
MolmoAct: Action Reasoning Models that can Reason
in Space

Jason Lee1,2,*,†, Jiafei Duan1,2,*,†, Haoquan Fang1,2,*,†, Yuquan Deng1,†,
Boyang Li2,†, Shou Liu1,2,†, Bohan Fang2,†, Jieyu Zhang1,2,†, Yi Ru Wang1,2,†, Sangho Lee1,

Winson Han1, Wilbert Pumacay1, Angelica Wu2, Rose Hendrix1,†, Karen Farley1, Eli Vanderbilt1,
Ali Farhadi1,2,†, Dieter Fox1,2,†, Ranjay Krishna1,2,†

1Allen Institute for AI 2University of Washington
*Equal contribution †Core contributors

Abstract: Reasoning is central to purposeful action, yet most robotic foundation
models map perception and instructions directly to control, which limits adapt-
ability, generalization, and semantic grounding. We introduce Action Reasoning
Models (ARMs), a class of robotic foundation models that integrates perception,
planning, and control through a structured three-stage pipeline. Our model, MOL-
MOACT, encodes observations and instructions into depth-aware perception tokens,
generates mid-level spatial plans as editable trajectory traces, and predicts precise
low-level actions, enabling explainable and steerable behavior. MOLMOACT-7B-D
achieves strong performance across simulation and real-world settings: 70.5%
zero-shot accuracy on SimplerEnv Visual Matching tasks, surpassing closed-source
π0 and GR00T N1; 86.6% average success on LIBERO, including a +6.3% gain
over ThinkAct on long-horizon tasks; and in real-world fine-tuning, +10% (single-
arm) and +22.7% (bimanual) task progression over π0-FAST. It also outperforms
baselines by +23.3% on out-of-distribution generalization and achieves top human-
preference scores for open-ended instruction following and trajectory steering.
Furthermore, we release, for the first time, the MOLMOACT DATASET —a mid-
training robot dataset comprising over 10,000 high-quality robot trajectories across
diverse scenarios and tasks. Training with this dataset yields an average 5.5%
improvement in general performance over the base model. We release all model
weights, training code, MOLMOACT DATASET and our action reasoning dataset,
establishing MOLMOACT as both a state-of-the-art robotics foundation model and
an open blueprint for building ARMs that transform perception into purposeful
action through grounded reasoning.

Keywords: Action Reasoning Model, Reasoning in Space, Vision-Language-
Action Model, Robots, Learning, Manipulation

1 Introduction

Reasoning allows us to act with intention. Before reaching for a cup or moving through a room, we
subconsciously weigh context, goals, and constraints—transforming perception into purpose. This
process, grounded in our physical experience of the world, makes our actions coherent, adaptable,
and explainable. For robots to operate with the same fluency, they must do more than map images
and instructions to robot control. They must learn to reason.

In contrast to the rapid generalization gains seen in large language and vision models, progress in
robotics has lagged behind [1, 2, 3]. Vision-Language-Action (VLA) models [4, 5, 6, 7, 8] aim to
bring similar capabilities to physical agents, but have yet to reach the same level of flexibility or
robustness. Despite massive efforts in dataset collection and model scaling, today’s VLAs remain

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

Data Deployment

Multimodal Web Data
Image Captioning

Q: Describe the scene
A: A zebra eating grass

2D Pointing

Q: How many couches are there?
A: 3

Action Reasoning Data

190K
Robot Episodes

Pre-training Filtered Open-X Embodiment Dataset

Mid-training MolmoAct Dataset

10K
Robot Episodes

Auxiliary Robot Data
Depth Perception

Tokens

Visual Reasoning
Trace

[[13, 41],[31,52],
[55,1],[51,2],[51,75]]

Trajectory-conditioned
Action

-17 12 142 -135 12

MolmoAct

Deployment into real-world

MolmoAct: Yellow
User Steering: Blue

Steerability

"Serve the banana"

Output

Robot ActionDepth Perception Tokens Visual Reasoning Trace

Reasoning in Space

Input

"Put the plate in
the dishwasher"

Figure 1: Overview. MOLMOACT is an open action reasoning model that, given a user’s language
instruction, reasons in space and autoregressively predicts three structured reasoning chains: DEPTH
PERCEPTION TOKENS for sensing and reconstructing the 3D environment, VISUAL REASONING
TRACE TOKENS for representing its planned trajectory in the scene, and ACTION TOKENS for
generating the corresponding robot control commands. Each explainable reasoning chain can be
independently decoded—yielding a depth map of the scene, a 2D trajectory overlay on the image
plane, and executed actions in the physical world—providing explicit, spatially grounded reasoning
at every stage.

brittle and opaque—struggling to transfer across tasks, scenes, or embodiments, and offering little
insight into why a robot chose one action over another [9, 10].

This gap stems not just from limited data, but from a lack of structure. While language and vision
tasks benefit from abundant, loosely labeled web-scale data, robotics demands fine-grained, embodied
interaction—data that is costly, ambiguous, and difficult to scale. Yet in parallel, language models
have begun to shift away from brute-force scaling toward structured learning: building intermediate
representations that support reasoning, abstraction, and control [11, 12, 13]. We believe robotics
can—and must—do the same.

We introduce MOLMOACT (Multimodal Open Language Model for Action), a family of completely
open Action Reasoning Models (ARM) that integrate perception, planning, and control through a
structured reasoning pipeline. MOLMOACT learns to interpret language instructions, sense its envi-
ronment, generate spatial plans, and execute them as smooth, goal-directed trajectories. The model
first encodes observations and instructions into structured 2.5D representations via autoregressive
prediction of depth-aware perception tokens. These tokens condition the generation of mid-level
planning representations, which, when visualized as visual traces in image space, guide the prediction
of precise, low-level robot actions. This three-stage reasoning architecture enables MOLMOACT to
produce explainable and steerable behavior as shown in Figure 1.

MOLMOACT’s structured design delivers both strong performance and high explainability. On
standard benchmarks such as LIBERO and SimplerEnv (Google Robot), MOLMOACT consistently
outperforms competitive baselines including GR00T N1 [7], π0 and π0-FAST [4], RT-1 [14], and
TraceVLA [15]. In arena-style human evaluations for open-ended language instruction following,
MOLMOACT is preferred over baselines, achieving significantly higher Elo ratings. The model adapts
to novel tasks more effectively through lightweight fine-tuning, surpassing other strong baselines
in efficiency. Moreover, it generalizes well to diverse environments and task perturbations in both
simulation and real-world settings. Its visual reasoning traces offer an explainable view into the
model’s decision-making, while also enabling direct action steering by editing trajectory lines—an
approach we find more reliable than language commands, which can suffer from ambiguity.

MOLMOACT is fully open in every aspect: we release the model weights, training code, and all
components of our action reasoning dataset. We aim for MOLMOACT to be more than a high-

2

performing robotics foundation model that serves as a blueprint for building agents that reason,
transforming perception into purposeful action through reasoning. We provided related work in
Appendix A.

2 MolmoAct

In the following sections, we describe the VLM preliminaries (subsection 2.1), our method to adapt
VLMs for action prediction via action tokenization(subsection 2.2), how we transform Molmo into an
action reasoning model (ARM, subsection 2.3), and our approach to steer action by visual reasoning
traces (Appendix B).

2.1 Vision Language Model

Our work builds on Molmo, the Multimodal Open Language Model, which follows this standard
design. It employs a Vision Transformer (ViT) visual encoder, a two-layer MLP connector for
projecting vision features into the language embedding space, and a decoder-only LLM backbone.
In our implementation, we use vision encoders such as OpenAI ViT-L/14 336px CLIP [16] and
ViT-SO400M/14 384px SigLIP2 [17], paired with open LLMs including OLMo2-7B [18] and
Qwen2.5-7B [19]. We trained MOLMOACT-7B-O with a VLM backbone based on OpenCLIP and
OLMo2-7B, and MOLMOACT-7B-D with a backbone based on SigLIP2 and Qwen2.5-7B. For full
details of our model architecture and implementation, please refer to Appendix D.

2.2 Vision-Language-Action Model

A standalone VLM—even when expertly prompted—cannot directly control a robot: it lacks a
representation of the robot’s action space and dynamics, and thus can only provide high-level
planning over the current observation. To produce accurate, executable commands, we follow prior
work [14, 5, 20] in formulating action prediction as a vision–language sequence modeling task. For
each action dimension, we normalize using dataset quantiles and discretize into 256 uniform-width
bins between the first and ninety-ninth percentiles, which reduces the influence of outliers while
preserving effective granularity. We first identify the final 256 tokens in the Qwen2 tokenizer and, for
each, use its underlying byte-level BPE symbol. We then assign them monotonically to the 256 bins
so that adjacent bins map to adjacent symbols.

2.3 Action Reasoning Model

Chain-of-Thought (CoT) [11] has been shown to significantly improve Language Models’ perfor-
mance on complex tasks. Likewise, Multimodal Language Models (MLLM) also benefit from
multimodal Chain of Thought (MCoT) [21] in processing long multimodal contexts. However, this
"think-before-you-act" paradigm is rarely present in robotic control policies. While some work
attempts to incorporate reasoning to VLAs, they focus on high-level language reasoning [22, 23, 24]
such as decomposing a high-level semantic task into subtasks. While useful, they ignore two crucial
aspects for precise control: depth perception and precise motion planning. First, most VLMs are
trained solely on RGB images and hence lack the ability of depth estimation and 3D understanding,
which is critical for robotic manipulation. Moreover, attempting to distill complex 3D trajectories
into linguistic descriptions often results in significant loss of spatial and temporal information.

Contrast to previous approaches, MOLMOACT does not incorporate intermediate reasoning through
language; rather, we teach our models to reason in space. Conditioned on images and instructions,
the model autogregressively generates a sequence of depth perception tokens, followed by visual
reasoning trace of the intended end-effector motion, before predicting the action tokens.

Action Reasoning Procedure With depth perception tokens and visual reasoning trace, MOL-
MOACT can finally perform action reasoning in space with the following procedure: given an RGB

3

35.2%

35.2%

19.6%

5.0%

5.0%

40.0%

40.0%

5.0%
7.5%

7.5%

Portion of Total Data for Pre-Training Sampling Rate for Pre-training

Data Mixture
Action reasoning data
Auxiliary trajectory-conditioned action data
Auxiliary depth perception data
Auxiliary visual reasoning trace data

Multimodal web data

Figure 2: Distribution of data mixture in the overall pre-training mixture (left) and in the sampled
subset used for MOLMOACT pre-training (right). The mixture contains primarily action reasoning
data (38.7%), trajectory-conditioned data (38.7%), and multimodal web data (21.5%), with small
fractions of auxiliary depth and trace data (0.5% each). The sampled subset increases the proportion
of auxiliary data (7.5% each for depth and line) while reducing multimodal web data to 5%.

image observation I and a language instruction T (which includes an action CoT prompt), the
model autoregressively generates three token sequences in order: (i) depth perception tokens d; (ii)
visual reasoning trace τ ; (iii) action tokens a, where a = (a1, . . . , aD) ∈ V

D
action with D degree of

freedoms. These are produced according to the factorization

p(d, τ ,a ∣ I, T) =
M+2

∏
i=1

p(di ∣ I, T,d<i) ×
L

∏
j=1

p(τj ∣ I, T,d, τ<j) ×
D

∏
k=1

p(ak ∣ I, T,d, τ ,a<k).

(1)

3 Data Curation and Generation

MOLMOACT is trained on a diverse set of datasets. During Pre-training, MOLMOACT is trained on
Multimodal Web data, Auxiliary Robot Data as well as Action Reasoning Data. Furthermore, we
collected and trained with the MOLMOACT DATASET for the Mid-training stage. Below, we describe
each dataset and its collection process; further details and examples are provided in the Appendix H.

3.1 Action Reasoning Data

A robot episode typically consists of a sequence of timesteps, where each timestep is a tuple
(I, T, a)t, containing an RGB observation image I , a language instruction T , and a ground-truth
action a, specified either in end-effector space or joint space. To convert any robot data into the Action
Reasoning data format, we generate ground-truth Depth Perception Tokens and Visual Reasoning
Traces for each timestep in the episode. We explain the details for generating ground-truth labels for
Depth Perception Tokens and Visual Reasoning Trace below.

Depth Perception Tokens To generate Depth Perception Tokens for each frame of a demonstration,
we first train a VQVAE on 10 million depth maps of tabletop manipulation images collected from
the RT-1, BridgeData V2, and BC-Z datasets. We use DepthAnything-v2 to obtain a depth map for
each observation RGB image. The VQVAE is trained with a standard reconstruction objective to
minimize reconstruction loss between input RGB images and their corresponding depth maps for 20
epochs. Once the VQVAE has been trained, we encode each observation image with the VQVAE
to get their latent embeddings. We then represent the latent embedding with a learned codebook
with 128 dimension based on a one-to-one index to depth token mapping. Note that all images are
resized to 320×320 px during training and inference to enforce the representation of 100 tokens per
image. This allows us to express the depth map of each observation image as a tokenized string of
100 tokens, which we use for ground truth labeling for our depth perception token.

Visual Reasoning Trace To generate a Visual Reasoning Traces for each frame of a demonstration,
we employ Molmo, a vision-language model trained on diverse 2D pointing datasets, for data
generation akin to synthetic data generation in NLP. For each timestep t, we extract the pixel

4

Table 1: SimplerEnv evaluation across different policies on Google Robot tasks. The zero-
shot and fine-tuning results denote performance of OXE dataset [26] pre-trained models and RT-1
dataset [14] fine-tuned models, respectively.

Model Visual Matching Avg Variant Aggregation Avg
Pick Coke Can Move Near Open/Close Drawer Pick Coke Can Move Near Open/Close Drawer

HPT [27] 56.0% 60.0% 24.0% 46.0% — —
TraceVLA [15] 28.0% 53.7% 57.0% 42.0% 60.0% 56.4% 31.0% 45.0%
RT-1-X [14] 56.7% 31.7% 59.7% 53.4% 49.0% 32.3% 29.4% 39.6%
RT-2-X [20] 78.7% 77.9% 25.0% 60.7% 82.3% 79.2% 35.3% 64.3%
Octo-Base [28] 17.0% 4.2% 22.7% 16.8% 0.6% 3.1% 1.1% 1.1%
OpenVLA [5] 16.3% 46.2% 35.6% 27.7% 54.5% 47.7% 17.7% 39.8%
RoboVLM (zero-shot) [9] 72.7% 66.3% 26.8% 56.3% 68.3% 56.0% 8.5% 46.3%
RoboVLM (fine-tuned) 77.3% 61.7% 43.5% 63.4% 75.6% 60.0% 10.6% 51.3%
Emma-X [22] 2.3% 3.3% 18.3% 8.0% 5.3% 7.3% 20.5% 11.0%
Magma [8] 56.0% 65.4% 83.7% 68.4% 53.4% 65.7% 68.8% 62.6%
π0 (fine-tuned) [4] 72.7% 65.3% 38.3% 58.7% 75.2% 63.7% 25.6% 54.8%
π0-FAST (fine-tuned) 75.3% 67.5% 42.9% 61.9% 77.6% 68.2% 31.3% 59.0%
GR00T N1 (fine-tuned) [7] 0.7% 1.9% 2.9% 1.8% — —
SpatialVLA [29] 81.0% 69.6% 59.3% 70.0% 89.5% 71.7% 36.2% 65.8%
MOLMOACT (zero-shot) 71.3% 73.8% 66.5% 70.5% 57.8% 43.8% 76.7% 59.3%
MOLMOACT (fine-tuned) 77.7% 77.1% 60.0% 71.6% 76.1% 61.3% 78.8% 72.1%

coordinates (ut, vt) of the robot’s gripper, and aggregate these across the episode to obtain a visual
reasoning trace. For each observation frame, we prompt Molmo with the instruction "point
to the robot gripper" for single-arm robots or "point to the robot gripper on the
left/right" for bimanual embodiments. Molmo returns a 2D coordinate (xt, yt) ∈ R2 and
(xt, yt) ∈ [0, 100], corresponding to the predicted gripper location in image space. We rescale
the coordinate values so that (ut, vt) ∈ Z2 and (ut, vt) ∈ [0, 255]. We then apply this query at
every timestep in the episode, resulting in one gripper location per frame. Linking these predictions
sequentially yields the full trajectory τ .

Auxiliary Robot Data To strengthen MOLMOACT’s ability to reason in space, we extend the
same data generation pipeline used for depth perception token, visual reasoning trace to curate three
auxiliary supervision dataset: (i) Auxiliary Depth Data—given an RGB observation and language
instruction, the model only predicts the target Depth Perception Token sequence; (ii) Auxiliary Trace
Data—given an RGB observation and language instruction, the model only predicts the corresponding
Visual Reasoning Trace; and (iii) Trajectory-conditioned Action Data—given ot = (I, T, τ)t, where
I is the current image, T the instruction, and τ = (p1, . . . , pL) the ground truth Visual Reasoning
Trace, the model predicts the next action by taking the language T and the trace-overlaid image
I
+
= I ⊕ τ . Note that we curate the Trajectory-conditioned Action Data mainly for enabling the

steerability feature of MOLMOACT. Once we generate the ground truth label for each frame, we
construct the action reasoning dataset by sequentailly aligning the ground-truth Depth Perception
Tokens, Visual Reasoning Trace, and Action for instruction tuning. We also use the same data
generation approach to obtain auxiliary robot data.

3.2 MolmoAct Dataset

We curated the MOLMOACT DATASET to improve the model’s general manipulation performance and
spatial reasoning in real household environments. The dataset contains 10,689 high-quality trajectories
of a single-arm Franka robot performing 93 unique manipulation tasks in both home and tabletop
environments as shown in Figure 12. The average length of each trajectory spans 112 timesteps. Data
collection spanned two months and involved five full-time operators following strict protocols. For
further details, see Appendix H. The MOLMOACT DATASET includes manipulation data from two
primary settings: home environments and tabletops. To collect diverse Home Environment Data,
we mounted a single-arm Franka robot on a lightweight, mobile platform similar to DROID [25],
enabling us to transport the robot and capture scenes across living rooms, kitchens, bathrooms, and
bedrooms. Each task was designed to reflect a specific household chore. In total, we collected 7,730
trajectories spanning 73 distinct tasks and 20 verbs across a wide variety of scenes. For Tabletop
data We also collected 2,959 tabletop trajectories covering 20 atomic tasks, each performed with
a diverse set of objects to promote robustness and generalization. Each task was decomposed into
atomic motions and reinforced in a simplified tabletop environment.

5

3.3 Multimodal Web Data

Prior works have shown that co-training VLAs with the data mixture from the VLM training leads
to more generalizable policies. These policies are more robust to perturbations such as lighting and
background changes, and can generalize better to unseen environments and objects. We include a
mixture of multimodal web data from Molmo’s Supervised fine-tuning stage involving academic
datasets (VQA v2.0 [30], Text VQA [31], OK-VQA [32], ChartQA [33], DocVQA [34], Infographic
VQA [35], AI2D [36], A-OKVQA [37], AndroidControl [38], ScienceQA [39], TabMWP [40],
ST-VQA [41], TallyQA [42], DVQA [43], FigureQA [44], and PlotQA [45]) for general visual skills
and PixMo [46] for fine-grained understanding and pointing. Furthermore, we include LVIS [47]
where the model is asked to predict the bounding box center of instances of a certain category to
ground language to image regions.

4 Training Recipe

MOLMOACT is first pre-trained on action reasoning data curated from a subset of the OXE dataset,
along with the auxiliary robot data and multimodal web data. To further enhance its capabilities,
we mid-train the model on the MOLMOACT DATASET before post-training it for specific down-
stream tasks and embodiments. In this section, we describe the different data mixtures and training
configurations used at each stage of MOLMOACT ’s training (as shown in Figure 8.

4.1 Pre-training

In the first training stage, MOLMOACT is pre-trained on a mixture of action reasoning data, auxiliary
robot data, and multimodal web data. For all robot data, we use a subset of OXE comprising RT-1,
BridgeData V2, and BC-Z, totaling 10.5M samples, which we convert into action reasoning data
using our reasoning in space formulation. We also include auxiliary robot data—auxiliary depth data
(1.5M), auxiliary trace data (1.5M), and trajectory-conditioned action data (10.5M), and co-train with
2M samples of multimodal web data. During pre-training, data is sampled at the following rates: RT-1
(20%), BridgeData V2 (12.5%), BC-Z (7.5%) for both action reasoning and trajectory-conditioned
data, 7.5% from the auxiliary depth and trace data, and 5% from multimodal web data as shown in
Figure 2. The whole data mixture used for pre-training MOLMOACT totals up to 26.3M samples.

To pre-train MOLMOACT with the data mixture mentioned above, we use 256 H100s to train the
model with 100k gradient steps using a batch size of 512, which takes around 9,728 GPU hours.
At each training step, a batch of data pairs is drawn randomly from the entire data mixture by their
assigned sampling rate defined above. Hyperparameter details are listed in Appendix E.

4.2 Mid-training

After pre-training, we conduct a mid-training stage on MOLMOACT DATASET, consisting of 1M
action reasoning and 1M trajectory-conditioned samples tailored to household manipulation. Each
sample includes two side and one wrist camera view, reformulated into paired-view training examples.
Reasoning traces and depth tokens are derived from side views, while the wrist view provides
complementary context. We train for 50k steps with batch size 128 on 128 H100 GPUs, around 2,304
GPU hours; further hyperparameters are detailed in Appendix E.

4.3 Post-training

In the post-training stage, we adapt MOLMOACT to new tasks and embodiments using 30–50 tele-
operated demonstrations per task, converted into action reasoning and trajectory-conditioned data with
action chunking (N = 8). Post-training is performed via LoRA fine-tuning (rank=32, alpha=16) to
preserve pre-trained capabilities, using batch size 128 for simulation (LIBERO) and 64 for real-world
tasks. Training steps vary by task.

6

Table 2: LIBERO benchmark success rates across four task categories (Spatial, Object, Goal, and
Long-horizon) along with the average performance. MOLMOACT achieves the highest overall average
success rate of 86.6%, outperforming all baselines, with strong performance across all categories,
particularly in long-horizon tasks.

Baseline Spatial Object Goal Long Avg
TraceVLA [15] 84.6% 85.2% 75.1% 54.1% 74.8%
Octo-Base [28] 78.9% 85.7% 84.6% 51.1% 75.1%
OpenVLA [5] 84.7% 88.4% 79.2% 53.7% 76.5%
SpatialVLA [29] 88.2% 89.9% 78.6% 55.5% 78.1%
CoT-VLA [48] 87.5% 91.6% 87.6% 69.0% 83.9%
NORA-AC [49] 85.6% 89.4% 80.0% 63.0% 79.5%
WorldVLA [50] 87.6% 96.2% 83.4% 60.0% 79.1%
π0-FAST [4] 96.4% 96.8% 88.6% 60.2% 85.5%
ThinkAct [51] 88.3% 91.4% 87.1% 70.9% 84.4%
MOLMOACT-7B-D 87.0% 95.4% 87.6% 77.2% 86.6%

5 Experimental Evaluation

Our experimental evaluation comprises a broad suite of studies that rigorously benchmark MOL-
MOACT against strong baselines. We assess MOLMOACT with MOLMOACT-7B-D version in (i)
its pre-training, “out-of-the-box” capabilities, (ii) its post-training adaptability across varied tasks,
domains, and robotic embodiments, and (iii) its additional feature of being an interactive and steer-
able action reasoning model. By testing the model on a comprehensive range of scenarios both in
simulation and real-world, we aim to answer the following research questions, where the last four
questions are answered in Appendix C:

1 How well does MOLMOACT perform, after pre-training, on tasks drawn from the same
distribution as its training data? We address this question by benchmarking MOLMOACT
against strong VLA models on the SimplerEnv simulation benchmark [52].

2 How effectively does MOLMOACT adapt to novel tasks, domains, and embodiments
through lightweight post-training fine-tuning? We fine-tune MOLMOACT with LoRA
[53] and benchmark it against strong baselines on the LIBERO simulation suite [54]. We
then validate its real-world performance on two hardware setups—a single and a bimanual
Franka arm—to demonstrate adaptability across embodiments.

3 How effectively can MOLMOACT generalize beyond its training distribution? We
investigate this through real-world out-of-distribution (OOD) tests and variant-aggregation
experiments in SimplerEnv.

4 How does mid-training on the MOLMOACT DATASET improve MOLMOACT’s general-
ist performance? We address this through ablation experiments in the real-world evaluations
to compare MOLMOACT ’s performance with and without mid-training on the MOLMOACT
DATASET.

5 How effectively does MOLMOACT follow language commands? We benchmark MOL-
MOACT against strong baselines in an open-ended simulation setup where human evaluators
provide free-form prompts and assess each model’s resulting actions.

6 How steerable is MOLMOACT, and how can this steerability enhance user interaction?
We perform extensive real-world ablations, guiding MOLMOACT by sketching trajectory
cues on the interface and analyzing its responses, then examine the resulting human–robot
interaction dynamics.

5.1 MOLMOACT After Pre-training

Evaluation Setup and Baselines. We evaluated MOLMOACT ’s zero-shot capability immediately af-
ter pre-training, comparing it to generalist policies such as TraceVLA, RT-1X, OpenVLA, RoboVLM,
Emma-x, π0, π0-FAST, Octo, Magma, HPT, SpatialVLA, and GR00T N1. Unlike models trained
on massive private datasets (e.g., π0 with 903M samples), MOLMOACT was trained on 26.3M

7

"Put the bowl into the sink" "Wipe the table." "Clean the trash into the bin." "Set the table." "Lift up the box." "Fold the towel."

Figure 3: Real-world evaluation of OpenVLA, π0-FAST, and MOLMOACT on single-arm (left) and
bimanual (right) Franka tasks. Bar plots report average task progression with standard error across 25
trials per task. MOLMOACT consistently outperforms baselines, particularly on single-arm tasks such
as Wipe Table and Table Bussing, and maintains strong performance on bimanual tasks including Fold
Towel and Set Table. Bottom row shows example task setups with corresponding natural language
instructions.

curated samples from subsets of OXE (BC-Z, BridgeData V2, RT-1), plus multimodal web and
auxiliary robot data (subsection 4.1). Evaluation used the SimplerEnv benchmark, focusing on
Google Robot visual-matching tasks to isolate in-distribution performance. We also fine-tuned
MOLMOACT-7B-D-PRETRAIN on the RT-1 subset of OXE for comparison.

Evaluation Results. MOLMOACT-7B-D-PRETRAIN achieved 70.5% zero-shot success on Sim-
plerEnv, outperforming GR00T N1, π0, π0-FAST, and Magma. Fine-tuning further improved
performance to 71.6%, surpassing Magma by 3.2% (Table 1), showing MOLMOACT ’s strength both
as a zero-shot generalist and as a fine-tuning initialization.

5.2 Fast Adaptation of MOLMOACT in Post-training

We assess MOLMOACT ’s post-training adaptation in both simulation and real-world settings. In
simulation, we use the LIBERO benchmark [54]. We follow prior works ([5]) and evaluate on four
task suites – LIBERO-Spatial, LIBERO-Object, LIBERO-Goal, and LIBERO-Long – each with 500
demonstrations across 10 tasks and filtered no-op and failed demonstrations. We set chunk size K = 8,
and fine-tune MOLMOACT-7B-D with LoRA, comparing against state-of-the-art generalist policies
(TraceVLA, OpenVLA, SpatialVLA, π0-FAST, CoT-VLA, WorldVLA, ThinkAct, NORA-AC). In
real world experiments, we evaluate on six Franka tasks—three single-arm put_bowl_in_sink,
wipe_table, and table_bussing and three bimanual set_table, lift_tray, and fold_towel
with 50 demonstrations each and 25 evaluation trials.

Evaluation Results. MOLMOACT-7B-D achieves the best average success rate (86.6%) on LIBERO,
outperforming all baselines and surpassing ThinkAct on the challenging Long suite by 6.3%. In real-
world tasks, it improves task progression over π0-FAST by 10% (single-arm) and 22.7% (bimanual)
(Figure 3).

6 Conclusion

We introduced MOLMOACT, a fully open family of action reasoning models that unify perception,
planning, and control through spatial reasoning. Combining depth tokens, visual reasoning traces,
and action prediction, MOLMOACT produces explainable, steerable behaviors and consistently
outperforms VLA baselines, adapting efficiently to new tasks and generalizing robustly. We release
model weights, code, and the MOLMOACT DATASET dataset to foster reproducibility and advance
research on foundation models that transform perception into purposeful action.

8

7 Limitations and Potential Solutions

While MOLMOACT is all quite capable as a general-purpose action reasoning model, it is not without
limitations. In the following sections, we discuss some of these limitations and potential solutions.

Camera Occlusion of End-effector. During post-training, MOLMOACT can process multiple camera
views (e.g., front and wrist cameras), but its spatial reasoning primarily relies on the front camera,
which typically provides a full view of the end-effector. This visibility is crucial for accurate visual
reasoning trace prediction. However, if the end-effector is occluded in the front camera’s view, visual
trace prediction—and thus overall performance—can degrade. A potential solution is to use a wide
field-of-view camera (e.g., fisheye lens) and generate visual traces via SLAM, enabling temporal
rather than purely spatial reasoning.

Robustness of Steerability via Visual Traces. Robust action steerability relies on two factors: (i)
precise yet diverse 2D visual traces during pre- and mid-training, and (ii) abundant, high-quality
post-training data

• Trace Quality and Diversity. For trajectory-conditioned action data, bounding-box–based detectors
(e.g., Detectron) are problematic: predicted points collapse toward box centers, reducing spatial
variation. They also require task-specific fine-tuning to localize robot grippers and transfer poorly
across embodiments. In contrast, VLM-based point annotations (e.g., Molmo [46], RoboPoint
[55]) yield accurate, non-degenerate traces and markedly improve steerability.

• Coverage of Action Compositions. To achieve steerability in real-world settings, post-training data
should span as many action compositions as possible. Practically, this means inducing the robot
to explore motion variants while still completing tasks, so the model learns rich correspondences
between image-space traces and resulting actions.

MOLMOACT only learns to directly predict action simply based on the trace-overlaid image. So
when we steer actions with a 2D visual trace, we are not leveraging the capability of MOLMOACT to
perform action reasoning in space. Thus, we observe that this form of action steering still cannot
enable the model to follow more complicated tasks. In particular, because the cue is purely 2D, the
model lacks an explicit notion of depth: it often follows the intended path within the image plane
(in-plane motion) but exhibits unintended or imprecise translation along the camera’s depth axis
(out-of-plane). We hypothesize this could be mitigated by conditioning on—or reusing—the model’s
predicted depth-perception tokens to lift the trace into 3D, which we leave for future exploration.
Despite these limitations, our scheme demonstrates the feasibility of action steerability based on pure
visual cues, and offers a simple, practical insight that the robotics community can build upon.

Speed of Action Reasoning Model prediction. Similar to many existing VLAs, our model exhibits
a mismatch between its control inference frequency and the control frequency used during data
collection. This gap may stem from server-to-robot communication latency and the additional time
required to predict a larger number of reasoning tokens. Future work could explore techniques to
reduce inference time, as seen in VLM optimization, or develop smaller parameter models optimized
for efficient execution on edge or local devices.

Precision in Depth Perception Token. For depth perception token prediction, we follow [56] and
use a fixed set of 100 tokens to represent depth. However, fine-grained manipulation tasks require
higher-resolution depth estimation. Increasing the number of depth perception tokens could enhance
spatial reasoning and improve performance on such tasks.

Acknowledgments

If a paper is accepted, the final camera-ready version will (and probably should) include acknowl-
edgments. All acknowledgments go at the end of the paper, including thanks to reviewers who gave
useful comments, to colleagues who contributed to the ideas, and to funding agencies and corporate
sponsors that provided financial support.

9

References
[1] J. Duan, S. Yu, H. L. Tan, H. Zhu, and C. Tan. A survey of embodied ai: From simulators to

research tasks. IEEE Transactions on Emerging Topics in Computational Intelligence, 6(2):
230–244, 2022.

[2] Z. Xu, K. Wu, J. Wen, J. Li, N. Liu, Z. Che, and J. Tang. A survey on robotics with foundation
models: toward embodied ai. arXiv preprint arXiv:2402.02385, 2024.

[3] R. Firoozi, J. Tucker, S. Tian, A. Majumdar, J. Sun, W. Liu, Y. Zhu, S. Song, A. Kapoor,
K. Hausman, et al. Foundation models in robotics: Applications, challenges, and the future.
The International Journal of Robotics Research, 44(5):701–739, 2025.

[4] K. Black, N. Brown, D. Driess, A. Esmail, M. Equi, C. Finn, N. Fusai, L. Groom, K. Hausman,
B. Ichter, et al. π0: A vision-language-action flow model for general robot control. corr,
abs/2410.24164, 2024. doi: 10.48550. arXiv preprint ARXIV.2410.24164.

[5] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov, E. Foster,
G. Lam, P. Sanketi, et al. Openvla: An open-source vision-language-action model. arXiv
preprint arXiv:2406.09246, 2024.

[6] G. R. Team, S. Abeyruwan, J. Ainslie, J.-B. Alayrac, M. G. Arenas, T. Armstrong, A. Balakr-
ishna, R. Baruch, M. Bauza, M. Blokzijl, et al. Gemini robotics: Bringing ai into the physical
world. arXiv preprint arXiv:2503.20020, 2025.

[7] NVIDIA, :, J. Bjorck, F. Castañeda, N. Cherniadev, X. Da, R. Ding, L. J. Fan, Y. Fang, D. Fox,
F. Hu, S. Huang, J. Jang, Z. Jiang, J. Kautz, K. Kundalia, L. Lao, Z. Li, Z. Lin, K. Lin, G. Liu,
E. Llontop, L. Magne, A. Mandlekar, A. Narayan, S. Nasiriany, S. Reed, Y. L. Tan, G. Wang,
Z. Wang, J. Wang, Q. Wang, J. Xiang, Y. Xie, Y. Xu, Z. Xu, S. Ye, Z. Yu, A. Zhang, H. Zhang,
Y. Zhao, R. Zheng, and Y. Zhu. Gr00t n1: An open foundation model for generalist humanoid
robots, 2025. URL https://arxiv.org/abs/2503.14734.

[8] J. Yang, R. Tan, Q. Wu, R. Zheng, B. Peng, Y. Liang, Y. Gu, M. Cai, S. Ye, J. Jang, et al.
Magma: A foundation model for multimodal ai agents. In Proceedings of the Computer Vision
and Pattern Recognition Conference, pages 14203–14214, 2025.

[9] H. Liu, X. Li, P. Li, M. Liu, D. Wang, J. Liu, B. Kang, X. Ma, T. Kong, and H. Zhang. Towards
generalist robot policies: What matters in building vision-language-action models. 2025.

[10] W. Pumacay, I. Singh, J. Duan, R. Krishna, J. Thomason, and D. Fox. The colosseum: A bench-
mark for evaluating generalization for robotic manipulation. arXiv preprint arXiv:2402.08191,
2024.

[11] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-
thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022.

[12] E. Zelikman, Y. Wu, J. Mu, and N. Goodman. Star: Bootstrapping reasoning with reasoning.
Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

[13] J. Huang, S. S. Gu, L. Hou, Y. Wu, X. Wang, H. Yu, and J. Han. Large language models can
self-improve. arXiv preprint arXiv:2210.11610, 2022.

[14] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv
preprint arXiv:2212.06817, 2022.

[15] R. Zheng, Y. Liang, S. Huang, J. Gao, H. Daumé III, A. Kolobov, F. Huang, and J. Yang.
Tracevla: Visual trace prompting enhances spatial-temporal awareness for generalist robotic
policies. arXiv preprint arXiv:2412.10345, 2024.

10

https://arxiv.org/abs/2503.14734

[16] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
In International conference on machine learning, pages 8748–8763. PmLR, 2021.

[17] M. Tschannen, A. Gritsenko, X. Wang, M. F. Naeem, I. Alabdulmohsin, N. Parthasarathy,
T. Evans, L. Beyer, Y. Xia, B. Mustafa, et al. Siglip 2: Multilingual vision-language en-
coders with improved semantic understanding, localization, and dense features. arXiv preprint
arXiv:2502.14786, 2025.

[18] T. OLMo, P. Walsh, L. Soldaini, D. Groeneveld, K. Lo, S. Arora, A. Bhagia, Y. Gu, S. Huang,
M. Jordan, et al. 2 olmo 2 furious. arXiv preprint arXiv:2501.00656, 2024.

[19] Qwen, :, A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei,
H. Lin, J. Yang, J. Tu, J. Zhang, J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao,
K. Yang, L. Yu, M. Li, M. Xue, P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Tang, T. Xia, X. Ren,
X. Ren, Y. Fan, Y. Su, Y. Zhang, Y. Wan, Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu. Qwen2.5
technical report, 2025. URL https://arxiv.org/abs/2412.15115.

[20] B. Zitkovich, T. Yu, S. Xu, P. Xu, T. Xiao, F. Xia, J. Wu, P. Wohlhart, S. Welker, A. Wahid, et al.
Rt-2: Vision-language-action models transfer web knowledge to robotic control. In Conference
on Robot Learning, pages 2165–2183. PMLR, 2023.

[21] H. Lai and M. Nissim. mcot: Multilingual instruction tuning for reasoning consistency in
language models. arXiv preprint arXiv:2406.02301, 2024.

[22] Q. Sun, P. Hong, T. D. Pala, V. Toh, U. Tan, D. Ghosal, S. Poria, et al. Emma-x: An embodied
multimodal action model with grounded chain of thought and look-ahead spatial reasoning.
arXiv preprint arXiv:2412.11974, 2024.

[23] M. Zawalski, W. Chen, K. Pertsch, O. Mees, C. Finn, and S. Levine. Robotic control via
embodied chain-of-thought reasoning. arXiv preprint arXiv:2407.08693, 2024.

[24] P. Intelligence, K. Black, N. Brown, J. Darpinian, K. Dhabalia, D. Driess, A. Esmail, M. Equi,
C. Finn, N. Fusai, M. Y. Galliker, D. Ghosh, L. Groom, K. Hausman, B. Ichter, S. Jakubczak,
T. Jones, L. Ke, D. LeBlanc, S. Levine, A. Li-Bell, M. Mothukuri, S. Nair, K. Pertsch, A. Z.
Ren, L. X. Shi, L. Smith, J. T. Springenberg, K. Stachowicz, J. Tanner, Q. Vuong, H. Walke,
A. Walling, H. Wang, L. Yu, and U. Zhilinsky. π0.5: a vision-language-action model with
open-world generalization, 2025. URL https://arxiv.org/abs/2504.16054.

[25] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany, M. K.
Srirama, L. Y. Chen, K. Ellis, et al. Droid: A large-scale in-the-wild robot manipulation dataset.
arXiv preprint arXiv:2403.12945, 2024.

[26] A. O’Neill, A. Rehman, A. Maddukuri, A. Gupta, A. Padalkar, A. Lee, A. Pooley, A. Gupta,
A. Mandlekar, A. Jain, et al. Open x-embodiment: Robotic learning datasets and rt-x models:
Open x-embodiment collaboration 0. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 6892–6903. IEEE, 2024.

[27] L. Wang, X. Chen, J. Zhao, and K. He. Scaling proprioceptive-visual learning with hetero-
geneous pre-trained transformers. Advances in neural information processing systems, 37:
124420–124450, 2024.

[28] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, T. Kreiman,
C. Xu, et al. Octo: An open-source generalist robot policy. arXiv preprint arXiv:2405.12213,
2024.

[29] D. Qu, H. Song, Q. Chen, Y. Yao, X. Ye, Y. Ding, Z. Wang, J. Gu, B. Zhao, D. Wang, et al.
Spatialvla: Exploring spatial representations for visual-language-action model. arXiv preprint
arXiv:2501.15830, 2025.

11

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2504.16054

[30] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh. Making the V in VQA matter:
Elevating the role of image understanding in visual question answering. In CVPR, 2017.

[31] A. Singh, V. Natarjan, M. Shah, Y. Jiang, X. Chen, D. Parikh, and M. Rohrbach. Towards VQA
models that can read. In CVPR, 2019.

[32] K. Marino, M. Rastegari, A. Farhadi, and R. Mottaghi. OK-VQA: A visual question answering
benchmark requiring external knowledge. In CVPR, 2019.

[33] A. Masry, D. Long, J. Q. Tan, S. Joty, and E. Hoque. ChartQA: A benchmark for question
answering about charts with visual and logical reasoning. In ACL, 2022.

[34] M. Mathew, D. Karatzas, and C. Jawahar. DocVQA: A dataset for VQA on document images.
In WACV, 2021.

[35] M. Mathew, V. Bagal, R. Tito, D. Karatzas, E. Valveny, and C. Jawahar. InfographicVQA. In
WACV, 2022.

[36] A. Kembhavi, M. Salvato, E. Kolve, M. Seo, H. Hajishirzi, and A. Farhadi. A diagram is worth
a dozen images. In ECCV, 2016.

[37] D. Schwenk, A. Khandelwal, C. Clark, K. Marino, and R. Mottaghi. A-OKVQA: A benchmark
for visual question answering using world knowledge. In ECCV, 2022.

[38] W. Li, W. Bishop, A. Li, C. Rawles, F. Campbell-Ajala, D. Tyamagundlu, and O. Riva. On the
effects of data scale on computer control agents. arXiv preprint arXiv:2406.03679, 2024.

[39] P. Lu, S. Mishra, T. Xia, L. Qiu, K.-W. Chang, S.-C. Zhu, O. Tafjord, P. Clark, and A. Kalyan.
Learn to explain: Multimodal reasoning via thought chains for science question answering. In
NeurIPS, 2022.

[40] P. Lu, L. Qiu, K.-W. Chang, Y. N. Wu, S.-C. Zhu, T. Rajpurohit, P. Clark, and A. Kalyan.
Dynamic prompt learning via policy gradient for semi-structured mathematical reasoning. In
ICLR, 2023.

[41] A. F. Biten, R. Tito, A. Mafla, L. Gomez, M. Rusinol, E. Valveny, C. Jawahar, and D. Karatzas.
Scene text visual question answering. In ICCV, 2019.

[42] M. Acharya, K. Kafle, and C. Kanan. TallyQA: Answering complex counting questions. In
AAAI, 2019.

[43] K. Kafle, B. Price, S. Cohen, and C. Kanan. DVQA: Understanding data visualizations via
question answering. In CVPR, 2018.

[44] S. E. Kahou, V. Michalski, A. Atkinson, Á. Kádár, A. Trischler, and Y. Bengio. FigureQA: An
annotated figure dataset for visual reasoning. arXiv preprint arXiv:1710.07300, 2017.

[45] N. Methani, P. Ganguly, M. M. Khapra, and P. Kumar. PlotQA: Reasoning over scientific plots.
In WACV, 2020.

[46] M. Deitke, C. Clark, S. Lee, R. Tripathi, Y. Yang, J. S. Park, M. Salehi, N. Muennighoff,
K. Lo, L. Soldaini, et al. Molmo and pixmo: Open weights and open data for state-of-the-art
multimodal models. arXiv e-prints, pages arXiv–2409, 2024.

[47] A. Gupta, P. Dollar, and R. Girshick. Lvis: A dataset for large vocabulary instance segmentation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
5356–5364, 2019.

[48] Q. Zhao, Y. Lu, M. J. Kim, Z. Fu, Z. Zhang, Y. Wu, Z. Li, Q. Ma, S. Han, C. Finn, et al. Cot-vla:
Visual chain-of-thought reasoning for vision-language-action models. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pages 1702–1713, 2025.

12

[49] C.-Y. Hung, Q. Sun, P. Hong, A. Zadeh, C. Li, U. Tan, N. Majumder, S. Poria, et al. Nora: A
small open-sourced generalist vision language action model for embodied tasks. arXiv preprint
arXiv:2504.19854, 2025.

[50] J. Cen, C. Yu, H. Yuan, Y. Jiang, S. Huang, J. Guo, X. Li, Y. Song, H. Luo, F. Wang, et al.
Worldvla: Towards autoregressive action world model. arXiv preprint arXiv:2506.21539, 2025.

[51] C.-P. Huang, Y.-H. Wu, M.-H. Chen, Y.-C. F. Wang, and F.-E. Yang. Thinkact: Vision-language-
action reasoning via reinforced visual latent planning. arXiv preprint arXiv:2507.16815, 2025.

[52] X. Li, K. Hsu, J. Gu, K. Pertsch, O. Mees, H. R. Walke, C. Fu, I. Lunawat, I. Sieh, S. Kir-
mani, et al. Evaluating real-world robot manipulation policies in simulation. arXiv preprint
arXiv:2405.05941, 2024.

[53] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, et al. Lora:
Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

[54] B. Liu, Y. Zhu, C. Gao, Y. Feng, Q. Liu, Y. Zhu, and P. Stone. Libero: Benchmarking knowledge
transfer for lifelong robot learning. Advances in Neural Information Processing Systems, 36:
44776–44791, 2023.

[55] W. Yuan, J. Duan, V. Blukis, W. Pumacay, R. Krishna, A. Murali, A. Mousavian, and D. Fox.
Robopoint: A vision-language model for spatial affordance prediction for robotics. arXiv
preprint arXiv:2406.10721, 2024.

[56] M. Bigverdi, Z. Luo, C.-Y. Hsieh, E. Shen, D. Chen, L. G. Shapiro, and R. Krishna. Percep-
tion tokens enhance visual reasoning in multimodal language models. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pages 3836–3845, 2025.

[57] L. Berscheid, P. Meißner, and T. Kröger. Robot learning of shifting objects for grasping in
cluttered environments. In 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 612–618. IEEE, 2019.

[58] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper, S. Singh, S. Levine, and
C. Finn. Robonet: Large-scale multi-robot learning. arXiv preprint arXiv:1910.11215, 2019.

[59] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis, K. Daniilidis, C. Finn, and
S. Levine. Bridge data: Boosting generalization of robotic skills with cross-domain datasets.
arXiv preprint arXiv:2109.13396, 2021.

[60] H.-S. Fang, H. Fang, Z. Tang, J. Liu, C. Wang, J. Wang, H. Zhu, and C. Lu. Rh20t: A compre-
hensive robotic dataset for learning diverse skills in one-shot. arXiv preprint arXiv:2307.00595,
2023.

[61] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:
Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learning,
pages 991–1002. PMLR, 2022.

[62] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao, J. Emmons, A. Gupta,
E. Orbay, et al. Roboturk: A crowdsourcing platform for robotic skill learning through imitation.
In Conference on Robot Learning, pages 879–893. PMLR, 2018.

[63] H. R. Walke, K. Black, T. Z. Zhao, Q. Vuong, C. Zheng, P. Hansen-Estruch, A. W. He, V. Myers,
M. J. Kim, M. Du, et al. Bridgedata v2: A dataset for robot learning at scale. In Conference on
Robot Learning, pages 1723–1736. PMLR, 2023.

[64] N. M. M. Shafiullah, A. Rai, H. Etukuru, Y. Liu, I. Misra, S. Chintala, and L. Pinto. On bringing
robots home. arXiv preprint arXiv:2311.16098, 2023.

13

[65] A. Xie, L. Lee, T. Xiao, and C. Finn. Decomposing the generalization gap in imitation learning
for visual robotic manipulation. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 3153–3160. IEEE, 2024.

[66] F. Lin, Y. Hu, P. Sheng, C. Wen, J. You, and Y. Gao. Data scaling laws in imitation learning for
robotic manipulation. arXiv preprint arXiv:2410.18647, 2024.

[67] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[68] D. Groeneveld, I. Beltagy, P. Walsh, A. Bhagia, R. Kinney, O. Tafjord, A. H. Jha, H. Ivison,
I. Magnusson, Y. Wang, et al. Olmo: Accelerating the science of language models. arXiv
preprint arXiv:2402.00838, 2024.

[69] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

[70] G. Team, P. Georgiev, V. I. Lei, R. Burnell, L. Bai, A. Gulati, G. Tanzer, D. Vincent, Z. Pan,
S. Wang, et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of
context. arXiv preprint arXiv:2403.05530, 2024.

[71] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. Advances in neural information
processing systems, 36:34892–34916, 2023.

[72] Q. Li, Y. Liang, Z. Wang, L. Luo, X. Chen, M. Liao, F. Wei, Y. Deng, S. Xu, Y. Zhang, et al.
Cogact: A foundational vision-language-action model for synergizing cognition and action in
robotic manipulation. arXiv preprint arXiv:2411.19650, 2024.

[73] J. Bjorck, F. Castañeda, N. Cherniadev, X. Da, R. Ding, L. Fan, Y. Fang, D. Fox, F. Hu, S. Huang,
et al. Gr00t n1: An open foundation model for generalist humanoid robots. arXiv preprint
arXiv:2503.14734, 2025.

[74] Y. Li, Y. Deng, J. Zhang, J. Jang, M. Memmel, R. Yu, C. R. Garrett, F. Ramos, D. Fox, A. Li,
et al. Hamster: Hierarchical action models for open-world robot manipulation. arXiv preprint
arXiv:2502.05485, 2025.

[75] Y. Shentu, P. Wu, A. Rajeswaran, and P. Abbeel. From llms to actions: Latent codes as bridges
in hierarchical robot control. In 2024 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 8539–8546. IEEE, 2024.

[76] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, et al. Do as i can, not as i say: Grounding language in robotic affordances.
arXiv preprint arXiv:2204.01691, 2022.

[77] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei. Voxposer: Composable 3d value
maps for robotic manipulation with language models. arXiv preprint arXiv:2307.05973, 2023.

[78] H. Bharadhwaj, J. Vakil, M. Sharma, A. Gupta, S. Tulsiani, and V. Kumar. Roboagent:
Generalization and efficiency in robot manipulation via semantic augmentations and action
chunking. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pages
4788–4795. IEEE, 2024.

[79] H. Fang, M. Grotz, W. Pumacay, Y. R. Wang, D. Fox, R. Krishna, and J. Duan. Sam2act:
Integrating visual foundation model with a memory architecture for robotic manipulation, 2025.
URL https://arxiv.org/abs/2501.18564.

14

https://arxiv.org/abs/2501.18564

[80] P. Liu, Y. Orru, J. Vakil, C. Paxton, N. M. M. Shafiullah, and L. Pinto. Ok-robot: What really
matters in integrating open-knowledge models for robotics. arXiv preprint arXiv:2401.12202,
2024.

[81] L. X. Shi, Z. Hu, T. Z. Zhao, A. Sharma, K. Pertsch, J. Luo, S. Levine, and C. Finn. Yell at your
robot: Improving on-the-fly from language corrections. arXiv preprint arXiv:2403.12910, 2024.

[82] Y. Wang, L. Wang, Y. Du, B. Sundaralingam, X. Yang, Y.-W. Chao, C. Perez-D’Arpino,
D. Fox, and J. Shah. Inference-time policy steering through human interactions. arXiv preprint
arXiv:2411.16627, 2024.

[83] J. Gu, S. Kirmani, P. Wohlhart, Y. Lu, M. G. Arenas, K. Rao, W. Yu, C. Fu, K. Gopalakrishnan,
Z. Xu, P. Sundaresan, P. Xu, H. Su, K. Hausman, C. Finn, Q. Vuong, and T. Xiao. Rt-trajectory:
Robotic task generalization via hindsight trajectory sketches, 2023.

[84] Z. Zhang, A. Zhang, M. Li, H. Zhao, G. Karypis, and A. Smola. Multimodal chain-of-thought
reasoning in language models. arXiv preprint arXiv:2302.00923, 2023.

[85] J. Clark, S. Mirchandani, D. Sadigh, and S. Belkhale. Action-free reasoning for policy general-
ization. arXiv preprint arXiv:2502.03729, 2025.

[86] J. Yang, C. K. Fu, D. Shah, D. Sadigh, F. Xia, and T. Zhang. Bridging perception and
action: Spatially-grounded mid-level representations for robot generalization. arXiv preprint
arXiv:2506.06196, 2025.

[87] H. Xu, S. Xie, X. Tan, P.-Y. Huang, R. Howes, V. Sharma, S.-W. Li, G. Ghosh, L. Zettlemoyer,
and C. Feichtenhofer. Demystifying CLIP data. In ICLR, 2024.

[88] M. Guerquin. Introducing AI2’s beaker. AI2 Blog, 2022. URL https://web.archive.org/
web/20241231204439/https://medium.com/ai2-blog/beaker-ed617d5f4593. Ac-
cessed: 2024-12-31. Original: https://medium.com/ai2-blog/beaker-ed617d5f4593.

[89] W. Wang, M. Ghobadi, K. Shakeri, Y. Zhang, and N. Hasani. Rail-only: A low-cost
high-performance network for training llms with trillion parameters. 2024 IEEE Sympo-
sium on High-Performance Interconnects (HOTI), pages 1–10, 2023. URL https://api.
semanticscholar.org/CorpusID:260125277.

15

https://web.archive.org/web/20241231204439/https://medium.com/ai2-blog/beaker-ed617d5f4593
https://web.archive.org/web/20241231204439/https://medium.com/ai2-blog/beaker-ed617d5f4593
https://medium.com/ai2-blog/beaker-ed617d5f4593
https://api.semanticscholar.org/CorpusID:260125277
https://api.semanticscholar.org/CorpusID:260125277

Appendix

The appendix includes the following sections:

• §A - Related Work
• §B - Action Steerability via Visual Reasoning Trace
• §C - Experiment Evaluation
• §D - Model Details
• §E - Training Details
• §F - Action Vocabulary
• §G - Evaluation Details
• §H - Data Details
• §I - Dataset Examples

A Related Work

A.1 Generalist robot manipulation policies

Recent advances in robotic manipulation have shifted from training narrow, single-task specialists
to learning from large, diverse datasets spanning many scenes, tasks, and embodiments[57, 14, 58,
59, 60, 61, 25, 62, 63, 64]. This shift has enabled policies that not only excel within their training
distribution but also generalize to out-of-distribution scenes, environments, language instructions, and
novel objects [10, 65, 66]. Much of this progress has been fueled by Large Language Models (LLMs)
[26, 67, 68, 69] and Vision-Language Models (VLMs) [70, 71, 46], giving rise to the paradigm of
Vision-Language-Action models (VLAs) [4, 14, 15, 48, 6, 72, 29, 5]. While some adopt hierarchical
designs, where a robotics-focused VLM [73, 74, 75] outputs intermediate representations for pre-
trained, task-specific policies to improve generalization. However, a major bottleneck for these
models is their heavy reliance on large amounts of robotics-specific data, often collected via tele-
operation. In contrast, MOLMOACT aims to leverage reasoning in space to train an action reasoning
model that achieves competitive or superior performance with only a fraction of the data required by
existing methods.

A.2 Robot reasoning and planning with language

In recent years, numerous works have demonstrated that augmenting end-to-end robotic policies
with high-level reasoning—either by integrating LLMs or VLMs directly into robotic systems, or
by incorporating their reasoning outputs into policies—can substantially improve performance on
long-horizon tasks and enhance generalization [76, 77, 78, 79, 80, 81, 82, 83].

MOLMOACT supports steering through both natural language and interactive visual trace sketches,
enhancing explainability and diagnosis. Prior methods—RT-Trajectory [83], HAMSTER [74], and
inference-time policy steering [82]—are more limited: RT-Trajectory and inference-time approaches
are tied to specific architectures, while HAMSTER produces only 2D trajectories with low-level
execution constrained to fixed tasks. In contrast, MOLMOACT generalizes steering to novel spatial
layouts, unseen objects, and ambiguous language, providing a more versatile and semantically
grounded control interface.

A.3 Embodied reasoning for robotic manipulation

Chain-of-thought (CoT) prompting [11] has boosted multi-step reasoning in LLMs and has since been
extended to multimodal settings [56, 84]. Inspired by this, robotics research has begun integrating
reasoning into vision-language-action (VLA) models. ECoT [23] generates subgoals via prompting;
CoT-VLA [48] uses visual subgoal frames; RAD [85] curates reasoning from human video; and

16

ThinkAct [51] links reinforcement learning with latent planning. Emma-X [22] fine-tunes OpenVLA
with subtasks and predicted gripper states, while [86] explores trajectory traces with depth but only
on small diffusion-policy datasets. Unlike ECoT, CoT-VLA, RAD, and ThinkAct—which rely on
latent embeddings, sub-goals, or text that are hard to ground—MOLMOACT grounds each reasoning
step directly in the scene. Unlike Emma-X, which focuses on gripper positions without full 3D
context, MOLMOACT reasons in space, with steps visualizable in both 2D and 3D. This explicit
spatial grounding improves explainability and action prediction within a CoT framework.

B Action Steerability via Visual Reasoning Trace

We define steerability as the ability to guide a policy at test time to perform different behaviors
using user-provided instructions. Most prior VLA systems rely exclusively on language for steering.
However, language-only steering faces three practical challenges: (i) it requires large and diverse
corpora of high-quality language–action pairs to learn a reliable grounding between words and control,
(ii) natural language is inherently ambiguous about magnitudes, scales, and endpoints, and (iii) post-
trained models often exhibit narrow prompting habits, making them brittle to out-of-distribution
phrasing. For manipulation, these issues translate into imprecise or inconsistent control. We therefore
seek a steering modality that is both precise and scalable. Rather than relying on ambiguous language
prompts, we allow the user to draw a visual reasoning trace τ directly on the camera image to indicate
the desired end-effector path. A trace τ = (p1, . . . , pL), 1 ≤ L ≤ 5 (i.e., 0 to 4 line segments), is
overlaid onto the RGB image I to form an augmented observation I

+
= I ⊕ τ . visual reasoning

traces are unambiguous, easily edited, and generalize across tasks without large text–action corpora
or brittle language patterns.

At test time, given I , instruction T , and a user-drawn trace τ , we construct I+ = I ⊕ τ and generate
the next-step action tokens a = (a1, . . . , aD) autoregressively:

p(a ∣ I+, T) =
D

∏
k=1

p(ak ∣ I+, T,a<k). (2)

By conditioning directly on the overlaid trace, the model executes closed-loop control that follows the
user’s sketch. Repeating this at each timestep yields precise, interactive steering that is both scalable
and robust to out-of-distribution phrasing.

C Experimental Evaluation

C.1 Effectiveness of MOLMOACT in Out-of-Distribution Generalization

We evaluate MOLMOACT in both simulation and real-world settings to assess its ability to generalize
beyond the training data distribution, both in zero-shot and fine-tuned regimes. In simulation, we
follow the SimplerEnv variant-aggregation protocol, which introduces distribution shifts through
changes in lighting, textures, and camera viewpoints. We compare MOLMOACT-7B-D-PRETRAIN
and its RT-1 fine-tuned variant against several state-of-the-art generalist policies—TraceVLA, RT-1X,
OpenVLA, RoboVLM, Emma-X, π0-FAST, and SpatialVLA. For real-world evaluation, we test
MOLMOACT-7B-D using a single Franka arm on a multi-task setup involving three objects and two
different-colored plates arranged on a tabletop. We collect over 300 tele-operated demonstrations
spanning three task types, then post-train MOLMOACT-7B-D and baselines in a multi-task setting.
During evaluation, we test generalization in four aspects: (1) Language Variation — rephrased
instructions, (2) Spatial Variation — changes in target object position, (3) Distractors — addition
of irrelevant objects, and (4) Novel Objects — substitution of target objects with unseen ones. We
benchmark MOLMOACT-7B-D against π0-FAST and OpenVLA, testing three variants per task and
four trials per variant. Full task details are presented in subsection G.4.

Evaluation Results. In simulation, fine-tuned MOLMOACT-7B-D-PRETRAIN achieves 72.1% on the
variant aggregation tasks as shown in Table 1, outperforming all baselines and exceeding the second-
best model, RT-2-X, by 7.8%. The performance difference between variant aggregation and visual

17

(a) MOLMOACT generalizes beyond training distributions.

(b) MOLMOACT DATASET improves task performance.

Figure 4: MOLMOACT outperforms baselines across generalization and mid-training settings.
(a) Out-of-distribution generalization: Task progression scores for OpenVLA, π0-FAST, and MOL-
MOACT across in-distribution, language variation, spatial variation, distractors, and novel object
conditions, showing consistent gains for MOLMOACT. (b) Effectiveness of mid-training with the
MOLMOACT DATASET: Comparison of task progression on real-world tasks (Close Lid, Rotate Pot,
Pour Tea) for MOLMOACT with and without the dataset, π0-FAST, and OpenVLA, demonstrating
that mid-training with the dataset improves performance across tasks.

matching is less than 1%, highlighting MOLMOACT’s robustness to visual and distributional shifts. In
the real world, MOLMOACT-7B-D consistently surpasses all baselines across all generalization axes,
achieving a 23.3% average improvement in task progression over π0-FAST as shown in Figure 4a.

C.2 Effect of the MOLMOACT DATASET on MOLMOACT Performance

Evaluation Setups and Baselines. To assess the effectiveness of mid-training with the MOLMOACT
DATASET, we conducted real-world experiments on three curated tasks that go beyond simple pick-
and-place: close_lid, rotate_pot, and pour_tea. For each task, we collected 50 demonstrations
and trained four models: MOLMOACT-7B-D, MOLMOACT-7B-D without mid-training, π0-FAST,
and OpenVLA. Each model was then evaluated over 10 trials per task. Task details are shown in
subsection G.5.

Evaluation Results. Based on the real-world ablation studies shown in Figure 4b, MOLMOACT-7B-
D outperforms its counterpart without mid-training by an average margin of 5.5% across the three
tasks, demonstrating that mid-training on the MOLMOACT DATASET yields a consistent performance
boost of around 5%. Even without mid-training, MOLMOACT-7B-D-PRETRAIN surpasses π0-FAST
and OpenVLA by 14.8% and 10.9%, respectively.

18

Figure 5: Line steerability evaluation across models. Left: Elo ratings show that MOLMOACT
achieves the highest performance, surpassing Gemini-2.5-Flash, GPT-4o, and HAMSTER, with error
bars indicating 95% confidence interval (CI). Right: Example qualitative results showing predicted
visual traces overlaid on robot camera views.

Figure 6: Language Instruction Evaluation. Left: Elo ratings for three models based on human
votes in a head-to-head instruction-following evaluation. Right: Qualitative comparison of execution
traces for the open-ended instruction “Put the redbull into the bowl." MOLMOACT aligns more closely
with the intended instruction than other models.

C.3 Instruction Following of MOLMOACT

We evaluated MOLMOACT’s ability to follow natural language instructions in two settings: (i) exe-
cuting tasks with open-ended commands in simulation, and (ii) generating visual traces conditioned
on language prompts. For the first one, we curated five manipulation scenarios in the SimplerEnv
environment using a Google Robot, each involving novel out-of-distribution objects. Ten partici-
pants provided 29 open-ended instructions (e.g., “Put the redbull into the bowl."). We compared
MOLMOACT-7B-D-PRETRAIN to SpatialVLA and OpenVLA, both pre-trained on the OXE dataset.
For each instruction, the models generated rollouts, which were evaluated in a head-to-head arena-
style web interface. Human annotators (n=100) selected which rollout best matched the instruction.
We collected over 1,500 votes, which were converted into Elo ratings (see Figure 6). For visual
trace generation, 10 participants wrote 87 language prompts for 30 internet-sourced images depicting
tabletop and mobile manipulation scenarios. MOLMOACT-7B-D-PRETRAIN was evaluated against
Gemini-2.5-Flash, GPT-4o, and HAMSTER—a VLM fine-tuned for trace generation. Participants
voted in a similar blind arena interface, resulting in over 1,000 votes. Details with our curated
manipulation scenes and instructions provided by participants are shown in subsection G.6.

19

Figure 7: Steerability evaluation with open instructions and visual traces. Left: Success rates for
different steering modes, showing that MOLMOACT with visual trace steering achieves the highest
success rate (0.75), outperforming its open-instruction variant and π0-FAST. Right: Example of
the "Pick up the bowl" task: the model-predicted trajectory (yellow) is adjusted via a user-provided
steering trajectory (cyan), resulting in the corrected task completion.

Evaluation Results. MOLMOACT-7B-D-PRETRAIN achieved the highest Elo rating in the simulation
instruction-following task, outperforming SpatialVLA by 109 points and OpenVLA by an even larger
margin. Pairwise win rates also show that MOLMOACT-7B-D-PRETRAIN winning over SpatialVLA
in 58% of comparisons and over OpenVLA in 81%. A sample rollout comparison for the instruction

“Put the redbull into the bowl." is shown on the right in Figure 6. In the visual trace task, MOLMOACT-
7B-D-PRETRAIN again outperformed all baselines, achieving significantly higher Elo scores with
non-overlapping 95% confidence intervals, demonstrating strong language-grounded generalization
in both action execution and trace generation as shown in Figure 5.

C.4 Steerability of MOLMOACT

Evaluation Setups and Baselines. We aim to evaluate MOLMOACT’s ability to steer robot actions,
particularly when initial language instructions are ambiguous. Specifically, we investigate the
effectiveness of different interaction mediums in guiding MOLMOACT toward user-intended targets
during task execution. For this purpose, we set up a pick_up_bowl task, post-training MOLMOACT-
7B-D and the baseline model (π0-FAST) with 100 collected demonstrations, each annotated with
two distinct language instructions: one specifying the clean bowl and the other the dirty bowl, as
depicted in Figure 7. During evaluation, we first provide ambiguous instructions such as "pick up
(the) bowl," prompting MOLMOACT-7B-D to predict an initial trajectory towards one of the bowls.
Subsequently, we test two steering methods: visual trace sketches to visually instruct the model
toward the alternative bowl, and open-ended natural language instructions provided interactively by
participants (N=10) that are different from the ground-truth instruction. For comparison, we also
attempt to steer the actions of π0-FAST by changing language instructions at test-time. Each model
is evaluated in 15 trials, and the performance is evaluated according to the progression of the task.
For more details about the setting, please refer to subsection G.7.

Evaluation Results. Based on our experiments, we observed that MOLMOACT-7B-D is notably more
steerable via visual trace inputs, achieving a success rate of 75%. Additionally, steering using visual
traces significantly outperforms steering via open-ended natural language instructions by a margin
of 33%. Lastly, we demonstrate that MOLMOACT-7B-D exhibits superior instruction-following
capabilities compared to the baseline model, π0-FAST. Specifically, when steering robot actions
using open-ended language instructions, MOLMOACT surpasses π0-FAST by a substantial margin of
29%, highlighting its enhanced instruction-following capabilities to user commands.

D Model Details

This section summarizes the MOLMOACT model architecture, which inherits Molmo with slight
modification. The design combines a pre-processor for multi-scale cropping and optionally image
padding, a ViT image encoder, a vision–language connector, and a LLM.

20

D.1 Backbone Overview

MOLMOACT has the following parts:

1. Pre-processor: converts each input image into one low-resolution crop and several high-
resolution crops.

2. ViT Image Encoder: encodes each crop independently into per-patch features.

3. Vision–language Connector: pools and projects patch features into the LLM embedding
space.

4. LLM: autoregressively processes vision and text tokens.

From this template MOLMOACT instantiates a family of models by selecting a vision encoder and an
LLM while keeping the training recipe mainly consistent. Vision encoders include OpenAI ViT-L/14
336px CLIP and ViT-SO400M/14 384px SigLIP2. LLM backbones include fully open OLMo-2-
1124-7B and open-weight Qwen2.5-7B. With the combination of ViT-SO400M/14 384px SigLIP2
with Qwen2.5-7B, we have MOLMOACT-7B-D, our best and demo model. With the combination of
OpenAI ViT-L/14 336px CLIP with OLMo-2-1124-7B, we have MOLMOACT-7B-O, our most open
model. Note that although OpenAI ViT-L/14 336px CLIP uses closed data, it can be reproduced from
scratch, as shown by MetaCLIP [87].

D.2 Image Encoding and Cropping

Most ViTs accept square images at a fixed resolution, which is insufficient for fine-grained details.
This mainly applies to the multimodal web data, as much of the robot data is not high-resolution, and
there is also work [5] showing that image resolution doesn’t affect much for robot control. To make
MOLMOACT more general, it still inherits the way Molmo addresses the high-resolution problem by
tiling each image with multiple square high-resolution crops plus a resized low-resolution full image.
Cropping proceeds as follows.

Grid Selection and Overlap. A rectangular grid (e.g., 2 × 2, 3 × 1) is chosen so each grid cell
matches the ViT input size. The grid squares are then moved closer together to introduce a fixed
overlap margin (default 4 patches, approximately 56 pixels), which supplies border patches with
neighbor context. Features from overlapping pixels are not forwarded to the connector or LLM, so the
resulting tokens exactly tile the high-resolution image. Although overlap slightly reduces the effective
tiled resolution, this can be offset by using more crops, and empirically improves performance.

Resizing and Padding. For OpenAI CLIP vison encoder, we follow the way Molmo [46] does
to resize and pad the image to keep its original aspect ratio before processing. The scheme is the
following. The image is upscaled to fit the grid while preserving aspect ratio, choosing the scale
that minimizes upscaling; ties are broken by minimizing the overall size. A maximum number
of high-resolution crops is enforced. If covering the image would exceed this limit, the image is
downscaled to fit. In all cases, the image is padded with black borders so each crop is square and
aligned to the grid. The low-resolution crop is produced by resizing and padding the full image to the
ViT’s native resolution. Each crop is encoded independently by the ViT and connector to produce
patch features. A learned embedding indicating the crop’s padding status (no padding, some padding,
or all padding) is added to the patch features so the model can distinguish natural black regions from
artificial padding.

Note that for SigLIP2 vision encoder, we use the standard way to resize all image inputs to a square
image without padding, which follows the original transform in SigLIP2 training.

D.3 Vision–language Connector

After ViT encoding, Molmo aggregates features in two steps:

21

Figure 8: Training process of MOLMOACT. The model training process consists of two stages:
Pre-training (left) and Post-training, Mid-training & Inference (right). During pre-training, the
vision–language backbone (Molmo) is trained on multimodal and robot reasoning data for diverse
objectives, including discretized robot control, 2D pointing, trajectory drawing, open-vocabulary
question answering, and perception token prediction. In post-training, the action reasoning model
consumes multi-view camera images and either natural language instructions or visual trajectory
inputs, generating perception tokens, visual reasoning trace tokens, and action tokens for execution.

1. Layer selection and concatenation: features from the third-to-last (OpenAI CLIP) or
fourth-to-last (SigLIP2) and the tenth-from-last ViT layers are concatenated for each patch;
this slightly outperforms using a single layer as shown by Molmo [46].

2. Attention pooling in 2 × 2 windows: within each 2 × 2 patch window, a multi-headed
attention layer pools the four patches to a single vector, using the mean of the patches as the
query. This pooling reduces sequence length while preserving local spatial structure and
outperforms naive concatenation as shown by Molmo [46].

Pooled features are then mapped to the LLM embedding space with a small MLP.

D.4 Arranging Vision Tokens

Pooled patch features (vision tokens) are serialized left-to-right and top-to-bottom. Tokens from the
low-resolution full image appear first, followed by high-resolution crop tokens arranged in row-major
order. Special tokens mark the start and end of both the low- and high-resolution sequences. Row-end
tokens are inserted between rows to indicate row transitions.

D.5 Multi-image Inputs

Molmo [46] itself doesn’t provide the capability to take in multi-image inputs. We implement this
in a straightforward way: we process all the images to vision tokens in the same way as mentioned
above, then we append index tokens at the beginning of the vision tokens of each image, and we
finally concatenate all images together as the input. The index tokens are just text tokens of "Image
i", where i stands for the ith image.

D.6 Full Hyperparameters

The full hyperparameters of MOLMOACT architecture are shown in Table 3. Note that for LoRA
implementation, adapters are applied to all linear layers in the model.

22

E Training Details

E.1 Implementation

Our training implementation mainly follows Molmo. We train in PyTorch using Fully Sharded Data
Parallel (FSDP), and use PyTorch’s Scaled Dot-Product Attention (SDPA) attention implementation.
For numeric precision, we enable Automatic Mixed Precision (AMP) with bfloat16 for most opera-
tions. As an exception, we compute layer normalization and Rotary Position Embeddings (RoPE) in
fp32.

With FSDP, each GPU forms a local mini-batch, computes gradients, and then we average the
gradients across devices. When normalizing the loss on each device, we divide the device’s total
loss by the global average number of loss-tokens per example across all devices, rather than by the
device-local count. This avoids a subtle bias that can arise when examples with up-weighting also
contain fewer loss-tokens (e.g., shorter responses) and happen to co-occur on devices with smaller
token counts. Using the global average corrects this mismatch and is especially important when the
global batch is much larger than any single device batch.

For parameter-efficient fine-tuning, we do not shard LoRA adapter parameters under FSDP. Instead,
each GPU keeps a full copy of the LoRA parameters, and we register a gradient hook on those tensors
to synchronize their gradients across ranks before the optimizer step. Because LoRA adds only a
small fraction of the total parameters, this replication has negligible memory and communication
overhead while simplifying the training setup and avoiding sharding edge cases for the adapters.

Batches mix examples from multiple tasks. We cap the sequence length at 2304 tokens for both
pre-training and fine-tuning, truncating only when necessary (e.g., heavily annotated synthetic data or
rare outliers). Training is stable under this recipe—without loss spikes or NaNs—which we attribute
in part to initializing from pre-trained models.

To enable the model to learn to understand and output depth perception tokens, we follow the
training scheme of LLaVA-AURORA [56] by unfreezing the tokenizer embedding and lm head.
For MOLMOACT-7B-D, which uses Qwen2.5-7B, we simply replace the first 130 padding tokens
with the depth perception tokens {⟨DEPTH_START⟩, ⟨DEPTH_END⟩} ∪ {⟨DEPTH_k⟩}128k=1.
However, for MOLMOACT-7B-O, which uses Olmo2-7B, since it has less than 130 padding tokens,
we first pad the tokenizer and lm head to its next multiple of 512, then replace the first 130 tokens
with our depth perception tokens in the same way as MOLMOACT-7B-D.

All of our collected data used for the mid- and post-training stages is recorded at 640×480 px, which
triggers the high-resolution cropping procedure described in Appendix D. By contrast, the OXE robot
data used for pre-training has lower resolution, so no high-res crop is applied. To match OXE during
pre-training, we downscale our collected images from 640×480 to 320×240 px while preserving
the original aspect ratio. This alignment also reduces the number of vision tokens and accelerates
training.

Full training hyperparameters and information are shown in Table 4. Note that for post-training,
we train the model until it fully converges, which is determined by its training loss and evaluation
performance. Therefore, training steps largely vary across different tasks and scenarios. We will
show the training details for post-training in different tasks in later sections.

E.2 GPU Cluster

MOLMOACT was trained on Jupiter, an Ai2 GPU cluster in Austin, Texas. MOLMOACT workloads
were scheduled using Beaker [88], a custom workload management system. Jupiter comprises 128
GPU nodes and is operated by Cirrascale Cloud Services1.

1cirrascale.com

23

https://www.cirrascale.com/

Compute Jupiter provides 1,024 NVIDIA H100 GPUs (80GB HBM3, 700W) across 128 servers.
Each server has 2,×,Intel Xeon Platinum8468 CPUs, 2TB DDR5 system memory, and 18 TB local
NVMe storage.

Storage The servers are connected over an 800Gbps local network to a WEKA high-performance
storage cluster2. The storage system provides 1PB of NVMe SSD across 11 storage servers and
5PB of HDD across 12 hosts. Each Jupiter server has two bonded 25Gbps Mellanox Ethernet NICs
(50Gbps per host). In benchmarks, we achieved 761Gbps aggregate read/write throughput using 64
client machines.

Interconnect Cross-node GPU communication uses RDMA over InfiniBand on a two-tier Rail-
Optimized, balanced, full-bisection network [89]. Each server is equipped with eight 400Gbps
InfiniBand adapters (3.2Tbps peak per host), supporting concurrent distributed jobs without topologi-
cal scheduling.

Cooling The servers are racked in Dynamic Density Cabinets3. Each cabinet houses five servers
with dedicated cooling and power. Air circulates in a closed loop through an overhead plenum where
it is cooled via heat transfer to water, enabling a datacenter PUE of 1.2. Under heavy utilization,
H100 temperatures peak around 75

◦
C, with typical averages between 60

◦
C and 65

◦
C.

Image Encoder V/L Connector LLM
Parameter 7B-D 7B-O 7B-D 7B-O 7B-D 7B-O

Params 383M 278M 121M 75M 7.6B 7.3B

Dim 1152 1024 — — 3584 4096

MLP Dim 4304 4096 37888 22016 37888 22016

Activation GELU GELU SwiGLU SwiGLU SwiGLU SwiGLU

Heads 16 16 16 16 28 32

KV Heads 16 16 — — 4 32

Layers 27 23 — — 28 32

Image Size 384×384 336×336 — — — —

Patch Size 14 14 — — — —

Pool Size — — 2×2 2×2 — —

Pool Dim — — 1152 1024 — —

Pool Heads — — 16 16 — —

Theta — — — — 1M 0.5M

Dropout 0.0 0.0 0.0 0.0 0.1 0.1

Table 3: MOLMOACT’s Architecture Hyperparameters. We specify all hyperparameter informa-
tion for the different model architectures for MOLMOACT-7B-D and MOLMOACT-7B-O.

F Action Tokenization

We provide our full action vocabulary in Table 5 and Table 6, which show the mapping from discrete
bin index to its corresponding action token. Note that the string \u00e2\u00bd\u0139 is a sequence
of Unicode escape codes. Each \uXXXX gives one code point in hexadecimal. When decoded, those
code points become the actual characters, concatenated in order.

2weka.io
3cirrascale.com/products-and-services/cabinet-technologies

24

https://www.weka.io/
https://www.cirrascale.com/products-and-services/cabinet-technologies

Pre-train Mid-train Post-train
Parameter 7B-D 7B-O 7B-D 7B-O 7B-D

Warm-up ViT 200 200 200 200 200

Warm-up Conn. 200 200 200 200 200

Warm-up LLM 200 200 200 200 200

LR ViT 1×10−5 1×10−5 5×10−6 5×10−6 5×10−4

LR Conn. 1×10−5 1×10−5 5×10−6 5×10−6 5×10−4

LR LLM 2×10−5 2×10−5 1×10−5 1×10−5 5×10−4

Cosine Decay 10% 10% 10% 10% 10%

Eps. 10
−6

10
−6

10
−6

10
−6

10
−6

Betas 0.9/0.95 0.9/0.95 0.9/0.95 0.9/0.95 0.9/0.95

LoRA Rank — — — — 32

LoRA Alpha — — — — 16

LoRA Dropout — — — — 0

LoRA Bias — — — — None

Multi-image Input No No Yes Yes Yes

Steps 100k 100k 50k 50k Varies

Global Batch Size 512 512 256 256 64 (real) or
128 (sim)

GPUs (H100s) 256 256 128 128 32 (real) or
64 (sim)

Time (Hours) 38 32 18 15 Varies

GPU Hours 9728 8192 2304 1920 Varies

Table 4: MOLMOACT’s Training Hyperparameters. We specify all hyperparameter informa-
tion for different training schemes for MOLMOACT-7B-D and MOLMOACT-7B-O. Note that for
MOLMOACT-7B-D-PRETRAIN, we train the model with 150K steps, but it reaches better perfor-
mance at 100K steps.

G Evaluation Details

G.1 Evaluation on SimplerEnv (Google Robot)

We evaluate on SimplerEnv [52] simulation to test MOLMOACT’s out-of-the-box performance on the
Google Robot setup. The simulation evaluation consists of a Google Robot arm, front-view camera
image (640 x 480 px, resized to 320 x 240 px for our case), task language instructions, and delta
end-effector pose actions. SimplerEnv evaluation consists of two components – Visual Matching and
Variant Aggregation.

G.2 Evaluation on LIBERO

We evaluate on the LIBERO simulation benchmark [54], which consists of a Franka Emika Panda arm
in simulation with demonstrations containing front and wrist view camera images (256 x 256px), tasks
language instructions, and delta end-effector pose actions. We follow prior works [5] and evaluate on
the four task suites – LIBERO-Spatial, LIBERO-Object, LIBERO-Goal, and LIBERO-Long – each
with 500 expert demonstration across 10 tasks. Following [5], we trained on a modified dataset which
filtered out no-ops actions and unsuccessful demonstrations. Moreover, we set action chunk size to
K = 8 for evaluation on each task suites and execute full chunks before replanning. We report details
of our post-training hyperparameters for LIBERO in Table 7.

25

Table 5: Action token vocabulary: Mapping from discrete bin index (0 to 127) to the actual token
string.

Bin | Action Token Bin | Action Token Bin | Action Token Bin | Action Token

0 \u00e2\u00bd\u0139 1 \u00e2\u00ba\u0141 2 \u00e2\u012f\u00a8 3 \u00e1\u0137\u00b7

4 \u00ef\u00a8\u012c 5 \u00e3\u0129\u00bd 6 \u00e3\u0129\u00ba 7 \u00e2\u00bd\u00ba

8 \u00e2\u0134\u0142 9 \u00e3\u012c\u00a5 10 \u00e2\u00bc\u0143 11 \u00e2\u00b0\u00a1

12 \u00e2\u00b0\u0142 13 \u00e2\u00b0\u0141 14 \u00e2\u00b0\u0133 15 \u00e2\u00b0\u0132

16 \u00e2\u00b0\u0130 17 \u00e2\u00b0\u012f 18 \u00e2\u00b0\u0124 19 \u00e2\u0134\u00a1

20 \u00e2\u0134\u0141 21 \u00e2\u0122\u00b4 22 \u00e2\u0136\u00b2 23 \u00f0\u0135\u0131\u00a7

24 \u00ef\u00a8\u00b7 25 \u00e3\u012a\u00bc 26 \u00e2\u0140\u00b6 27 \u00e2\u0138\u00a4

28 \u00e2\u0129\u0140 29 \u00e2\u0128\u00b7 30 \u00e2\u0128\u00a4 31 \u00e1\u00a5\u00a4

32 \u00e1\u00a5\u0136 33 \u00e1\u0127\u00a3 34 \u00e0\u00ba\u0124 35 \u00ef\u00b1\u012c

36 \u00ea\u00a6\u0136 37 \u00e3\u012b\u00ab 38 \u00e3\u0127\u0138 39 \u00e3\u0126\u00a7

40 \u00e3\u0126\u0135 41 \u00e3\u0126\u012f 42 \u00e2\u0141\u00b0 43 \u00e2\u013f\u00ab

44 \u00e2\u013f\u00aa 45 \u00e2\u013d\u0131 46 \u00e2\u013d\u0129 47 \u00e2\u0137\u012c

48 \u00e2\u0136\u00bd 49 \u00e1\u00b8\u012c 50 \u00e1\u00a4\u012c 51 \u00e1\u013d\u0132

52 \u00e1\u013d\u0127 53 \u00e1\u013c\u012e 54 \u00e1\u013b\u00b3 55 \u00e0\u0142\u012e

56 \u00c6\u012a 57 \u00f0\u0141\u0127\u0135 58 \u00f0\u0141\u0127\u0127 59 \u00f0\u013f\u013c\u0131

60 \u00f0\u013f\u013c\u0126 61 \u00f0\u013f\u013b\u00bf 62 \u00f0\u013f\u013b\u00bd 63 \u00f0\u013f\u013b\u00bc

64 \u00f0\u013f\u013b\u00ba 65 \u00f0\u013f\u013b\u00b8 66 \u00f0\u013f\u013b\u00b0 67 \u00f0\u013f\u013b\u00ae

68 \u00f0\u013f\u013a\u013c 69 \u00f0\u013f\u013a\u0132 70 \u00f0\u013f\u013a\u0131 71 \u00f0\u013f\u0138\u0138

72 \u00f0\u013f\u0137\u00b1 73 \u00f0\u013f\u0137\u00a1 74 \u00f0\u013f\u0137\u012f 75 \u00f0\u013f\u0136\u0135

76 \u00f0\u013f\u0135\u00be 77 \u00f0\u013f\u0135\u00b9 78 \u00f0\u013f\u0135\u00ac 79 \u00f0\u013f\u0135\u0137

80 \u00f0\u013f\u0133\u00b3 81 \u00f0\u0138\u00a5\u00a8 82 \u00f0\u0138\u00a5 83 \u00f0\u0132\u00b1\u0127

84 \u00f0\u0132\u0143\u012c 85 \u00ef\u0143\u00b2 86 \u00ef\u00a5\u00b1 87 \u00ef\u00a5\u0142

88 \u00ef\u00a4\u00a6 89 \u00ed\u0135\u00bb 90 \u00ed\u0135\u00b6 91 \u00ed\u0135\u00ae

92 \u00ed\u0135\u00ac 93 \u00ed\u012d\u012f 94 \u00ec\u00bc\u0129 95 \u00ec\u0128\u012c

96 \u00eb\u00a1\u00bc 97 \u00ea\u00b3\u0124 98 \u00ea\u00b2\u00b4 99 \u00ea\u00b2\u013b

100 \u00e4\u00b6\u00b5 101 \u00e3\u012a\u00aa 102 \u00e2\u00b2\u00a2 103 \u00e2\u013c\u00a3

104 \u00e2\u013a\u00b5 105 \u00e2\u0136\u0140 106 \u00e1\u00b8\u00bb 107 \u00e1\u00b8\u0125

108 \u00e1\u00a8\u0123 109 \u00e1\u0142\u0126 110 \u00e1\u0136\u012c 111 \u00e1\u0136\u0127

112 \u00e1\u0134\u012e 113 \u00e1\u0132\u00a7 114 \u00e1\u012e\u0136 115 \u00e1\u012e\u0126

116 \u00e1\u012d\u00a9 117 \u00e1\u012c\u0134 118 \u00e1\u012b\u00a8 119 \u00e1\u0123\u00bc

120 \u00e1\u0122\u0131 121 \u00e0\u00b2\u0141 122 \u00e0\u00b0\u00b5 123 \u00e0\u00b0\u00b3

124 \u00e0\u00ac\u012b 125 \u00e0\u00a5\u00b1 126 \u00e0\u00a4\u0133 127 \u00dd\u00a5

G.3 Evaluation on Real-world Post-training

To evaluate MOLMOACT ’s efficiency in fine-tuning, we curated six tasks: three for a single-arm
Franka setup—put bowl in sink, wipe table, and table bussing—and three for a bimanual
Franka setup—set table, lift tray, and fold towel. We benchmarked against OpenVLA and
π0-FAST by training each model until convergence. In the single-arm setup, the Franka was mounted
on a movable platform to allow relocation across different positions, whereas the bimanual setup
was fixed to a tabletop configuration. For sensing, we employed an Intel RealSense D405 for the
wrist-mounted camera and an Intel RealSense D435 for the front-facing view. In each efficiency
fine-tuning task evaluation, we pre-marked the locations of all task objects in the scene to ensure that
the evaluation conditions matched the distribution of the demonstrations used for fine-tuning. We
defined the task, its description, the corresponding language instruction, and the task progression
metric ratings. Refer to the complete results in Table 15 to 20.

1. Task Name: put_bowl_in_sink
Task Description: The robot picks up the orange bowl next to the sink and place it all the way
into the sink.
Language Description: Put the bowl into the sink.
Task Progression Score Metrics: grasp bowl (0.25), move into the sink (0.4), open gripper (0.7),
drop bowl at target location (1).

26

Table 6: Action token vocabulary: Mapping from discrete bin index (128 to 255) to the actual token
string.

Bin | Action Token Bin | Action Token Bin | Action Token Bin | Action Token

128 \u00dd\u0135 129 \u00d4\u0133 130 \u00d4\u012a 131 \u00ca\u00b6

132 \u00c8\u00b2 133 \u00f0\u0141\u0131\u0129 134 \u00f0\u0141\u0127\u00a2 135 \u00f0\u013f\u013c\u0123

136 \u00f0\u013f\u013b\u013e 137 \u00f0\u013f\u0135\u00b0 138 \u00f0\u013f\u0135\u0140 139 \u00f0\u0132\u00b0\u00bc

140 \u00f0\u0132\u0143\u0135 141 \u00f0\u0132\u00a4\u0136 142 \u00ef\u00a8\u0124 143 \u00ef\u00a7\u00a9

144 \u00ef\u00a6\u0125 145 \u00ef\u00a4\u0128 146 \u00ef\u00a4\u0127 147 \u00ed\u013d\u013e

148 \u00ed\u0137\u00b1 149 \u00ed\u0135\u0143 150 \u00ed\u0135\u0138 151 \u00ed\u0125\u013b

152 \u00ed\u0123\u00bb 153 \u00ec\u00bb\u0123 154 \u00ec\u00b3\u0127 155 \u00ec\u013e\u00be

156 \u00ec\u013d\u00a2 157 \u00eb\u00b1\u0132 158 \u00eb\u00b1\u012d 159 \u00eb\u00a7\u0142

160 \u00eb\u00a4\u0124 161 \u00eb\u0138\u00b0 162 \u00e2\u00a4\u00a6 163 \u00e2\u00a1\u00a2

164 \u00e2\u013c\u0139 165 \u00e2\u013c\u0124 166 \u00e2\u013b\u013b 167 \u00e1\u00bf\u013c

168 \u00e1\u00bf\u0132 169 \u00e1\u00be\u0136 170 \u00e1\u00b6\u0131 171 \u00e1\u00a9\u012d

172 \u00e1\u00a8\u00b8 173 \u00e1\u0142\u00ac 174 \u00e1\u0142\u0124 175 \u00e1\u0136\u0143

176 \u00e1\u012e\u00bd 177 \u00e1\u012e\u0125 178 \u00e1\u012b\u0132 179 \u00e1\u012a\u00be

180 \u00e1\u012a\u00a8 181 \u00e1\u012a\u012c 182 \u00e1\u0128\u00ba 183 \u00e0\u00bd\u0127

184 \u00e0\u00b4\u00b4 185 \u00d5\u0125 186 \u00ca\u0135 187 \u00c9\u013a

188 \u00f0\u0141\u0137\u012d 189 \u00f0\u0141\u0128\u0134 190 \u00f0\u0141\u0127\u00b1 191 \u00ef\u00ae\u0131

192 \u00ed\u0137\u00ae 193 \u00ed\u012c\u0143 194 \u00ec\u00a5\u012b 195 \u00ec\u0142\u00b0

196 \u00ec\u0141\u013b 197 \u00ec\u013f\u00bf 198 \u00ec\u013f\u00a9 199 \u00ec\u0139\u00a4

200 \u00ec\u0131\u00b1 201 \u00ec\u012d\u00b2 202 \u00ec\u012b\u00a1 203 \u00ec\u0126\u0132

204 \u00eb\u00bc\u013f 205 \u00eb\u00bb\u0127 206 \u00eb\u00af\u0133 207 \u00eb\u00a1\u0133

208 \u00eb\u0139\u012f 209 \u00eb\u0136\u012b 210 \u00ea\u00b8\u0133 211 \u00ea\u013b\u012d

212 \u00e3\u00b3\u00ac 213 \u00e2\u013d\u00a4 214 \u00e2\u013c\u00a7 215 \u00e2\u0126\u00ac

216 \u00e1\u00bd\u013f 217 \u00e1\u00bc\u00ae 218 \u00e1\u00ba\u0122 219 \u00e1\u00b8\u00b0

220 \u00e1\u00a1\u012e 221 \u00da\u0130 222 \u00d1\u00a8 223 \u00f0\u0141\u0139\u0123

224 \u00f0\u0141\u0138\u00b6 225 \u00f0\u0141\u0138\u0133 226 \u00f0\u0141\u0138\u0129 227 \u00f0\u0141\u0137\u00b3

228 \u00f0\u0141\u0137\u00a2 229 \u00f0\u0141\u0137\u0142 230 \u00f0\u0141\u0137\u0140 231 \u00f0\u0141\u0137\u013f

232 \u00f0\u0141\u0137\u013e 233 \u00f0\u0141\u0137\u013c 234 \u00f0\u0141\u0137\u0138 235 \u00f0\u0141\u0136\u00a9

236 \u00f0\u0141\u0136\u00a4 237 \u00f0\u0141\u0136\u00a2 238 \u00f0\u0141\u0136\u0135 239 \u00f0\u0141\u0136\u0129

240 \u00f0\u0141\u0136\u0125 241 \u00f0\u0141\u0136\u0124 242 \u00f0\u0141\u0136\u0122 243 \u00f0\u0141\u0135\u00bc

244 \u00f0\u0141\u0135\u00aa 245 \u00f0\u0141\u0135\u0141 246 \u00f0\u0141\u0134\u00ba 247 \u00f0\u0141\u0134\u00b9

248 \u00f0\u0141\u0133\u013f 249 \u00f0\u0141\u0132\u0122 250 \u00f0\u0141\u0131\u00af 251 \u00f0\u0141\u0131\u00a9

252 \u00f0\u0141\u0131\u0134 253 \u00f0\u0141\u0131\u0131 254 \u00f0\u0141\u0130\u00bf 255 \u00f0\u0141\u0130\u0133

2. Task Name: wipe_table
Task Description: The robot grasp onto the table cloth, and move across the surface in one
direction.
Language Description: Wipe the table.
Task Progression Score Metrics: Grasp the towel (0.25), Move in the right direction (0.5),
Complete the wipe (1).

3. Task Name: table_bussing
Task Description: The robot grasp onto the green tea can and place it into the purple bin.
Language Description: Clean the trash into the bin
Task Progression Score Metrics: Grasp onto the can (0.25), Lift up the can (0.5), Move to above
the bin (0.75), Drop the can into the bin (1).

4. Task Name: set_table
Task Description: The right arm grasp onto the banana and place it onto the plate, and the left
arm grasp onto the teapot to pour.
Language Description: Set the table
Task Progression Score Metrics: Put banana on plate (0.25), Grasp onto the teapot (0.75), Pour
the tea (1).

5. Task Name: lift_tray
Task Description: The left and right arm approaches the box and grasp onto it, and lift up the

27

Figure 9: Examples of Single-arm and Bimanual Tasks. We list the observation breakdown to
show how the robot performs each task.

box together.
Language Description: Lift up the box
Task Progression Score Metrics: Left arm grasp onto the tray (0.3), Right arm grasp onto the
tray (0.6), Both arms lift up the tray (1).

6. Task Name: fold_towel
Task Description: The right arm press down on the centre of the towel, while the left arm grasp
onto the towel to fold.
Language Description: Fold the towel
Task Progression Score Metrics: Grasp onto the towel (0.25), Put the towel over the right
location for folding (0.75), Drop the towel so that it is folded (1).

We report details of MOLMOACT’s post-training hyperparameters for this evaluation in Table 10
(single-arm) and Table 11 (bimanual). For all other baseline models, we follow their official model

28

Figure 10: Examples of MOLMOACT DATASET ablation experiments.

Figure 11: Language instruction following. These are the customized scenes curated for open-ended
prompting by users.

and training implementation and use their default configurations. We also make sure that they are all
fully converged. Image examples of each task are shown in Figure 9.

G.4 Evaluation on Generalization in Real-world

We collected a multi-task set that contains the full permutation of the
scene: put_green_can_in_yellow_plate (put the green can into the yel-
low plate), put_green_can_in_blue_plate (put the green can into the blue
plate), put_red_cup_in_yellow_plate (put the red cup into the yellow
plate), and put_red_cup_in_blue_plate (put the red cup into the blue plate),
and put_banana_in_yellow_plate (put the banana into the yellow plate).
put_banana_in_blue_plate (put the banana into the blue plate). And all models are
trained on all tasks under a multi-task setting.

We evaluated generalization across four perturbations and one in-distribution setting on three tasks
drawn from the previous multi-task set: put_green_can_in_yellow_plate (put the green can
into the yellow plate), put_red_cup_in_yellow_plate (put the red cup into the yellow plate), and
put_banana_in_blue_plate (put the banana into the blue plate). The perturbations were: (1)
Language variation – modified instructions to put the green tea into the yellow plate, put the fruit
into the blue plate, and put the red cylinder into the yellow plate; (2) Spatial variation – altered the
positions of objects in each task; (3) Distractors – added unrelated distractor objects to the scene;
and (4) Novel objects – replaced the green can with a sponge, the red cup with a coke can, and the
banana with a bowl.

• Task Name: put_<object>_in_(yellow/blue)_plate
Task Description: The robot first pickup the <object>, then put it into the yellow/blue plate.
Language Description: Put the <object> into the yellow/blue plate

29

LIBERO Task Suite
Parameter Spatial Object Goal Long

Steps 50K 50K 40K 80K

Global Batch Size 128

GPUs (H100s) 64

Time (Hours) 23 23 18 36

GPU Hours 1472 1472 1152 2304

Input Images 1 Third-person + 1 Wrist-mounted

Image Size 256×256 px

DoF 7 (3 Translations + 3 Rotations + 1 Gripper State)

Observation History No (Single-step Inputs)

Use Proprioception No

Action Chunk Size 8 Steps (Predict 8; Execute All 8 Open-loop)

Trainable Params 97 M LoRA adapter

Image Augmentations import torchvision.transforms as T
transform = T.Compose([

T.RandomResizedCrop(size=(height, width), scale=(0.9, 0.9),
ratio=(width/height, width/height)),

T.Resize((height, width)),
T.ColorJitter(

brightness=0.2,
contrast=(0.8, 1.2),
saturation=(0.8, 1.2),
hue=0.05

),
])

Table 7: MOLMOACT’s Post-training Hyperparameters for LIBERO. We specify the hyperpa-
rameters for MOLMOACT post-training. Note that we conduct all our post-training experiments on
MOLMOACT-7B-D, with a fixed learning rate of 5e-4, LoRA rank of 32, LoRA alpha of 16, LoRA
dropout of 0, and no LoRA bias. Note that for LIBERO-Goal, we train the model with 50K steps, but
it reaches better performance at 40K steps.

Task Progression Score Metrics: Move towards the correct <object> (0.25). Pick up the correct
<object> (0.5). Move towards the correct plate (0.75). Put the correct <object> into the correct
plate (1).

We report details of MOLMOACT’s post-training hyperparameters for this evaluation in Table 12. For
all other baseline models, we follow their official model and training implementation and use their
default configurations. We also make sure that they are all fully converged. The full details of this
evaluation are listed in Table 21.

G.5 Evaluation on the Effect of MOLMOACT DATASET for MOLMOACT Mid-training

To evaluate the effectiveness of mid-training with the MOLMOACT DATASET, we curated three
real-world tasks: close_lid, rotate_pot, and pour_tea. For each task, we collected 50 demon-
strations and pre-marked object locations to ensure repeatability in evaluating MOLMOACT, MOL-
MOACT without the MOLMOACT DATASET, OpenVLA, and π0-FAST. We conducted 10 evaluation
trials per task for each model. Refer to the complete results in Table 22

1. Task Name: close_lid
Task Description: The robot goes to the back of the lid, closes its gripper and push the lid to
close.
Language Description: Close the lid

30

Task Progression Score Metrics: Move the lid towards the closing direction (0.5). Close the lid
(1).

2. Task Name: rotate_pot
Task Description: The robot goes to a target position to the handle, and rotate it by 90 degree.
Language Description: Rotate the pot
Task Progression Score Metrics: Go target position of pot handle (0.3). Rotate the pot by 45
degree (0.6). Close the 90 degree rotation (1).

3. Task Name: pour_tea
Task Description: The robot grasp onto the teapot handle, and lift it up to above the cup to pour.
Language Description: Pour tea into cup
Task Progression Score Metrics: Grasp onto the teapot (0.5). Move the teapot on top of cup
(0.8). Pour tea into cup (1).

We report details of MOLMOACT’s post-training hyperparameters for this evaluation in Table 13. For
all other baseline models, we follow their official model and training implementation and use their
default configurations. We also make sure that they are all fully converged. Image examples of each
task are shown in Figure 10.

G.6 Evaluation of MOLMOACT on Instruction-following

For the evaluation of language-instruction following, we curated five customized scenes using
SimplerEnv [52] and asked participants to provide open-ended prompts for each scene. After filtering,
we obtained 29 prompts in total, which were executed by MOLMOACT, OpenVLA, and SpatialVLA
for 200 steps to generate robot rollouts. These rollouts were then rated by 100 participants in an
arena-style interface. Images of different scenes are shown in Figure 11, and language prompts are
shown in Table 8.

G.7 Evaluation of MOLMOACT on Action Steerability

We curated the task pick_up_bowl, featuring one dirty and one clean bowl. As shown in Figure 7,
we built a web interface that enables users to modify the language instruction or sketch five points on
the image for visual trace steering at test time, which are then passed to the model to generate actions.
We evaluate task progression for this task based on: correct direction of the target bowel (0.5), grasp
onto the correct bowl (0.85), lift up the bowl (1).

Unlike the usual straightforward way of collecting tele-operated real-world demonstrations, where we
control the robot to directly complete the task, we collected half of the number of demonstrations in
the regular way and the other half exploring alternative paths towards the same target conditioned on
the language. Thus, in total, we have 50 demonstrations picking up the dirty bowl, 50 demonstrations
picking up the clean bowl, 50 demonstrations picking up the dirty bowl while exploring other paths,
and 50 demonstrations picking up the clean bowl while exploring other paths. We believe that this
helps the model to learn more about how visual traces correlate with physical actions.

During test time, we collected open-ended instructions from 10 participants to steer the robot through
language. We restrict the variation of the open-ended instructions only to verbs, nouns, or adjectives.
The collected and used instructions are shown in Table 9.

We report details of MOLMOACT’s post-training hyperparameters for this evaluation in Table 14. For
all other baseline models, we follow their official model and training implementation and use their
default configurations. We also make sure that they are all fully converged. All results are reported
Table 23.

31

"Load the plate." "Clean the toilet."

"Keep the toy car." "Open the microwave."

Figure 12: Examples and verb distribution in the MOLMOACT DATASET. Left: Sample robot
manipulation tasks paired with natural language instructions, spanning diverse household activities
such as closing a laptop, loading a plate, cleaning a toilet, and opening a microwave. Right: Log-scale
distribution of the top verbs in the dataset, showing a long-tail pattern with “put,” “turn,” and “close”
as the most frequent actions.

H Data Details

H.1 MOLMOACT DATASET

MOLMOACT DATASET has two external camera views and a single wrist camera view. In the home
environment data, the camera view configuration may vary between tasks, whereas for the tabletop
data it remains the same for all tasks. For each task, we first rank the two external camera views based
on scene clarity (i.e., how well the robot and objects are visible) and whether the view is occluded by
the robot during task execution. Based on this ranking, we label them as the primary and secondary
camera views. All home environment data is recorded at 15 Hz, while all tabletop data is recorded at
20 Hz. The tabletop data additionally includes extrinsic and intrinsic camera calibration matrices for
both external cameras available on . We list details of the tasks we collected for MOLMOACT Dataset
in Table 24 and 25.

I Data Examples

This section include randomly selected examples from MOLMOACT’s Action Reasoning Data and
Multimodal web data used in pre-training, as well as MOLMOACT DATASET used in mid-training,
and demonstrations collected for post-training. Prompts are shown in bold and Visual Reasoning
Trace are annotated with a yellow line.

• Action Reasoning Data - Figure 13
• Auxiliary Visual Reasoning Trace - Figure 14
• Auxiliary Depth Perception Tokens - Figure 15
• Trajectory-conditioned Action Data - Figure 16
• Multimodal Web Data - Figure 17
• MOLMOACT DATASET (Home Environment) - Figure 18
• MOLMOACT DATASET (Tabletop) - Figure 19
• Post-Training Single Arm Franka - Figure 20
• Post-Training Bimanual Franka - Figure 21
• Post-Training Rainbow - Figure 22

32

Figure 13: Randomly selected examples from Action Reasoning Data used in the pre-training stage.

33

Scene Prompts

Scene 1
• Pick up the green cube
• Pick up the red cube
• Pick up the blue cube
• Put the green cube on the blue cube
• Put the green cube on the red cube
• Put the blue cube onto the red cube
• Put the blue cube onto the green cube
• Put the red cube onto the green cube
• Put the red cube onto the blue cube
• Put the green cube onto the blue cube and then the red cube onto the green

cube
• Move the blue cube next to the green cube

Scene 2
• Pick up the apple
• Pick up the spoon
• Put the apple onto the plate
• Put the spoon onto the plate
• Put the spoon next to the plate
• Move the spoon to the right of the apple
• Put the apple onto the plate and move the spoon nearer to the plate
• Put the blue cube onto the green cube
• Put the red cube onto the green cube
• Put the red cube onto the blue cube
• Put the green cube onto the blue cube and then the red cube onto the green

cube

Scene 3
• Put the coke can onto the former president’s image
• Put the coke can on the image of Obama
• Move the coke can to the image of Taylor Swift

Scene 4
• Pick up the cup
• Pick up the marker
• Put the marker into the mug
• Pick up the mug by the handle

Scene 5
• Pick up the bowl
• Pick up the Red Bull
• Put the Red Bull onto the plate
• Put the Red Bull in the red bowl

Table 8: Open-ended prompts provided by users grouped by scene for language instruction following.

34

Instruction

1 pick up the orange bowl

2 lift up the dirty bowl

3 pick up the bowl on the left

4 pick up the empty bowl

5 pick up the dirty container

6 pick up the bowl with object inside

7 pick up the left bowl

8 pick up the bowl that is pink

9 pick up the bowl that is pink

10 pick up the bowl further

11 pick up the bowl nearer to the camera

12 pick up the right bowl

13 pick up the bowl without tissue

14 pick up the bowl with tissue

15 pick up the bowl that is dirty
Table 9: Open-ended Language Instructions. These are the collected open-ended instructions from
10 participants, where they were only allowed to make changes to verbs, nouns, or adjectives from
the ground-truth instructions (i.e, "<verb> the <adj.> <noun.>").

Figure 14: Randomly selected examples from Auxiliary Visual Reasoning Trace data used in the
pre-training stage.

35

Task Name
Parameter put_bowl_in_sink wipe_table table_bussing

Steps 9K 7K 5K

Global Batch Size 64

GPUs (H100s) 32

Time (Hours) 5 4 3

GPU Hours 160 128 96

Multi-task Training No

Input Images 1 Third-person + 1 Wrist-mounted

Image Size 640×320 px (Resized to 320×240 px)

DoF 7 (3 Translations + 3 Rotations + 1 Gripper State)

Observation History No (Single-step Inputs)

Use Proprioception No

Action Chunk Size 8 Steps (Naive Action Chunking with Close-loop Prediction)

Trainable Params 97M LoRA adapter

Image Augmentations import torchvision.transforms as T
transform = T.Compose([

T.RandomResizedCrop(size=(height, width),
scale=(0.9, 0.9), ratio=(width/height,
width/height)),

T.Resize((height, width)),
T.ColorJitter(

brightness=0.2,
contrast=(0.8, 1.2),
saturation=(0.8, 1.2),
hue=0.05

),
])

Table 10: MOLMOACT’s Post-training Hyperparameters for In-distribution Single-arm Tasks.
We specify the hyperparameters for MOLMOACT post-training. Note that we conduct all our post-
training experiments on MOLMOACT-7B-D, with a fixed learning rate of 5e-4, LoRA rank of 32,
LoRA alpha of 16, LoRA dropout of 0, and no LoRA bias.

36

Task Name
Parameter set_table lift_tray fold_towel

Steps 9K 6K 7K

Global Batch Size 64

GPUs (H100s) 32

Time (Hours) 5 3 4

GPU Hours 160 96 128

Multi-task Training No

Input Images 1 Third-person + 2 Wrist-mounted

Image Size 640×320 px (Resized to 320×240 px)

DoF 14 (6 Translations + 6 Rotations + 2 Gripper States)

Observation History No (Single-step Inputs)

Use Proprioception No

Action Chunk Size 8 Steps (Naive Action Chunking with Close-loop Prediction)

Trainable Params 97M LoRA adapter

Image Augmentations import torchvision.transforms as T
transform = T.Compose([

T.RandomResizedCrop(size=(height, width),
scale=(0.9, 0.9), ratio=(width/height,
width/height)),

T.Resize((height, width)),
T.ColorJitter(

brightness=0.2,
contrast=(0.8, 1.2),
saturation=(0.8, 1.2),
hue=0.05

),
])

Table 11: MOLMOACT’s Post-training Hyperparameters for In-distribution Bimanual Tasks.
We specify the hyperparameters for MOLMOACT post-training. Note that we conduct all our post-
training experiments on MOLMOACT-7B-D, with a fixed learning rate of 5e-4, LoRA rank of 32,
LoRA alpha of 16, LoRA dropout of 0, and no LoRA bias.

37

Task Name
Parameter put_(green_can/red_cup/banana)_in_(yellow/blue)_plate

Steps 44K

Global Batch Size 64

GPUs (H100s) 32

Time (Hours) 23

GPU Hours 736

Multi-task Training Yes

Input Images 1 Third-person + 1 Wrist-mounted

Image Size 640×320 px (Resized to 320×240 px)

DoF 7 (3 Translations + 3 Rotations + 1 Gripper State)

Observation History No (Single-step Inputs)

Use Proprioception No

Action Chunk Size 8 Steps (Naive Action Chunking with Close-loop Prediction)

Trainable Params 97M LoRA adapter

Image Augmentations import torchvision.transforms as T
transform = T.Compose([

T.RandomResizedCrop(size=(height, width),
scale=(0.9, 0.9), ratio=(width/height,
width/height)),

T.Resize((height, width)),
T.ColorJitter(

brightness=0.2,
contrast=(0.8, 1.2),
saturation=(0.8, 1.2),
hue=0.05

),
])

Table 12: MOLMOACT’s Post-training Hyperparameters for Out-of-distribution Single-arm
Tasks. We specify the hyperparameters for MOLMOACT post-training. Note that we conduct all our
post-training experiments on MOLMOACT-7B-D, with a fixed learning rate of 5e-4, LoRA rank of
32, LoRA alpha of 16, LoRA dropout of 0, and no LoRA bias.

38

Task Name
Parameter close_lip rotate_pot pour_tea

Steps 8K 6K 15K

Global Batch Size 64

GPUs (H100s) 32

Time (Hours) 4 3 8

GPU Hours 128 96 256

Multi-task Training No

Input Images 1 Third-person + 1 Wrist-mounted

Image Size 640×320 px (Resized to 320×240 px)

DoF 7 (3 Translations + 3 Rotations + 1 Gripper State)

Observation History No (Single-step Inputs)

Use Proprioception No

Action Chunk Size 8 Steps (Naive Action Chunking with Close-loop Prediction)

Trainable Params 97M LoRA adapter

Image Augmentations import torchvision.transforms as T
transform = T.Compose([

T.RandomResizedCrop(size=(height, width),
scale=(0.9, 0.9), ratio=(width/height,
width/height)),

T.Resize((height, width)),
T.ColorJitter(

brightness=0.2,
contrast=(0.8, 1.2),
saturation=(0.8, 1.2),
hue=0.05

),
])

Table 13: MOLMOACT’s Post-training Hyperparameters for Evaluation on MOLMOACT
DATASET. We specify the hyperparameters for MOLMOACT post-training. Note that we con-
duct all our post-training experiments on MOLMOACT-7B-D, with a fixed learning rate of 5e-4,
LoRA rank of 32, LoRA alpha of 16, LoRA dropout of 0, and no LoRA bias.

39

Task Name
Parameter pick_up_bowl

Steps 11K

Global Batch Size 64

GPUs (H100s) 32

Time (Hours) 6

GPU Hours 192

Multi-task Training No

Input Images 1 Third-person + 1 Wrist-mounted

Image Size 640×320 px (Resized to 320×240 px)

DoF 7 (3 Translations + 3 Rotations + 1 Gripper State)

Observation History No (Single-step Inputs)

Use Proprioception No

Action Chunk Size 8 Steps (Naive Action Chunking with Close-loop Prediction)

Trainable Params 97M LoRA adapter

Image Augmentations import torchvision.transforms as T
transform = T.Compose([

T.RandomResizedCrop(size=(height, width),
scale=(0.9, 0.9), ratio=(width/height,
width/height)),

T.Resize((height, width)),
T.ColorJitter(

brightness=0.2,
contrast=(0.8, 1.2),
saturation=(0.8, 1.2),
hue=0.05

),
])

Table 14: MOLMOACT’s Post-training Hyperparameters for Steerability Evaluation. We specify
the hyperparameters for MOLMOACT post-training. Note that we conduct all our post-training
experiments on MOLMOACT-7B-D, with a fixed learning rate of 5e-4, LoRA rank of 32, LoRA alpha
of 16, LoRA dropout of 0, and no LoRA bias.

40

Task Trial MolmoAct π0-FAST OpenVLA

Fold Towel

0 0.25 0.25 0.25

1 1.00 0.50 0.25

2 1.00 0.25 0.25

3 1.00 1.00 0.50

4 1.00 0.25 0.25

5 1.00 0.25 0.25

6 1.00 0.25 1.00

7 1.00 0.25 0.25

8 0.25 0.25 0.25

9 1.00 1.00 0.25

10 1.00 1.00 0.25

11 1.00 1.00 0.25

12 1.00 1.00 0.25

13 0.75 0.25 0.25

14 0.25 0.25 0.25

15 0.25 0.00 0.25

16 1.00 0.25 0.25

17 1.00 1.00 0.25

18 0.25 0.50 0.25

19 0.75 1.00 0.25

20 0.25 0.25 0.25

21 1.00 0.25 0.25

22 1.00 0.25 0.25

23 1.00 0.75 0.25

24 1.00 1.00 1.00

Average 0.80 0.52 0.32
Table 15: Detailed per-trial performance for Fold Towel for Bimanual tasks. Each row shows the task
progress score for a specific trial.

41

Task Trial MolmoAct π0-FAST OpenVLA

Lift Tray

0 1.00 1.00 1.00

1 1.00 0.00 1.00

2 1.00 0.60 1.00

3 1.00 1.00 1.00

4 1.00 0.60 1.00

5 1.00 0.00 1.00

6 1.00 1.00 1.00

7 1.00 1.00 1.00

8 1.00 1.00 1.00

9 1.00 1.00 1.00

10 1.00 1.00 1.00

11 1.00 1.00 1.00

12 1.00 1.00 1.00

13 1.00 1.00 1.00

14 1.00 1.00 1.00

15 1.00 0.00 1.00

16 1.00 1.00 1.00

17 1.00 1.00 1.00

18 1.00 0.00 1.00

19 1.00 1.00 1.00

20 1.00 1.00 1.00

21 1.00 0.00 1.00

22 1.00 0.30 1.00

23 1.00 1.00 1.00

24 1.00 1.00 1.00

Average 1.00 0.74 1.00
Table 16: Detailed per-trial performance for Lift Tray for Bimanual tasks. Each row shows the task
progress score for a specific trial.

42

Task Trial MolmoAct π0-FAST OpenVLA

Set up Table

0 1.00 0.50 0.25

1 1.00 0.00 0.25

2 0.25 0.25 0.00

3 1.00 0.50 0.00

4 1.00 0.25 0.25

5 1.00 0.25 0.75

6 1.00 0.00 0.25

7 1.00 0.25 0.25

8 0.75 0.00 0.25

9 0.25 0.00 1.00

10 1.00 0.25 0.25

11 0.75 0.25 0.25

12 1.00 0.75 0.25

13 0.75 0.25 0.25

14 1.00 0.25 0.25

15 0.25 0.50 1.00

16 0.00 0.25 0.25

17 1.00 0.25 0.25

18 1.00 0.00 0.25

19 0.25 0.50 0.25

20 1.00 0.00 0.25

21 1.00 0.50 0.00

22 0.50 0.00 0.25

23 0.50 0.00 0.25

24 1.00 0.25 0.25

Average 0.77 0.24 0.30
Table 17: Detailed per-trial performance for Set up Table for Bimanual tasks. Each row shows the
task progress score for a specific trial.

43

Task Trial MolmoAct π0-FAST OpenVLA

Put bowl in the sink

0 1.00 1.00 0.25

1 1.00 1.00 0.25

2 1.00 0.00 0.25

3 0.25 1.00 0.25

4 1.00 1.00 0.25

5 1.00 0.40 0.25

6 1.00 1.00 0.25

7 0.25 0.25 0.25

8 1.00 0.25 0.25

9 0.40 0.40 0.25

10 1.00 1.00 0.25

11 0.25 1.00 0.25

12 1.00 1.00 0.25

13 1.00 0.25 0.25

14 1.00 0.25 0.25

15 1.00 0.75 0.25

16 1.00 1.00 0.25

17 1.00 1.00 0.25

18 0.25 0.40 0.25

19 1.00 0.75 0.25

20 0.25 0.25 0.25

21 1.00 1.00 0.25

22 1.00 1.00 0.25

23 1.00 1.00 0.25

24 1.00 0.75 0.25

Average 0.826 0.708 0.25
Table 18: Detailed per-trial performance for Put bowl in the sink for Single arm tasks. Each row
shows the task progress score for a specific trial.

44

Task Trial MolmoAct π0-FAST OpenVLA

Wipe Table

0 1.00 1.00 0.25

1 1.00 0.50 0.25

2 1.00 1.00 0.25

3 1.00 1.00 0.25

4 1.00 1.00 0.25

5 1.00 1.00 0.25

6 1.00 0.25 0.25

7 1.00 1.00 0.25

8 1.00 1.00 0.25

9 1.00 1.00 0.25

10 1.00 1.00 0.25

11 1.00 1.00 0.25

12 1.00 1.00 0.25

13 1.00 0.50 0.25

14 1.00 1.00 0.25

15 1.00 1.00 0.25

16 1.00 1.00 0.25

17 1.00 1.00 0.25

18 1.00 1.00 0.25

19 1.00 1.00 1.00

20 1.00 1.00 0.25

21 1.00 1.00 0.25

22 1.00 1.00 0.25

23 1.00 1.00 0.25

24 1.00 1.00 0.25

Average 1.000 0.817 0.265
Table 19: Detailed per-trial performance for Wipe Table for Single arm tasks. Each row shows the
task progress score for a specific trial.

45

Task Trial MolmoAct π0-FAST OpenVLA

Clean the table

0 1.00 1.00 0.50

1 1.00 1.00 1.00

2 0.50 1.00 0.50

3 1.00 0.25 0.50

4 1.00 0.75 0.00

5 0.50 1.00 0.75

6 1.00 0.75 0.50

7 1.00 0.50 0.50

8 1.00 1.00 0.50

9 1.00 1.00 0.75

10 1.00 1.00 0.50

11 1.00 1.00 0.75

12 0.50 0.25 0.25

13 1.00 1.00 0.50

14 0.50 1.00 1.00

15 0.50 1.00 0.75

16 1.00 0.25 0.75

17 1.00 1.00 0.25

18 1.00 1.00 0.25

19 0.50 0.50 0.25

20 0.50 1.00 0.25

21 1.00 1.00 1.00

22 1.00 1.00 0.25

23 1.00 1.00 0.25

24 0.50 1.00 0.75

Average 0.84 0.85 0.53
Table 20: Detailed per-trial performance for Clean the table for Single arm tasks. Each row shows
the task progress score for a specific trial.

Category Task OpenVLA π0-FAST MolmoAct

In Distribution put the green can into the yellow plate 0.375 0.8125 1.0

In Distribution put the red cup into the yellow plate 0.5 0.5 0.625

In Distribution put the banana into the blue plate 0.25 0.625 0.75

Language Variation put the green tea into the yellow plate 0.375 0.8125 0.625

Language Variatiion put the fruit into the blue plate 0.0 0.0625 0.625

Language Variatiion put the red cylinder into the yellow plate 0.3125 0.0 0.75

Spatial Variation put the green can into the yellow plate 0.4375 0.5625 0.625

Spatial Variation put the red cup into the yellow plate 0.5 0.375 0.4375

Spatial Variation put the banana into the blue plate 0.25 0.4375 0.5625

Distractor (Coke Can, Sponge) put the green can into the yellow plate 0.125 0.875 0.9375

Distractor (Coke Can, Sponge) put the red cup into the yellow plate 0.5 0.3125 0.6875

Distractor (Coke Can, Sponge) put the banana into the blue plate 0.25 0.4375 0.625

Novel Object put the sponge into the yellow plate 0.25 0.0 0.875

Novel Object put the coke can into the yellow plate 0.375 0.5625 0.625

Novel Object put the bowl into the yellow plate 0.25 0.3125 0.4375

Table 21: Detailed results of real-world evaluation. The first column indicates the variation category
while the second column presents the language instruction. For each task, the detailed task progress
score used to evaluate each model are detailed at section G.4

46

Task Trial MolmoAct MolmoAct (W/o Mol-
moAct Data)

π0-FAST OpenVLA

Pour Tea

0 0.8 0.5 0.5 1.0

1 0.8 0.8 0.0 0.5

2 0.5 0.5 0.0 0.0

3 1.0 1.0 0.0 0.5

4 1.0 1.0 0.8 0.5

5 0.8 0.5 1.0 0.5

6 1.0 1.0 1.0 0.5

7 0.5 0.5 1.0 0.0

8 0.5 1.0 0.0 0.0

9 1.0 0.5 0.0 0.5

10 0.8 0.8 0.0 0.5

Close Lid

0 0.5 0.0 0.5 0.0

1 0.5 0.5 0.0 0.5

2 0.5 0.0 0.5 1.0

3 0.5 0.5 0.5 0.5

4 0.5 0.0 1.0 0.0

5 1.0 0.5 0.5 0.0

6 0.5 0.0 0.0 0.5

7 0.5 1.0 0.0 0.0

8 0.5 1.0 1.0 0.0

9 0.0 1.0 0.5 0.5

10 0.5 0.0 0.5 0.5

Rotate Pot

0 1.0 1.0 0.6 1.0

1 0.6 1.0 1.0 1.0

2 1.0 1.0 0.0 1.0

3 1.0 1.0 1.0 1.0

4 1.0 1.0 0.6 1.0

5 1.0 1.0 1.0 1.0

6 1.0 1.0 0.6 1.0

7 0.6 1.0 1.0 1.0

8 1.0 1.0 1.0 1.0

9 1.0 1.0 1.0 1.0

10 1.0 0.0 0.6 1.0

Table 22: Detailed per-trial performance for three tasks (Pour Tea, Close Lid, and Rotate Pot). Each
row shows the task progress score for a specific trial.

47

Task Task Detail Episode Open instruction
(MolmoAct)

Open instruction (π0-
FAST)

Visual Trace
(MolmoAct)

pick up the orange bowl steer from dirty to clean 0 0.00 0.50 1.00

lift up the dirty bowl steer from clean to dirty 1 1.00 0.00 1.00

pick up the bowl on the left steer from clean to dirty 2 0.00 0.00 1.00

pick up the empty bowl steer from dirty to clean 3 0.85 0.50 0.85

pick up the dirty container steer from clean to dirty 4 0.50 0.00 1.00

pick up the bowl with object in-
side

steer from clean to dirty 5 0.00 0.00 0.50

pick up the left bowl steer from clean to dirty 6 0.00 0.50 0.50

pick up the bowl that is pink steer from clean to dirty 7 0.00 0.00 0.00

pick up the bowl that is pink steer from clean to dirty 8 0.50 0.00 1.00

pick up the bowl further steer from dirty to clean 9 0.85 0.50 0.85

pick up the bowl nearer to the
camera

steer from dirty to clean 10 0.50 0.00 1.00

pick up the right bowl steer from dirty to clean 11 0.50 0.00 0.50

pick up the bowl without tissue steer from clean to dirty 12 0.50 0.00 0.50

pick up the bowl with tissue steer from clean to dirty 13 0.00 0.00 0.50

pick up the bowl that is dirty steer from clean to dirty 14 1.00 0.00 1.00

Table 23: Per-episode evaluation results for bowl-picking tasks with different steering conditions.
Scores indicate task progression for each model configuration.

Figure 15: Randomly selected examples from Auxiliary Depth Perception Tokens data used in the
pre-training stage.

48

Scene Task Language Instruction Object(s)

Kitchen put_fork_sink put the fork in the sink Fork (2 types)

Kitchen put_spoon_sink put the spoon in the sink Spoon (2 types)

Kitchen put_bowl_sink put the bowl in the sink Bowl (2 types)

Kitchen clean_spill Clean the spill Sponge

Kitchen wipe_counter Wipe the counter Towels

Kitchen put_plate_in_dishwasher Put the plate in the dishwasher Plate

Kitchen put_fork_in_dishwasher put the fork in the dishwasher Fork

Kitchen put_spoon_in_dishwasher put the spoon in the dishwasher Spoon

Kitchen uncover_food_container Uncover the lid of the food container Large Container

Kitchen uncover_container_lid Uncover the lid of the food container Small Container

Kitchen put tongs in the holder Put the tongs back in the holder Tongs

Kitchen press_toaster Turn on the toaster Toaster

Kitchen close_the_microwave Close the microwave Microwave

Kitchen put_spoon_into_plate Put the spoon on the plate Spoon

Kitchen put_fork_into_plate Put the fork on the plate Fork

Kitchen put_apple_into_container Put apple in the food container Apple(red and green)

Kitchen put_cereal_into_container Put the cereal in the food container Cereal(2 types)

Kitchen put_protein_bar_into_containerPut the protein bar in the food container Protein Bar(2-3 types)

Kitchen put_chips_into_container Put the chip bag in the food container chip bag(2-3 types)

Kitchen turn_off_light_kitchen Turn off the light Light switch

Kitchen close_drawer close the drawer Drawer

Kitchen turn_on_faucet Turn on the faucet Faucet

Kitchen close_oven Close the oven Oven

Kitchen open_the_oven Open the oven Oven

Kitchen turn_on_stove Turn on the Stove Stove

Kitchen turn_off_stove Turn off the Stove Stove

Kitchen unload_the_dishwasher_mug Unload the mug from the dish wisher Mugs

Kitchen put_snacks_in_container Put the Snacks in the Containers Snacks

Bedroom hang_the_cap hang cap Cap

Bathroom wipe_sink_bathroom Wipe the sink towels(gray and brown towels)

Bathroom press_hand_sanitizer Press sanitizer sanitizer(high and low)

Bathroom clean_toilet Clean the toilet Toliet brush

Bathroom turn_on_hot_water Turn on hot water Faucet

Bathroom turn_on_cold_water Turn on the cold water Faucet

Bathroom turn_off_hot_water Turn off the hot water Faucet

Bathroom turn_off_cold_water Turn off the cold water Faucet

Bathroom throw_tissue_bathroom_left Throw the tissue Tissue

Bathroom throw_tissue_bathroom_right Throw the tissue Tissue

Bathroom flush_toilet Flush the toliet Toliet brush

Bedroom put_markers_hack_holder Put the markers back in the holder Pen holder 1(shape)

Bedroom put_markers_hack_holder Put the markers back in the holder Pen holder 2(shape)

Bedroom hang_headphone hand the headphone Headphone

Bedroom throw_bottle_bedroom Throw the water bottle in the trash bin Bottle

Bedroom throw_can_bedroom Throw the can in the trash bin Can(2 types)

Bedroom close_laptop_lid_bedroom Close the laptop lid Laptop

Livingroom throw_can_livingroom Throw the can in the trash bin Can(2 types)

Livingroom throw_plastic_bottle_livingroomThrow the plastic bottle in the trash bin Bottle

Livingroom throw_chip_bag_livingroom Throw the chip bag in the trash bin Chip bag(2-3 types)

Livingroom throw_tissue_livingroom Throw the tissue in the trash bin Tissue

Livingroom put_apple_tray_livingroom Put the apple in the tray Apple

Livingroom put_tangerine_livingroom Put the tangerine in the tray Tangerine

Livingroom put_banana_tray_livingroom Put the banana in the tray Banana

Livingroom arrange_pillow Arrange pillows Pillow

Livingroom shelf_book Shelf books Books
Table 24: Tasks details of MOLMOACT DATASET Home Environemnt including scene, task name,
language instruction and all objects used for data collection.49

Scene Task Language Instruction Object(s)

Tabletop stand_water_bottle stand the water bottle Water bottle(2 types)

Tabletop flip_mug flip mug Mug (2 colors)

Tabletop close_top_drawer close the top drawer Drawer

Tabletop close_box close the box Box

Tabletop close_laptop close the laptop Laptop

Tabletop knock_water_bottle Knock water bottle Bottle

Tabletop stand_sanitizer Stand sanitizer Sanitizer

Tabletop knock_sanitizer Knock Sanitizer Sanitizer

Tabletop knock_dish_soap Knock dish soap Dish Soap

Tabletop fold_towel Fold Towel Towel

Tabletop unfold_towel Unfold Towel Towel

Tabletop fold_shorts fold shorts Shorts

Tabletop unfold_shorts Unfold shorts Shorts
Table 25: Tasks details of MOLMOACT DATASET Tabletop Environemnt including scene, task name,
language instruction and all objects used for data collection.

Figure 16: Randomly selected examples from Trajectory-conditioned Action Data used in the
pre-training stage.

Figure 17: Randomly selected examples from Multimodal Web Data used in the pre-training stage.

50

Figure 18: Randomly selected examples from MOLMOACT DATASET (Home Environment) used
in the mid-training stage.

51

Figure 19: Randomly selected examples from MOLMOACT DATASET (Tabletop Environment)
used in the mid-training stage.

52

Figure 20: Randomly selected examples from Single Arm Franka demonstrations used in the
post-training stage.

53

Figure 21: Randomly selected examples from Bimanual Franka demonstrations used in the post-
training stage.

54

Figure 22: Randomly selected examples from Rainbow demonstrations used in the post-training
stage.

55

	Introduction
	MolmoAct
	Vision Language Model
	Vision-Language-Action Model
	Action Reasoning Model

	Data Curation and Generation
	Action Reasoning Data
	MolmoAct Dataset
	Multimodal Web Data

	Training Recipe
	Pre-training
	Mid-training
	Post-training

	Experimental Evaluation
	MolmoAct After Pre-training
	Fast Adaptation of MolmoAct in Post-training

	Conclusion
	Limitations and Potential Solutions
	Related Work
	Generalist robot manipulation policies
	Robot reasoning and planning with language
	Embodied reasoning for robotic manipulation

	Action Steerability via Visual Reasoning Trace
	Experimental Evaluation
	Effectiveness of MolmoAct in Out-of-Distribution Generalization
	Effect of the MolmoAct Dataset on MolmoAct Performance
	Instruction Following of MolmoAct
	Steerability of MolmoAct

	Model Details
	Backbone Overview
	Image Encoding and Cropping
	Vision–language Connector
	Arranging Vision Tokens
	Multi-image Inputs
	Full Hyperparameters

	Training Details
	Implementation
	GPU Cluster

	Action Tokenization
	Evaluation Details
	Evaluation on SimplerEnv (Google Robot)
	Evaluation on LIBERO
	Evaluation on Real-world Post-training
	Evaluation on Generalization in Real-world
	Evaluation on the Effect of MolmoAct Dataset for MolmoAct Mid-training
	Evaluation of MolmoAct on Instruction-following
	Evaluation of MolmoAct on Action Steerability

	Data Details
	MolmoAct Dataset

	Data Examples

