across Foundation Models

Model Linear Probe Fine-Tuning P-Value

BIOT 0.256± 0.266 0.301± 0.271 p = 6.84× 10−28

BENDR 0.177± 0.267 0.310± 0.275 p = 1.15× 10−43

CBraMod 0.186± 0.261 0.233± 0.284 p = 1.95× 10−27

EEGPT 0.295± 0.265 0.225± 0.267 p = 5.75× 10−37

LaBraM 0.153± 0.230 0.320± 0.272 p = 2.57× 10−43

ST-EEGFormer-s 0.179± 0.252 0.373± 0.284 p = 6.65× 10−46

ST-EEGFormer-b 0.425± 0.261 0.608± 0.290 p = 1.22× 10−17

ST-EEGFormer-l 0.428± 0.283 0.637± 0.280 p = 1.22× 10−17

Table G.2: Accuracy (Mean ± Std) and Paired Wilcoxon Test p-values for Linear Probe and Fine-
Tuning Across All Datasets and Evaluation Protocols

Evaluation Protocol Linear Probe Fine-Tuning P-Value

Population 0.228± 0.238 0.349± 0.263 p = 2.62× 10−79

Per-Subject (Self) 0.194± 0.234 0.234± 0.267 p = 8.25× 10−52

LOO Fine-Tune 0.219± 0.235 0.347± 0.259 p = 4.48× 10−89

Per-Subject (Zero-Shot) 0.159± 0.200 0.171± 0.216 p = 8.48× 10−42

LOO Zero-Shot 0.333± 0.318 0.400± 0.326 p = 3.05× 10−48

LOO Drop 0.037± 0.064 0.047± 0.052 p = 6.86× 10−10
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G.3 NN MODELS COMPARISON

Per-task and per-evaluation scheme results are shown in Figure G.13. The results highlight that clas-
sic NN decoders remain highly competitive, particularly when compared to linear-probed founda-
tion models. Foundation model performance exhibits substantial variability across both downstream
tasks and evaluation protocols. While fine-tuned foundation models often achieve top performance
in population and LOO Fine-Tune settings, they tend to underperform compared to classic NNs in
Per-Subject (self) and Per-Subject (transfer) evaluations.

To enable a comprehensive comparison of model performance across datasets, evaluation protocols,
and subjects, we computed model ranks separately for each metric of interest. For each combination
of dataset, evaluation protocol, and subject, models completing the same experiment were ranked
according to their metric value. Ranking was performed independently for each metric. In cases of
ties, we applied a competition ranking scheme (“1, 1, 3, . . . ”), where models with identical scores
received the same (lowest) rank, and the next model was ranked as if the previous positions were
occupied. This approach accommodates ties and missing values, enabling robust aggregation and
statistical comparison across heterogeneous experimental settings.

We report results for all six evaluation protocols in Figure G.14 (within-subject: models have ac-
cess to the test subject during training) and Figure G.15 (cross-subject: models do not see the test
subject during training, plus LOO Drop). Aggregated results for within-subject and cross-subject
evaluations are presented in Figure G.16.

Based on the results in Figure G.14, Figure G.15, and Figure G.16, several important patterns
emerge. While the fine-tuned large ST-EEGFormer achieves the highest overall performance, its
advantage over the second-best model, CTNet, is often not statistically significant—particularly in
Per-Subject (self) and LOO Fine-Tune protocols. In fact, foundation models of comparable size
(under 30M parameters) generally do not outperform compact classic NN decoders such as CTNet
(a few million parameters) or even EEGNet (a few thousand parameters).

The clearest advantage for foundation models emerges in the LOO Drop protocol, suggesting a
stronger ability to retain and leverage previously seen examples. Our results also indicate that foun-
dation model performance may be biased toward the characteristics of their pre-training datasets.
Many existing EEG foundation models are pre-trained on large-scale clinical EEG datasets (Obeid
& Picone, 2016), potentially favoring tasks such as abnormal EEG detection while providing limited
benefits for more diverse BCI paradigms. In contrast, our proposed ST-EEGFormer—pre-trained
exclusively on BCI datasets—achieves higher average performance across tasks. Nevertheless, its
small and base variants still underperform compared to simple classic NN models in several settings,
underscoring the need for further investigation into model architecture, pre-training data diversity,
and task alignment in EEG foundation model development.

Finally, our statistical analysis underscores an important point: conclusions based solely on mean
accuracy, as is common in prior work, can be misleading. Rigorous statistical testing often reveals
that differences between top models are not significant, challenging the narrative of superiority.
Together, these findings expose current limitations in EEG foundation models and emphasize the
necessity of fair, statistically-grounded benchmarking to drive meaningful progress.

G.4 BEST MODEL COMPARISON

For each downstream task, we compare the accuracy distributions across subjects for the best-
performing model in each of the four decoder groups: classic non-NN, classic NN, linear-probed
foundation models, and fine-tuned foundation models. The results are shown in Figures G.17 to G.24

In summary, the statistical test results reveal that, for many downstream tasks, differences in mean
performance between the top models from different EEG decoder types do not translate into statis-
tically significant differences. Substantial variability is observed across datasets, underscoring that
model performance is heavily task-dependent. Nevertheless, certain trends emerge: classic non-NN
models consistently underperform compared to NN-based approaches in population and transfer
settings, yet remain competitive in per-subject (self) evaluations.
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Figure G.13: Comparison of classic NN models (green) with linear-probed foundation models (pur-
ple) and fine-tuned foundation models (red) across six evaluation protocols on all benchmarked
downstream tasks. The bar plot depicts the average aggregated rank for each model (lower rank
indicates better performance). The heatmap shows the average aggregated rank per evaluation pro-
tocol.
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Figure G.14: Comparison of classic NN models (green) with linear-probed foundation models (pur-
ple) and fine-tuned foundation models (red) under three within-subject evaluation protocols: Pop-
ulation, Per-Subject (self), and LOO Fine-Tune. Top row: Model rank distributions, ordered from
best (bottom) to worst (top). Circles indicate mean rank, horizontal bars represent the interquar-
tile range (25th–75th percentiles), and whiskers denote the minimum and maximum ranks. Bottom
row: Corresponding pairwise statistical significance matrices from 50,000-run permutation tests
with Bonferroni correction. Red cells indicate significant differences (p < 0.05), and blue cells
indicate no significant difference. Model order (top–down, left–right) matches the ranking plots
above.

Figure G.15: Comparison of classic NN models (green) with linear-probed foundation models (pur-
ple) and fine-tuned foundation models (red) under two cross-subject evaluation protocols—Per-
Subject (transfer) and LOO Zero-Shot—as well as the LOO Drop protocol. The notation and panel
layout follow those in Figure G.14.
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Figure G.16: Comparison of classic NN models (green) with linear-probed foundation models (pur-
ple) and fine-tuned foundation models (red) under two aggregated evaluation settings plus the LOO
Drop protocol: (i) within-subject, combining Population, Per-Subject (self), and LOO Fine-Tune
protocols; and (ii) cross-subject, combining Per-Subject (transfer), LOO Zero-Shot protocols. The
notation and panel layout follow those in Figure G.14.

Figure G.17: Subject-wise accuracy distributions on the ERN dataset for the best-performing model
from each decoder group: classic non-NN models (blue), classic NN models (green), linear-probed
foundation models (purple), and fine-tuned foundation models (red). The notation and panel layout
follow those in Figure 4.

G.5 ATTENTION MAPS COMPARISON

We plot the attention maps on the BCIC-IV-2A dataset of BIOT, LabraM and EEGPT models. Each
map is categorized based on the adaptation method (linear probing or fine-tuning) and the input
data (left-hand MI or right-hand MI). Therefore, each model has a total of four attention maps. For
visualization, we first average the attention scores across all heads and temporal positions. Following
the attention rollout approach described below Abnar & Zuidema (2020), we then aggregate the
attention scores across all layers and project them onto the topographic head map for visualization.
The results are shown in Figures G.25 to G.36.
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Figure G.18: Subject-wise accuracy distributions on the BCI-IV-2A dataset for the best-performing
model from each decoder group: classic non-NN models (blue), classic NN models (green), linear-
probed foundation models (purple), and fine-tuned foundation models (red). The notation and panel
layout follow those in Figure 4.

Figure G.19: Subject-wise accuracy distributions on the Inner speech dataset for the best-performing
model from each decoder group: classic non-NN models (blue), classic NN models (green), linear-
probed foundation models (purple), and fine-tuned foundation models (red). The notation and panel
layout follow those in Figure 4.

G.5.1 ATTENTION ROLLOUT

Attention rollout tracks the information flow from the input layer to the final layer in a transformer
model through Eq G.1 (Abnar & Zuidema, 2020), where, Ã is the attention rollout, and A(li) the
raw attention matrix in layer i. In order to focus on the most important tokens while ignoring less
relevant ones, we apply a discard ratio that retains only the largest rollout weights at each layer.
For instance, a discard ratio of 0.9 will keep only the top 10% of the largest weights, setting the
remaining weights to zero. After calculating the rollout, each head produces a weight matrix. The
final weights are obtained by fusing the weights across different heads, using one of the following
methods: mean fusion, where the final weight is the average of all head weights; max fusion, where
the final weight is the maximum value across all heads; and min fusion, where the final weight is the
minimum value across all heads.
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Figure G.20: Subject-wise accuracy distributions on the Upper limb motor execution dataset for
the best-performing model from each decoder group: classic non-NN models (blue), classic NN
models (green), linear-probed foundation models (purple), and fine-tuned foundation models (red).
The notation and panel layout follow those in Figure 4.

Figure G.21: Subject-wise accuracy distributions on the Upper limb motor imagination dataset for
the best-performing model from each decoder group: classic non-NN models (blue), classic NN
models (green), linear-probed foundation models (purple), and fine-tuned foundation models (red).
The notation and panel layout follow those in Figure 4.

Ã(li) =

{
(A(li) + I)Ã(li−1) if i > 1

A(li) + I if i = 1
(G.1)

G.5.2 DISCUSSION

In summary, our analysis yields the following observations:

1. Shifted attention after fine-tuning. With the exception of EEGPT, most foundation models
attend to different regions after fine-tuning on downstream classification tasks. This suggests
that representations learned during pre-training are not fully aligned with task-specific ones.
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Figure G.22: Subject-wise accuracy distributions on the Binocular SSVEP dataset (synchronous
classification) for the best-performing model from each decoder group: classic non-NN models
(blue), classic NN models (green), linear-probed foundation models (purple), and fine-tuned foun-
dation models (red). The notation and panel layout follow those in Figure 4.

Figure G.23: Subject-wise accuracy distributions on the Binocular SSVEP dataset (asynchronous
classification) for the best-performing model from each decoder group: classic non-NN models
(blue), classic NN models (green), linear-probed foundation models (purple), and fine-tuned foun-
dation models (red). The notation and panel layout follow those in Figure 4.

2. Consistent spatial pattern s across models. Despite architectural differences, all models exhibit
symmetric attention patterns, with increased focus on regions near the motor cortex after fine-
tuning.

3. Limited distinction between left- and right-hand MI. Attention maps for left- and right-hand
motor imagery are highly similar across models, indicating that key discriminative features may
lie beyond the coarse spatial patterns captured by attention rollout.
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Figure G.24: Subject-wise accuracy distributions on the Alzheimer’s dataset for the best-performing
model from each decoder group: classic non-NN models (blue), classic NN models (green), linear-
probed foundation models (purple), and fine-tuned foundation models (red). The notation and panel
layout follow those in Figure 4.

Figure G.25: Attention topographical visualization for the LabraM model using linear probing on
left-hand motor imagery data from the BCI-IV-2A dataset. The topographic map shows attention
scores averaged across all heads and temporal positions, with all layers aggregated.

H ADDITIONAL EXPERIMENTS

H.1 TOKEN FUSION AND CLASSIFICATION HEAD STRATEGIES

We performed an ablation on BCI-IV-2A and ERN datasets using three foundation mod-
els—CBraMod, EEGPT, and our ST-EEGFormer-small (abbrev. ST-EEGFormer-s)—across five
evaluation protocols, including LOO Zero-Shot, LOO Fine-Tune, LOO Drop, Per-Subject (Self),
and Per-Subject (Transfer). For each model, we compared two variants that differ in (i) how token
features are fused and (ii) the final classification head (Figure H.1 and Figure H.2):

• Simple Average token pooling followed by a single linear classifier.

• Complex For CBraMod and EEGPT, use the model’s default classification head; For ST-
EEGFormer-s, use a full-token head with two linear layers.

Across both datasets and all five protocols, the Complex design yields better performance in most set-
tings—often with statistical significance—especially under linear probing. These findings suggest
that classification head capacity and token fusion choices are important to downstream performance.
In the case of linear-probed foundation models, relying solely on average token fusion may discard
valuable spatiotemporal information that a more expressive classification head can leverage. We
recommend future work to systematically explore head architectures for EEG foundation models to
unlock further gains.
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Figure G.26: Attention topographical visualization for the LabraM model using linear probing on
right-hand motor imagery data from the BCI-IV-2A dataset. The topographic map shows attention
scores averaged across all heads and temporal positions, with all layers aggregated.

Figure G.27: Attention topographical visualization for the LabraM model using fine-tuning on left-
hand motor imagery data from the BCI-IV-2A dataset. The topographic map shows attention scores
averaged across all heads and temporal positions, with all layers aggregated.

H.2 EFFECT OF TRAINING-SET SIZE

We varied the proportion of labeled training data from 20% to 80% on BCI-IV-2A and ERN, bench-
marking all neural decoders under the five evaluation protocols. Results are shown in Figure H.3
and Figure H.4.

Key observations

1. Monotonic gains with more data. Across models and protocols, performance generally in-
creases as the training fraction grows.

2. Linear probing is consistently weakest. Linear-probed foundation models are the worst per-
formers across training ratios and protocols.

3. Strong competitiveness of classic NNs. Classic neural decoders remain highly competi-
tive—often statistically better than foundation-model variants when labeled data are scarce.
Aside from the LOO Drop protocol, classic decoders also tend to exhibit larger performance
drops after fine-tuning.

4. Best model comparison. When comparing the top model from each decoder group (panel b),
classic decoders frequently have a higher mean, but differences from fine-tuned foundation mod-
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Figure G.28: Attention topographical visualization for the LabraM model using fine-tuning on right-
hand motor imagery data from the BCI-IV-2A dataset. The topographic map shows attention scores
averaged across all heads and temporal positions, with all layers aggregated.

Figure G.29: Attention topographical visualization for the BIOT model using linear probing on left-
hand motor imagery data from the BCI-IV-2A dataset. The topographic map shows attention scores
averaged across all heads and temporal positions, with all layers aggregated.

els are typically not statistically significant. In low-data regimes, the best fine-tuned foundation
models sometimes attain a higher mean, again without a significant difference relative to classic
decoders.
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Figure G.30: Attention topographical visualization for the BIOT model using linear probing on
right-hand motor imagery data from the BCI-IV-2A dataset. The topographic map shows attention
scores averaged across all heads and temporal positions, with all layers aggregated.

Figure G.31: Attention topographical visualization for the BIOT model using fine-tuning on left-
hand motor imagery data from the BCI-IV-2A dataset. The topographic map shows attention scores
averaged across all heads and temporal positions, with all layers aggregated.

Figure G.32: Attention topographical visualization for the BIOT model using fine-tuning on right-
hand motor imagery data from the BCI-IV-2A dataset. The topographic map shows attention scores
averaged across all heads and temporal positions, with all layers aggregated.
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Figure G.33: Attention topographical visualization for the EEGPT model using linear probing on
left-hand motor imagery data from the BCI-IV-2A dataset. The topographic map shows attention
scores averaged across all heads and temporal positions, with all layers aggregated.

Figure G.34: Attention topographical visualization for the EEGPT model using linear probing on
right-hand motor imagery data from the BCI-IV-2A dataset. The topographic map shows attention
scores averaged across all heads and temporal positions, with all layers aggregated.

Figure G.35: Attention topographical visualization for the EEGPT model using fine-tuning on left-
hand motor imagery data from the BCI-IV-2A dataset. The topographic map shows attention scores
averaged across all heads and temporal positions, with all layers aggregated.
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Figure G.36: Attention topographical visualization for the EEGPT model using fine-tuning on right-
hand motor imagery data from the BCI-IV-2A dataset. The topographic map shows attention scores
averaged across all heads and temporal positions, with all layers aggregated.

Figure H.1: BCI-IV-2A ablation of token fusion and classification head strategies for CBraMod,
EEGPT, and ST-EEGFormer-s. Simple (red and purple): average-token pooling + linear head.
Complex (light red and purple): default head for EEGPT and CBraMod; for ST-EEGFormer-s, a
full-token two-layer head. Top row: fine-tuning; bottom row: linear probing. Wilcoxon signed-rank
test: ∗∗∗: p < 0.001, ∗∗: p < 0.01, ∗: p < 0.05.
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Figure H.2: ERN ablation of token fusion and classification head strategies for CBraMod, EEGPT,
and ST-EEGFormer-s. Simple (red and purple): average-token pooling + linear head. Complex
(light red and purple): default head for EEGPT and CBraMod; for ST-EEGFormer-s, a full-token
two-layer head. Top row: fine-tuning; bottom row: linear probing. Wilcoxon signed-rank test: ∗∗∗:
p < 0.001, ∗∗: p < 0.01, ∗: p < 0.05.
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Figure H.3: BCI-IV-2A results when varying the training fraction from 20% to 80% under five
evaluation protocols. (a) Group-level comparison: classic neural decoders (green), linear-probed
foundation models (purple), and fine-tuned foundation models (red). Boxplots reflect balanced ac-
curacy over all test subjects. (b) Best-performing model from each group (model names annotated).
Wilcoxon signed-rank test with Bonferroni correction: ∗∗∗: p < 0.001, ∗∗: p < 0.01, ∗: p < 0.05.
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Figure H.4: ERN results when varying the training fraction from 20% to 80% under five evaluation
protocols. (a) Group-level comparison: classic neural decoders (green), linear-probed foundation
models (purple), and fine-tuned foundation models (red). Boxplots reflect balanced accuracy over
all test subjects. (b) Best-performing model from each group (model names annotated). Wilcoxon
signed-rank test with Bonferroni correction: ∗∗∗: p < 0.001, ∗∗: p < 0.01, ∗: p < 0.05.
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