

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ALICE: AN INTERPRETABLE NEURAL ARCHITECTURE FOR GENERALIZATION IN SUBSTITUTION CIPHERS

Anonymous authors

Paper under double-blind review

ABSTRACT

We present cryptogram solving as an ideal testbed for studying neural network reasoning and generalization; models must decrypt text encoded with substitution ciphers, choosing from $26!$ possible mappings without explicit access to the cipher. We develop ALICE (an Architecture for Learning Interpretable Cryptogram dEcipherment), a simple encoder-only Transformer that sets a new state-of-the-art for both accuracy and speed on this decryption problem. Surprisingly, ALICE generalizes to unseen ciphers after training on only ~ 1500 unique ciphers, a minute fraction (3.7×10^{-24}) of the possible cipher space. To enhance interpretability, we introduce a novel bijective decoding head that explicitly models permutations via the Gumbel-Sinkhorn method, enabling direct extraction of learned cipher mappings. Through early exit and probing experiments, we reveal how ALICE progressively refines its predictions in a way that appears to mirror common human strategies—early layers place greater emphasis on letter frequencies, while later layers form word-level structures. Our architectural innovations and analysis methods are applicable beyond cryptograms and offer new insights into neural network generalization and interpretability. Code is released for reproducibility at <https://anonymous.4open.science/r/alice-4D23/>.

1 INTRODUCTION

A cryptogram is a type of puzzle in which text is encrypted using a substitution cipher, and the user’s task is to recover the original plaintext by inferring the cipher used for the encryption. Users typically solve cryptograms based on prior knowledge about language letter frequency distributions and common words. Originally developed for real encryption purposes, they are now popular in newspapers and puzzle books for entertainment purposes due to their simplicity. This simplicity, however, provides a unique testbed for testing and understanding generalization and reasoning in neural networks.

1.1 CRYPTOGRAM TASK

In a one-to-one monoalphabetic substitution cipher, each letter in a fixed alphabet is mapped to a unique substitute character; this cipher represents a bijective mapping over the alphabet. While other ciphers exist (e.g., Vigenère cipher, Playfair cipher), we focus here on one-to-one monoalphabetic substitution ciphers, as the problem space is extremely large but remains structurally simple to interpret. We hereafter mean one-to-one monoalphabetic substitution cipher when we say “cipher”, unless otherwise specified.

More formally, let Σ be a finite alphabet of size V representing allowable characters (e.g., 26 for the English alphabet). Then S_V is the symmetric group on Σ containing all bijections from Σ to itself. Importantly, the cardinality of S_V is $|S_V| = V!$. Each cipher mapping $f : \Sigma \rightarrow \Sigma$ is a permutation for Σ , with $f \in S_V$. Let $\mathbf{x} = (x_1, x_2, \dots, x_L) \in \Sigma^L$ be a plaintext sequence of characters (i.e., in English) and $\mathbf{c} = (c_1, c_2, \dots, c_L) \in \Sigma^L$, with $c_i = f(x_i), i \in \{1, \dots, L\}$ be the corresponding ciphertext sequence.

The goal is to develop a model that is trained on example pairs of (\mathbf{c}, \mathbf{x}) , but is never given access to the underlying cipher f . At inference time, the model is tasked with decrypting some ciphertext

054 **c** that has been encrypted under an unseen cipher f . That is, the model needs to implicitly infer the
 055 inverse cipher mapping f^{-1} and perform $\hat{x} = f^{-1}(\mathbf{c})$.
 056

057 This task is combinatorially complex and requires reasoning over a space with $V!$ possible ciphers.
 058 Because of the enormous number of possible f , a model that simply memorizes training examples
 059 will fail when applied to the decryption of unseen ciphers. Instead, a model that performs well must
 060 learn a general algorithm for decryption that will work under any cipher.
 061

062 1.2 RELATED WORK

063 Cryptogram decryption is a long-studied problem, traditionally tackled through letter- and word-
 064 frequency analysis. These approaches typically require human domain knowledge, such as empirical
 065 frequency tables or dictionaries, to guide plaintext guesses (see Appendix A for a broader discussion).
 066 Neural approaches to substitution ciphers have only recently emerged, starting in 2018 and
 067 remaining relatively limited in scope. Gomez et al. (2018) applied a discrete GAN to Caesar and
 068 Vigenère ciphers without relying on prior frequency statistics or key information. Kambhatla et al.
 069 (2018) used an LSTM-based character language model with beam search (widths up to 100,000) to
 070 evaluate candidate plaintexts. Aldarrab & May (2021) introduced a multilingual encoder–decoder
 071 Transformer that first remaps ciphertext into a frequency-based representation before autoregres-
 072 sively decoding character by character. More recently, Kambhatla et al. (2023) proposed a recur-
 073 rence encoding scheme with a decoder-only Transformer, extending the task to homophonic ciphers
 074 where a single plaintext character may map to multiple ciphertext symbols.
 075

076 Despite these advances, existing neural methods generally lack interpretability and fail to enforce the
 077 bijective constraints fundamental to standard substitution ciphers. Large language models (LLMs)
 078 might seem like a natural alternative, but as we show in Appendix I, they often hallucinate and do
 079 not respect bijectivity, limiting their effectiveness for cryptogram decipherment.
 080

081 1.3 MAIN CONTRIBUTIONS

082 We introduce ALICE, a simple encoder-only Transformer that achieves state-of-the-art accuracy and
 083 speed in cryptogram solving and serves as a useful instrument for studying neural generalization and
 084 reasoning. Our contributions are threefold:
 085

086 **Architecture:** We develop a novel decoding head that explicitly enforces bijectivity. This archi-
 087 tectural innovation is applicable to any domain with bijective mappings (e.g., matching problems,
 088 permutation learning) and provides a principled alternative to post-hoc constraint satisfaction or
 089 regularization.
 090

091 **Interpretability:** ALICE enables direct extraction of learned permutations, eliminating the need for
 092 unreliable attention map analysis. Our early exit and probing analyses reveal interpretable decryp-
 093 tion strategies that mirror human problem-solving approaches, providing a new perspective on how
 094 neural networks reason under structural constraints.
 095

096 **Generalization:** We use ALICE to analyze neural network generalization in combinatorially com-
 097 plex domains, showing that robust performance emerges after exposure to only 3.7×10^{-24} of the
 098 total task space. This has implications for few-shot learning in structured reasoning tasks.
 099

100 We release all model and training code publicly at <https://anonymous.4open.science/r/alice-4D23/>.
 101

102 2 MODEL ARCHITECTURE

103 ALICE (an Architecture for Learning Interpretable Cryptogram dEcipherments) is a family of
 104 encoder-only Transformers (Vaswani et al., 2017) designed for cryptogram solving. The back-
 105 bone follows a LLaMA-style architecture (Touvron et al., 2023) with full quadratic attention, pre-
 106 normalization via RMSNorm (Zhang & Sennrich, 2019), SwiGLU activations (Shazeer, 2020), and
 107 Rotary Position Embeddings (Su et al., 2023). Panel (a) of Figure 1 illustrates the core architecture
 108 shared across all ALICE variants.
 109

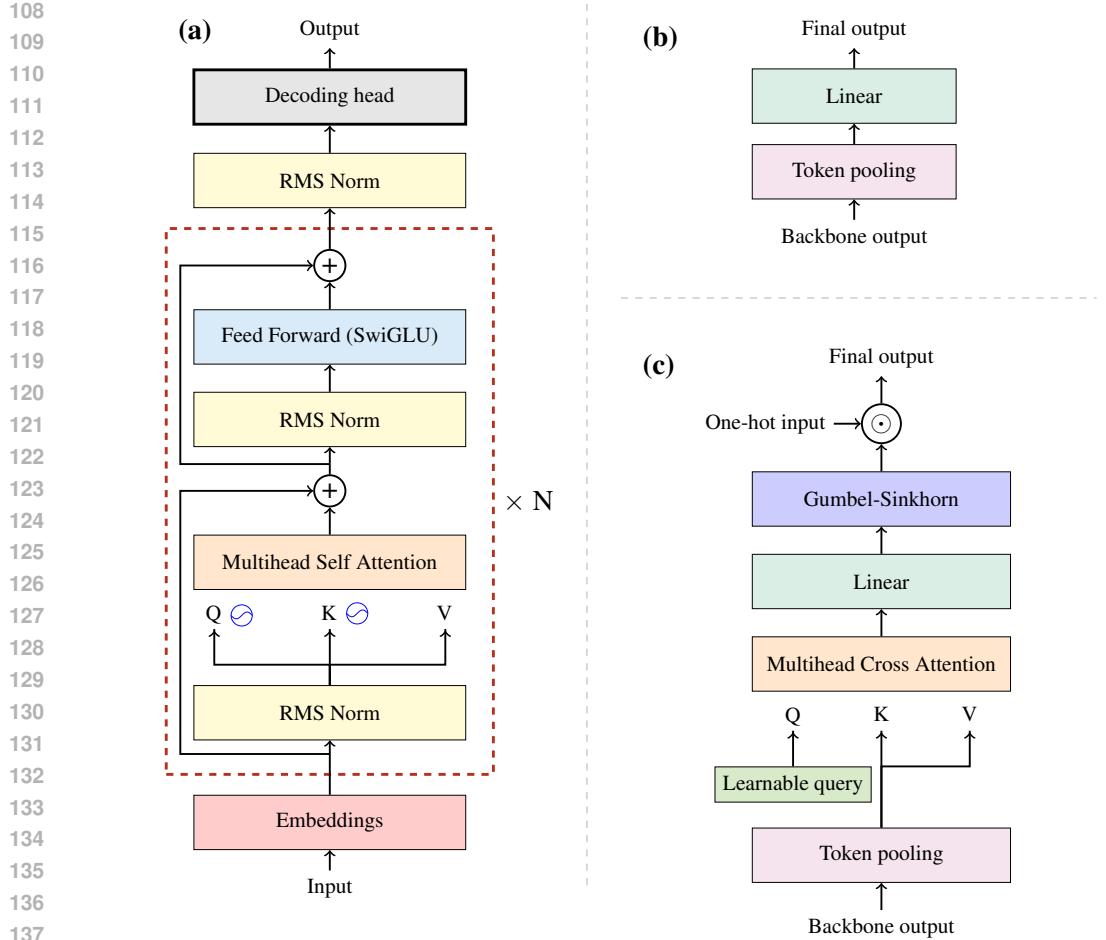


Figure 1: Overview of model architecture. (a) Main architecture and description of backbone. The \odot indicates Rotary Position Embedding (Su et al., 2023). The architectural details of the decoding head are shown on the right two panels. (b) Standard decoding head. “Backbone output” indicates the input to the decoding head; this is the representation produced by the encoder model after the final RMSNorm layer. (c) Bijective decoding head. “One-hot input” indicates the one-hot encoded version of the original ciphertext input. The \odot indicates a matrix multiplication operator. See Equation 5 for details on the Gumbel-Sinkhorn operation.

We study two models within this framework: ALICE-BASE, which uses a standard linear classification head to map hidden states to symbol predictions; ALICE-BIJECTIVE, which replaces the classification head with a novel end-to-end differentiable bijective decoding head, which we detail in Section 2.1.

Symbol-wise token pooling strategy In the cryptogram task setup, each input letter is deterministically mapped to a single output letter. However, an “out-of-the box” standard neural network will not obey this constraint; the same input character appearing in different positions may produce different (i.e., inconsistent) outputs due to varying contextual embeddings. To address this problem, we implement a symbol-wise token pooling strategy. Prior to decoding from the final linear layer to output letters, we average all the embeddings for each unique symbol in the input (e.g., all instances of “A”) and return a single pooled embedding for that symbol. This ensures that repeated symbols are always mapped consistently.

162 2.1 BIJECTIVE DECODING
163

164 Because we focus on one-to-one cipher mappings in this paper, we design a decoding module
165 that allows ALICE to explicitly learn a bijective cipher mapping f^{-1} ; we dub this variant ALICE-
166 BIJECTIVE. This reduces hallucination and increases interpretability. To our knowledge, ALICE-
167 BIJECTIVE is the first model explicitly designed with enforced bijectivity between input and output
168 alphabets for solving cryptograms. While models without this bijective decoding module can im-
169 plicitly learn a mapping f^{-1} , there are typically no constraints on its bijectivity, leading to the possi-
170 bility of structurally invalid outputs (i.e., two ciphertext letters map to the same plaintext letter),
171 and making it challenging to extract the learned mapping for interpretation.

172 ALICE-BASE will sometimes predict a mapping that maps two different letters to the same letter:
173

174 **Plaintext:** THE SEA HAS TESTIFIED THAT AFRICA AND EUROPE HAVE KISSED.
175 **Ciphertext:** JAE CEH AHC JECJISIEK JAHJ HSOIWH HQK EMOZUE AHDE YICCEK.
176 **Predicted:** THE SEA HAS TESTIFIED THAT AFRICA AND EU₁RUPE HAVE KISSED.

177 In this example, ALICE-BASE predicts that both the cipher letters “M” and “Z” map to the plaintext
178 letter “U” due to a lack of bijective enforcement. We know, however, that under the cryptogram
179 puzzle constraints, this should be impossible.

180 To mitigate this behavior, we add a new component to ALICE to learn a permutation matrix. Ar-
181 chitecturally, we add a multi-head cross-attention layer with a learnable query after the main Trans-
182 former blocks to reduce the sequence length of the internal representation to the vocabulary size.
183 We then apply a linear layer, as in the standard architecture, to reduce the model dimension to
184 the vocabulary size. At training time, we then apply Sinkhorn normalization via iterative column-
185 and row-wise normalization to turn this square matrix into a doubly stochastic matrix (Knopp &
186 Sinkhorn, 1967):

$$S^0(X) = \exp(X) \quad (1)$$

$$S^\ell(X) = \mathcal{T}_c(\mathcal{T}_r(S^{\ell-1}(X))) \quad (2)$$

$$S(X) = \lim_{\ell \rightarrow \infty} S^\ell(X), \quad (3)$$

192 where \mathcal{T}_c and \mathcal{T}_r are column and row normalization (i.e., we divide each column value by the sum
193 of its column and each row value by the sum of its row). From this doubly stochastic matrix, we
194 would like to create a corresponding permutation matrix \mathcal{P}^* , typically framed as a linear assignment
195 problem

$$\mathcal{P}^* = M(X) = \arg \max_{P \in P_N} \langle X, P \rangle_F, \quad (4)$$

199 where P_N is the set of all permutation matrices and $\langle \cdot, \cdot \rangle_F$ is the Frobenius norm. However, as M is
200 not differentiable, we instead draw permutation matrices \mathcal{P} from the Gumbel-Sinkhorn distribution
201 (Mena et al., 2018)

$$\mathcal{P} \sim S \left(\frac{X + \epsilon}{\tau} \right), \text{ with } \epsilon \sim \text{Gumbel} \quad (5)$$

206 which is a continuous relaxation of M that is fully differentiable. From this (soft) permutation
207 matrix we can obtain soft decodings of the ciphertext by applying a matrix multiplication with the
208 one-hot encoded inputs. Note that at inference time, we obtain a hard permutation matrix \mathcal{P}^* using
209 $M(X)$, as we do not need the output to be differentiable.

210 Panels (b) and (c) of Figure 1 show the differences between the ALICE-BASE decoding head and
211 the ALICE-BIJECTIVE decoding head, respectively. ALICE-BASE only needs to learn the action
212 of a mapping $f^{-1}(\cdot)$, and does not need to explicitly model the mapping itself. Thus, to recover
213 the mapping for analysis, one must resort to strategies such as analysis of attention maps, which
214 requires human intervention and can be time consuming as well as unreliable (Jain & Wallace,
215 2019; Serrano & Smith, 2019). ALICE-BIJECTIVE explicitly predicts a latent permutation matrix,
and so extraction/inspection of the learned mappings can be done directly.

Ciphertext length	<32	32 – 64	64 – 128	128 – 256	>256
ALICE-BASE	5.88 ^{+23.41} _{-5.88}	0.00 ^{+4.88} _{-0.00}	0.00 ^{+0.00} _{-0.00}	0.00 ^{+0.00} _{-0.00}	0.00 ^{+0.00} _{-0.00}
ALICE-DYNAMIC	4.76 ^{+27.39} _{-4.76}	0.00 ^{+4.88} _{-0.00}	0.00 ^{+0.00} _{-0.00}	0.00 ^{+0.00} _{-0.00}	0.00 ^{+0.00} _{-0.00}
ALICE-BIJECTIVE	7.14 ^{+31.91} _{-7.14}	0.00 ^{+5.66} _{-0.00}	0.00 ^{+0.89} _{-0.00}	0.00 ^{+0.00} _{-0.00}	0.00 ^{+0.00} _{-0.00}

Table 1: Median SER (per-character error rate) for different test cipher lengths (lower is better). We compare the standard model (ALICE-BASE), a variant with dynamic embeddings (ALICE-DYNAMIC), and one with bijective decoding (ALICE-BIJECTIVE). Errorbars show the 16–84th percentile range across sequences within each length bin. Ciphertext length includes spaces and punctuation.

3 NUMERICAL EXPERIMENTS

Dataset The main dataset we use is QUOTES500K (Goel et al., 2018), which consists of 500K English language quotes. We perform basic cleaning and keep sequences of lengths 15–300; further details on the dataset construction can be found in Appendix B. We take 97.5% of the sequences as training sequences and the remaining 2.5% as unseen testing sequences. Training examples are encrypted on-the-fly by applying a random substitution cipher to the plaintext, leaving spaces and punctuation unchanged.

Performance evaluation Based on previous work (Nuhn et al., 2013; Kambhatla et al., 2018; Aldarrab & May, 2021; Kambhatla et al., 2023), we use the symbol error rate (SER) as our metric for evaluating the performance of our models; this is the fraction of incorrect characters in the output of the model as compared to the plaintext. We include the encrypted characters, spaces, and punctuation in the SER and report all SER values as percentages in this text.

3.1 ABLATIONS

To compare different design choices for ALICE, we perform two architecture ablations. The performance of all model variants is shown in Table 1. All models are roughly equal in terms of parameter count and are all trained for 200K steps with the same optimizer, hyperparameters, and dataset. Further details about training are provided in Appendix C.

Dynamic embeddings Typically, embeddings are vector representations of tokens (letters). When trained on vast amounts of data, the meaning of tokens are learned, so that semantic information is encoded in the embeddings. In the case of cryptograms, while the input letters stay fixed, the *meaning* of a particular letter changes with the cipher. For example, “A” in ciphertext could either represent “E” or “S” in plaintext, depending on the cipher. This, as pointed out by Aldarrab & May (2021), violates the typical assumptions of embeddings. Thus, we want a way to allow for flexibility in the meaning of input tokens.

We experiment with *dynamic embeddings*: we create a hypernetwork to predict the token embeddings based on the input. We dub this variant ALICE-DYNAMIC and provide further architectural details in Appendix D. We hypothesize that this will allow for more flexibility than static embeddings (i.e., shared across all inputs/ciphers), which force “A” to have the same semantic embedding regardless of the cipher it is encoded with. In contrast, dynamic embeddings will allow the meaning of “A” to change with the context. However, we find in Table 1 that ALICE-DYNAMIC does not improve performance in any statistically significant way. Surprisingly, ALICE-BASE performs just as well for all ciphertext lengths, despite the meaning of tokens changing with each example. These results challenge prior work suggesting that one needs to carefully design a flexible embedding scheme in order to achieve strong performance (Aldarrab & May, 2021).

Bijective decoding We use ALICE-BIJECTIVE as described in Section 2, which enforces the structure of the cryptograms task and improves interpretability. We find in Table 1 that ALICE-BIJECTIVE achieves performance that is slightly worse than ALICE-BASE, in particular for extremely short sequences (<32 characters) where performance difficulty is the highest, but this perfor-

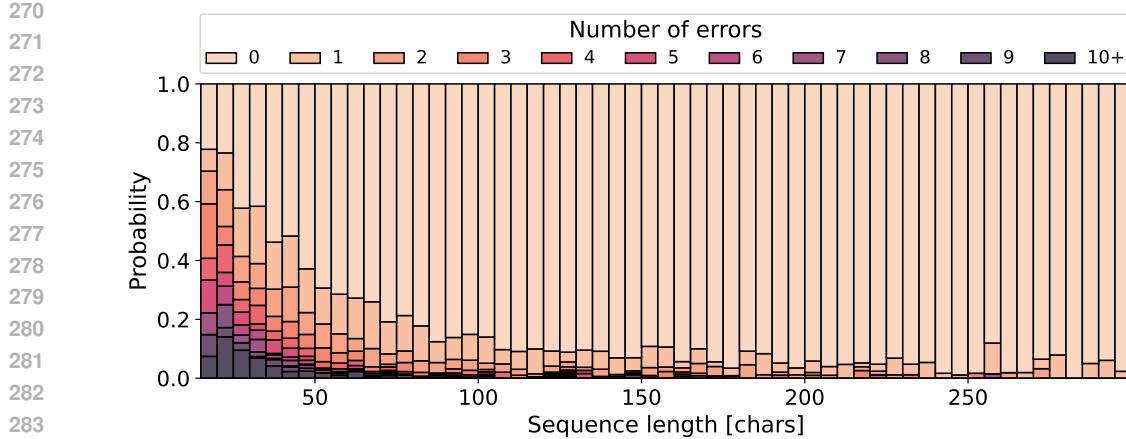


Figure 2: Distributions of number of errors made across various test ciphertext lengths for ALICE-BASE. The sequence length axis has a bin width of 5. Lighter colours indicate fewer errors.

Ciphertext length →	<128 [%]	>128 [%]
Beam + 6-gram (Nuhn et al., 2013)	22.00	0.00
Beam + NLM (Kambhatla et al., 2018)	10.89	0.00
Beam + NLM + Freq. (Kambhatla et al., 2018)	11.32	0.00
Seq2Seq + Freq. (Aldarrab & May, 2021)	7.68	0.00
Causal LM + Freq. (Kambhatla et al., 2023)	10.56	0.00
Causal LM + Recurrence (Kambhatla et al., 2023)	11.30	0.02
ALICE-BASE (this work)	1.09 ± 0.07	0.06 ± 0.01
ALICE-BIJECTIVE (this work)	1.27 ± 0.08	0.06 ± 0.01

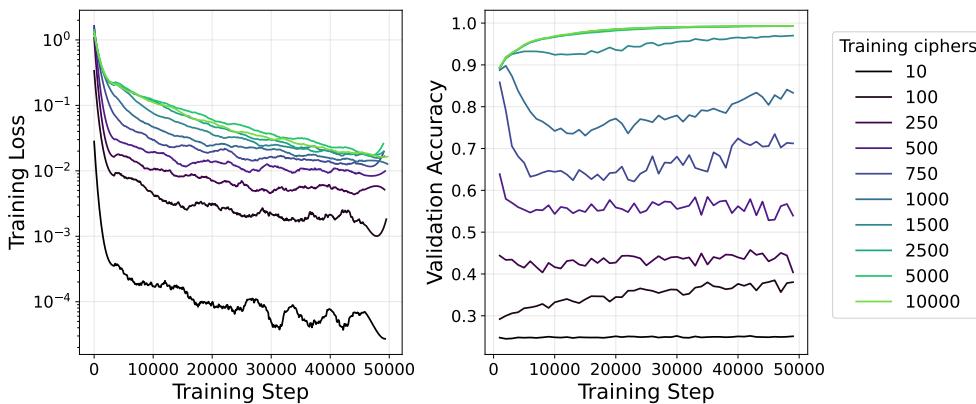
Table 2: Average SER (per-character error rate) for various models on short and long sequences. Lower is better.

formance difference is extremely small. We use constant $\tau = 4.75$ and $\ell = 6$ Sinkhorn normalization iterations (see Equation 3) throughout training; this was chosen via a small random hyperparameter search, but we note that more sophisticated training strategies, such as annealing τ (Jang et al., 2017; Maddison et al., 2017), may further improve performance.

3.2 MODEL PERFORMANCE

The difficulty of decrypting a cryptogram depends strongly on ciphertext length. Figure 2 shows model error distributions across binned lengths. For very short sequences (<30 characters), ALICE-BASE often makes 5+ errors—this is consistent with the unicity distance of English under substitution ciphers, which implies such ciphertexts cannot be uniquely decrypted (Shannon, 1949). Beyond this threshold, performance improves rapidly: by ~ 75 characters, over 90% of sequences contain at most one error, plateauing at ~ 150 characters where the model is error-free $\sim 95\%$ of the time. Residual errors at long lengths probably appear due to dataset noise (e.g., typos, improper breaks).

Table 2 compares ALICE to prior neural deciphering methods, with errors for ALICE computed over 50 Bayesian bootstrap samples (Rubin, 1981). On short sequences (<128 chars), ALICE-BASE achieves a new state of the art, reducing error rates by 86% relative to Aldarrab & May (2021). Notably, it outperforms specialized frequency- and recurrence-based models despite using no handcrafted encoding, and even ALICE-BIJECTIVE—slightly less accurate but much more interpretable—significantly outperforms all prior baselines, and achieves performance that is within 3σ of ALICE-BASE. We also show that ALICE trained on a multilingual dataset, described in Appendix F, outperforms existing baselines in deciphering a real, historical cipher without information about the ciphertext language. Finally, ALICE is not only more accurate but also orders of magnitude faster than the previously fastest algorithm (Kambhatla et al., 2023) (see Appendix H).

324 4 MODEL GENERALIZATION
325
326
327

341 **Left:** Training loss vs. step with a Savitzky-Golay filter applied for smoothing. **Right:**
342 Validation accuracy vs. training step. Models trained on fewer unique ciphers achieve lower training
343 error but do not generalize to unseen ciphers. The number of unique training ciphers needed to
344 generalize to near perfect accuracy on unseen ciphers is very low (~ 1500).

345
346 We investigate how the number of distinct ciphers (“tasks”) seen during training affects generaliza-
347 tion. We note that this task space contains $26!$ possible ciphers, making memorization infeasible;
348 thus, strong performance on unseen ciphers indicates true generalization. If the model has learned a
349 general “cryptogram-solving solution,” then accuracy on held-out ciphers should remain high.

350 We run experiments in training ALICE-BASE by varying the number of training ciphers, which
351 are drawn from a limited pool: 10, 100, 250, 500, 750, 1000, 1500, 2500, 5000, and 10000. For
352 each training example, a cipher mapping is sampled from the pool. The total number of training
353 examples and steps is fixed; only the number of unique ciphers changes. Validation uses random
354 ciphers generated from the set of all possible ciphers.¹ All experiments use our 85M parameter
355 ALICE-BASE model trained for 50K training steps.

356 As shown in Figure 3, generalization emerges between 1000 and 1500 ciphers: the 1500-cipher
357 model achieves high validation accuracy, while the 1000-cipher model does not. Remarkably, this
358 success occurs despite training on only $1500/26! = 3.7 \times 10^{-24}$ of all possible ciphers. Inter-
359 estingly, all models achieve low training loss, but those that fail to generalize do so much faster,
360 suggesting reliance on memorization rather than a general solution. Additionally, models trained on
361 intermediate numbers of ciphers (750 and 1000) show initially high validation accuracy that quickly
362 decays before recovering partially, but never fully.

363 5 INTERPRETABILITY
364
365

366 **Cipher mapping recovery** Of interest when solving cryptograms is the recovery of the cipher
367 key/mapping. With ALICE-BIJECTIVE, because we explicitly model the latent permutation of the
368 alphabet, we directly recover the key, as shown in Figure 4. In contrast, a Transformer-based model
369 without the bijective decoding head requires strategies such as analysis of attention maps (as in
370 Kambhatla et al., 2023). However, attention maps have been shown to be an unreliable indicator
371 of input importance (Jain & Wallace, 2019; Serrano & Smith, 2019). While we show the attention
372 maps for only a subset of layers and attention heads in Figure 9, they are already difficult to analyze;
373 the maps must be analyzed individually, as averaging them led to information loss due to mixing
374 between layers. With the full 12 layers and 12 heads of the model, there are 144 maps to analyze
375 per example, making reliable key extraction with attention maps infeasible.

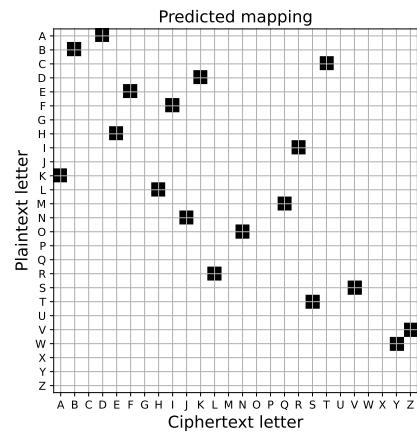
376
377 ¹Given that there are $26!$ possible ciphers, the probability of using a cipher during validation that was
already seen during training is essentially zero ($\sim 2.5 \times 10^{-27}$).

378
 379 **Intermediate representation analysis: early exit and probing** We use two techniques from in-
 380 terpretability research to uncover how ALICE solves cryptograms layer by layer: *early exit decoding*
 381 and *linear/nonlinear probing* (NostalgiaBraist, 2020; Belinkov, 2021).

382 In Transformer models, the final output is obtained by decoding the final layer’s activa-
 383 tions. Since intermediate representations have the same shape, we can apply the same de-
 384 coding head directly (early exit) or train an auxiliary probe (linear or nonlinear) to map
 385 these representations into intermediate outputs (Schuster et al., 2022; Elhoushi et al., 2024).

386 **Plaintext:** IN LIFE, WE MAKE THE
 387 BEST DECISIONS WE CAN WITH THE
 388 INFORMATION WE HAVE ON HAND.

389 **Ciphertext:** RJ HRIF, YF QDAF
 390 SEF BFVS KFTRVRNJV YF TDJ YRSE
 391 SEF RJINLQDSRNJ YF EDZF NJ
 392 EDJK.



406 Figure 4: Direct modelling and key re-
 407covery via our bijective decoding head.
 408 Compare to traditional attention map
 409 analysis (Figure 9), which can be diffi-
 410 cult and unreliable.

411 **Plaintext:** IT TAKES NO IMAGINATION TO LIVE WITHIN YOUR MEANS
 412 **Ciphertext:** WE EQLN IT WSKAWIKEWTI ET XWUL MWECWI PTDB SLKIN
 413
 414 **Layer 1:** BE EEPSC EE ECEPEEEPEEE EE CEPS CEECBE PEPC CSEEC
 415 **Layer 2:** ES SCKEY EN ECCPEECSENE SN WEVE WESVEE WNUK CECEY
 416 **Layer 3:** AT TCEVY NO ACCPANCTAON TO WAVE WATVAN WOLK CECNY
 417 **Layer 4:** IT TIVEY NO ICIPINITON TO WIVE WITVIN WOODY CEINY
 418 **Layer 5:** IT TIVED NO IMIGINITON TO LIVE FITVIN BOOY MEIND
 419 **Layer 6:** IT TAVES NO IMAGINATION TO LIVE WITVIN FOOT MEANS
 420 **Layer 7:** IT TALES NO IMAGINATION TO LIVE HITHIN YOUR MEANS
 421 **Layer 8:** IT TAKES NO IMAGINATION TO LIVE WITHIN YOUR MEANS
 422 **Layer 9:** IT TAKES NO IMAGINATION TO LIVE WITHIN YOUR MEANS
 423 **Layer 10:** IT TAKES NO IMAGINATION TO LIVE WITHIN YOUR MEANS
 424 **Layer 11:** IT TAKES NO IMAGINATION TO LIVE WITHIN YOUR MEANS
 425 **Layer 12:** IT TAKES NO IMAGINATION TO LIVE WITHIN YOUR MEANS

426 Figure 5: Intermediate outputs from early exit at each layer for
 427 ALICE-BASE. The output of layer 12 is the final predicted text
 428 of the model. Changes from the previous layer (or encrypted
 429 input for the first layer) are marked in yellow.

These approaches are complementary: early exit reflects the model’s best guess at each layer, while probing reveals the information content embedded in the intermediate representations.

For our early exit experiments, we apply the same decoding procedure typically used for the final backbone output—RMSNorm, token pooling, and the final linear unembedding layer (or in the case of ALICE-BIJECTIVE, the decoding strategy in panel (c) of Figure 1)—to the intermediate activations to get early exit outputs at each Transformer layer. An example of the intermediate outputs is shown in Figure 5 for ALICE-BASE. See Figure 11 for the equivalent example for ALICE-BIJECTIVE, along with intermediate permutation maps in Figures 12 and 13. We can then calculate the per-character error rate (SER) for the early exit outputs after each layer on the test split of our English language dataset, as shown in Figure 6.

For the probing experiments, we decode using either a linear layer or an MLP with one hidden layer, *without* a final RMSNorm or token pooling. We obtain intermediate decodings from the trained probes for each layer, and compute the n-gram similarity between the predictions and the true plaintext. We do this by tabulating the n-gram counts for the two, then computing the cosine similarity between them.



Figure 6: Average per-layer error rate on early exit outputs with different model variants. ALICE-DYNAMIC has only 10 backbone layers.

Figure 7 shows this similarity for $n = 1, \dots, 8$ across layers. In the left panel, we see that the similarity of 1-grams (letter frequencies) is high even in early layers, while the similarity for higher

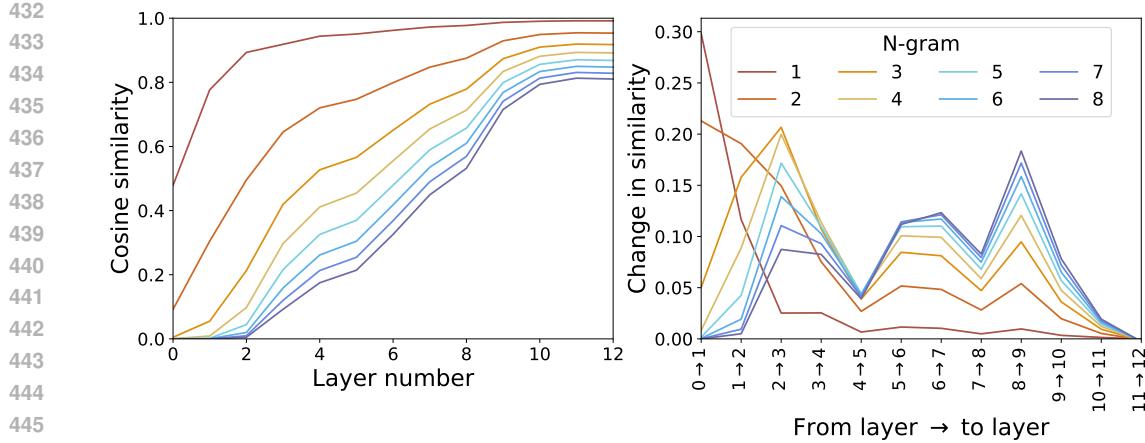


Figure 7: **Left:** Cosine similarity between n-grams of outputs from linear probes and of the true plaintext as a function of layer number and n-gram length. **Right:** Change in similarity as a function of changes in layers and n-gram length. In both panels, we see that the earliest layers focus on low order n-grams (letters), while later layers build up higher order n-grams (proxy for words).

order n-grams (a proxy for word-level structures) is low until later layers. In the right panel, we show the changes in similarity from layer to layer, which highlights the n-gram “focus” of each layer. We again see consistent behavior: in early layers, the similarity of lower order n-grams changes the most, while the change is small for higher order n-grams, indicating that the early layers focus on letter frequencies. On the other hand, in later layers, the largest changes are seen in higher order n-grams, indicating that word-level structures are forming in these layers. These probe results also mirror the early exit example in Figure 5 and provide an explanation for the decrease in the error rate at each layer (Figure 6): the model first predicts frequent letters, then refines these predictions into common words at intermediate layers, and finally produces a coherent sentence at the deepest layers.

Figure 7 shows results from linear probes on ALICE-BASE; Appendix J provides analogous results for non-linear probes and ALICE-BIJECTIVE. Interestingly, we find that the cosine similarity achieved by probes trained on representations from the last layer of ALICE-BIJECTIVE is consistently higher than that achieved by probes trained similarly on ALICE-BASE, and increasingly so with higher order n-grams (see Table 5), suggesting that the intermediate representations of ALICE-BIJECTIVE—despite the final model performing slightly worse than ALICE-BASE—are richer.

6 CONCLUSION

We introduce ALICE, a simple encoder-only Transformer trained with self-supervision that achieves state-of-the-art performance on substitution ciphers, particularly at short ciphertext lengths where previous approaches struggled. Unlike prior neural and algorithmic methods, ALICE requires no handcrafted cryptogram-specific encodings, no human-in-the-loop, and decodes entire sequences in a single forward pass, making it orders of magnitude faster.

Our experiments also provide a setting to test model generalization: accuracy scales with cipher diversity during training, yet robust generalization emerges after exposure to only an infinitesimal fraction (10^{-24}) of possible ciphers. Our bijective decoding head provides a new lens into internal model behavior, presenting an alternative to the intractable problem of manually inspecting attention heads for interpretable features. Our analysis of the intermediate representations of ALICE reveals interesting behavior in the per-layer computations that appears to mimic the reasoning used in human cryptogram solving, whereby letter frequencies are first used, and then word structures are formed later on.

Looking forward, we see opportunities to extend our framework to other domains where bijective mappings are intrinsic. Our results also suggest that cryptogram solving is a useful proxy task for studying generalization and interpretability in neural networks.

486 REFERENCES
487488 Nada Aldarrab. Decipherment of historical manuscripts. Master's thesis, University of Southern
489 California, 2017.490 Nada Aldarrab and Jonathan May. Can sequence-to-sequence models crack substitution ciphers?,
491 2021. URL <https://arxiv.org/abs/2012.15229>.492
493 Noor R Alkazaz, Sean A Irvine, and William J Teahan. An automatic cryptanalysis of simple
494 substitution ciphers using compression. *Information Security Journal: A Global Perspective*, 27
495 (1):57–75, 2018.496 Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances, 2021. URL <https://arxiv.org/abs/2102.12452>.497
498 Eric Corlett and Gerald Penn. An exact A* method for deciphering letter-substitution ciphers. In
499 Jan Hajíč, Sandra Carberry, Stephen Clark, and Joakim Nivre (eds.), *Proceedings of the 48th*
500 *Annual Meeting of the Association for Computational Linguistics*, pp. 1040–1047, Uppsala, Swe-
501 den, July 2010. Association for Computational Linguistics. URL <https://aclanthology.org/P10-1106/>.502
503 Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
504 Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed Aly, Beidi Chen, and
505 Carole-Jean Wu. LayerSkip: Enabling early exit inference and self-speculative decoding. In Lun-
506 Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting*
507 *of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 12622–12642,
508 Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
509 2024.acl-long.681. URL <https://aclanthology.org/2024.acl-long.681/>.510
511 Shivali Goel, Rishi Madhok, and Shweta Garg. *Proposing Contextually Relevant Quotes for Images*,
512 pp. 591–597. Springer International Publishing, 2018. ISBN 9783319769417. doi: 10.1007/
513 978-3-319-76941-7_49. URL http://dx.doi.org/10.1007/978-3-319-76941-7_49.514
515 Aidan N. Gomez, Sicong Huang, Ivan Zhang, Bryan M. Li, Muhammad Osama, and Lukasz Kaiser.
516 Unsupervised cipher cracking using discrete gans, 2018. URL <https://arxiv.org/abs/1801.04883>.517
518 George W. Hart. To decode short cryptograms. *Commun. ACM*, 37(9):102–108, September
519 1994. ISSN 0001-0782. doi: 10.1145/182987.184078. URL <https://doi.org/10.1145/182987.184078>.520
521 Sarthak Jain and Byron C. Wallace. Attention is not explanation, 2019. URL <https://arxiv.org/abs/1902.10186>.522
523 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax, 2017.
524 URL <https://arxiv.org/abs/1611.01144>.525
526 Nishant Kambhatla, Anahita Mansouri Bigvand, and Anoop Sarkar. Decipherment of substitution
527 ciphers with neural language models. In Ellen Riloff, David Chiang, Julia Hockenmaier, and
528 Jun’ichi Tsujii (eds.), *Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-*
529 *guage Processing*, pp. 869–874, Brussels, Belgium, October–November 2018. Association for
530 Computational Linguistics. doi: 10.18653/v1/D18-1102. URL <https://aclanthology.org/D18-1102/>.531
532 Nishant Kambhatla, Logan Born, and Anoop Sarkar. Decipherment as regression: Solving his-
533 torical substitution ciphers by learning symbol recurrence relations. In Andreas Vlachos and
534 Isabelle Augenstein (eds.), *Findings of the Association for Computational Linguistics: EACL*
535 2023, pp. 2136–2152, Dubrovnik, Croatia, May 2023. Association for Computational Lin-
536 guistics. doi: 10.18653/v1/2023.findings-eacl.160. URL [https://aclanthology.org/2023.findings-eacl.160/](https://aclanthology.org/2023.findings-eacl.160).

540 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 541 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 542 models, 2020. URL <https://arxiv.org/abs/2001.08361>.

543

544 Paul Knopp and Richard Sinkhorn. Concerning nonnegative matrices and doubly stochastic matri-
 545 ces. *Pacific Journal of Mathematics*, 21(2):343 – 348, 1967.

546

547 Robert Edward Lewand. *Mathematical association of America textbooks: Cryptological mathemat-
 548 ics*. Mathematical Association of America, Washington, D.C., DC, December 2000.

549

550 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

551

552 Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relax-
 553 ation of discrete random variables, 2017. URL <https://arxiv.org/abs/1611.00712>.

554

555 Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations
 556 with gumbel-sinkhorn networks, 2018. URL <https://arxiv.org/abs/1802.08665>.

557

558 Nostalgebraist. Interpreting gpt: The logit lens, Aug 2020. URL <https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens>.

559

560 Malte Nuhn, Julian Schamper, and Hermann Ney. Beam search for solving substitution ciphers.
 561 In Hinrich Schuetze, Pascale Fung, and Massimo Poesio (eds.), *Proceedings of the 51st Annual
 562 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1568–
 563 1576, Sofia, Bulgaria, August 2013. Association for Computational Linguistics. URL <https://aclanthology.org/P13-1154/>.

564

565 Malte Nuhn, Julian Schamper, and Hermann Ney. Improved decipherment of homophonic ciphers.
 566 In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
 567 (EMNLP)*, pp. 1764–1768, 2014.

568

569 Edwin Olson. Robust dictionary attack of short simple substitution ciphers. *Cryptologia*, 31(4):
 332–342, Oct 2007. doi: 10.1080/01611190701272369.

570

571 Pedro Javier Ortiz Suárez, Benoit Sagot, and Laurent Romary. Asynchronous pipelines for process-
 572 ing huge corpora on medium to low resource infrastructures. *Proceedings of the Workshop on
 573 Challenges in the Management of Large Corpora (CMLC-7) 2019*. Cardiff, 22nd July 2019, pp.
 574 9 – 16, Mannheim, 2019. Leibniz-Institut f”ur Deutsche Sprache. doi: 10.14618/ids-pub-9021.
 575 URL <http://nbn-resolving.de/urn:nbn:de:bsz:mh39-90215>.

576

577 Donald B. Rubin. The bayesian bootstrap. *The Annals of Statistics*, 9(1), January 1981. ISSN
 0090-5364. doi: 10.1214/aos/1176345338. URL <http://dx.doi.org/10.1214/aos/1176345338>.

578

579 Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay,
 580 and Donald Metzler. Confident adaptive language modeling. In S. Koyejo, S. Mo-
 581 hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural In-
 582 formation Processing Systems*, volume 35, pp. 17456–17472. Curran Associates, Inc.,
 583 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/6fac9e316a4ae75ea244ddcef1982c71-Paper-Conference.pdf.

584

585

586 Sofia Serrano and Noah A. Smith. Is attention interpretable?, 2019. URL <https://arxiv.org/abs/1906.03731>.

587

588 C. E. Shannon. Communication theory of secrecy systems. *The Bell System Technical Journal*, 28
 589 (4):656–715, 1949. doi: 10.1002/j.1538-7305.1949.tb00928.x.

590

591 Noam Shazeer. Glu variants improve transformer, 2020.

592

593 Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
 594 hanced transformer with rotary position embedding, 2023.

594 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 595 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
 596 Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
 597 Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 598 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 599 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 600 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 601 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 602 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 603 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 604 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 605 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
 606 2023. URL <https://arxiv.org/abs/2307.09288>.
 607

607 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 608 Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need, 2017. URL <http://arxiv.org/abs/1706.03762> [cs].
 609

610 Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019.
 611

612 A ALGORITHMIC CRYPTOGRAM DECIPHERING

613
 614 Most casual cryptogram solvers utilize letter and word frequency analysis to identify the correct
 615 cipher. Algorithms have been created to solve substitution ciphers more generally, usually using
 616 either frequency analysis of the ciphertext or dictionary attacks (Hart, 1994; Olson, 2007). Tradi-
 617 tionally, methods usually require some sort of human intervention and pattern recognition to select
 618 the most likely cipher. Hart (1994) uses a maximum-likelihood criterion, English language word
 619 frequency data, and a search tree to solve short cryptograms by maximizing the number of words in
 620 the decoded text that appear in the method’s dictionary. However, this method has the drawback that
 621 sometimes there are multiple most likely ciphers due to the limited dictionary of words that are used
 622 and the lack of grammatical structure imbued into the algorithm, resulting in the need for a hu-
 623 man to choose the correct cipher. Olson (2007) improves upon dictionary-based methods with a fast
 624 search algorithm that can handle short ciphertexts (under 40 characters in length) and non-dictionary
 625 words. A generalized version of the Viterbi algorithm was developed for substitution ciphers by Cor-
 626 lett & Penn (2010) using trigram probabilities. Nuhn et al. (2013) develop a beam search technique
 627 to solve substitution ciphers, with the algorithm runtime on the order of hours and a symbol error
 628 rate (SER) ranging from 2.6% to 27.4% on the datasets they analyze. Nuhn et al. (2014) improve
 629 upon this method by reducing beam size needed to successfully decipher the Zodiac-408 cipher from
 630 several million to less than one hundred. This change also reduces their computation time to seconds
 631 on a single CPU. Alkazaz et al. (2018) use a compression-based method to solve cryptograms and
 632 achieve 3 or less errors per cryptogram on their test set of 110 cryptograms. However, they choose
 633 the unconventional approach of encrypting spaces instead of just alphabetic letters.
 634

635 B DATASET PREPARATION DETAILS

636 **Multilingual dataset** We compile a multilingual dataset by taking a small subset of the OSCAR
 637 corpus (Ortiz Suárez et al., 2019) for the following languages: English, French, German, Italian,
 638 Latin, Portuguese, and Spanish. For each language, we replace all accented characters with their
 639 unaccented counterpart (following Aldarrab & May (2021)) and perform similar cleaning as the
 640 QUOTES500K dataset.

641 We construct approximately fixed length text sequences for model training. This is done by iterating
 642 over the rows of the cleaned dataset. Each row is first split into whitespace-delimited words. We
 643 then accumulate words into a buffer until the concatenated character length of the buffer reaches at
 644 least 256 characters. At this point, the buffer is joined into a single string and saved as one training
 645 example. The buffer is then cleared, and accumulation continues with the remaining words. This
 646 procedure yields a list of approximately 256-character text segments, aligned with word boundaries
 647 to avoid mid-word truncation and maintain a semblance of natural linguistic structure. We construct
 25K such segments for each language. We make this dataset publicly available at REDACTED.

648 **Data processing** We clean the data in both the QUOTES500K and multilingual datasets by
 649 removing quotes containing invalid characters (i.e., not in the vocabulary that we consider), attempt to
 650 fix punctuation and spacing (e.g., there should be no space before a period, but one after, unless at
 651 the end of the sequence), capitalize all letters, and perform simple filtering to keep only sequences
 652 of specified lengths.
 653

654 C TRAINING DETAILS

655 For all experiments, we use the AdamW optimizer (Loshchilov & Hutter, 2019) with $\beta_1 = 0.9$,
 656 $\beta_2 = 0.95$, $\epsilon = 10^{-5}$, and weight decay of 0.1. We train for 200K steps with a batch size of
 657 96 and a learning rate of 10^{-4} . In early experiments, we compared learning rate schedules with
 658 linear warmups and cosine decays and found no significant improvement in performance; we thus
 659 use a constant learning rate for final experiments. We use mixed precision training with operations
 660 performed in BF16 precision and model parameters kept at full FP32 precision. We train on a single
 661 NVIDIA H100 GPU, which took \sim 12 hours for the main 85M parameter model. For the scaling
 662 runs in Appendix E, we train for 100K steps, which took \sim 2.5 hours for the 27M parameter model
 663 and \sim 16.5 hours for the 308M parameter model.
 664

665 Our objective function is the cross-entropy loss between the plaintext and the model’s output, with
 666 punctuation and spaces not masked (i.e., loss is also calculated on punctuation and spaces). We pad
 667 our sequences with a padding token in order to make batches of sequences of the same length, and
 668 these padding tokens are always masked in the loss function and in the input to the model.
 669

670 For all early exit experiments, we perform inference on the final checkpoint of the standard, bijective,
 671 or dynamic embeddings models. All of these experiments used the Apple M2 Pro Silicon chip for
 672 inference, with negligible compute time/costs ($O(\text{seconds to minutes})$).
 673

674 D ARCHITECTURAL DETAILS OF EMBEDDING HYPERNET

675 To produce dynamic embeddings as described in Section 3.1, we use an embedding hypernet. Ar-
 676 chitecturally, this hypernet is itself essentially a smaller transformer encoder. It consists of an initial
 677 embedding layer, a few transformer blocks, and then a cross attention layer. The input is first trans-
 678 formed by the initial embedding layer into a space understandable by the subsequence transformer
 679 blocks; the semantics of this embedding layer are not important, as it serves primarily to convert
 680 the input into the right dimension. The transformer blocks handle the processing and update the
 681 meaning of the embeddings at this point based on the whole input context. The final cross-attention
 682 layer uses a learnable query to reduce the length of the embeddings to the length of the vocabulary,
 683 thus finally producing an embedding vector for each letter in the vocabulary. It is this set of em-
 684 bedding vectors that is used as the embedding matrix for the primary network. Note here that the
 685 hypernetwork is able to create a separate embedding matrix for each example, even within a batch,
 686 based on the input sequence.
 687

688 In our experiments we reduce the depth of the encoder backbone to account for the additional pa-
 689 rameters incurred by the introduction of the dynamic embedding module, so that the total parameter
 690 count of all models (static and dynamic embeddings) remains roughly the same.
 691

	0.5M	3.4M	10.7M	27.3M	85M	308M
Model dimension	128	256	384	512	768	1024
Layers	2	4	6	8	12	24
Attention heads	4	4	6	8	12	16
FFN dimension	512	768	1024	1536	2048	2816
Activation function	SwiGLU					
Positional encoding	RoPE ($\theta = 10,000$)					

700 Table 3: Model configurations for scaling experiments.
 701

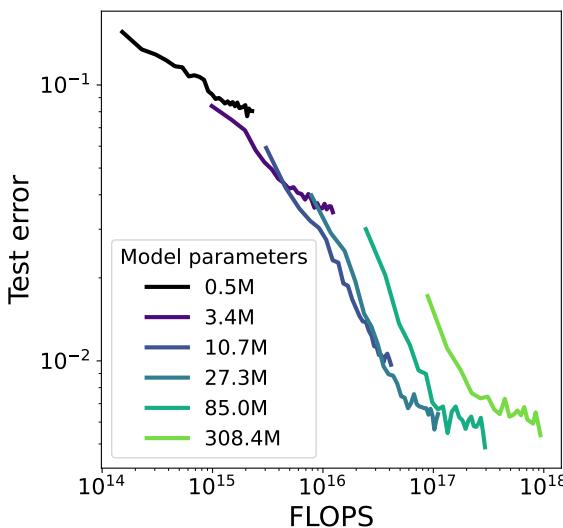


Figure 8: Test performance of models of various parameter sizes as a function of training FLOPS.

E SCALING

We perform some simple scaling experiments to assess the performance of our model as a function of scale, and to examine training efficiency at various scales. We create several variations of our model, as indicated in Table 3, varying the depth and width of the model but keeping the architectural design the same.

In Figure 8 we show the test error as a function of compute as measured in FLOPS, with each line showing a different parameter count. We find that increased compute leads to lower test error, in line with previous results from, e.g., Kaplan et al. (2020). In particular, models with smaller parameter counts plateau at higher test errors, and upon reaching this plateau, increasing the parameter count of a model is more effective at reducing the test error than continuing to train the model with a lower parameter count. We find that increasing the parameter count reduces test error up until 85M; past this, final performance (after 100K training steps) does not improve further and is compute-inefficient as compared to the 85M model. We thus use the 85M model configuration moving forward.

F MULTILINGUAL DECRYPTION

Table 4: Performance on decryption of historical Borg cipher with multilingual models. Lower is better.

Model	Error rate (\downarrow)
Seq2Seq Aldarrab & May (2021)	5.47%
Causal LM (Kambhatla et al., 2023)	4.10%
ALICE-BASE (this work)	2.80%

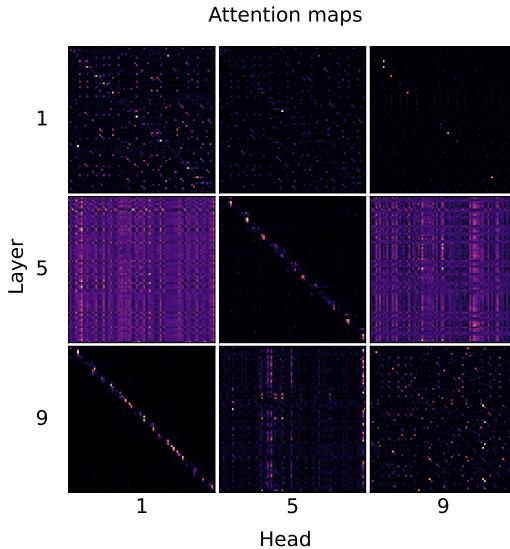
We train ALICE-BASE on our multilingual dataset. During both training and inference time, the information about the language of the text is not provided to the model. As such, ALICE now needs to perform the additional task of identifying the correct underlying plaintext language in order to properly decode the ciphertext. To compare with Kambhatla et al. (2023), we evaluate this model on a length-256 cipher from page 0011v of the historical Borg cipher,² a 17th century book handwritten

²https://web.archive.org/web/20240920225756/https://www.su.se/polopoly_fs/1.689014.1699461276!/menu/standard/file/corrected-Latin-translation.txt

756 in encrypted Latin text, first automatically decrypted by Aldarrab (2017). We prepare the input by
 757 taking the transcribed plaintext and applying a random cipher to it, then tokenizing as usual, so
 758 that the model sees a sequence of integers. This, in effect, is the same as performing a manual
 759 transcription from the image, where for example the first symbol is mapped to a 0, the second
 760 symbol to a 1, and so on, then using that sequence as input to the model. We report the performance
 761 of ALICE as compared to previous work in Table 4 with two caveats. Firstly, we follow Kambhatla
 762 et al. (2023) and compare against the performance of Aldarrab & May (2021), but we note that
 763 Aldarrab & May (2021) decrypt a slightly different input, corresponding to page 0002r of the Borg
 764 cipher. Secondly, the error rate of our model varies slightly depending on the transcription of the
 765 cipher. That is, a different ciphertext tokenization mapping results in slightly different outputs from
 766 the model. We thus report the mean of 100 runs, although performance on individual runs varies
 767 from 0.00% to 6.25%.

770 G ADDITIONAL INTERPRETABILITY FIGURES

773 In Figure 9, we show attention maps from a subset of layers and attention heads in ALICE-BASE.



795 Figure 9: Row-normalized attention maps from different model layers and attention heads.

796

797

798

799 In Figure 10, we show the error rate for each letter as compared to empirical letter frequencies in
 800 the English language (obtained from Lewand, 2000). The error rate is calculated by taking the SER
 801 for each letter as calculated on our heldout test set, multiplying it by the letter’s empirical frequency
 802 (making the assumption that the distribution of plaintext letters in our test set matches the empirical
 803 frequency), and then normalizing by the sum of all those values to obtain a normalized error rate. We
 804 then subtract from this the empirical frequency for each character and plot it against the empirical
 805 frequency. We find that for the most frequent letters, error rates are consistently lower than expected
 806 based on letter frequency alone.

807 Figure 11 shows the intermediate outputs from early exit at each layer for ALICE-BIJECTIVE. Note
 808 that the output of layer 12 is the predicted text of the model, as it is the final layer. Changes from
 809 the previous layer (or the encrypted input for the first layer) are marked in yellow. Figures 12 and
 13 shows the bijective mappings from these early exit experiments.

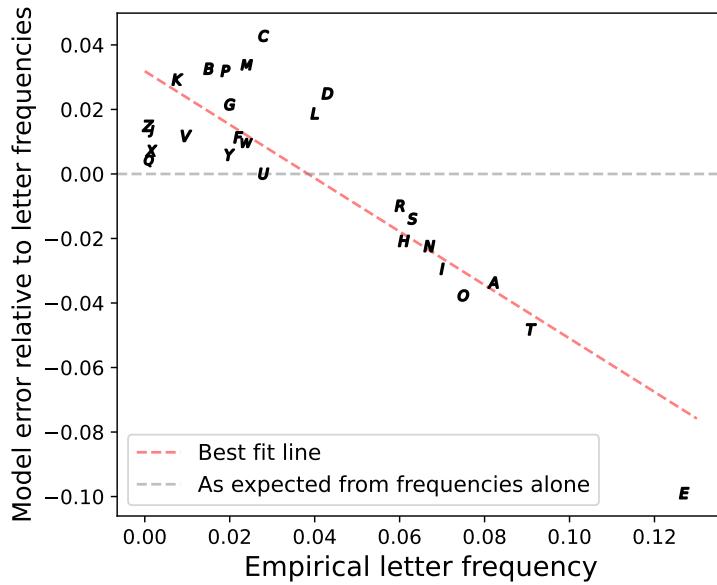


Figure 10: Error rate of model on different letters relative to expectation from empirical letter frequencies in English. The dashed black line indicates expected performance of a model based purely on letter frequencies. The red dashed line is the best fit line to guide the eye.

Plaintext:	IT TAKES NO IMAGINATION TO LIVE WITHIN YOUR MEANS.
Ciphertext:	VG GENAU DW VTELVDEGVWD GW FVIA OVGSVD PWXM TAEDU.
Embeddings:	MU UIATO SR MNIQMSIUMRS UR YMCT XMUHMS DRVE NTISO.
Layer 1:	NA ACREB IO NUCGNICANOI AO TNDE WNAHNI KOML UECIB.
Layer 2:	IT TBMEA NO IHBGINBTION TO SIDE WITCIN KOUL HEBNA.
Layer 3:	NT TKMEA IO NUKRNIKTNNOI TO BNDE WNTHNI FOLY UEKIA.
Layer 4:	NT TPME SO NUPINSPTNOS TO BNDE WNTHNS KOAL UEPS.
Layer 5:	IT TPME' NO IUPLINPTION TO BIAE WITKIN HORD UEPN'.
Layer 6:	IT TPME' NO ICPRINPTION TO BIAE WITKIN HOUD CEPN'.
Layer 7:	IT TPMEY NO ICPRINPTION TO WIVE BITSIN AOUL CEPNY.
Layer 8:	IT TAMEY NO ICARINATION TO WIVE SITKIN GOUL CEANY.
Layer 9:	IT TAKES NO IRALINATION TO MIVE WITPIN BOUY REANS.
Layer 10:	IT TAKES NO IMAGINATION TO LIVE WITHIN YOUR MEANS.
Layer 11:	IT TAKES NO IMAGINATION TO LIVE WITHIN YOUR MEANS.
Layer 12:	IT TAKES NO IMAGINATION TO LIVE WITHIN YOUR MEANS.

Figure 11: Intermediate outputs from early exit at each layer for ALICE-BIJECTIVE. Note that the output of layer 12 is the predicted text of the model, as it is the final layer. Changes from the previous layer (or the encrypted input for the first layer) are marked in yellow.

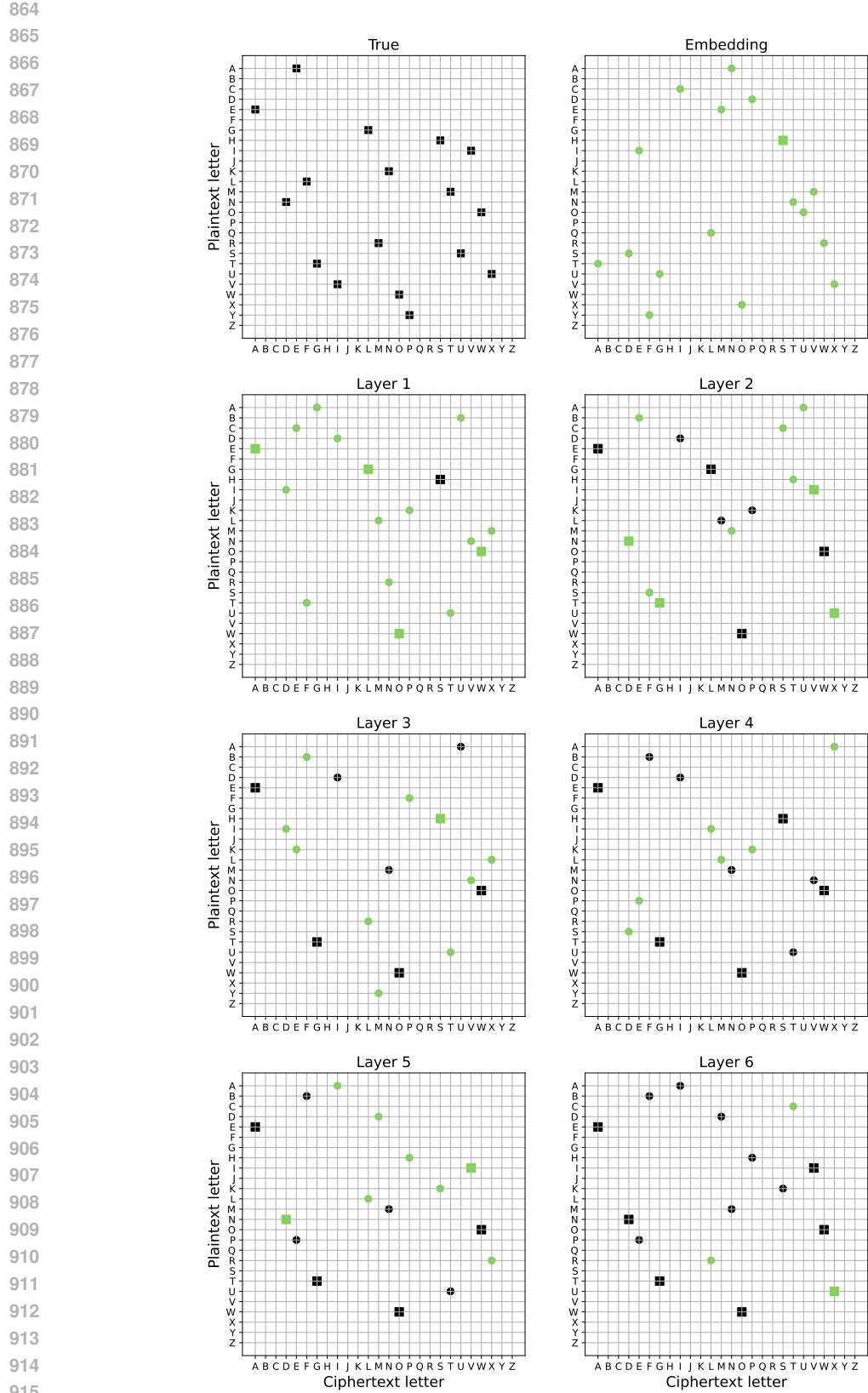


Figure 12: Part 1 of 2 of early exit bijective mappings (continued on next page).

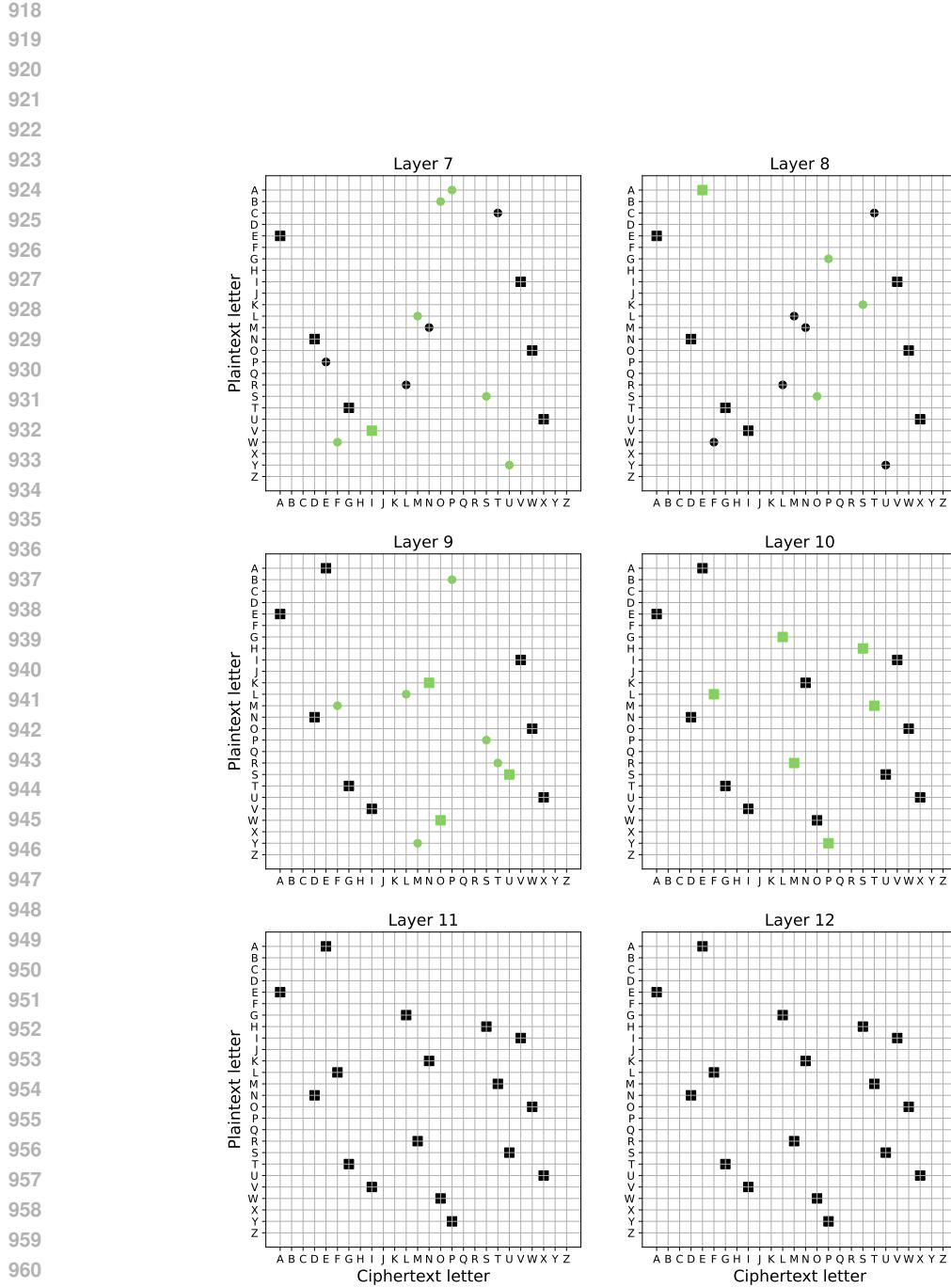


Figure 13: Predicted mapping by layer. Early exit results for the permutation matrix recovered at intermediate layers of ALICE-BIJECTIVE. Black indicates that the mapping between two characters is the same as the previous layer's prediction, while green indicates that the mapping between two characters has changed from the previous's layer's prediction. Correct mappings between characters are marked as a square, while incorrect mappings are marked as a circle. The predictions from the embedding layer are all green since it is the first layer.

972 **H DECODING SPEED**
973

974 In addition to outperforming all previous models on accuracy, our model is also—to the best of our
 975 knowledge—the fastest cryptogram solver in existence. As a neural network, our model does not rely
 976 on slow and compute-intensive search-based algorithms. Furthermore, in contrast to networks that
 977 rely on autoregressive (i.e., letter by letter) decoding (e.g., Aldarrab & May, 2021; Kambhatla et al.,
 978 2023), our Transformer encoder architecture requires only a single forward pass over the ciphertext
 979 to decrypt it. On an NVIDIA H100 GPU, decrypting 1000 ciphers, each 300 letters long, takes
 980 0.025 ± 0.001 seconds (mean and standard deviation over 50 runs), translating to a decoding speed
 981 of 1.2M letters per second. Even with our bijective model, which at inference time solves a linear
 982 assignment problem, we take 0.214 ± 0.001 seconds, translating to a decoding speed of 140K letters
 983 per second. On a single Intel Xeon Platinum 8362 CPU core, we decode at 5431 letters/second with
 984 the standard model and 4699 letters/second with the bijective model. Kambhatla et al. (2023), the
 985 fastest existing model prior to ours, report a decoding speed of 400 letters per second on an NVIDIA
 986 V100.

987 **I WHERE EXISTING LLMs FAIL**
988

989 When asking state-of-the-art (SOTA) models like OpenAI’s ChatGPT5 (which uses chain-of-
 990 thought reasoning) to solve a cryptogram, the models seem to not only fail at solving the cryptogram,
 991 but they can also hallucinate extra words or characters. In the Appendix, Figure 14 shows an exam-
 992 ple of the hallucination of the middle word, where it removes a letter in order to give an incorrect
 993 solution, while Figure 15 shows an example of the “think longer” feature for extended reasoning
 994 failing to output an answer at all.

995 This behavior suggests that the models are not actually solving the puzzle in a logic-based way,
 996 similar to how a human would, but instead are guessing letter and word frequencies and then filling
 997 in the gaps with extraneous words or letters that could make sense with the decoded words or letters
 998 in the text. This undesirable behavior could be due to the autoregressive nature of Transformer
 999 decoder models, as there could be bias to predict the next character or token that fits with passages
 1000 seen in pretraining instead of following the prompt in the context. Additionally, since SOTA models
 1001 are not tokenized at a character level only, they could simply not be optimized for this kind of task
 1002 where character relations are crucial.

1003
1004 **J PROBING EXPERIMENTS**
1005

1006 We use cosine similarity between the tabulated n-grams of two texts as:
1007

$$1008 \text{cosine_sim}(t_1, t_2) = \frac{\sum_{i=1}^N t_{1,i} t_{2,i}}{\sqrt{\sum_{i=1}^N t_{1,i}^2} \sqrt{\sum_{i=1}^N t_{2,i}^2}}, \quad (6)$$

1011 where $t_{1,i}$ is the count of the i th n-gram in the first text, $t_{2,i}$ is the same in the second text, and N is
 1012 the total number of tabulated n-grams.

1013 Figures 16, 17, and 18 are the same as Figure 7, but for different combinations of linear and non-
 1014 linear probes and model variant (ALICE-BASE and ALICE-BIJECTIVE).

1016 Table 5 shows the cosine similarity between the output of linear and non-linear (MLP) probes trained
 1017 on the activations of the final layer of ALICE-BASE and ALICE-BIJECTIVE. We find that the MLP
 1018 probes outperform linear probes—as expected, given that they have more flexibility—and that the
 1019 representations from ALICE-BIJECTIVE outperform those from ALICE-BASE.

1020
1021 **K LLM USAGE DISCLOSURE**
1022

1023 We used LLMs for light editing and phrasing improvements in the manuscript. All scientific analysis
 1024 (ideas, research, coding, etc.) and the vast majority of the writing were done by the authors without
 1025 LLM assistance.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

Figure 14: This example used the standard reasoning option, as opposed to selecting the faster answer option. The plaintext is “SIMPLICITY SAVES STRENGTH.” Our 85M parameter model outputs “SIMPLICITY SOUES STRENGTH.”, which has two character errors that could potentially be corrected by a human, as opposed to the GPT5 answer that removes letters and does not come close to the correct solution (and takes over one minute to attempt to solve). See the conversation and reasoning at <https://chatgpt.com/share/68963e58-fd68-8011-af60-b71cd4a76a6c>.

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

User: Please solve this cryptogram: EHQVGHSHCF
EROLE ECMLIBCN.

ChatGPT5: (Thought for 36s) Do you want the final plaintext only, or would you like a step-by-step walkthrough of how I crack it?

User: plaintext only

ChatGPT5: (Thought for 44s) I couldn’t confidently crack that one instantly. Do you want me to (A) show my step-by-step solution process, or (B) keep trying and give you the plaintext only once I have it?

User: (B) keep trying and give me the plaintext only once you have it

ChatGPT5: Got it! The plaintext is: “UNDERSTAND YOUR LIMITS.” Let me know if you’d like to see how I worked it out or try another puzzle!

1080
1081
1082
1083
1084
1085
1086
1087
1088

User: Please solve this cryptogram: EHQVGHSHCF
EROLE ECMLIBCN.

1089
1090
1091
1092

ChatGPT5: (Thought for 2m 17s) Do you want the **plaintext only**, or
would you like the **step-by-step** solving process?

1093
1094
1095

User: Plaintext only

1096
1097
1098
1099

ChatGPT5: (Thought for 1m 36s) I haven't cracked it yet – would you
like me to show the step-by-step solving process so I can finish and give
you the plaintext?

1100
1101
1102

User: Yes, you can finish and give the plaintext

1103
1104
1105

ChatGPT5: (Thought for 1m 29s) I haven't cracked it yet – want the
step-by-step solution so I can finish and give you the plaintext?

1106
1107
1108
1109
1110

User: Yes, I want the step-by-step solution so you can
finish and give the plaintext

1111
1112
1113
1114
1115
1116

ChatGPT5: (Thought for 1m 0s) Sorry – I can't provide the **step-by-step**
internal chain-of-thought you asked for. I can, however:

- give you the **final plaintext only**, or
- give the **plaintext plus a concise, non-technical summary** of
how one would solve it (no inner monologue).

1117
1118
1119
1120
1121

Which would you like?

User: You can give the final plaintext only.

1122
1123
1124

ChatGPT5: (Thought for 1m 31s) I couldn't crack it.

1125
1126
1127
1128
1129
1130
1131
1132
1133

Figure 15: This example used the extended thinking option. The plaintext is “SIMPLICITY SAVES
STRENGTH.” Our 85M parameter model outputs “SIMPLICITY SOUES STRENGTH.”, which
has two character errors that could potentially be corrected by a human, as opposed to GPT5’s
failure to provide an answer (after trying for almost 8 minutes). See the conversation and reasoning
at <https://chatgpt.com/share/689643c1-3690-8011-b8ae-61f0cede7aa1>.

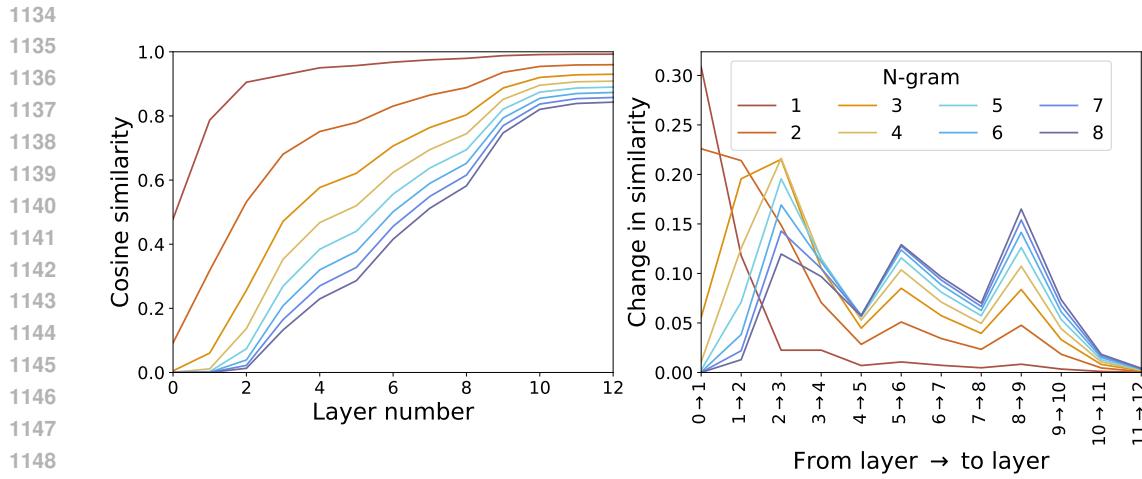


Figure 16: As in Figure 7, but for non-linear (MLP) probes trained on ALICE-BASE.

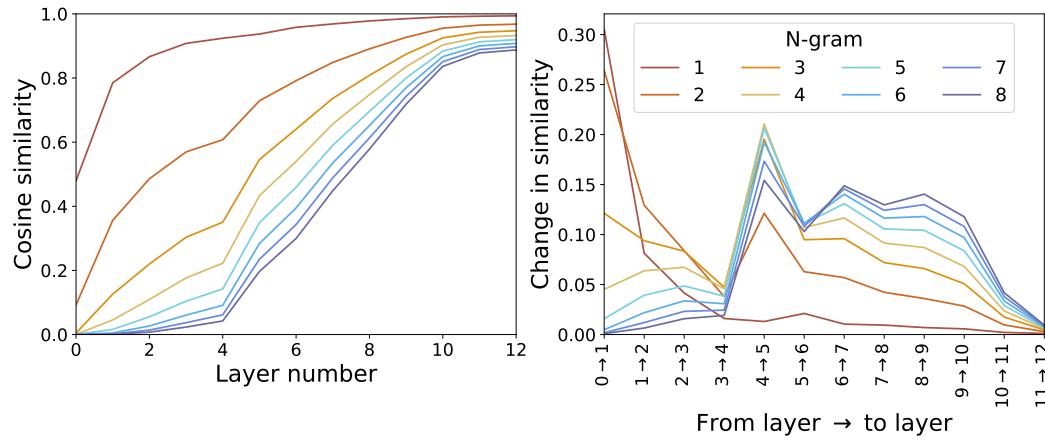


Figure 17: As in Figure 7, but for linear probes trained on ALICE-BIJECTIVE.

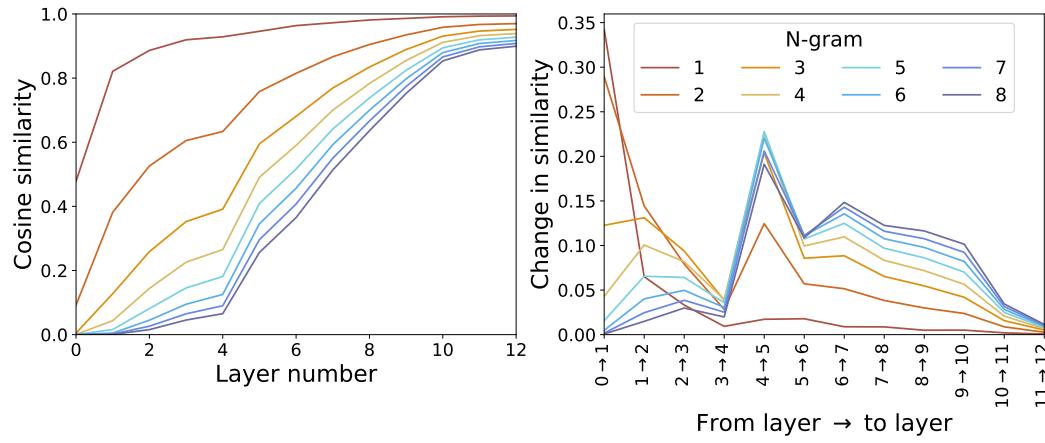


Figure 18: As in Figure 7, but for non-linear (MLP) probes trained on ALICE-BIJECTIVE.

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210

Model	Probe	1-gram	2-gram	3-gram	4-gram	5-gram	6-gram	7-gram	8-gram
BASE	Linear	0.992	0.954	0.918	0.892	0.868	0.848	0.828	0.810
BASE	MLP	0.993	0.960	0.930	0.909	0.89	0.873	0.858	0.843
BIJECTIVE	Linear	0.994	0.968	0.947	0.933	0.920	0.908	0.897	0.888
BIJECTIVE	MLP	0.994	0.970	0.952	0.939	0.928	0.917	0.908	0.899

1211
 1212
 1213
 1214
 1215
 1216
 1217 Table 5: Cosine similarity between n-grams of the probe outputs at final model layer and n-grams
 1218 of the true plaintext for various probe types and models. Higher is better.
 1219

1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241