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Abstract001

Recently, DeepSeek-R1 (671B) (DeepSeek-AI002
et al., 2025) has demonstrated its excellent rea-003
soning ability in complex tasks and has publicly004
shared its methodology. This provides poten-005
tially high-quality chain-of-thought (CoT) data006
for stimulating the reasoning abilities of small-007
sized large language models (LLMs). To gener-008
ate high-quality CoT data for different LLMs,009
we seek an efficient method for generating high-010
quality CoT data with LLM-Adaptive question011
difficulty levels. First, we grade the difficulty012
of the questions according to the reasoning abil-013
ity of the LLMs themselves and construct an014
LLM-Adaptive question database. Second, we015
sample the problem database based on a distri-016
bution of difficulty levels of the questions and017
then use DeepSeek-R1 (671B) (DeepSeek-AI018
et al., 2025) to generate the corresponding high-019
quality CoT data with correct answers. Thanks020
to the construction of CoT data with LLM-021
Adaptive difficulty levels, we have significantly022
reduced the cost of data generation and en-023
hanced the efficiency of model supervised fine-024
tuning (SFT). Finally, we have validated the ef-025
fectiveness and generalizability of the proposed026
method in the fields of complex mathematical027
competitions and code generation tasks. No-028
tably, with only 2k high-quality mathematical029
CoT data, our ZMath-32B surpasses DeepSeek-030
Distill-32B in math reasoning task. Similarly,031
with only 2k high-quality code CoT data, our032
ZCode-32B surpasses DeepSeek-Distill-32B in033
code reasoning tasks. Our ZMath-32B LLM034
also outperforms both the DeepSeek-Distill-035
32B and QwQ-32B models on general eval-036
uation benchmarks. Our data and LLMs will037
be open-sourced in the future.038

1 Introduction039

Since the release of DeepSeek-R1 (DeepSeek-AI040

et al., 2025), long chain-of-thought reasoning has041

gained widespread popularity in both foundational042

AI LLMs and a wide range of industrial AI appli-043

cations. However, the deployment of full-capacity044

+26.7%

+10%

+6.66%

Figure 1: Constrcution of CoT Data with/without LLM-
Adaptive question difficulty grading. For LLms of dif-
ferent parameters, the former consistently outperforms
the latter in reasoning performance on the mathematical
competition dataset AIME24 (of America, 2024).

R1-class models (e.g., DeepSeek-R1 with 671B 045

parameters) poses substantial computational chal- 046

lenges, rendering their utilization infeasible for 047

edge devices and real-time systems due to pro- 048

hibitive resource demands. This limitation has 049

spurred intensive research into developing compact 050

(<70B parameters) models capable of sustaining ex- 051

tended CoT reasoning, which is a core competency 052

requirement for mathematical problem-solving, 053

code generation, and scientific analysis. Thanks to 054

the shared reasoning process of DeepSeek-R1, we 055

can get high-quality CoT data to boost the reason- 056

ing abilities of small-parameter LLMs. 057

Recently, many methods for generating CoT data 058

based on DeepSeek-R1 have been widely studied 059

in the community. (Labs, 2025; Team, 2025c) en- 060

hance the reasoning capabilities of LLMs by using 061

massive CoT data, enabling their reasoning abili- 062

ties to reach competitive levels. (Ye et al., 2025; 063

Muennighoff et al., 2025) aim to trigger the rea- 064

soning capabilities of large models by constructing 065

a small batch of high-quality CoT data, yet they 066

are unable to achieve further improvements in rea- 067
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soning performance. (Wen et al., 2025a) focuses068

on refining reasoning abilities through multi-stage069

curriculum learning and rejection sampling. How-070

ever, these approaches rarely consider the adaptive071

relationship between the Base LLM and its training072

data during data distillation. Therefore, we rethink073

the question:"What constitutes high-quality CoT074

data?" and try to provide a comprehensive answer075

from the perspective of LLM-Adaptive Question076

Difficulty Grading.077

Based on the above discussion, we propose a078

method for constructing high-quality CoT data079

based on LLM-Adaptive Question Difficulty Grad-080

ing, as shown in Figure 1. Our method efficiently081

creates LLM-Adaptive CoT datasets, significantly082

enhancing reasoning abilities of LLMs across083

varying parameters without requiring resource-084

intensive fine-tuning approaches such as curricu-085

lum learning or rejection sampling. In contrast,086

LLMs trained on data without adaptive difficulty087

grading struggle to improve or may experience088

degraded performance under the same cost con-089

straints. First, we evaluate and grade the diffi-090

culty levels of the reasoning questions by analyzing091

the intrinsic reasoning capabilities of the LLMs.092

Based on this adaptive difficulty grading, we de-093

velop an adaptive question database that covers var-094

ious difficulty levels. Next, we sample questions095

from this adaptive library, guided by a carefully096

designed distribution across different levels of dif-097

ficulty. Finally, utilizing the powerful reasoning ca-098

pabilities of the DeepSeek-R1 (671B) (DeepSeek-099

AI et al., 2025), we generate corresponding high-100

quality CoT data that covers both mathematical101

reasoning and code generation tasks.102

In summary, the main contributions of this work103

are as follows:104

Adaptive Difficulty Evaluation: We analyze105

the intrinsic reasoning capabilities of LLMs to ef-106

fectively evaluate and classify reasoning questions107

into adaptive difficulty levels.108

Comprehensive Adaptive Problem Library:109

Based on the adaptive difficulty levels, we construct110

an extensive problem library covering diverse dif-111

ficulty categories and carefully sample questions112

according to a well-designed difficulty distribution.113

High-Quality CoT Data Generation: Leverag-114

ing the DeepSeek-R1 model (671B) (DeepSeek-AI115

et al., 2025), we generate high-quality chain-of-116

thought (CoT) datasets that cover mathematical117

reasoning and code generation tasks, ensuring con-118

sistent accuracy and detailed reasoning.119

Comprehensive Evaluation: We conduct exten- 120

sive experiments on mathematical reasoning and 121

code generation tasks using LLMs with different 122

parameters, demonstrating the effectiveness and 123

generalization of our proposed method for high- 124

quality chain-of-thought (CoT) data generation. 125

2 Related Works 126

2.1 Chain-of-Thought (CoT) Data Generation 127

Current research focuses on three primary strate- 128

gies for generating high-quality CoT data: (1) Man- 129

ual annotation by domain experts to create gold- 130

standard reasoning chains, primarily for bench- 131

marking (Li et al., 2024; Huang et al., 2024; Gao 132

et al., 2024); (2) Prompt engineering leveraging 133

LLMs’ in-context learning capacity to elicit step- 134

by-step rationales, though constrained by model 135

biases (Wu et al., 2024; Maiti et al., 2025; Whitney 136

et al., 2024); (3) Automated generation using self- 137

alignment frameworks (Mahene et al., 2024; Liu 138

et al., 2025). While such methods show promise, 139

particularly in boosting small sized LLMs via su- 140

pervised fine-tuning, key challenges persist in en- 141

suring the diversity, correctness, and coherence of 142

generated reasoning chains (Muennighoff et al., 143

2025; Ye et al., 2025). To address these limita- 144

tions, recent advances integrate rejection sampling 145

to filter low-quality reasoning paths and employ it- 146

erative refinement of teacher models. For instance, 147

some approaches (Labs, 2025; Team, 2025c) lever- 148

age DeepSeek-R1 as the teacher reasoning model to 149

improve step-by-step rationale generation, coupled 150

with GPT-4o-mini for mathematical solution verifi- 151

cation. Despite these improvements, scaling high- 152

quality CoT generation across broader domains 153

and difficulty levels remains an open challenge, 154

particularly in maintaining robustness against error 155

propagation in multi-step reasoning. 156

2.2 LLM-Adaptive Difficulty Grading 157

Traditional data generation approaches typically 158

rely on static difficulty labels or heuristic rules, 159

which inadequately account for the continuously 160

evolving capabilities of large language models 161

(LLMs). Inspired by adaptive assessment tech- 162

niques in educational settings, this strategy auto- 163

matically calibrates training data to align with the 164

model’s current competence, thereby optimizing 165

learning efficiency. Prior studies have explored 166

alternative methods, such as employing LLM- 167

generated scoring to adjust difficulty (Team, 2025a; 168
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Figure 2: The Framework for CoT Data Generation via LLM-Adaptive Question Difficulty Grading , comprising
three core components: Distribution Construction, LLM-Adaptive Question Difficulty Grading & Distribution
Sampling, and LLM-Adaptive Chain-of-Thought (CoT) Generation

Xie et al., 2024; Lee and Song, 2024) or adopting169

curriculum learning frameworks (Wen et al., 2025a;170

Min et al., 2024; Yuan et al., 2025) that treat long-171

form QA as inherently challenging tasks. However,172

these approaches suffer from critical limitations,173

including inaccurate difficulty categorization and174

insufficient granularity in difficulty stratification.175

For instance, coarse-grained curriculum designs176

often oversimplify difficulty levels (e.g., categoriz-177

ing questions merely by length), while LLM-based178

scoring methods struggle to capture nuanced rea-179

soning demands. Such shortcomings highlight the180

need for more sophisticated, fine-grained adaptive181

frameworks to bridge the gap between data diffi-182

culty and model capability.183

3 Methods184

In this section, we introduce in detail our method185

for constructing high-quality CoT data with LLM-186

Adaptive question difficulty grading. As shown187

in Figure 2, our approach contains three compo-188

nents, described separately in the following subsec-189

tions: (1) Distribution Construction, (2) LLM-190

Adaptive Question Difficulty Grading & Distri-191

bution Sampling, and (3) LLM-Adaptive CoT192

Generation.193

3.1 Distribution Construction194

To efficiently sample questions with model-195

adaptive difficulty grading, we require an effec-196

tive reference distribution. To this end, we pro- 197

pose two alternative approaches for constructing 198

a question-difficulty distribution. Option1 lever- 199

ages the Base LLM (defined as SLLM ) to charac- 200

terize the true difficulty-level distribution (defined 201

as Peval) over the evaluation datasets. Option2 202

employs a customized distribution (defined as PC) 203

based on human-defined priors. Detailed descrip- 204

tions of both methods are presented below. 205

Option1 To obtain the actual difficulty-level dis- 206

tribution Peval from the SLLM for the evaluation 207

data DBeval, we first perform answer verification 208

through a Result-Verifier. Those questions cor- 209

rectly answered by SLLM are defined as easy-level 210

problems. Then, we utilize a PRM-Grader to grade 211

the difficulty levels of the questions that the SLLM 212

answers incorrectly. The specific grading formula- 213

tion is shown as follows: 214

Peval =

{
Easy, if answer is True
Grader(Q,R), if answer is False

(1) 215

where Grader(Q, R) denotes the Difficulty grading 216

given by the PRM-Grader based on the reponse R 217

of the SLLM . The details of the Result-Verifier and 218

PRM-Grader can be seen in 3.2 219

Option2 Inspired by the idea of curriculum learn- 220

ing, we hypothesize that during the model fine- 221
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tuning process, the model learns relatively difficult222

questions more easily compared to very difficult223

ones. Therefore, we also propose a curriculum-224

learning-based customized distribution. Specifi-225

cally, we classify question difficulty into five levels,226

with the number of samples at each difficulty level227

decreasing as the difficulty increases. The distri-228

bution can be formally defined by the following229

equation:230

PC =
Ni

Ntotal
=

wi∑5
j=1wj

,

wi > wi+1, i = 1, 2, . . . , 4

(2)231

where Ni denotes the number of questions at dif-232

ficulty level i, Ntotal denotes the total number of233

questions, and wi represents the weight assigned234

to difficulty level i. The constraint wi > wi+1235

illustrates that the assigned number of samples de-236

creases as question difficulty increases.237

We propose two methods for constructing model-238

adaptive difficulty distributions: Option1 derives239

difficulty levels from the actual performance of the240

SLLM , while Option2 uses a curriculum-learning-241

inspired human-defined distribution. Subsequent242

experiments in section 4 will analyze and com-243

pare these approaches in detail. Next, we will use244

the distributions to guide the selection of LLM-245

Adaptive Questions.246

3.2 LLM-Adaptive Question Difficulty247

Grading & Distribution Sampling248

After constructing the question difficulty distribu-249

tion based on either the evaluation-set distribution250

or curriculum-learning-inspired principles, we fur-251

ther need to build a specialized candidate question252

database from a large-scale data space using the253

model-adaptive difficulty grading method. Follow-254

ing such construction, we can perform sampling255

according to the predefined difficulty distribution256

to obtain the final high-quality questions. First, we257

illustrate our LLM-Adaptive Question Difficulty258

Grading method for building the candidate question259

database (defined as DBAdaptive) in detail. Then,260

we describe the process of Distribution Sample to261

acquire the LLM-Adaptive Questions.262

LLM-Adaptive Question Difficulty Grading263

First, we collect original questions from large-264

scale open-source datasets, each accompanied by265

standardized answers, thus constructing an ini-266

tial question-answer database (defined as DBraw).267

Next, we generate responses for these questions268

using the SLLM and record their reply trajectories 269

and results. Then, we apply the Result-Verifier cus- 270

tomized to specific tasks. For mathematical reason- 271

ing, we adopt a Math Verifier, directly comparing 272

the LLM-generated and standard answers; for code 273

generation tasks, correctness is verified by execut- 274

ing the produced code against a suite of test cases, 275

passing all tests indicating correctness. According 276

to equation 1 , verified correct responses are la- 277

beled as easy and directly added to the candidate 278

question database. For responses deemed incorrect, 279

we label these questions as difficult and further 280

utilize the PRM-Grader, assigning difficulty levels 281

into five categories. Specifically, the PRM-Grader 282

computes an average score (ranging from 0 to 1) re- 283

flecting the response trajectory of SLLM , mapping 284

this score onto five discrete difficulty levels, with 285

lower scores indicating relatively higher difficulty. 286

Let the average score computed by PRM-Grader be 287

denoted as s ∈ [0, 1], and let the difficulty level be 288

denoted as L ∈ {1, 2, 3, 4, 5}, where a lower value 289

of L indicates a higher difficulty. The mapping 290

from s to L is defined as: 291

L = Grader(Q,R) = f(s) = ⌈5 · (1− s)⌉ (3) 292

where ⌈·⌉ denotes the ceiling function. Ulti- 293

mately, the questions categorized by these diffi- 294

culty levels are collectively included within our 295

candidate question database, thereby completing 296

the construction of DBAdaptive in a LLM-Adaptive 297

manner. 298

Distribution Sample After constructing the can- 299

didate question database, we employ a distribution- 300

based sampler, guided by the question-difficulty 301

distribution established in Section 3.1, to sample 302

high-quality, model-adaptive questions from this 303

database as preliminary inputs for obtaining high- 304

quality CoT data. This procedure is formally de- 305

fined as follows: 306

DBsample ∼ Sampler
(
DBAdaptive, Peval ∨ PC

)
(4) 307

where DBsample represents the sampled ques- 308

tions, DBAdaptive denotes the candidate question 309

database, and Peval, PC indicates the difficulty- 310

level distribution determined in Section 3.1. 311

3.3 LLM-Adaptive CoT Generation 312

After obtaining the DBSample, we directly employ 313

the TLLM to generate responses and associated 314
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reasoning processes for these sampled questions.315

Subsequently, we apply the Result-Verifier to ex-316

amine and validate the correctness of these gen-317

erated responses. The implementation of Result-318

Verifier here is identical to that described in Section319

3.2. The TLLM in our experiments is DeepSeek-320

R1(671B) (DeepSeek-AI et al., 2025). Following321

the verification process, we select only those ques-322

tions whose corresponding responses and reasoning323

processes have been validated as correct, thereby324

forming a high-quality CoT dataset COTAdaptive.325

Finally, this rigorously-constructed CoT dataset326

serves as training data for fine-tuning SLLM to get327

the final reasoning LLM RLLM .328

4 Experiment329

4.1 Setup330

Datasets and Metrics Our training datasets con-331

sist of high-quality mathematical reasoning prob-332

lems sourced from NuminaMath (LI et al., 2024),333

historical AIME problems (of America, 2024), and334

OlympicArena (Huang et al., 2024), as well as chal-335

lenging code generation tasks from TACO (Li et al.,336

2023) and CodeForces (Penedo et al., 2025).337

Benchmarks To give a reasonable result, we338

evaluate our trained models on the following au-339

thoritative benchmarks:340

• AIME24 and AIME25 (of America, 2024)341

comprise challenging mathematics competi-342

tion problems from the American Invitational343

Mathematics Examination of 2024 and 2025.344

• MATH500 (Lightman et al., 2023) is a rep-345

resentative subset of 500 mathematical prob-346

lems from the comprehensive MATH dataset.347

• GPQA (Rein et al., 2024) is a dataset focused348

on graduate-level physics questions designed349

to evaluate advanced problem-solving skills.350

• LiveCodeBench (Jain et al., 2024) contains351

competitive coding problems sourced from352

various platforms categorized by three diffi-353

culty levels.354

Settings Our training framework builds on pre-355

vious advancements in s1-1k(Muennighoff et al.,356

2025), LIMO(Ye et al., 2025), and Light-R1(Wen357

et al., 2025b), implemented through the LLama-358

Factory(Zheng et al., 2024) to leverage its proven359

scalability. The framework incorporates the360

Model MATH

MATH
500

AIME
24

AIME
25 GPQA

DS-distill-7B 89.4 56.67 33.3 49.49
ZMath-7B 93.2 60 43.33 49.49

phi4-14B 79.2 30 16.67 54.55
ZMath-14B 89.4 50.0 36.67 63.13

DS-distill-32B 89.8 66.67 50.0 59.6
Sky-32B-Preview 90 43.33 23.33 50.0

ZMath-32B 94.6 73.33 56.67 63.13

Table 1: Comparison of LLMs with different parameters
on Math Reasoning Benchmarks

Model LiveCodeBench

EASY MEDIUM HARD

DS-distill-7B 79.21 41.09 11.11
ZCode-7B 81.0 39.58 10.11

phi4-14B 72.4 29.91 5.19
ZCode-14B 89.96 41.99 8.89

DS-distill-32B 92.11 74.92 30
Sky-32B-Preview 84.23 46.53 8.89

ZCode-32B 96.06 75.53 31.85

Table 2: Comparison of LLMs with different parameters
on Code Generation Benchmarks

Deepseek-R1 template, flash-attention2(Dao, 2024) 361

and Liger-Kernel(Hsu et al., 2024) to improve com- 362

putational efficiency while minimizing memory re- 363

quirements. All experiments are conducted on a 364

2×8 H800 GPU cluster, with performance evalua- 365

tions executed using the Skythought benchmarking 366

suite(Team, 2025a). The core hyperparameters for 367

the initial experiments included a context length of 368

16384, a learning rate of 5e-6, a batch size of 128, 369

and 10 training epochs. 370

Baselines We take the three representative base- 371

lines below for comparison: 372

• phi-4: phi-4(Abdin et al., 2024) is a 14B LLM 373

developed by Microsoft. Phi-4 demonstrates 374

exceptional performance in complex reason- 375

ing tasks, particularly in mathematics, where 376

it achieves 80.4% on the MATH benchmark 377

and 80.6% on MGSM. 378

• DeepSeek-Distill-R1: A series of LLMs 379

developed by Deepseek, distilled from 380

the Deepseek-R1 using 800k training in- 381

stances(DeepSeek-AI et al., 2025). Our imple- 382

mentation primarily utilizes the 7B and 32B 383

variants distilled on the Qwen architecture. 384
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• Sky-T1-32B-Preview: This model exhibits385

characteristics similar to Distill-R1-32B, but386

was developed by the Sky-T1 team using387

10,000 distillation samples that specifically388

target mathematical and coding capabili-389

ties(Team, 2025b).390

4.2 Results and Analysis391

It should be noted that, due to resource constraints,392

our evaluation process uses pass@1 measured over393

16 runs, and we report the average result.394

Main Results Table 1 and Table 2 present the re-395

sults of controlled experiments evaluating LLM per-396

formance on mathematical and coding benchmark397

datasets, respectively. Synthetic mathematical and398

coding data were generated using three base LLMs,399

DS-distill-7B, phi4-14B, and DS-distill-32B, and400

subjected to supervised fine tuning (SFT) to pro-401

duce a series of LLMs at 7B, 14B, and 32B pa-402

rameter scales. These LLMs were grouped into403

two categories: Zmath for mathematical tasks and404

Zcode for coding tasks.405

The Zmath-14B LLM was trained on approxi-406

mately 16,000 distilled data points derived from407

Deepseek-R1. The distilled data set was manu-408

ally verified to ensure the accuracy of the answers.409

After training, the LLM output was aligned with410

the Deepseek-r1 format. Compared to the baseline411

phi4-14B LLM, Zmath-14B demonstrated substan-412

tial improvements: an average gain of 20 points on413

the AIME (2024, 2025) and Livecode-easy bench-414

marks; an approximate increase of 10 points on415

the GPQA and Livecode-medium datasets.Notably,416

Zmath-14B outperformed the Sky-32B-Preview417

LLM on mathematical tasks, highlighting its su-418

perior capability in this domain.419

To explore the upper limit of our adaptive data420

synthesis approach, we trained LLMs using only421

2,000 Chain of Thought (CoT) mathematical and422

coding data points on the DS-distill-32B. The re-423

sults were as follows: Zmath-32B achieved an aver-424

age improvement of 5 points across all mathemati-425

cal benchmarks, significantly exceeding the perfor-426

mance of DS-distill-32B. On the Livecode Bench,427

Zcode-32B recorded an average gain of 2.14 points428

over DS-distill-32B. We hypothesize that further429

enhancements in coding performance, relative to430

mathematical gains, may necessitate a larger train-431

ing corpus. Comparable performance improve-432

ments were observed with the smaller Zmath-7B433

and Zcode-7B models, consistent with the trends434

Grading Methods LiveCodeBench

EASY MEDIUM HARD

No-Grading 92.11 74.92 30.00
UT-Grading 93.19 71.60 28.15

PRM-Grading 96.06 75.53 31.85

Table 3: Performance (%) of DS-distill-32B trained
on 2K data using different difficulty grading meth-
ods (None, UT-based, and PRM-based), evaluated on
LiveCode-Bench.

observed in their 32B counterparts. These find- 435

ings underscore the efficacy of our data synthesis 436

method across varying model scales and task do- 437

mains. 438

Ablation Studies We conducted four ablation 439

studies using the code datasets to comprehensively 440

validate the effectiveness of our proposed LLM- 441

Adaptive difficulty grading approach from various 442

perspectives. 443

(1) Comparison of Difficulty Grading Methods 444

(PRM vs. UT) This experiment verifies the ef- 445

fectiveness of different difficulty grading methods. 446

We compared two difficulty grading methods: Pro- 447

cess Reward Model (PRM)-based grading, which 448

assigns 0-1 scores divided into five levels (lower 449

scores indicate higher difficulty), and Unit Test 450

(UT)-based grading, which categorizes problems 451

into five levels based on the percentage of passed 452

test cases (lower pass rates indicate higher diffi- 453

culty). As shown in Table 3, we compare the 454

results of DeepSeek-Distill-32B trained with UT- 455

graded 2K data, PRM-graded 2K data, and the base- 456

line evaluated on LiveCodeBench (easy-medium- 457

hard), demonstrating the superior effectiveness of 458

the PRM-based difficulty grading method. 459

(2) Distribution Transfer Experiment To exam- 460

ine whether different models exhibit unique pref- 461

erences for difficulty distributions, we perform a 462

distribution transfer experiment. Specifically, we 463

transfer the PRM-based difficulty distribution de- 464

rived from the DeepSeek-Distill-32B model to train 465

the DeepSeek-Distill-7B model. We then compare 466

its performance with a counterpart trained using 467

the 7B model’s own PRM-based distribution. As 468

shown in Table 4, the 7B model benefits more from 469

training on its self-derived difficulty distribution, 470

suggesting that model-specific difficulty adaptation 471

plays a critical role in performance optimization. 472

6



CoT Source MATH

MATH
500

AIME
24

AIME
25 GPQA

Baseline-7B 89.40 56.67 33.30 49.49
+CoT from 32B 92.00 56.67 40.00 45.96
+CoT from 7B 93.20 60.00 43.33 49.49

Table 4: Performance (%) of 7B LLM with training data
distributions derived from 32B and 7B LLMs on math
benchmarks. The 7B/32B LLM is DS-distill-7B/32B.

Training Setup MATH

MATH
500

AIME
24

AIME
25 GPQA

No PRM fine-tuning 89.80 66.67 50.00 59.60
+1K PRM-graded data 95.50 73.33 53.33 60.61
+2K PRM-graded data 94.60 73.33 56.67 63.13

Table 5: Performance (%) of DeepSeek-Distill-32B
trained on varying sizes of PRM-graded math data.

(3) Influence of Training Data Size To investi-473

gate the influence of the size of the training data on474

reasoning performance, we trained the DeepSeek-475

Distill-32B model using 1K and 2K PRM-graded476

math examples. As shown in Table 5, increasing477

the training data size from 1K to 2K led to con-478

sistent performance improvements across all four479

math benchmarks.480

(4) Impact of Training Data Distribution Stan-481

dard We compare two strategies for defining482

training data distributions: Option 1 leverages the483

base LLM to infer the true difficulty distribution484

from the evaluation dataset, while Option 2 relies485

on human-defined prior distributions. As shown in486

Tab. 6, using the model-inferred evaluation distri-487

bution (Option 1) achieves stronger results on most488

benchmarks, indicating that aligning training dis-489

tribution with evaluation difficulty leads to better490

generalization.491

Sample Distribution MATH

MATH
500

AIME
24

AIME
25 GPQA

Baseline-7B 89.40 56.67 33.30 49.49
+Option 1 (LLM) 93.20 60.00 43.33 49.49

+Option 2 (Human) 90.80 63.33 33.33 48.99

Table 6: Performance (%) of DS-distill-7B trained on
2K PRM-graded data using different training distribu-
tion strategies. Option 1 uses LLM-inferred evaluation-
set distribution; Option 2 adopts human-defined priors.

(5) General Capability Evaluation on Core 492

Benchmarks To assess the general reasoning and 493

problem-solving capabilities of models trained with 494

our adaptive difficulty synthesis pipeline, we con- 495

duct evaluations on a set of representative core 496

benchmarks beyond just math and code. These in- 497

clude standard language understanding (MMLU, 498

CMMLU), commonsense reasoning (BBH), and 499

structured evaluation datasets (CEVAL, GSM8K, 500

MBPP, HumanEval, MATH500). Specifically, we 501

compare ZMath-32B and ZCode-32B against sev- 502

eral competitive 32B open-source models, includ- 503

ing Distill-32B, QwQ-32B, Qwen2.5-32B-Instruct. 504

As shown in Table 7, ZMath-32B achieves the 505

highest overall average score (89.98%), setting 506

new state-of-the-art results on MATH, HumanEval, 507

and MBPP. Notably, ZMath-32B surpasses even 508

models tailored for code generation in MBPP and 509

HumanEval, demonstrating its strong generaliza- 510

tion capability from math to code. While ZCode- 511

32B also shows strong performance, especially 512

on HumanEval and GSM8K, it is slightly behind 513

ZMath-32B in average core capability. These re- 514

sults validate that our training strategy not only 515

enhances performance in specialized domains but 516

also strengthens general language model competen- 517

cies across a wide range of tasks. 518

Visualization As shown in Figure 3, we com- 519

pare the output differences between the DeepSeek- 520

Distill-32B model and the ZMath-32B model based 521

on samples from the AIME25 (of America, 2024) 522

test set. Our model gives the correct answer, while 523

the former produces an incorrect response. For 524

ease of presentation, we only visualize the infer- 525

ence results of the two models without displaying 526

the entire reasoning process. 527

5 Conclusion 528

In this paper, we propose a general and efficient 529

method for constructing high-quality Chain-of- 530

Thought (CoT) datasets. Firstly, we build a ques- 531

tion database more aligned with the Base LLM 532

itself by leveraging a method that adaptively grade 533

question difficulty. This database possess a poten- 534

tial source of high-quality questions. Next, we 535

use the difficulty distribution from either LLM 536

performance on evaluation datasets or curriculum- 537

learning-inspired difficulty levels, to sample cru- 538

cial questions for improving the reasoning capa- 539

bility. Finally, these selected questions are em- 540

ployed to generate Chain-of-Thought data through 541
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Model AVG_CORE MATH GSM8K HUMANEVAL MBPP CEVAL MMLU CMMLU BBH
DeepSeek-Distill-32B 87.48 88.28 92.57 96 89.60 87.98 87.79 84.88 72.74

QwQ-32B 86.66 90.90 96.21 94 71.20 89.25 89.34 87.12 75.27
Qwen2.5-32B-instruct 80.61 77.74 94.54 84 76.60 83.53 79.27 81.66 67.57

ZCode-32B 87.33 89.68 95.98 96 84.60 87.54 87.84 85.62 71.41
ZMath-32B 89.98 93.20 96.06 99 92.40 88.94 88.82 86.78 74.66

Table 7: Evaluation results (%) of 32B-scale models on a diverse suite of core reasoning benchmarks. ZMath-32B
and ZCode-32B show strong performance gains across both math and general tasks, outperforming prior state-of-
the-art open-source models.

User

Question：Let $A$ be the set of positive
integer divisors of $2025$. Let $B$ be a
randomly selected subset of $A$. The
probability that $B$ is a nonempty set with the
property that the least common multiple of its
elements is $2025$ is $\\tfrac{m}{n}$, where
$m$ and $n$ are relatively prime positive
integers. Find $m+n$.

<think>
Alright, so I'm trying to figure out this probability problem. Let me go
through it step by step.\n\nFirst, the problem says: Let A be the set of
positive integer divisors of 2025...
Wait, but 27904 is 2^8 *109, and 32767 is 7*31*151. No common factors,
so yes, the fraction cannot be reduced further... 
**Final Answer**\n\\boxed{60671}
</think>
First, we factorize 2025 as \\(2025 = 3^4 \\times 5^2\\). The set \\
(A\\) of positive integer divisors of 2025 has 15 elements. We need to find
the probability that a randomly selected subset \\(B\\) of \\(A\\) is
nonempty and has an LCM of 2025.\n\nTo solve this, we use the principle
of inclusion-exclusion. We need to count the number of subsets that
contain at least one element with \\(3^4\\) and at least one element with
\\(5^2\\).\n\n1. The total number of subsets of \\(A\\) is \\(2^{15} =
32768\\).\n2. The number of subsets without any element with \\(3^4\\)
is \\(2^{12} = 4096\\).\n3. The number of subsets without any element
with \\(5^2\\) is \\(2^{10} = 1024\\).\n4. The number of subsets without
any element with \\(3^4\\) and without any element with \\(5^2\\) is \\
(2^8 = 256\\).\n\nUsing inclusion-exclusion, the number of subsets that
contain at least one element with \\(3^4\\) and at least one element with
\\(5^2\\) is:\n\\[\n32768 - 4096 - 1024 + 256 = 27904\n\\]\n\nThis
count includes all nonempty subsets that satisfy the condition. The total
number of nonempty subsets of \\(A\\) is \\(2^{15} - 1 =
32767\\).\n\nThe probability is therefore:\n\\[\n\\frac{27904}
{32767}\n\\]\n\nSince the greatest common divisor (GCD) of 27904 and
32767 is 1, the fraction is in its simplest form. Thus, \\(m = 27904\\) and
\\(n = 32767\\), giving \\(m + n = 27904 + 32767 = 60671\\).\n\n\\
[\n\\boxed{60671}\n\\]

DeepSeek Distill 32B

<think>
Okay, so I need to find the probability that a randomly selected nonempty
subset B of the set A (which is the set of positive integer divisors of
2025) has the least common multiple (LCM) of its elements equal to 2025... 
Wait, no. In case 2, we are considering subsets that do not include 12... 
Therefore, the answer is \\boxed{237}. 
</think>
To solve the problem, we start by factorizing 2025, which gives \\(2025 =
3^4 \\times 5^2\\). The set \\(A\\) consists of all positive integer
divisors of 2025, which can be represented as \\(3^a \\times 5^b\\)
where \\(0 \\leq a \\leq 4\\) and \\(0 \\leq b \\leq 2\\). This results in
15 divisors.\n\nWe need to find the probability that a randomly selected
nonempty subset \\(B\\) of \\(A\\) has an LCM of 2025. For the LCM to
be 2025, the subset must include at least one element with \\(3^4\\) and
at least one element with \\(5^2\\).\n\nUsing the principle of inclusion-
exclusion, we calculate the number of subsets that include at least one
element with \\(3^4\\) (set \\(X\\)) and at least one element with \\
(5^2\\) (set \\(Y\\)):\n\n1. **Total subsets**: \\(2^{15}\\)\n2.
**Subsets missing all elements from \\(X\\)**: \\(2^{12}\\) (since there
are 3 elements in \\(X\\))\n3. **Subsets missing all elements from \\
(Y\\)**: \\(2^{10}\\) (since there are 5 elements in \\(Y\\))\n4.
**Subsets missing both \\(X\\) and \\(Y\\)**: \\(2^8\\) (since there are
8 elements not in \\(X\\) or \\(Y\\))\n\nApplying inclusion-exclusion:\n\\
[\n2^{15} - 2^{12} - 2^{10} + 2^8\n\\]\n\nCalculating the values:\n\\
[\n32768 - 4096 - 1024 + 256 = 27904\n\\]\n\nThis result, 27904, is the
number of subsets (including nonempty subsets) with LCM 2025. The
probability is then:\n\\[\n\\frac{27904}{32768} = \\frac{109}
{128}\n\\]\n\nSince 109 and 128 are coprime, the fraction is in simplest
form. Therefore, \\(m = 109\\) and \\(n = 128\\), giving \\(m + n =
237\\).\n\nThe final answer is \\(\\boxed{237}\\). 

Zmath_32B

Solution：We split into different conditions:\n\nNote that for the set to have all elements' $\\mathrm{lcm} = 2025$, it must
include at least one number that is a multiple of $3^4$ and at least one number that is a multiple of $5^2$.\n\n\\
[\n\\text{Multiples of }3^4:\\quad 81,\\;405,\\;2025\\quad\\quad\n\\text{Multiples of }5^2:\\quad
25,\\;75,\\;225,\\;675,\\;2025.\n\\]\n\n\\textbf{Case 1: The set $B$ contains }2025.\nThen all of the remaining 14 divisors
(apart from 2025 itself) are unrestricted. Thus, this yields $2^{14}$ valid subsets.\n\n\\textbf{Case 2: The set $B$ does not
contain }2025\\text{ but contains }405.\\newline\nWe then need at least one of the multiples of $5^2$ (excluding 2025). There
are 4 such multiples: $25,\\,75,\\,225,\\,675$. The number of nonempty subsets of those 4 elements is $2^4 - 1 = 15$. The
remaining 9 divisors (excluding 2025, 405, and the 4 multiples of $5^2$) can be chosen freely ($2^9$ ways). Hence $15\\cdot
2^9$.\n\n\\textbf{Case 3: The set $B$ contains neither }2025\\text{ nor }405\\text{ but must contain }81.\\newline\nWe also
need at least one among the 4 multiples of $5^2$ (excluding 2025). As above, there are $2^4 - 1 = 15$ ways to choose from $\\
{25,75,225,675\\}$, but now the remaining 8 divisors (excluding $2025,405,81,$ and the 4 multiples of $5^2$) can be chosen
freely ($2^8$ ways). Thus $15\\cdot 2^8$.\n\n\\noindent\\textbf{Summing these valid cases:}\n\\[\n2^{14} + 15\\bigl(2^9 +
2^8\\bigr) = 2^{14} + 15\\cdot 2^8\\bigl(2 + 1\\bigr) = 2^{14} + 15\\cdot 2^8\\times 3.\n\\]\n\n\\textbf{Total possible subsets:
}2^{15}.\\newline\nHence the probability is\n\\[\n\\cfrac{2^{14} + 15\\bigl(2^9 + 2^8\\bigr)}{2^{15}}.\n\\]\nA more direct
simplification shows:\n\\[\n\\cfrac{2^{14} + 15\\bigl(2^9 + 2^8\\bigr)}{2^{15}} = \\cfrac{2^8\\bigl(2^6 + 15\\cdot 2 + 15\\bigr)}
{2^8\\cdot 2^7}\n= \\cfrac{64 + 30 + 15}{2^7} = \\cfrac{109}{128}.\n\\]\nThus, the final answer is $109 + 128 = \\boxed{237}$.

Figure 3: Comparison of DeepSeek-Distill-32B and ZMath-32B Model Outputs on AIME25 Test Samples.The
output of our ZMath-32B is shown to be correct, while the DeepSeek-Distill-32B model gives an incorrect answer.
For clarity, only the final inference results from each model are visualized, without the full reasoning process.

the teacher LLM (DeepSeek-R1), forming a COT542

dataset that is adaptively graded according to ques-543

tion difficulty aligned with the Base LLM. Ben-544

efiting from our constructed COT data, we ef-545

fectively refine LLMs through supervised fine-546

tuning (SFT), achieving improved reasoning abili-547

ties across LLMs of different parameter scales. In548

the future, we plan to integrate our approach for549

constructing high-quality COT data with reinforce-550

ment learning or reject sampling, further enhanc-551

ing the reasoning abilities of the models. We will552

also explore high-quality generation methods for553

tool-integrated reasoning (TIR) data, with the aim554

of further enhancing the reasoning abilities of our555

model.556

6 Limitations 557

Our work has certain limitations. First, we have 558

not conducted experiments on tasks beyond math- 559

ematics and code generation, so the generalizabil- 560

ity of our model to other domains remains unveri- 561

fied. Second, we have not explored reinforcement 562

learning-based approaches to further improve the 563

reasoning capabilities of our model, primarily due 564

to constraints in computing resources. These limi- 565

tations suggest promising directions for future re- 566

search. 567
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