
OmniCast: A Masked Latent Diffusion Model for
Weather Forecasting Across Time Scales

Tung Nguyen1 Tuan Pham2 Troy Arcomano3,4 Veerabhadra Kotamarthi3
Ian Foster3 Sandeep Madireddy3 Aditya Grover1

1UCLA 2UCI 3Argonne National Laboratory 4Allen Institute for AI

Abstract

Accurate weather forecasting across time scales is critical for anticipating and
mitigating the impacts of climate change. Recent data-driven methods based on
deep learning have achieved significant success in the medium range, but struggle
at longer subseasonal-to-seasonal (S2S) horizons due to error accumulation in
their autoregressive approach. In this work, we propose OmniCast, a scalable
and skillful probabilistic model that unifies weather forecasting across timescales.
OmniCast consists of two components, a VAE model that encodes raw weather
data into a continuous, lower-dimensional latent space, and a diffusion-based
transformer model that generates a sequence of future latent tokens given the initial
conditioning tokens. During training, we mask random future tokens and train
the transformer to estimate their distribution given conditioning and visible tokens
using a per-token diffusion head. During inference, the transformer generates the
full sequence of future tokens by iteratively unmasking random subsets of tokens.
This joint sampling across space and time mitigates compounding errors from
autoregressive approaches. The low-dimensional latent space enables modeling
long sequences of future latent states, allowing the transformer to learn weather
dynamics beyond initial conditions. OmniCast performs competitively with leading
probabilistic methods at the medium-range timescale while being 10× to 20×
faster, and achieves state-of-the-art performance at the subseasonal-to-seasonal
scale across accuracy, physics-based, and probabilistic metrics. Furthermore, we
demonstrate that OmniCast can generate stable rollouts up to 100 years ahead.
Code and model checkpoints are available at https://github.com/tung-nd/omnicast.

1 Introduction

Accurate weather forecasting across time scales is essential for anticipating extreme events, managing
resources, and mitigating the impacts of climate change. While medium-range forecasting, which
encompasses predictions up to approximately two weeks, has seen remarkable progress with both
numerical and data-driven approaches, extending prediction skill beyond this horizon remains a
significant challenge. Subseasonal-to-seasonal (S2S) forecasting, which aims to predict atmospheric
conditions from two to six weeks ahead, represents this next frontier. This timescale bridges the gap
between short-term weather forecasts and longer-term climate projections, enabling more informed
decision-making for extreme weather events such as droughts, floods, and heatwaves [51, 36, 52, 8].
S2S prediction is particularly challenging due to the interplay between atmospheric initial conditions,
essential for short-term and medium-range forecasting, and boundary conditions dominating seasonal
and climate predictions [27, 28]. Traditional numerical weather prediction (NWP) models, built
upon solving differential equations of fluid dynamics and thermodynamics, have been instrumental
in advancing S2S weather prediction [36, 47, 48]. However, numerical methods incur substantial
computational costs due to the complexity of integrating large systems of differential equations,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/tung-nd/omnicast

particularly at fine spatial and temporal resolutions. This computational bottleneck also constrains
the ensemble size of ensemble systems, which is crucial for achieving accurate S2S predictions.

To overcome the challenges of NWP systems, there has been a growing interest in data-driven
approaches based on deep learning for weather forecasting [10, 43, 50]. These approaches involve
training deep neural networks on historical datasets, such as ERA5 [14, 15, 39, 40], to learn the
underlying weather patterns. Once trained, they can produce forecasts in seconds compared to
the hours required by NWP models. Recent deep learning methods such as PanguWeather [2],
Graphcast [22], and Stormer [33] have also shown superior accuracy in medium-range weather
forecasting, surpassing operational IFS [49], the state-of-the-art NWP system. However, their
application to the S2S timescale has been limited [31]. One possible explanation for this limitation is
the rapid error compounding in their autoregressive designs, in which a model learns to forecast the
future weather state at a small interval and iteratively feeds its prediction back as input to achieve
longer-horizon forecasts. Even though previous works have proposed multi-step finetuning to mitigate
this issue, back-propagation through a large number of forward passes required for S2S timescales
is computationally prohibitive. Moreover, training a neural network to forecast at a small interval
only allows the model to learn the initial conditions problem, ignoring boundary conditions that are
critical for prediction at S2S timescales.

In this work, we propose OmniCast, a novel latent diffusion model for skillful probabilistic weather
forecasting across time scales. OmniCast follows a two-stage training process. In the first stage,
we train a VAE model [19] that compresses raw weather data into a continuous, lower-dimensional
latent space. In the second stage, we train a transformer to model the distribution of a sequence of
future latent tokens given the initial conditioning tokens using a masked generative framework [3, 55].
Specifically, during training, we randomly mask a subset of future tokens, and task the transformer
to unmask these tokens based on the conditioning tokens and the visible tokens. Since the latent
tokens lie in a continuous space, we use a small diffusion network on top of the transformer model to
estimate the per-token distribution of unmasked tokens. In addition to the diffusion loss, we apply a
mean-squared error (MSE) objective to enforce the model to accurately predict the first few latent
frames deterministically. After training, OmniCast generates forecasts for the full sequence of future
tokens through an iterative process. In each iteration, the model selects a subset of future tokens
to unmask given the conditioning tokens and previously unmasked tokens, continuing this process
until all future tokens are generated. The unmasking operation involves sampling from the diffusion
model, with the number and positions of tokens selected to unmask in each iteration determined by a
predefined schedule and unmasking order. This joint generation of future tokens across time and space
significantly mitigates the compounding errors issue of an autoregressive approach. Furthermore,
training on the full sequence of future frames enables OmniCast to address both initial condition
problems and boundary condition challenges, which are critical for S2S prediction.

We evaluate OmniCast on ChaosBench [31], a recent benchmark for subseasonal-to-seasonal predic-
tion. OmniCast achieves state-of-the-art performance on key atmospheric variables across various
accuracy, physics-based, and probabilistic metrics. Additionally, we carefully study the impact of
different design choices, including the auxiliary MSE loss, training sequence lengths, unmasking
order, and diffusion sampling temperature, on the forecasting performance of OmniCast.

2 Related Work

Data-driven weather forecasting Deep learning has become a promising approach in the field of
weather forecasting. Recent advancements with powerful architectures have achieved significant
successes, providing faster inference and superior forecasting accuracy compared to IFS, the gold-
standard numerical weather prediction system. Notable methods include FourCastNet [35], which
utilizes an adaptive neural operator architecture; Keisler [17]’s, GraphCast [22], and AIFS [24],
which leverage graph neural networks; and a series of transformer-based models such as Pan-
guWeather [2], Stormer [33], and others [32, 6, 4, 7]. Beyond deterministic predictions, the field has
increasingly focused on probabilistic forecasting to better account for forecast uncertainty. Common
approaches involve integrating existing architectures with generative frameworks, including diffusion
models [37, 30], normalizing flows [7], and latent variable models [34]. Others explore ensemble
predictions through initial condition perturbations, exemplified by methods like AIFS-CRPS [24] and
NeuralGCM [20].

2

Data-driven S2S prediction Recent benchmarks have emerged to evaluate data-driven methods at
S2S timescales. While many focus on regional forecasts such as the US [16, 29], ChaosBench [31]
offers a comprehensive framework for global S2S prediction, providing extensive numerical baselines
and physics-based metrics. A key finding from ChaosBench shows that state-of-the-art deep learning
methods struggle to extend to S2S timescales. These methods predominantly rely on autoregressive
approaches that generate predictions iteratively at short time intervals, leading to error accumulation
with increasing lead times. While multi-step finetuning helps mitigate this issue for medium-range
forecasts, it becomes computationally prohibitive for S2S predictions due to the extensive number
of required forward passes. Moreover, training models with short time intervals fails to capture
boundary conditions essential for long-term weather patterns. While Fuxi-S2S [5] was proposed for
S2S prediction, it focuses on forecasting daily averaged statistics, which fundamentally alters the
underlying weather dynamics and makes it inapplicable to forecasting at instantaneous time steps.

3 Background and Preliminaries

3.1 Weather forecasting

The goal of weather forecasting is to forecast future weather conditions XT ∈ RV×H×W based on
initial conditions X0 ∈ RV×H×W , where T represents the target lead time, V denotes the number of
input and output physical variables (e.g., temperature and geopotential), and H ×W corresponds
to the spatial resolution of the data, determined by the density of the global grid. In subseasonal-
to-seasonal (S2S) forecasting, we focus on lead times ranging from 2 to 6 weeks. Autoregressive
modeling is a dominant paradigm in data-driven weather forecasting, where a model iteratively
produces forecasts Xδt at a short interval δt to reach the target lead time T . In this work, we propose
an alternative approach: training a generative model to estimate the distribution of the entire sequence
of future weather states X1:T given initial conditions X0. This approach mitigates error accumulation
and enables the model to learn both initial and boundary condition dynamics by considering the
complete sequence of weather states.

3.2 Masked generative modeling

Masked generative modeling is an efficient and powerful approach for image and video generation in
computer vision [3, 55, 25]. In this framework, visual data X1:T ∈ RT×V×H×W (T = 1 for images)
is first embedded by a VAE encoder into a sequence of tokens x ∈ RN×D, where N represents
the length of the flattened token sequence. During training, we apply a binary mask to randomly
select a subset of tokens to be predicted, creating a corrupted sequence. We then train a transformer
model to recover the original tokens at masked positions based on both the visible tokens and any
additional conditioning information such as initial frames. For generation, the framework employs an
iterative decoding process that starts with a fully masked sequence of future tokens. In each iteration,
the model predicts a random subset of masked tokens in parallel, where the number and positions
of the unmasked tokens follow a predefined schedule and order. This process continues until all
tokens are unmasked, at which point the generated tokens are decoded back to the original domain
through a VAE decoder. This framework offers key advantages for weather forecasting: it allows
the model to capture long-range dependencies across the entire sequence while avoiding the error
accumulation typical in autoregressive approaches, and the iterative refinement process enables the
model to maintain consistency across both spatial and temporal dimensions.

3.3 Modeling continuous tokens with diffusion models

In the masked generative modeling framework, a common practice is to embed the raw visual data into
a discrete latent space and train the transformer model using a cross-entropy objective. However, this
approach relies on vector-quantized VAE models [45], which are sensitive to gradient approximation
strategies [41, 38, 21] and typically achieve lower reconstruction quality than continuous-valued
VAEs. Recent works [44, 26] have demonstrated that discretization can be eliminated by directly
modeling the per-token probability distribution in a continuous latent space. In this work, we adopt
diffusion models for continuous distribution modeling.

Given data x ∈ RD and its conditioning information z ∈ RD, we model the conditional distribution
p(x | z) using a diffusion process that gradually transforms a Gaussian prior into the target distribution.

3

Transformer backbone

Figure 1: OmniCast processes the latent tokens through a trans-
former backbone that outputs a vector zi for each position i in
the sequence.

Figure 2: The denoising network
eθ predicts the noise ϵ from zi and
xs
i .

Figure 3: The deterministic net-
work predicts directly xi from zi.

The forward diffusion process progressively adds Gaussian noise to the data x following:

xs =
√
αsx+

√
1− αsϵ, (1)

where s indicates the diffusion step, αs determines the noise schedule, and ϵ ∼ N (0, I) represents
Gaussian noise. The reverse process employs a denoising network ϵθ(xs, s, z) parameterized by θ to
predict the noise component from the noisy input xs and condition z:

Ldiff(θ) = Eϵ,x

[
∥ϵθ(xs, s, z)− ϵ∥2

]
. (2)

At inference time, conditional sampling begins with a random Gaussian noise xS ∼ N (0, I) and
iteratively applies the reverse diffusion process:

xs−1 =
1

√
αs

(
xs −

1− αs√
1− ᾱs

ϵθ(xs, s, z)

)
+ τσsδ, (3)

where ᾱs =
∏s

k=1 αk, δ ∼ N (0, I) and σs controls the magnitude of noise added at each step. This
iterative process generates samples from the learned conditional distribution pθ(x | z). Following [26],
we additionally scale the noise σsδ by the temperature τ that controls the sample diversity from the
diffusion model.

4 Methodology

We present OmniCast, a novel method for subseasonal-to-seasonal prediction. Similar to previous
works in video generation, OmniCast consists of two components: a VAE model that compresses the
raw weather data into a lower-dimensional space, and a masked generative transformer model in this
latent space. We present the two components and their key design choices in this section.

4.1 VAE for weather data embedding

A VAE encoder embeds a weather state X ∈ RV×H×W into a map of h× w latent tokens, where
h < H and w < W . In vector-quantized VAEs, each entry in the latent map is an integer index from a
fixed-size vocabulary, representing a discrete latent space. While this discretization is widely adopted
in computer vision due to its compatibility with cross-entropy training and straightforward sampling
from softmax distributions, it presents significant challenges for weather data. Unlike RGB images
with three channels, weather states can contain hundreds of physical variables, resulting in an extreme
compression requirement. For instance, consider compressing weather data with 100 variables (32 bits
per value) by a factor of 4 in each spatial dimension, using a vocabulary size of 213 = 8192 (13 bits
per latent token). This results in a compression ratio of (32×100×H×W)/(13×(H/4)×(W/4)) ≈
3938. Such aggressive compression leads to substantial reconstruction errors, ultimately degrading
the performance of the second-stage generative modeling.

Therefore, we adopt a continuous VAE model for OmniCast, where each token in the h×w latent map
is a continuous vector of D dimensions. With D = 16, for example, the compression ratio becomes
(32 × 100 ×H ×W)/(32 × 16 × (H/4) × (W/4)) = 100, substantially lower than the discrete
approach. While it is also possible to compress a sequence of weather states X1:T ∈ RT×V×H×W in
both temporal and spatial dimensions, our preliminary experiments showed no clear benefits from
temporal compression, leading us to adopt per-frame embedding.

4

4.2 Masked generative modeling for S2S prediction

After training the VAE, we embed the initial condition into a sequence of tokens c =
(c1, c2, . . . , ch×w). Similarly, each future weather state is embedded into a sequence of tokens,
which are concatenated to form the complete sequence of future tokens x = (x1, x2, . . . , xN), where
N = T × h × w represents the total number of future tokens. Each latent token is a continuous
vector of dimension D. Our generative modeling objective is to estimate the conditional distribution
p(x | c) from the training data.

We achieve this using a masked generative framework, as illustrated in Figure 1. During training,
we sample a binary mask m = [mi]

N
i=1 ∼ pU and replace tokens xi with a learnable, continuous

[MASK] token where mi = 1, creating a corrupted sequence x = m(x). The generative objective is
to estimate the distribution of masked tokens conditioned on the visible and conditioning tokens:

Lgen(θ) = E
m∼pU

[∑
i s.t. mi=1

− log pθ(xi | c,x)

]
. (4)

The model processes the input by concatenating the conditioning tokens c with the corrupted future
tokens x, adding positional encodings to the embedded sequence, and passing it through a bi-
directional transformer backbone to obtain vectors zi for each masked position. Given these vectors,
the per-token objective log pθ(xi | c,x) in Equation 4 simplifies to log pθ(xi | zi). To model this
continuous distribution, we employ a diffusion model where zi serves as conditional information
for a denoising network – implemented as a small MLP on top of the transformer (Figure 2). We
train the denoising network and the transformer backbone jointly using the diffusion loss specified in
Equation 2. Conceptually, this diffusion objective encourages the model to produce representations
zi that facilitate effective denoising.

Auxiliary deterministic objective To encourage accurate predictions of near-term future tokens,
we incorporate an auxiliary mean-squared error loss in the latent space. We implement this through
a separate MLP head that produces deterministic predictions x̂i from zi, training it jointly with the
transformer backbone. Since weather dynamics become increasingly chaotic beyond day 10, making
deterministic predictions progressively less meaningful, we apply this loss only to the first 10 future
frames. Furthermore, we employ an exponentially decreasing weighting scheme to emphasize the
importance of accurate predictions for earlier frames. The deterministic objective is thus:

Ldeter(θ) = E
m∼pU

[∑
mi=1

w(i)||xi − x̂i||22

]
. (5)

Appendix A.2 presents the details of this objective. The complete training objective combines both
losses: L(θ) = Lgen(θ) + Ldeter(θ).

Sampling from OmniCast At inference time, we generate samples from p(x | c) through an iterative
decoding process, starting from a sequence of fully masked future tokens. Each iteration consists
of three steps: first, the transformer backbone processes the conditioning tokens and corrupted
future tokens to produce vectors zi for each masked position; second, a subset of masked positions
is randomly selected according to a predefined schedule for unmasking; third, for each selected
position, the diffusion model generates token xi by conditioning on zi and performing a fixed number
of diffusion steps. This process iterates until all future tokens are revealed, at which point the
VAE decoder maps the generated tokens back to the weather domain. To generate an ensemble of
forecasts, we simply replicate the initial tokens and perform independent sampling for each copy. Four
hyperparameters affect the sampling procedure: the number of unmasking iterations, the unmasking
order, the number of diffusion steps, and the diffusion temperature.

4.3 Implementation details

Architectural details For the transformer backbone, we adopt the encoder-decoder architecture
from Masked Autoencoder (MAE) [13]. The model processes an input sequence in two stages:
first, the encoder processes the conditioning and visible tokens; second, the encoded sequence is
augmented with learnable [MASK] tokens at appropriate positions and passed through the decoder
to produce zi for each position i. Both the encoder and decoder are bidirectional, employing full
attention. Before feeding to either the encoder or decoder, we add the input sequences with positional

5

embeddings that combine two components: temporal embeddings to distinguish different frames, and
spatial embeddings to differentiate tokens within each frame. The encoder and decoder follow the
Transformer [46] implementation in ViT [9], each having 16 layers with 16 attention heads, a hidden
dimension of 1024, and a dropout rate of 0.1.

Mask sampling During training, we sample a masking ratio γ ∼ U [0.5, 1.0] and generate a
corresponding binary mask m, where γ = 0.75 indicates that 75% of entries in m are 1. For
inference, we start with full masking (γ = 1.0) and gradually reduce it to 0.0 following a cosine
schedule [3]. We set the number of unmasking iterations to match the number of future weather states
T by default. We employ random masking orders across both spatial and temporal dimensions for
training and inference.

Diffusion loss details We use a linear noise schedule with 1000 steps at training time that are
resampled to 100 steps at inference. The denoising network ϵθ is implemented as a small MLP
following Li et al. [26]. Specifically, the network consists of six residual blocks, each comprising a
LayerNorm (LN), a linear layer, a SiLU activation, and another linear layer, with a residual connection
around the block. Each block maintains a width of 2048 channels. The network takes the vector zi
from the transformer as conditioning information, which is combined with the time embedding of the
diffusion step s through adaptive layer normalization (AdaLN) in each block’s LN layers.

5 Experiments

We compare OmniCast with state-of-the-art deep learning and numerical methods on both medium-
range and S2S time scales, using WeatherBench2 [40] (WB2) and ChaosBench [31] as benchmarks,
respectively, and conduct extensive ablation studies to assess the contribution of each component in
OmniCast. We further test the stability of OmniCast up to 100 years ahead in Appendix B.5.

Across both tasks, we train and evaluate OmniCast on 69 variables from the ERA5 reanalysis
dataset [15], including four surface-level variables – 2-meter temperature (T2m), 10-meter U and
V wind components (U10, V10), and mean sea-level pressure (MSLP), as well as five atmospheric
variables – geopotential (Z), temperature (T), U and V wind components, and specific humidity (Q),
each at 13 pressure levels {50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000} hPa.
For medium-range forecasting, we use native 0.25◦ resolution (721× 1440 grids) and follow WB2
to train on years 1979–2018, validate on 2019, and test on 2020 using initial conditions at 00UTC
and 12UTC. For S2S prediction, we downsample the data to 1.40625◦ (128× 256 grids) and follow
ChaosBench to train on 1979–2020, validate on 2021, and test on 2022 using 00UTC initializations.

5.1 OmniCast for S2S prediction

Training and inference details We train a VAE that embeds each weather state of shape 69 ×
128 × 256 into a latent map of shape 1024 × 8 × 16, reducing spatial dimensions by a factor of
16. The architectural details and training process of the VAE are described in Appendix A.1. We
train OmniCast to forecast a sequence of T = 44 future weather states at 24hr intervals, covering
lead times from 1 to 44 days. Each training example consists of 45× 8× 16 = 5760 latent tokens,
including the initial condition. During inference, we generate the complete future sequence in 44
iterations (1 iteration per frame) using a diffusion temperature of τ = 1.3. We produce an ensemble
of 50 forecast sequences for each initial condition.

Baselines We compare OmniCast with PanguWeather (PW) [2] and GraphCast (GC) [22], two leading
open-sourced deep learning methods, and ensemble systems of four numerical models from different
national agencies: UKMO-ENS (UK) [53], NCEP-ENS (US) [42], CMA-ENS (China) [54], and
ECMWF-ENS (Europe) [11]. We refer to ChaosBench for details about these baselines. Following
ChaosBench, we report results on T850, Z500, and Q700 at lead times from 1 to 44 days. We
additionally compare OmniCast with ClimaX [32] and Stormer [33] in Appendix B.2. We do not
compare against Fuxi-S2S [5] as Fuxi-S2S forecasts daily average values from past daily averages,
making it incomparable with OmniCast and the rest of the methods, which perform point-in-time
weather forecasting based on an initial condition. We are also not able to run Gencast [37] and
NeuralGCM [20] for S2S due to their significant computational demands.

Results Figure 4 compares different methods on three deterministic metrics: Root Mean-Squared
Error (RMSE), Absolute Bias (ABS BIAS), and Multi-scale Structural Similarity (SSIM). At shorter

6

200

400

600

800

1000

1200

RM
SE

 (
)

Z500 (m2/s2)

1

2

3

4

5
T850 (K)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Q700 (g/kg)

0

50

100

150

200

250

300

350

AB
S

BI
AS

 (
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 10 20 30 40

0.70

0.75

0.80

0.85

0.90

0.95

1.00

SS
IM

 (
)

0 10 20 30 40
Lead Time (Days)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 10 20 30 40
0.4

0.5

0.6

0.7

0.8

0.9

OmniCast GC PW ECMWF-ENS CMA-ENS UKMO-ENS NCEP-ENS Climatology-ENS

Figure 4: Deterministic performance of different methods at lead times from 1 to 44 days across three
key variables. Solid curves are deep learning methods and dashed curves are numerical methods.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

SD
IV

 (
)

Z500 (m2/s2)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
T850 (K)

0.1

0.2

0.3

0.4
Q700 (g/kg)

0 10 20 30 40
0.00

0.01

0.02

0.03

0.04

0.05

0.06

SR
ES

 (
)

0 10 20 30 40
Lead Time (Days)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 10 20 30 40

0.02

0.03

0.04

0.05

0.06

0.07

OmniCast GC PW ECMWF-ENS CMA-ENS UKMO-ENS NCEP-ENS Climatology-ENS

Figure 5: Physics-based metrics of different methods at lead times from 1 to 44 days across three key
variables. Solid curves are deep learning methods and dashed curves are numerical methods.

lead times, OmniCast shows slightly worse performance on RMSE and SSIM than other baselines,
which is expected since we train OmniCast to model a full sequence of future weather states rather
than optimizing for short- and medium-range predictions. However, OmniCast’s relative performance
improves with increasing lead time, ultimately matching ECMWF-ENS as one of the top two
performing methods beyond day 10. Notably, OmniCast demonstrates the lowest bias among all
baselines, maintaining near-zero bias across all three target variables.

Physical consistency also plays a crucial role in S2S prediction, particularly for ensemble systems.
We evaluate this aspect using two physics-based metrics: Spectral Divergence (SDIV) and Spectral
Residual (SRES), which measure how closely the power spectra of predictions match those of
ground-truths. As shown in Figure 5, OmniCast achieves substantially better physical consistency
than other deep learning methods, and often outperforms all baselines on these metrics. These results
demonstrate how OmniCast effectively preserves signals across the frequency spectrum.

7

100

200

300

400

500

CR
PS

 (
)

Z500 (m2/s2)

0.5

1.0

1.5

2.0

2.5
T850 (K)

0.4

0.6

0.8

1.0

1.2

1.4
Q700 (g/kg)

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

SS
R

0 10 20 30 40
Lead Time (Days)

0.0

0.2

0.4

0.6

0.8

0 10 20 30 400.0

0.2

0.4

0.6

0.8

OmniCast ECMWF-ENS CMA-ENS UKMO-ENS NCEP-ENS

Figure 6: Probabilistic performance of different methods at lead times from 1 to 44 days across three
key variables. Solid curves are deep learning methods and dashed curves are numerical methods.

Finally, we compare OmniCast with the four numerical ensemble systems on two probabilistic metrics:
Continuous Ranked Probability Score (CRPS) and Spread/Skill Ratio (SSR) (closer to 1 is better).
Figure 6 shows that OmniCast and ECMWF-ENS are the two leading methods across variables and
lead times. Similar to deterministic results, OmniCast performs worse than ECMWF-ENS at shorter
lead times but outperforms this baseline beyond day 15.

5.2 OmniCast for medium-range forecasting

100

200

300

400

500

600

700

RM
SE

 (
)

Z500 (m2/s2)

0.5

1.0

1.5

2.0

2.5

3.0

T850 (K)

0.6

0.8

1.0

1.2

1.4

1.6

Q700 (g/kg)

50

100

150

200

250

300

CR
PS

 (
)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.3

0.4

0.5

0.6

0.7

0.8

2 4 6 8 10 12 14
0.85

0.90

0.95

1.00

1.05

1.10

SS
R

2 4 6 8 10 12 14
Lead Time (Days)

0.95

1.00

1.05

1.10

1.15

2 4 6 8 10 12 14
0.950

0.975

1.000

1.025

1.050

1.075

1.100

1.125

1.150

OmniCast Gencast IFS-ENS

Figure 7: Probabilistic performance of different methods in medium-range forecasting. Solid curves
are deep learning methods and dashed curves are numerical methods.

In addition to its strong performance on the S2S task, we demonstrate that OmniCast also performs
competitively at the medium-range timescale. We train a VAE model with a spatial downsampling
ratio of 16, compressing each weather state of shape 69× 721× 1440 into a latent representation of
size 256×45×90. We then train OmniCast to predict two steps ahead at 12-hour intervals, following

8

the setup of Gencast [37]. During inference, we use autoregressive sampling, recursively feeding
the most recent predicted frame as the new initial condition until the target lead time is reached. We
generate forecasts using a single sampling iteration per frame with a diffusion temperature τ = 1.0,
and produce an ensemble of 50 members.

We compare OmniCast against Gencast [37], a leading deep learning method for probabilistic fore-
casting, and IFS-ENS [23], the gold-standard numerical ensemble system. Following WeatherBench2,
we use ensemble RMSE, CRPS, and spread-skill ratio (SSR) as evaluation metrics. As shown in
Figure 7, OmniCast performs comparably with IFS-ENS across all variables and metrics, and is only
slightly behind Gencast. These results indicate that OmniCast achieves strong performance across
both medium-range and S2S timescales.

5.3 Efficiency of OmniCast

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Resolution (degrees)

101

102

103
Ru

nt
im

e
(s

ec
on

ds
)

Runtime vs Resolution for Different Methods
OmniCast (A100)
Gencast (A100)
Gencast (TPU v5)
IFS-ENS (96 AMD Epyc Rome CPUs)
NeuralGCM (A100)

Figure 8: Runtime vs resolution to produce a 15-day forecast.

Beyond its strong empirical perfor-
mance, OmniCast offers substantial
efficiency gains over existing meth-
ods. We trained OmniCast for 4 days
using 32 NVIDIA A100 GPUs. In
comparison, Gencast requires 5 days
of training on 32 TPUv5e devices –
hardware significantly more powerful
than A100s, and NeuralGCM [20] re-
quires 10 days on 128 TPUv5e de-
vices. Additionally, Gencast employs
a two-stage training pipeline, first pre-
training on 1.0◦ resolution and then
finetuning on 0.25◦, while we trained
OmniCast in a single stage.

At inference time, OmniCast is orders of magnitude faster than Gencast, NeuralGCM, and IFS-ENS.
Figure 8 compares the runtime (in seconds) required to generate a 15-day forecast across different
resolutions. At 0.25◦ resolution, Gencast requires 480 seconds on TPUv5, whereas OmniCast
achieves the same forecast in just 29 seconds on an A100. At 1.0◦, OmniCast completes inference in
only 11 seconds, compared to 224 seconds for Gencast on the same hardware. These results highlight
the scalability and practicality of OmniCast for operational forecasting.

The efficiency of OmniCast stems from two key architectural innovations. First, OmniCast operates in
a much lower-dimensional latent space (45× 90 latent grid vs 721× 1440 original grid), significantly
reducing the computational cost of training and inference. Second, OmniCast employs a highly
efficient sampling mechanism. Unlike Gencast, which performs 50 full forward passes through
the entire network for 50 diffusion steps, OmniCast requires only a single forward pass through
the transformer backbone. The subsequent diffusion steps involve only lightweight forward passes
through a compact MLP diffusion head, resulting in orders-of-magnitude lower inference time.
Together, these design choices enable OmniCast to deliver fast and scalable forecasts.

5.4 Ablation studies

We analyze four key factors that influence OmniCast’s performance: the auxiliary deterministic
objective, training sequence length T , unmasking order during sampling, and diffusion sampling
temperature τ . We present results for T850 on RMSE, CRPS, and SSR. We additionally study the
impact of IC perturbations in Appendix B.3.

Impact of the deterministic objective Figure 9a demonstrates the important role of the deterministic
loss in OmniCast’s performance. Removing the MSE objective (No-MSE) degrades both RMSE and
CRPS scores, with particularly noticeable impact at short lead times. However, naively applying
MSE to all future frames (MSE-All-Frames) also proves counterproductive, as it forces deterministic
predictions even for S2S timescales where weather systems become inherently chaotic. Our approach
of applying MSE only to the first 10 frames achieves the best RMSE and CRPS scores across
medium-range and S2S timescales.

9

1.5

2.0

2.5

3.0

3.5

RM
SE

 (
)

T850 (K)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

CR
PS

 (
)

0 10 20 30 40
Lead Time (Days)

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

SS
R

MSE-10 MSE-All No-MSE

(a) Impact of the deter-
ministic objective.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

RM
SE

 (
)

T850 (K)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

CR
PS

 (
)

0 10 20 30 40
Lead Time (Days)

0.60

0.65

0.70

0.75

0.80

SS
R

44f-24hr 1f-24hr 4f-6hr

(b) Impact of the train-
ing sequence length.

0.6

0.8

1.0

1.2

1.4

1.6

1.8

CR
PS

 (
)

T850 (K)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

CR
PS

 (
)

0 10 20 30 40
Lead Time (Days)

0.50

0.55

0.60

0.65

0.70

SS
R

Random Autoreg Random Frame

(c) Comparison of differ-
ent unmasking strategies.

1.5

2.0

2.5

3.0

3.5

RM
SE

 (
)

T850 (K)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

CR
PS

 (
)

0 10 20 30 40
Lead Time (Days)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SS
R

0.7 1.0 1.3 1.5

(d) Impact of diffusion
sampling temperature τ .

Figure 9: Ablation studies showing the impact of different components in OmniCast.

Impact of training sequence length In the main S2S experiment, we train OmniCast to generate
44 future weather states at 24 hour intervals. One could alternatively train the model on shorter
sequences and/or smaller intervals, then apply multiple roll-outs during inference to reach longer
horizons. Figure 9b shows that models trained on shorter sequences or smaller intervals excel at short-
and medium-range forecasting but underperform at S2S timescales. This trade-off emerges because
shorter sequences allow models to specialize in near-term predictions, leading to better performance
at shorter lead times. However, these models suffer from error accumulation at longer horizons,
ultimately performing worse than the model trained on full sequences.

Impact of unmasking orders While our approach randomly masks tokens across both space and
time during training, one may try more structured masking strategies at inference. We evaluate two
such alternatives: an autoregressive strategy that unmasks entire frames sequentially, and a random
framewise approach that unmasks complete frames in random order. Figure 9c shows that our fully
randomized strategy achieves the best SSR scores, while both alternatives produce under-dispersive
ensembles. The superior performance of the fully randomized approach stems from its introduction
of additional randomness through the unmasking order, generating more diverse ensemble forecasts.
This greater diversity consequently leads to better performance across other metrics.

Impact of diffusion sampling temperature Higher values of the temperature τ produce more
diverse forecasts. Figure 9d demonstrates this empirically. Setting τ < 1 produces under-dispersive
ensembles, degrading performance across other metrics. Increasing τ boosts sample diversity,
improving SSR scores and overall better performance. However, pushing τ too high (e.g., τ = 1.5)
causes samples to deviate from the mean prediction, compromising RMSE and CRPS performance.
We identify τ = 1.3 as the optimal value, providing the best balance between ensemble diversity and
forecast quality, which we adopt for our main experiments.

6 Conclusion

We present OmniCast, a novel latent diffusion model for S2S prediction. By combining the masked
generative framework with a diffusion objective, our approach enables direct modeling of long
sequences of future weather states while avoiding error accumulation inherent in autoregressive meth-
ods. OmniCast achieves state-of-the-art performance in deterministic and probabilistic metrics while
maintaining exceptional physical consistency. In medium-range forecasting, OmniCast performs
competitively with existing methods while being significantly more efficient. Future work could study
the fundamental trade-off between VAE reconstruction quality and transformer modeling capacity,
and explore more sophisticated generative frameworks to enhance the diffusion objective.

10

References
[1] Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit

Chattopadhyay, Yongxin Chen, Yin Cui, Yifan Ding, et al. Cosmos world foundation model
platform for physical ai. arXiv preprint arXiv:2501.03575, 2025.

[2] Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate
medium-range global weather forecasting with 3D neural networks. Nature, 619(7970):533–
538, 2023.

[3] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked
generative image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11315–11325, 2022.

[4] Kang Chen, Tao Han, Junchao Gong, Lei Bai, Fenghua Ling, Jing-Jia Luo, Xi Chen, Leiming
Ma, Tianning Zhang, Rui Su, et al. Fengwu: Pushing the skillful global medium-range weather
forecast beyond 10 days lead. arXiv preprint arXiv:2304.02948, 2023.

[5] Lei Chen, Xiaohui Zhong, Jie Wu, Deliang Chen, Shangping Xie, Qingchen Chao, Chensen
Lin, Zixin Hu, Bo Lu, Hao Li, et al. Fuxi-s2s: An accurate machine learning model for global
subseasonal forecasts. arXiv preprint arXiv:2312.09926, 2023.

[6] Lei Chen, Xiaohui Zhong, Feng Zhang, Yuan Cheng, Yinghui Xu, Yuan Qi, and Hao Li. FuXi:
A cascade machine learning forecasting system for 15-day global weather forecast. arXiv
preprint arXiv:2306.12873, 2023.

[7] Guillaume Couairon, Christian Lessig, Anastase Charantonis, and Claire Monteleoni. Arch-
esweather: An efficient ai weather forecasting model at 1.5 {\deg} resolution. arXiv preprint
arXiv:2405.14527, 2024.

[8] Daniela IV Domeisen, Christopher J White, Hilla Afargan-Gerstman, Ángel G Muñoz,
Matthew A Janiga, Frédéric Vitart, C Ole Wulff, Salomé Antoine, Constantin Ardilouze,
Lauriane Batté, et al. Advances in the subseasonal prediction of extreme events: Relevant case
studies across the globe. Bulletin of the American Meteorological Society, 103(6):E1473–E1501,
2022.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[10] P. D. Dueben and P. Bauer. Challenges and design choices for global weather and climate
models based on machine learning. Geoscientific Model Development, 11(10):3999–4009,
2018. doi: 10.5194/gmd-11-3999-2018. URL https://gmd.copernicus.org/articles/
11/3999/2018/.

[11] ECMWF. IFS Documentation CY41R1 - Part V: The Ensemble Prediction System. Number 5.
ECMWF, 2015 2015. doi: 10.21957/eow1lonc. URL https://www.ecmwf.int/node/9212.
<p> Operational implementation 12 May 2015</p>.

[12] Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized
pde modeling. arXiv preprint arXiv:2209.15616, 2022.

[13] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 16000–16009, 2022.

[14] Hans Hersbach, Bill Bell, Paul Berrisford, Gionata Biavati, András Horányi, Joaquín
Muñoz Sabater, Julien Nicolas, Carole Peubey, Raluca Radu, Iryna Rozum, Dinand Schepers,
Adrian Simmons, Cornel Soci, Dick Dee, and Jean-Noël Thépaut. ERA5 hourly data on single
levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Dtore
(CDS), 10(10.24381), 2018.

11

https://gmd.copernicus.org/articles/11/3999/2018/
https://gmd.copernicus.org/articles/11/3999/2018/
https://www.ecmwf.int/node/9212

[15] Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz-
Sabater, Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, , Adrian Simmons,
Cornel Soci, Saleh Abdalla, Xavier Abellan, Gianpaolo Balsamo, Peter Bechtold, Gionata
Biavati, Jean Bidlot, Massimo Bonavita, Giovanna De Chiara, Per Dahlgren, Dick Dee, Michail
Diamantakis, Rossana Dragani, Johannes Flemming, Richard Forbes, Manuel Fuentes, Alan
Geer, Leo Haimberger, Sean Healy, Robin J. Hogan, Elías Hólm, Marta Janisková, Sarah
Keeley, Patrick Laloyaux, Philippe Lopez, Cristina Lupu, Gabor Radnoti, Patricia de Rosnay,
Iryna Rozum, Freja Vamborg, Sebastien Villaume, and Jean-Noël Thépaut. The ERA5 global
reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730):1999–2049, 2020.

[16] Jessica Hwang, Paulo Orenstein, Judah Cohen, Karl Pfeiffer, and Lester Mackey. Improving
subseasonal forecasting in the western us with machine learning. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
2325–2335, 2019.

[17] Ryan Keisler. Forecasting global weather with graph neural networks. arXiv preprint
arXiv:2202.07575, 2022.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[19] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013. URL https:
//arxiv.org/abs/1312.6114.

[20] Dmitrii Kochkov, Janni Yuval, Ian Langmore, Peter Norgaard, Jamie Smith, Griffin Mooers,
Milan Klöwer, James Lottes, Stephan Rasp, Peter Düben, et al. Neural general circulation
models for weather and climate. Nature, 632(8027):1060–1066, 2024.

[21] Alexander Kolesnikov, André Susano Pinto, Lucas Beyer, Xiaohua Zhai, Jeremiah Harmsen,
and Neil Houlsby. Uvim: A unified modeling approach for vision with learned guiding codes.
Advances in Neural Information Processing Systems, 35:26295–26308, 2022.

[22] Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato,
Ferran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose,
Stephan Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir
Mohamed, and Peter Battaglia. Learning skillful medium-range global weather forecasting.
Science, 0(0):eadi2336, 2023. doi: 10.1126/science.adi2336. URL https://www.science.
org/doi/abs/10.1126/science.adi2336.

[23] Simon Lang, Mark Rodwell, and Dinand Schepers. Ifs upgrade brings many improvements and
unifies medium-range resolutions. ECMWF Newsletter, 176:21–28, 2023.

[24] Simon Lang, Mihai Alexe, Matthew Chantry, Jesper Dramsch, Florian Pinault, Baudouin
Raoult, Mariana CA Clare, Christian Lessig, Michael Maier-Gerber, Linus Magnusson, et al.
Aifs-ecmwf’s data-driven forecasting system. arXiv preprint arXiv:2406.01465, 2024.

[25] Tianhong Li, Huiwen Chang, Shlok Mishra, Han Zhang, Dina Katabi, and Dilip Krishnan.
Mage: Masked generative encoder to unify representation learning and image synthesis. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2142–2152, 2023.

[26] Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. arXiv preprint arXiv:2406.11838, 2024.

[27] Edward N Lorenz. Forced and free variations of weather and climate. Journal of Atmospheric
Sciences, 36(8):1367–1376, 1979.

[28] Annarita Mariotti, Paolo M Ruti, and Michel Rixen. Progress in subseasonal to seasonal
prediction through a joint weather and climate community effort. Npj Climate and Atmospheric
Science, 1(1):4, 2018.

12

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://www.science.org/doi/abs/10.1126/science.adi2336
https://www.science.org/doi/abs/10.1126/science.adi2336

[29] Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Miruna Oprescu, Judah Cohen,
Franklyn Wang, Sean Knight, Maria Geogdzhayeva, Sam Levang, Ernest Fraenkel, et al.
Subseasonalclimateusa: a dataset for subseasonal forecasting and benchmarking. Advances in
Neural Information Processing Systems, 36, 2024.

[30] Congyi Nai, Xi Chen, Shangshang Yang, Yuan Liang, Ziniu Xiao, and Baoxiang Pan. Boosting
weather forecast via generative superensemble. arXiv preprint arXiv:2412.08377, 2024.

[31] Juan Nathaniel, Yongquan Qu, Tung Nguyen, Sungduk Yu, Julius Busecke, Aditya Grover, and
Pierre Gentine. Chaosbench: A multi-channel, physics-based benchmark for subseasonal-to-
seasonal climate prediction. arXiv preprint arXiv:2402.00712, 2024.

[32] Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover.
ClimaX: A foundation model for weather and climate. arXiv preprint arXiv:2301.10343, 2023.

[33] Tung Nguyen, Rohan Shah, Hritik Bansal, Troy Arcomano, Romit Maulik, Veerabhadra Kota-
marthi, Ian Foster, Sandeep Madireddy, and Aditya Grover. Scaling transformer neural networks
for skillful and reliable medium-range weather forecasting. arXiv preprint arXiv:2312.03876,
2023.

[34] Joel Oskarsson, Tomas Landelius, Marc Peter Deisenroth, and Fredrik Lindsten. Probabilistic
weather forecasting with hierarchical graph neural networks. arXiv preprint arXiv:2406.04759,
2024.

[35] Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram
Hassanzadeh, Karthik Kashinath, and Animashree Anandkumar. FourCastNet: A global data-
driven high-resolution weather model using adaptive Fourier neural operators. arXiv preprint
arXiv:2202.11214, 2022.

[36] Kathy Pegion, Ben P Kirtman, Emily Becker, Dan C Collins, Emerson LaJoie, Robert Burgman,
Ray Bell, Timothy DelSole, Dughong Min, Yuejian Zhu, et al. The subseasonal experiment
(subx): A multimodel subseasonal prediction experiment. Bulletin of the American Meteorolog-
ical Society, 100(10):2043–2060, 2019.

[37] Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Timo Ewalds, Andrew El-Kadi, Jacklynn
Stott, Shakir Mohamed, Peter Battaglia, Remi Lam, and Matthew Willson. Gencast: Diffusion-
based ensemble forecasting for medium-range weather. arXiv preprint arXiv:2312.15796,
2023.

[38] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on
machine learning, pages 8821–8831. Pmlr, 2021.

[39] Stephan Rasp, Peter D Dueben, Sebastian Scher, Jonathan A Weyn, Soukayna Mouatadid, and
Nils Thuerey. WeatherBench: a benchmark data set for data-driven weather forecasting. Journal
of Advances in Modeling Earth Systems, 12(11):e2020MS002203, 2020.

[40] Stephan Rasp, Stephan Hoyer, Alexander Merose, Ian Langmore, Peter Battaglia, Tyler Russel,
Alvaro Sanchez-Gonzalez, Vivian Yang, Rob Carver, Shreya Agrawal, Matthew Chantry,
Zied Ben Bouallegue, Peter Dueben, Carla Bromberg, Jared Sisk, Luke Barrington, Aaron Bell,
and Fei Sha. WeatherBench 2: A benchmark for the next generation of data-driven global
weather models. arXiv preprint arXiv:2308.15560, 2023.

[41] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images
with vq-vae-2. Advances in neural information processing systems, 32, 2019.

[42] Suranjana Saha, Shrinivas Moorthi, Xingren Wu, Jiande Wang, Sudhir Nadiga, Patrick Tripp,
David Behringer, Yu-Tai Hou, Hui-ya Chuang, Mark Iredell, et al. The ncep climate forecast
system version 2. Journal of climate, 27(6):2185–2208, 2014.

[43] Sebastian Scher. Toward data-driven weather and climate forecasting: Approximating a simple
general circulation model with deep learning. Geophysical Research Letters, 45(22):12–616,
2018.

13

[44] Michael Tschannen, Cian Eastwood, and Fabian Mentzer. Givt: Generative infinite-vocabulary
transformers. In European Conference on Computer Vision, pages 292–309. Springer, 2025.

[45] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

[47] Frédéric Vitart. Evolution of ecmwf sub-seasonal forecast skill scores. Quarterly Journal of the
Royal Meteorological Society, 140(683):1889–1899, 2014.

[48] Frederic Vitart, Constantin Ardilouze, Axel Bonet, Anca Brookshaw, M Chen, C Codorean,
M Déqué, L Ferranti, E Fucile, M Fuentes, et al. The subseasonal to seasonal (s2s) prediction
project database. Bulletin of the American Meteorological Society, 98(1):163–173, 2017.

[49] NP Wedi, P Bauer, W Denoninck, M Diamantakis, M Hamrud, C Kuhnlein, S Malardel,
K Mogensen, G Mozdzynski, and PK Smolarkiewicz. The modelling infrastructure of the
Integrated Forecasting System: Recent advances and future challenges. European Centre for
Medium-Range Weather Forecasts, 2015.

[50] Jonathan A Weyn, Dale R Durran, and Rich Caruana. Can machines learn to predict weather?
Using deep learning to predict gridded 500-hPa geopotential height from historical weather
data. Journal of Advances in Modeling Earth Systems, 11(8):2680–2693, 2019.

[51] Christopher J White, Henrik Carlsen, Andrew W Robertson, Richard JT Klein, Jeffrey K Lazo,
Arun Kumar, Frederic Vitart, Erin Coughlan de Perez, Andrea J Ray, Virginia Murray, et al.
Potential applications of subseasonal-to-seasonal (s2s) predictions. Meteorological applications,
24(3):315–325, 2017.

[52] Christopher J White, Daniela IV Domeisen, Nachiketa Acharya, Elijah A Adefisan, Michael L
Anderson, Stella Aura, Ahmed A Balogun, Douglas Bertram, Sonia Bluhm, David J Brayshaw,
et al. Advances in the application and utility of subseasonal-to-seasonal predictions. Bulletin of
the American Meteorological Society, 103(6):E1448–E1472, 2022.

[53] KD Williams, CM Harris, A Bodas-Salcedo, J Camp, RE Comer, D Copsey, D Fereday,
T Graham, R Hill, T Hinton, et al. The met office global coupled model 2.0 (gc2) configuration.
Geoscientific Model Development, 88(55):1509–1524, 2015.

[54] Tongwen Wu, Yixiong Lu, Yongjie Fang, Xiaoge Xin, Laurent Li, Weiping Li, Weihua Jie, Jie
Zhang, Yiming Liu, Li Zhang, et al. The beijing climate center climate system model (bcc-csm):
The main progress from cmip5 to cmip6. Geoscientific Model Development, 12(4):1573–1600,
2019.

[55] Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative video
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10459–10469, 2023.

14

A Implementation details

A.1 VAE details

Our VAE model follows the UNet implementation from PDEArena [12]. We use the following
hyperparameters for UNet in our experiments.

Table 1: Default hyperparameters of UNet
Hyperparameter Meaning Value

Padding size Padding size of each convolution layer 1
Kernel size Kernel size of each convolution layer 3
Stride Stride of each convolution layer 1
Input channels The number of channels of the input 69
Input channels The number of channels of the output 69
Base channels The base hidden dimension of the UNet 256

Channel multiplications Determine the number of output channels
for Down and Up blocks [1, 2, 4, 4, 8]

Dimension of z The dimension of the latent space 1024
Blocks Number of blocks 2
Use attention If use attention in Down and Up blocks False
Dropout Dropout rate 0.0

The VAE encoder embeds each weather state of shape 69 × 128 × 256 to a latent map of shape
1024× 8× 16, reducing the spatial dimensions by 16. We use a KL weight of 5e− 5 and optimize
the VAE model with Adam [18] for 200 epochs with a batch size of 32, a base learning rate of 2e− 4,
parameters (β1 = 0.9, β2 = 0.95), and weight decay of 1e− 5. The learning rate follows a linear
warmup for the first 20 epochs, followed by a cosine decay schedule for the remaining 180 epochs.

A.2 Weighted deterministic objective

In OmniCast, we employ a weighted MSE objective to encourage accurate deterministic predictions
for near-term frames. The objective is formulated as:

Ldeter(θ) = E
m∼pU

[∑
mi=1

w(i)||xi − x̂i||22

]
, (6)

where w(i) is an exponentially decreasing weighting function. We compute this weight in three
steps. First, for each token i, we determine its corresponding frame index k = ⌊ i

h×w ⌋, where h× w
represents the spatial dimensions of each frame’s latent map. Second, we assign weights to tokens
based on their frame index: w(i) = e−k = e−⌊ i

h×w ⌋, ensuring all tokens from the same frame receive
equal weight. Third, we set w(i) = 0 for tokens beyond frame 10 and normalize the remaining
weights to sum to one.

A.3 Optimization details

We optimize OmniCast with AdamW [18] for 100 epochs with a batch size of 32, a base learning rate
of 2e− 4, parameters (β1 = 0.9, β2 = 0.95), and weight decay of 1e− 5. The learning rate follows
a linear warmup for the first 10 epochs, followed by a cosine decay schedule for the remaining 90
epochs.

B Additional experiments

B.1 VAE reconstruction quality

The VAE model is a critical component in OmniCast, since it imposes an upper bound on the
forecasting performance. We dedicated substantial efforts to designing the VAE model that balances

15

https://github.com/microsoft/pdearena/blob/main/pdearena/modules/twod_unet.py

reconstruction quality and compression. Our primary goal was to achieve a high compression ratio
along the spatial dimensions, as this directly reduces the number of training tokens required for the
subsequent transformer model. We employed 16× spatial reduction for both the medium-range setting
with 0.25◦ data and the S2S setting with the 1.40625◦ data. We then incrementally increased the
latent dimension until we obtained an acceptable reconstruction error. Table 2 shows that increasing
the latent dimension consistently improves the reconstruction errors across different variables. We
did not increase the latent dimension beyond 1024 since it would create difficulties for training with
the diffusion objective. It is also noticeable that the VAE model trained on 0.25◦ data performs
much better than the one trained on 1.40625◦ with the same spatial compression ratio and latent
dimension. This is expected since higher-resolution data has more spatial redundancy, leading to
easier compression for the VAE model. Figures 10 and 11 visualize the VAE reconstructions for 6
surface and pressure-level variables. The VAE was able to retain important details and structures of
the input, albeit slightly smoothing out the data.

Table 2: Reconstruction error of VAE models for different physical variables and latent dimen-
sions (D). Results are shown for datasets at two spatial resolutions: 1.40625◦ (left) and 0.25◦ (right).
Lower values indicate better reconstruction.

1.40625◦ resolution 0.25◦ resolution

T2m U10 V10 Z500 T850 T2m U10 V10 Z500 T850

D = 256 0.96 0.65 0.62 48.72 0.77 0.55 0.25 0.23 18.77 0.37
D = 512 0.80 0.51 0.48 35.42 0.64 — — — — —
D = 1024 0.71 0.43 0.40 27.34 0.57 — — — — —

Figure 10: Reconstructions of the VAE model for T2m, U10, and V10.

16

Figure 11: Reconstructions of the VAE model for MSLP, Z500, and T850.

Before selecting the specific VAE model presented in our paper, we also tried two alternative VAE
architectures: VQ-VAE [45], which compresses data into a discrete latent space, and Video VAE [1],
which compresses data across both spatial and temporal dimensions. Our early experiments with
VQ-VAE did not achieve satisfactory reconstruction qualities, as the errors were consistently 2 to
3 times higher than those obtained with a continuous VAE using the same spatial downsampling
factor. We also found that for an equivalent effective compression ratio, a per-frame VAE consistently
outperformed a video VAE. These results led us to opt for the per-frame continuous VAE model.

B.2 Comparison with more deep learning baselines

In addition to PanguWeather and GraphCast, we compare OmniCast with two advanced transformer-
based methods: ClimaX [32] and Stormer [33]. Figure 12 shows that Stormer achieves superior
accuracy in short-to-medium timescales, consistent with its reported results. However, as an autore-
gressive method, its performance degrades more rapidly than OmniCast, eventually falling below
Climatology, albeit at a slower rate than PanguWeather and GraphCast. ClimaX takes a different
approach as a direct forecasting method, where a model trained on large-scale climate data is finetuned
specifically for individual lead times. This approach avoids error accumulation and achieves com-
parable performance with OmniCast at S2S scales. However, ClimaX requires fine-tuning separate
models for each target lead time, while a single OmniCast model can simultaneously generate the
complete sequence of future weather states.

B.3 Impact of IC perturbations

Initial condition (IC) perturbations—adding random noise to initial conditions X0 – are a standard
technique in numerical methods for generating ensemble forecasts. This approach complements our

17

0

200

400

600

800

1000

1200

RM
SE

 (
)

Z500 (m2/s2)

1

2

3

4

5
T850 (K)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
Q700 (g/kg)

0

50

100

150

200

250

300

350

400

AB
S

BI
AS

 (
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 10 20 30 40

0.70

0.75

0.80

0.85

0.90

0.95

1.00

SS
IM

 (
)

0 10 20 30 40
Lead Time (Days)

0.75

0.80

0.85

0.90

0.95

1.00

0 10 20 30 40
0.4

0.5

0.6

0.7

0.8

0.9

1.0

OmniCast GC PW ClimaX Stormer Climatology

Figure 12: Comparison of deterministic performance of OmniCast with more deep learning methods.

100

200

300

400

500

600

700

800

RM
SE

 (
)

Z500 (m2/s2)

1.5

2.0

2.5

3.0

3.5
T850 (K)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Q700 (g/kg)

50

100

150

200

250

300

350

CR
PS

 (
)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0 10 20 30 40

0.45

0.50

0.55

0.60

0.65

SS
R

0 10 20 30 40
Lead Time (Days)

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0 10 20 30 40
0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.0-noise 0.1-noise 0.15-noise 0.2-noise

Figure 13: Performance of OmniCast with different levels of IC noise.

generative framework. Figure 13 evaluates OmniCast’s performance across different noise levels,
varying the standard deviation of the Gaussian distribution used for generating perturbations. The
results demonstrate OmniCast’s robustness to input noise, maintaining consistent RMSE and CRPS

18

scores across noise levels from 0.0 to 0.2, with only minor variations in SSR scores at short lead
times.

B.4 Scaling inference compute

Finally, we examine how increasing inference compute affects OmniCast’s performance through two
hyperparameters: the number of ensemble forecasts and the average number of unmasking iterations
per frame, i.e., 1-iter means a total of 44 iterations for 44 frames. Figure 14 shows that generating
more ensemble forecasts improves both system diversity (higher SSR) and mean prediction accuracy
(lower RMSE). Interestingly, while increasing the number of unmasking iterations shows minimal
impact on RMSE, it yields slight improvements in SSR. This improvement likely stems from the
increased randomness in unmasking order with more iterations, leading to greater ensemble diversity.

1.5

2.0

2.5

3.0

3.5

RM
SE

 (
)

T850 (K)

0 10 20 30 40
Lead Time (Days)

0.575

0.600

0.625

0.650

0.675

0.700

0.725

SS
R

10-samples 20-samples 50-samples

1.5

2.0

2.5

3.0

3.5

RM
SE

 (
)

T850 (K)

0 10 20 30 40
Lead Time (Days)

0.58
0.60
0.62
0.64
0.66
0.68
0.70
0.72
0.74

SS
R

1-iter 2-iter 4-iter 8-iter

Figure 14: Performance of OmniCast as we vary the number of ensemble forecasts (left) and the
number of unmasking iterations.

B.5 Testing OmniCast stability

We tested the stability of OmniCast by rolling out the model to 100 years into the future. We found
that OmniCast consistently produces stable and physically feasible forecasts, even at 100 years ahead.
Please see below for visualizations of OmniCast’s rollouts for various weather variables with 4
samples each.

19

Da
y

0

Sample 0 Sample 1 Sample 2 Sample 3

Da
y

1
Da

y
10

Da
y

30
Da

y
10

0
Da

y
36

5
(1

 y
r)

Da
y

36
50

 (1
0

yr
s)

Da
y

18
25

0
(5

0
yr

s)
Da

y
35

99
2

(9
8.

6
yr

s)

T2M

Figure 15: Rollouts for 2-meter temperature up to 100 years ahead.

20

Da
y

0

Sample 0 Sample 1 Sample 2 Sample 3

Da
y

1
Da

y
10

Da
y

30
Da

y
10

0
Da

y
36

5
(1

 y
r)

Da
y

36
50

 (1
0

yr
s)

Da
y

18
25

0
(5

0
yr

s)
Da

y
35

99
2

(9
8.

6
yr

s)

U10

Figure 16: Rollouts for 10-meter u component of wind up to 100 years ahead.

21

Da
y

0

Sample 0 Sample 1 Sample 2 Sample 3

Da
y

1
Da

y
10

Da
y

30
Da

y
10

0
Da

y
36

5
(1

 y
r)

Da
y

36
50

 (1
0

yr
s)

Da
y

18
25

0
(5

0
yr

s)
Da

y
35

99
2

(9
8.

6
yr

s)

MSLP

Figure 17: Rollouts for mean sea level pressure up to 100 years ahead.

22

Da
y

0

Sample 0 Sample 1 Sample 2 Sample 3

Da
y

1
Da

y
10

Da
y

30
Da

y
10

0
Da

y
36

5
(1

 y
r)

Da
y

36
50

 (1
0

yr
s)

Da
y

18
25

0
(5

0
yr

s)
Da

y
35

99
2

(9
8.

6
yr

s)

Z500

Figure 18: Rollouts for 500hPa geopotential up to 100 years ahead.

23

Da
y

0

Sample 0 Sample 1 Sample 2 Sample 3

Da
y

1
Da

y
10

Da
y

30
Da

y
10

0
Da

y
36

5
(1

 y
r)

Da
y

36
50

 (1
0

yr
s)

Da
y

18
25

0
(5

0
yr

s)
Da

y
35

99
2

(9
8.

6
yr

s)

Q700

Figure 19: Rollouts for 700hPa specific humidity up to 100 years ahead.

24

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction reflect the paper’s contributions – the paper
proposes a novel method for probabilistic S2S prediction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

25

Justification: We discussed limitations in the Conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not present theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided the implementation details in the Experiments section and
Appendix. We will also open-source the code and pretrained weights.

Guidelines:

26

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will publish the code and model checkpoints upon paper acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide these details in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: It’s too expensive to do so and it’s not a standard in the field of weather
forecasting.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide this information in the Experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

28

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is foundational research and there is no direct negative societal
impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This does not apply to our work.
Guidelines:

29

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used open-sourced models and code and properly cited them.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: The paper does not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

30

paperswithcode.com/datasets

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

31

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Background and Preliminaries
	Weather forecasting
	Masked generative modeling
	Modeling continuous tokens with diffusion models

	Methodology
	VAE for weather data embedding
	Masked generative modeling for S2S prediction
	Implementation details

	Experiments
	OmniCast for S2S prediction
	OmniCast for medium-range forecasting
	Efficiency of OmniCast
	Ablation studies

	Conclusion
	Implementation details
	VAE details
	Weighted deterministic objective
	Optimization details

	Additional experiments
	VAE reconstruction quality
	Comparison with more deep learning baselines
	Impact of IC perturbations
	Scaling inference compute
	Testing OmniCast stability

