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ABSTRACT

In this paper, we study offline preference-based reinforcement learning (PbRL),
where learning is based on pre-collected preference feedback over pairs of tra-
jectories. While offline PbRL has demonstrated remarkable empirical success,
existing theoretical approaches face challenges in ensuring conservatism under
uncertainty, requiring computationally intractable confidence set constructions.
We address this limitation by proposing Adversarial Preference-based Policy Op-
timization (APPO), a computationally efficient algorithm for offline PbRL that
guarantees sample complexity bounds without relying on explicit confidence sets.
By framing PbRL as a two-player game between a policy and a model, our ap-
proach enforces conservatism in a tractable manner. Using standard assumptions
on function approximation and bounded trajectory concentrability, we derive sam-
ple complexity bound. To our knowledge, APPO is the first offline PbRL algo-
rithm to offer both statistical efficiency and practical applicability. Experimental
results on continuous control tasks demonstrate that APPO effectively learns from
complex datasets, showing comparable performance with existing state-of-the-art
methods.

1 INTRODUCTION

While Reinforcement learning (RL) has achieved remarkable success in real-world applica-
tions (Mnih, 2013; Silver et al., 2017; Kalashnikov et al., 2018; Brohan et al., 2022), its performance
heavily depends on the design of the reward function (Wirth et al., 2017), which can be challeng-
ing in practice. To address this issue, preference-based reinforcement learning (PbRL), also known
as reinforcement learning with human feedback (RLHF), has gained increasing attention as an al-
ternative to manually designed rewards. In PbRL, a reward model is learned based on preference
feedback from human experts, who compare pairs of trajectories (Christiano et al., 2017). This ap-
proach allows the learning process to better align with human intentions. PbRL has demonstrated
its effectiveness in various domains, including gaming (MacGlashan et al., 2017; Christiano et al.,
2017; Warnell et al., 2018), natural language processing (Ziegler et al., 2019; Stiennon et al., 2020;
Nakano et al., 2021; Ouyang et al., 2022; Bai et al., 2022), and robotics (Brown et al., 2019; Shin
et al., 2023).

However, collecting preference feedback can be costly, especially when real-time feedback from
human experts is required. In such cases, learning from pre-collected data is preferred over on-
line learning. This approach is referred to as offline PbRL, where the learning process relies solely
on pre-collected trajectories and preference feedback. Empirical studies have shown the effective-
ness of offline PbRL (Kim et al., 2023; An et al., 2023; Shin et al., 2023; Hejna & Sadigh, 2024),
leveraging techniques from deep RL literature. On the theoretical side, prior works prove the tra-
jectory concentrability with respect to the data-collecting distribution leads to sample complexity
bound (Zhu et al., 2023; Zhan et al., 2024a; Pace et al., 2024). However, they rely on the explicit
construction of confidence sets to achieve conservatism (pessimism). Dealing with such confidence
sets in the genreal function approximation setting requires intractable optimizations: Zhan et al.
(2024a) involve tri-level constrained optimization with respect to the confidence sets of rewards and
transitions, Pace et al. (2024) use uncertainty penalty defined as the width of confidence sets, and
the analysis of Zhu et al. (2023) is restricted to linear models. Despite provable sample complexity
bounds, existing offline PbRL algorithms become computationally intractable with general function
approximation.
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In this work, we propose Adversarial Preference-based Policy Optimization (APPO), a computa-
tionally and statistically efficient offline PbRL algorithm. Our analysis is based on general function
approximation for model and value function class. Moreover, standard assumptions on function
classes and bounded trajectory concentrability (Zhan et al., 2024a) is sufficient to derive our sample
complexity bound. In addition to the strong statistical bound, our proposed algorithm is simple
enough to be implemented using standard optimization techniques. The idea behind our algorithm
is the two-player game formulation of model-based PbRL, which has been used in other fields in
RL (Rajeswaran et al., 2020; Rigter et al., 2022; Cheng et al., 2022; Shen et al., 2024; Bhardwaj
et al., 2024). By casting PbRL as a game between a policy and a model, we can ensure conservatism
without explicitly constructing intractable confidence sets. Moreover, our novel reparameteriza-
tion technique allows us to find near-optimal policy efficiently via adversarial training. To our best
knowledge, our APPO is the first offline PbRL algorithm with both statistical bound and practical
implementation. Our contributions can be summarized as follows:

• We propose APPO, a simple algorithm for offline PbRL with general function approxima-
tion. Based on the two-player game formulation of PbRL in conjunction with our reparam-
eterization technique for the reward model, our algorithm ensures provable conservatism
without explicit construction of confidence sets. To our best knowledge, our APPO is the
first computationally efficient offline PbRL algorithm providing a sample complexity bound.

• We prove the sample complexity of our proposed algorithm under standard assumptions on
the function classes and concentrability. The result is rooted in our novel sub-optimality
decomposition, which shows that adversarial training leads to model conservatism.

• We present a practical implementation of APPO that can learn with large datasets using
neural networks. Experiments on continuous control tasks demonstrate that APPO shows
comparable performance with existing state-of-the-art algorithms.

1.1 RELATED WORK

Provable Online PbRL. In the tabular setting, Novoseller et al. (2020) developed an algorithm
grounded in posterior sampling and the dueling bandit framework (Yue et al., 2012), demonstrat-
ing an asymptotic rate for Bayesian regret. Xu et al. (2020) proposed an algorithm leveraging an
exploration bonus for previously unseen states, providing a sample complexity bound. Saha et al.
(2023) and Zhan et al. (2024b) focused on the linear preference model with a known linear feature
map, each offering regret and sample complexity bounds. However, their algorithms require solv-
ing an optimization argmaxπ,π′ ∥Eτ∼π[ϕ(τ)]− Eτ∼π′ [ϕ(τ)]∥Σ for some positive definite matrix
Σ, which is computationally intractable. To address this challenge in the linear model, Wu & Sun
(2023) devised a randomized algorithm with a provable regret bound and further proposed a model-
based posterior sampling algorithm under the bounded Eluder dimension (Russo & Van Roy, 2013)
assumption, ensuring bounded Bayesian regret. Recent works have also explored provably efficient
algorithms under the general function approximation setting (Chen et al., 2022; Wu & Sun, 2023;
Chen et al., 2023). Chen et al. (2022) introduced an exploration-bonus-based algorithm that provides
bounded regret in both pairwise and n-wise comparison settings. Additionally, Chen et al. (2023)
leveraged the Conditional Value-at-Risk (CVaR) operator (Artzner, 1997) to devise an algorithm
with a regret guarantee. Du et al. (2024) took a different approach, studying neural function approx-
imation in the context of reward models. In another notable work, Swamy et al. (2024) reframed
PbRL as a zero-sum game between two policies, encompassing general reward models.

Provable Offline PbRL. While there has been a growing number of research on online PbRL,
the theoretical understanding of offline PbRL remains relatively limited. A primary challenge
in offline PbRL, much like in offline standard RL, is ensuring sufficient conservatism in the
model. Zhu et al. (2023) addressed this challenge by proposing a pessimistic maximum like-
lihood estimation (MLE) algorithm for the linear model with known transitions. Zhan et al.
(2024a) extended this idea to general function approximation, highlighting the importance of tra-
jectory concentrability in establishing a lower bound for sample complexity. Despite the prov-
able sample complexity bound of their proposed algorithm, FREEHAND-transition, it relies on
solving argmaxπ argminr∈R̂ argminP∈P̂{Eτ∼P,π[r(τ)] − Eτ∼P⋆,π[r(τ)]} where R̂ is the con-
fidence set of rewards and P̂ is the confidence set of transitions, which is intractable in prac-
tice. Pace et al. (2024) introduced an algorithm achieving conservatism through explicit un-
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certainty penalties defined as uR(τ) = supr1,r2∈R̂ |r1(τ) − r2(τ)| (reward uncertainty) and
uP (s, a) = supP1,P2∈P̂ ∥P1(· | s, a)− P2(· | s, a)∥1 (transition uncertainty). Even evaluating this
function is intractable with general function approximation, but Pace et al. (2024) requires optimiz-
ing argmaxπ Eτ∼P̂ ,π[r̂(τ) − uR(τ) − uP (τ)]. Chang et al. (2024) explored a slightly different
scenario where the data collection policy is known and online interaction is allowed. They demon-
strated that a simple natural policy gradient combined with MLE reward is provably efficient, but
their sample complexity bound is affected by an additional concentrability coefficient relative to
KL-regularized policies.

Adversarial Training in RL. Adversarial training is a widely used approach in RL literature (Ra-
jeswaran et al., 2020; Pásztor et al., 2024), especially offline (standard) RL (Rigter et al., 2022;
Cheng et al., 2022; Bhardwaj et al., 2024). The basic idea is leveraging adversarial training to im-
plement conservative policy optimization. Recently, adversarial training has also been applied in
human preference alignment (Makar-Limanov et al., 2024; Cheng et al., 2024; Shen et al., 2024).
The most closely related work to ours is Shen et al. (2024), which also formulated PbRL as a two-
player game. However, their focus is on online PbRL, and while they provide proof of convergence
for the optimization objective, this does not necessarily translate into a sample complexity guarantee.

2 PRELIMINARIES

Markov Decision Processes. We consider episodic MDP (S,A, H, {P ⋆h}Hh=1, {r⋆h}Hh=1), where S
and A are the state space and the action space, H is the length of each episode, P ⋆ = {P ⋆h}Hh=1 is
the transition probability distribution, and r⋆ = {r⋆h}Hh=1 is the reward. Each episode starts at some
initial state s1 without loss of generality1, and the episode ends afterH steps. For each step h ∈ [H],
the agent observes state sh, then takes action ah. The environment generates reward r⋆h(sh, ah) (note
that, in preference-based learning setting, rewards at each step are unobservable to the agent) and
next state sh+1 according to the transition probability P ⋆h (· | sh, ah).
The agent takes actions based on its policy π = {πh}h∈[H], where πh(· | s) is a probability distri-
bution over A. The state-value function and the action-value function of policy π with respect to
reward r = {rh}Hh=1 are the expected sum of rewards up to termination, starting from sh = s and
(sh, ah) = (s, a) respectively, following the policy π. Formally, they are defined as

V πh,r(s) := Eπ

[
H∑

h′=h

rh(sh′ , ah′) | sh = s

]
, Qπh,r := Eπ

[
H∑

h′=h

rh(sh′ , ah′) | sh = s, ah = a

]
.

To simplify the notation, for g : S 7→ R, we use Pg(s, a) to denote Es′∼P (·|s,a)[g(s
′)]. For any

policy π and reward r, the Bellman equation relates Qπ to V π as

Qπh,r(s, a) = rh(s, a) + P ⋆V πh+1,r(s, a), V
π
h,r(s) = Ea∼πh(·|s)[Q

π
h,r(s, a)], V

π
H+1(s) = 0.

Given a policy π = {πh}h∈[H], we define the state visitation distribution as dπh(s) := Pπ(sh = s)
where Pπ is the probability distribution of trajectories (s1, a1, . . . , sH , aH) when the agent uses
policy π. We overload the notation to denote the state-action visitation distribution, dπh(s, a) :=
Pπ(sh = s, ah = a). In addition, we denote the distribution of trajectories under π by dπ(τ).

Offline Preference-based Reinforcement Learning. We consider the offline PbRL problem, where
the agent cannot observe true reward r⋆ but binary preference feedback over trajectory pairs. Specif-
ically, we are given a preference dataset Dpref = {(τm,0, τm,1, ym)}Mm=1 that consists of i.i.d. tra-
jectory pairs τm,i = {sm,ih , am,ih }Hh=1 (i = 0, 1) sampled by some reference policy µ. For a mono-
tonically increasing link function Φ : R 7→ [0, 1], we assume the preference feedback ym ∈ {0, 1}
is generated by the following preference model:

P(y = 1 | τ0, τ1) = P(τ1 is preferred over τ0) = Φ(r⋆(τ1)− r⋆(τ0)) (1)

where we denote r⋆(τ) =
∑H
h=1 r

⋆
h(sh, ah) for given trajectory τ = (s1, a1, . . . , sH , aH). Ad-

ditonally, we assume that κ = 1/(infx∈[−R,R] Φ
′(x)), where R is a bound on trajectory returns,

1Our result easily extends to the general case with an initial distribution ρ(·). We can modify the MDP by
setting a fixed initial state s1 and P1(· | s1, a) = ρ(·) for all a ∈ A.
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is bounded. When Φ is set to be the sigmoid funciton σ(x) = 1/(1 + exp(−x)), we obtain the
widely used Bradely-Terry-Luce (BTL) model (Bradley & Terry, 1952). In addition to the prefer-
ence dataset, we have an unlabeled trajectory dataset Dtraj = {(τ0,n, τ1,n)}Nn=1 where the trajectory
pairs are sampled i.i.d. by executing the reference policy µ. The goal of the agent is to find an
ϵ-optimal policy π̂ with respect to target policy π⋆, which satisfies V π

⋆

1,r⋆(s1)− V π̂1,r⋆(s1) ≤ ϵ.
General Function Approximation. We consider general function approximation for rewards and
transitions: the function class of rewards R and the function class of transitions P . We do not
impose any specific structure on them, so R and P can contain expressive functions such as neural
networks. Based on the function classes, we construct a reward model by maximum likelihood
estimation r̂ ∈ argminr∈RH L̂R(r) where

L̂R(r) = − E
(τ0,τ1,y)∼Dpref

[
1 {y = 1} · log Φ(r(τ1)− r(τ0)) + 1 {y = 0} · log Φ(r(τ0)− r(τ1))

]
.

Similarly, we learn a transition model P̂h ∈ argminP∈P L̂T (P ;h) for all h ∈ [H], where

L̂T (P ;h) = E(sh,ah,sh+1)∼Dtraj [logP (sh+1 | sh, ah)]

Additional Notations. We denote [n] := {1, 2, . . . , n} for n ∈ N. For x, y ∈ Rd, ⟨x, y⟩ denotes
the inner product of x and y. Given a function f : S ×A 7→ R and a policy π, we write f ◦ π(s) :=
Ea∼π(·|s)[f(s, a)]. For given dataset D, we use Ex∼D[f(x)] to denote 1

|D|
∑
x∈D f(x).

3 ALGORITHM

3.1 PBRL AS A TWO-PLAYER GAME

The previous study on model-based PbRL by Zhan et al. (2024a) prove that the following optimiza-
tion problem achieves a near optimal policy π̂, for appropriately chosen constant ζ:

π̂ ∈ argmax
π

min
r∈R̂

(
V π1,r(s1)− V

µ
1,r(s1)

)
where R̂ =

{
r ∈ RH : L̂R(r) ≤ L̂R(r̂) + ζ

}
. (2)

The minimization with respect to reward model r ∈ R̂ ensures conservatism, which is essential
for provable guarantee. However, the constrained optimization is intractable with general function
approximation. To address this challenge, we formulate the model-based PbRL problem as a two-
player Stackelberg game (Von Stackelberg, 2010) between the policy and the reward:

π̂ ∈ argmax
π

(
V π1,rπ (s1)− V

µ
1,rπ (s1)

)
subject to rπ ∈ argmin

r∈RH

(
V π1,r(s1)− V

µ
1,r(s1) + E(r; r̂)

)
. (3)

Here, E(r; r̂) is a loss function penalizes r if it deviates from r̂. In the Stackelberg game formulation,
the reward minimizes V π1,r(s1)−V

µ
1,r(s1), while the policy maximizes it. We can interpret this com-

petition by viewing V π1,r(s1)−V
µ
1,r(s1) as the relative performance of π compared to µ with respect

to reward r. Intuitively, π maximizes cumulative reward rπ , as in the standard RL setup. However,
rπ minimizes the cumulative reward when playing π. This competition facilitates conservatism and
makes π robust to model error.

Then, what loss function E leads to a provable bound? A naive choice might be L̂R(r)− L̂R(r̂) as
it leads to the Lagrangian dual form of the optimization problem in (2), disregarding the Lagrangian
multiplier. However, the loss E(r; r̂) = L̂R(r)−L̂R(r̂) does not ensure statistical efficiency, because
the Stackelberg game in (3) does not include the Lagrangian multiplier for the likelihood constraint.
Instead, we propose the trajectory-pair ℓ1 loss:

E(r; r̂) = Eτ0,τ1∼µ
[∣∣{r(τ0)− r(τ1)} − {r̂(τ0)− r̂(τ1)}∣∣] ,

which leads to a provable guarantee (Theorem 4.1). Intuitively, this loss measures the deviation of r
from r̂ by evaluating the difference in total reward (return) between the two trajectories. Given the
unlabeled trajectory dataset Dtraj, we can approximate E(r; r̂) with its finite-sample version:

ÊDtraj(r; r̂) = E(τ0,τ1)∼Dtraj

[∣∣{r(τ0)− r(τ1)} − {r̂(τ0)− r̂(τ1)}∣∣] . (4)
In the following two sections, we discuss how to implement the optimization in (3) in a sample-
efficient manner.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Adversarial Preference-based Policy Optimization with Rollout (APPO-rollout)

1: Input: Number of rollouts K1,K2, KL regularization η, π1
h = Unif(A) for all h ∈ [H]

2: Estimate r̂ ∈ argminr∈RH L̂R(r)
3: for t = 1, · · · , T do
4: Execute πt to collect K1 trajectories Dtrollout

5: Optimize rt ∈ argminr∈RH

(
Eτ∼Dt

rollout
[r(τ)]− Eτ∼Dtraj [r(τ)] + λÊDtraj(r; r̂)

)
6: Compute Q̄t via PE(µ, πt, r̂,K2) in Algorithm 3
7: Update policy πt+1

h (a | s) ∝ πth(a | s) exp(ηQ̄th(s, a)) for all h ∈ [H]
8: end for
9: Return π̄ = 1

T

∑T
t=1 πt

Algorithm 2 Adversarial Preference-based Policy Optimization (APPO)

1: Input: KL regularization η, Initial policy π1
h = Unif(A) for all h ∈ [H]

2: Estimate r̂ ∈ argminr∈RH L̂R(r), P̂h ∈ argminP∈P L̂T (P ;h) for all h ∈ [H]
3: for t = 1, · · · , T do
4: f t ∈ argmin

f∈FH

(∑H
h=1 E(sh,ah)∼Dtraj [fh ◦ πth(sh)− fh(sh, ah)] + λÊDtraj(f ; P̂ , r̂)

)
5: Update policy πt+1

h (a | s) ∝ πth(a | s) exp(ηf th(s, a)) for h ∈ [H]
6: end for
7: Return π̂ = 1

T

∑T
t=1 π

t

3.2 ADVERSARIAL OPTIMIZATION FOR PBRL

In this section, we present an algorithm, APPO-rollout, that serves as a building block of our main
algorithm. For APPO-rollout, we consider the setting where transition P ⋆ is known, or online
interaction (without preference feedback) is possible. This is a temporary assumption, and our main
algorithm (Algorithm 2) works with unknown transition.

Algorithm 1 describes the pseuo-code of APPO-rollout, which is based on the Stackelberg game
formulation of PbRL we discussed. Inspired by the adversarial training methods in offline RL in
the standard setting (Cheng et al., 2022; Rigter et al., 2022; Bhardwaj et al., 2024), we alternately
optimize the policy and the reward to solve the optimization problem in (3).

Reward Model Update for Provable Conservatism. The reward model update aims to solve the
following optimization problem approximately:

argmin
r∈RH

(
E

τ∼πt
[r(τ)]− E

τ∼µ
[r(τ)] + λE(r; r̂)

)
= argmin

r∈RH

(
V π

t

1,r(s1)− V
µ
1,r(s1) + λE(r; r̂)

)
, (5)

which is the inner optimization in (3). The expectations Eτ∼µ[r(τ)] and E(r; r̂) are approximated
using offline data Dtraj. Also, we collect trajectories by executing πt, to compute the finite-sample
version of Eτ∼πt [r(τ)]. Note that the trajectory rollout (Line 4) is possible since we assume known
transition P ⋆ or access to online interaction.

Policy Update. After optimizing rt, we estimate the action-value function of πt with respect to rt
by invoking a policy evaluation subroutine PE, whose pseudo-code is provided in Algorithm 3. This
subroutine computes an approximate value function Q̄t using Monte Carlo estimation, providing an
error bound relative to the true value function Qπ

t

rt . The theoretical analysis of PE is presented in
Appendix B. With the estimated value function Q̄t, we then proceed to update the policy using trust
region policy optimization (TRPO) (Schulman, 2015) update.

3.3 APPO: REPARAMETERIZED ALGORITHM FOR UNKNOWN TRANSITION

In this section, we consider the setting where the transition P ⋆ is unknown. In Algorithm 1, the
information from transition P ⋆ is utilized in Line 4, where we collect on-policy trajectories to ap-
proximate Eτ∼πt [r(τ)]. Moreover, the policy evaluation step by Algorithm 3 performs trajectory

5
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rollouts. To bypass such on-policy rollouts, we make the following observation:

Eτ∼πt [r(τ)]− Eτ∼µ[r(τ)] = V π
t

1,r(s1)− V
µ
1,r(s1)

=

H∑
h=1

E(sh,ah)∼dµh

[
(Qπ

t

h,r ◦ πth)(sh)−Qπ
t

h,r(sh, ah)
]

(6)

which is due to the performance difference lemma (Lemma E.1). Since the expectation on the right
is taken with respect to dµh, which is the data generating distribution of Dtraj, we may use Dtraj to
approximate the expectation. Furthermore, given the policy πt, the Bellman equation implies a
mapping between reward models and action-value functions. Specifically, for given reward model
r = {rh}Hh=1, we have the action-value function {Qπt

h,r}Hh=1. Conversely, suppose that we have a
function class F , which contains every action-value function. For f = {fh}Hh=1 ∈ FH , we can
construct the corresponding reward model satisfying the Bellman equation fh = rh + P ⋆h (fh+1 ◦
πth+1). Formally, we define the induced reward models:

Definition 1 (Induced reward model). Given f = {fh}Hh=1 ∈ FH , and a policy {πh}Hh=1, we define
the induced reward model rπP⋆,f = {rπh,P⋆,f}Hh=1 where rπh,P⋆,f = fh − P ⋆h (fh+1 ◦ πh+1) for
h ∈ [H] (we set fH+1 = 0 by convention).

Therefore, given reward model r and action-value function f , we have that

Qπh,r = rh + P ⋆(Qπh+1,r ◦ πh+1), fh = rπh,P⋆,r + P ⋆h (fh+1 ◦ πh) for all h ∈ [H].

We remark that the mapping does not have to be bijective to proceed with our theoretical analysis,
as long as the Bellman equation holds. Utilizing this mapping in conjunction with our observation
in (6), we reparameterize the optimization problem in (5) as:

argmin
f∈FH

(
H∑
h=1

E(sh,ah)∼dµh

[
(fh ◦ πth)(sh)− fh(sh, ah)

]
+ λE(f ;P ⋆, r̂)

)
(7)

where E(f ;P ⋆, r̂) = E(τ0,τ1)∼µ

[∣∣∣{rπt

P⋆,f (τ
0)− rπ

t

P⋆,f (τ
1)} − {r̂(τ0)− r̂(τ1)}

∣∣∣] . (8)

The offline dataset Dtraj is sufficient to approximate the optimization objective in (7) with

E(sh,ah)∼Dtraj

[
(fh ◦ πth)(sh)− fh(sh, ah)

]
≈ E(sh,ah)∼dµh

[
(fh ◦ πth)(sh)− fh(sh, ah)

]
ÊDtraj(f ; P̂ , r̂) := E(τ0,τ1)∼µ

[∣∣∣{rπt

P̂ ,f
(τ0)− rπ

t

P̂ ,f
(τ1)} − {r̂(τ0)− r̂(τ1)}

∣∣∣] ≈ E(f ;P ⋆, r̂),
where we use the estimated transition model P̂ in place of P ⋆. Moreover, since we directly optimize
for action-value function, policy evaluation oracle is not required to update policy. Therefore, the
reparameterization enables us to solve the optimization problem in (3) without access to the true
transition P ⋆ or policy evaluation oracles. The complete pseudo-code is presented in Algorithm 2.

Remark on Computational Complexity. The computational complexity of APPO is primarily
determined by the value function optimization (Line 4) and the policy update (Line 5). Although
the computation of f t is generally a non-convex optimization, it is efficiently implemented when F
is a class of neural networks using gradient-based methods. For the policy update, it is known that
πt+1
h (a | s) ∝ πth(a | s) exp(ηf th(s, a)) is derived from the TRPO objective (Schulman, 2015; Neu

et al., 2017):

πt+1
h ∈ argmax

π
E
sh∼dπ

t

h

[
f th ◦ π(sh)− η−1DKL

(
π(· | sh)∥πth(· | sh)

)]
,

which is widely used in deep RL. As a result, the policy update is efficient within the deep learning
framework. In practice, other policy optimization techniques (Schulman et al., 2017; Fujimoto et al.,
2018; Haarnoja et al., 2018) can also be applied. Overall, APPO relies on solving two standard
non-convex optimizations to compute f t and πt, both of which are practical to implement with
neural function approximation. This computational efficiency contrasts with existing offline PbRL
algorithms that involve intractable optimization over confidence sets, as discussed in Section 1.1.
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4 THEORETICAL ANALYSIS

In this section, we present theoretical analyses of our proposed algorithm, APPO. We note that
APPO-rollout also guarantees sample complexity bound, which is presented in Appendix C.

We assume the reward class R and the transition class P are realizable and rewards are bounded.
These are standard assumptions (Chen et al., 2023; Zhan et al., 2024a; Pace et al., 2024).

Assumption 1 (Reward realizability). We have r⋆h ∈ R for all h ∈ [H]. In addition, every r ∈ RH
satisfies 0 ≤ r(τ) ≤ R for any trajectory τ .

Assumption 2 (Transition realizability). We have P ⋆h ∈ P for all h ∈ [H].

Additionally, we introduce the value function class and assume its boundedness. Note that every
Qπh,r satisfies the condition ∥f∥∞ ≤ R due to Assumption 1.

Assumption 3 (Value function class). For any h ∈ [H], r ∈ RH , and policy π, we have Qπh,r ∈ F .
In addition, every f ∈ F satisfies 0 ≤ f(s, a) ≤ R for all (s, a) ∈ S ×A.

The following assumption defines the trajectory concentrability coefficient with respect to the target
policy π⋆ and the reference policy µ.

Assumption 4 (Trajectory concentrability). There exists a finite constantCTR such that the behavior

policy µ and the optimal policy π⋆ satisfies supτ
dπ

⋆
(τ)

dµ(τ) ≤ CTR.

The bounded CTR ensures that the support of dµ sufficiently covers the support of dπ
⋆

(similar to
the concentrability condition in Zhan et al. (2024a)). Consequently, we expect Dtraj to include high-
quality trajectories. The lower bound in Zhan et al. (2024a) shows that the trajectory concentrability
is essential in offline PbRL, thus offline PbRL is strictly harder than offline standard RL where step-
wise concentrability is sufficient to achieve performance guarantee (Uehara & Sun, 2022). Now we
present the sample complexity bound.

Theorem 4.1. Suppose Assumptions 1,2, 3, and 4 hold. With probability at least 1− δ, Algorithm 2

with λ = Θ(CTR), λ > CTR, η =
√

2 log |A|
R2T achieves

V π
⋆

1,r⋆ − V π̂1,r⋆

≤ O

(
CTR

√
κ2H

M
log
|R|
δ

+RH

√
1

N
max

{
HT log

H|F|
δ

, log
H|P|
δ

}
+RH

√
log |A|
T

)
.

Setting T = Θ
(
R2H2 log |A|

ϵ2

)
, N = Θ

(
max

{
R4H5 log |A| log(H|F|/δ)

ϵ4 , R
2H2 log(H|P|/δ)

ϵ2

})
, and

M = Θ
(
C2

TRκ
2H log(|R|/δ)

ϵ2

)
, Algorithm 2 achieves ϵ-optimal policy, i.e. V π

⋆

1,r⋆ − V π̄1,r⋆ ≤ ϵ.

Discussion on Theorem 4.1. Our analysis can be easily extended to infinite function classes using
standard covering number argument, replacing cardinality |R|, |P|, and |F| with covering numbers.
To our best knowledge, FREEHAND-transition in Zhan et al. (2024a) and Sim-OPRL in Pace et al.
(2024) are the only statistically efficient algorithms for offline PbRL in stochastic MDP. Our sample
complexity bound matches them for labeled data, and both algorithms in Zhan et al. (2024a); Pace
et al. (2024) require Θ

(
C2

TR
2H2 log(H|P|)

ϵ2

)
unlabeled trajectories where CP is the trajectory con-

centrability for transition2. Despite their bound being tighter in R,H, ϵ, our bound for N does not
depend on CP which may grow exponentially (Proposition 2 in Zhan et al. (2024a). Moreover, our
algorithm APPO is computationally efficient while FREEHAND-transition and Sim-OPRL are not:
FREEHAND-transition solves a nearly intractable nested optimization problem, and Sim-OPRL re-
lies on the uncertainty penalty defined by the width of confidence sets. Therefore, our APPO is the
first offline PbRL algorithm with provable statistical efficiency and computational efficiency.

2Zhan et al. (2024a) consider reward functions defined on trajectories, thus their reward class Gr is compa-
rable with our RH . Pace et al. (2024) assume homogeneous reward, so their presented bound is tighter by H .
They use bracketing numbers in their bound, but we write here |P| for simplicity.
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Proof Sketch. We outline the proof of Theorem 4.1, where the detailed proof is deferred to Ap-
pendix D. The key observation is our novel sub-optimality decomposition:

V π
⋆

1,r⋆ − V π
t

1,r⋆

= V π
⋆

1,r⋆−r̂ − V
µ
1,r⋆−r̂︸ ︷︷ ︸

(I) : MLE error

+V π
⋆

1,r̂−rt − V
µ
1,r̂−rt − V

πt

1,r⋆ + V µ1,r⋆ + V π
t

1,rt − V
µ
1,rt︸ ︷︷ ︸

(II) : Optimization error

+ V π
⋆

1,rt − V π
t

1,rt︸ ︷︷ ︸
(III) : Policy update regret

,

where rt = rπ
t

P⋆,ft , and the initial state s1 is omitted here for readability. The term (I) is bounded by
standard MLE guarantee (Lemma E.2), and the policy update rule ensures the summation of terms
(III) over T steps is bounded (Lemma D.3). For (II), Assumption 4 and λ > CTR implies that

V π
⋆

1,r̂−rt − V
µ
1,r̂−rt = Eτ0∼π⋆,τ1∼µ

[
rt(τ0)− r̂(τ0)− rt(τ1) + r̂(τ1)

]
≤ CTREτ0∼π⋆,τ1∼µ

[∣∣rt(τ0)− r̂(τ0)− rt(τ1) + r̂(τ1)
∣∣] ≤ λE(f t;P ⋆, r̂).

Observe that APPO approximately solves the optimization problem in (7) (Lemma D.1), which is
equivalent to argminf∈FH{V π

t

1,rπ
t

P⋆,f

−V µ
1,rπ

t

P⋆,f

+λE(f ;P ⋆, r̂)}. Since rπ
t

P⋆,ft = rt and rπ
t

P⋆,Qπt =

r⋆, it follows that

V π
t

1,rt − V
µ
1,rt + λE(f t;P ⋆, r̂) ≤ V π

t

1,r⋆ − V
µ
1,r⋆ + λE(Qπ

t

;P ⋆, r̂) + ϵ.

where ϵ is some approximation error. Therefore, (II)≤ ϵ is guaranteed. Combining the results into
V π

⋆

1,r⋆ − V π̂1,r⋆ = 1
T

∑T
t=1

(
V π

⋆

1,r⋆ − V π
t

1,r⋆

)
, we complete the proof.

5 PRACTICAL IMPLEMENTATION OF APPO

While providing strong statistical guarantees, APPO enables practical implementation using neural
networks, leveraging advanced training techniques from deep learning literature. In this section,
we present a practical version of APPO tailored for deep PbRL. The pseudo-code is outlined in
Algorithm 4 in Appendix G. For practical implementation, we assume the standard discounted MDP
setting in deep PbRL (Christiano et al., 2017), where trajectory segments of length L are given, and
preference labels are assigned to segment pairs.

Reward Learning. While our theoretical analysis is based on the maximum likelihood estimator,
any reward learning strategy can be employed. This flexibility allows APPO to benefit from state-
of-arts preference learning methods, such as data augmentation (Park et al., 2022) and active query
techniques (Shin et al., 2023; Hwang et al., 2024; Choi et al., 2024).

Training Value Functions. Given a parameterized policy πθ and an action-value function Qϕ, the
optimization objective in (7) can be adapted to the discounted setting as follows:

argmin
ϕ

E(s,a)∼dµ [(Qϕ ◦ πθ)(s)−Qϕ(s, a)] + λE(τ0,τ1)∼µ
[∣∣(rθϕ − r̂)(τ0)− (rθϕ − r̂)(τ1)

∣∣]
where rθϕ(τ) =

∑L
l=1 (Qϕ(sl, al)− γ(Qϕ ◦ πθ)(sl+1)) for the segment τ = (s1, a1, . . . , sL, aL).

We empoly the approximation P ⋆(Qϕ ◦ πθ)(sl, al) ≈ (Qϕ ◦ πθ)(sl+1) to avoid the need for a tran-
sition model. Additionally, to stabilize training, we apply the clipped double Q-learning trick (Fu-
jimoto et al., 2018; Haarnoja et al., 2018) and maintain a separate value-function Vψ . Given mini-
batch of trajectory pairs Btraj and transition tuples Btup, each action-value function Qϕi is trained
by minimizing Lλϕi = λLadv

ϕi + Eϕi (where λ is moved to the first term, without loss of generality),
defined as follows:

Ladv
ϕi (Btup) = E(s,a)∼Btup

[
Qϕi(s, πθ(s))−Qϕi(s, a)

]
,

and Eϕi(Btraj) = E(τ0,τ1)∼Btraj

[∣∣∣{rψϕi(τ
0)− rψϕi(τ

1)} − {r̂(τ0)− r̂(τ1)}
∣∣∣] . (9)

Here, we use the notation rψϕi(τ) =
∑L
l=1

(
Qϕi(sl, al)− γVψ(sh+l))

)
, and πθ(s) denotes an action

sampled from πθ(· | s). Given target Q-networks {ϕ̄i}i∈{1,2}, Vψ is trained by minimizing

Lψ(Btup) = Es∼Btup

[(
Vψ(s)− min

i∈{1,2}
Qϕ̄i(sh+1, πθ(sh+1))

)2
]
, (10)

8
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Dataset &
# of feedback Oracle MR PT DPPO IPL APPO

(ours)

BPT-500 88.33±4.76 10.08±7.57 22.87±9.06 3.93±4.34 34.73±13.92 53.52±13.86

box-close-500 93.40±3.10 29.12±13.20 0.33±1.16 10.20±11.47 5.93±5.81 18.24±15.60

dial-turn-500 75.40±5.47 61.44±6.08 68.67±12.39 26.67±22.23 31.53±12.50 80.96±4.49

sweep-500 98.33±1.87 86.96±6.93 43.07±24.57 10.47±15.84 27.20±23.81 26.80±5.32

BPT-wall-500 56.27±6.32 0.32±0.30 0.87±1.43 0.80±1.51 8.93±9.84 64.32±20.99

sweep-into-500 78.80±7.96 28.40±5.47 20.53±8.26 23.07±7.02 32.20±7.35 24.08±5.91

drawer-open-500 100.00±0.00 98.00±2.32 88.73±11.64 35.93±11.18 19.00±13.63 87.68±10.04

lever-pull-500 98.47±1.77 79.28±2.95 82.40±22.69 10.13±12.19 31.20±15.76 75.76±7.17

BPT-1000 88.33±4.76 8.48±5.80 18.27±10.62 3.20±3.04 36.67±17.40 59.04±18.97

box-close-1000 93.40±3.10 27.04±14.50 2.27±2.86 9.33±9.60 6.73±8.41 34.24±18.49

dial-turn-1000 75.40±5.47 69.44±4.70 68.80±5.50 36.40±21.95 43.93±13.37 81.44±6.73

sweep-1000 98.33±1.87 87.52±7.87 29.13±14.55 8.73±16.37 38.33±24.87 17.36±12.44

BPT-wall-1000 56.27±6.32 0.48±0.47 2.13±2.96 0.27±0.85 14.07±11.47 62.96±18.38

sweep-into-1000 78.80±7.96 26.00±5.53 20.27±7.84 23.33±7.80 30.40±7.74 18.16±11.14

drawer-open-1000 100.00±0.00 98.40±2.82 95.40±7.27 36.47±7.30 28.53±18.37 98.56±2.68

lever-pull-1000 98.47±1.77 88.96±3.94 72.93±10.16 8.53±9.96 40.40±17.38 76.96±4.40

Average Rank - 2.3125 3.125 4.375 3.0625 2.125

Table 1: Success rates on Meta-world medium-replay dataset with 500, 1000 preference feed-
back, averaged over 5 random seeds. The results of baselines Oracle, PT, DPPO, and IPL are taken
from Choi et al. (2024), where Oracle refers to the policy trained by IQL with the ground truth re-
wards. The abbreviation BPT indicates button-press-topdown.

Intuitively, the term Ladv
ϕ ensures conservatism by regularizingQϕ to have lower values near dπθ ,and

higher values near dµ. Additional insight can be gained by rearranging the integrand of Eϕ:

rψϕi(τ)− r̂(τ) =
L∑
l=1

(
Qϕi(sl, al)− r̂(sl, al)− γVψ(sl+1))

)
.

This expression represents the sum of TD errors evaluated on the segment τ . Thus, the loss Eϕ aims
to minimize the difference in trajectory TD errors between the two trajectories τ0, τ1.

Training Policy. The policy is directly optimized using the loss function in (11). The entropy reg-
ularization term is similar to that in SAC (Haarnoja et al., 2018), though we use randomly sampled
Qϕi instead of the clipped value mini∈[1,2]Qϕi . The policy loss is given by:

Lθ(Btup) = Es∼Btup

[
Qϕi(s, πθ(s))− απθ(s, πθ(s))

]
, i ∼ Unif{1, 2} (11)

6 EXPERIMENTS

Datasets and Evaluation. We evaluate our proposed algorithm in Meta-world (Yu et al.,
2020) medium-replay robotic control dataset from Choi et al. (2024). The Meta-world
medium-replay dataset has a favorable property for offline RL in that it is not learnable with
wrong rewards (random or constant). Such property is crucial for the evaluation of offline RL algo-
rithms, since the survival instinct of offline RL algorithms can make them perform well with totally
wrong reward signals (Li et al., 2024). See Choi et al. (2024) for validation experiments on the
dataset. Following the experiment protocol of Choi et al. (2024), the preference dataset consists of
pairs of randomly sampled trajectory segments of length 25. The preference label is generated based
on the ground truth reward, where a (0, 1) label is assigned if the trajectory rewards differ by more
than a threshold of 12.5, and a (0.5, 0.5) label is assigned otherwise. We measure the performance
of algorithms with success rate for each task, which indicates whether the agent succeeds in the task.

Algorithms. We consider four offline PbRL algorithms as baselines: Markovian Reward (MR),
Preference Transformer (PT) (Kim et al., 2023), Direct Preference-based Policy Optimization

9
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Figure 1: Effect of the conservatism regularizer λ.
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Figure 2: Success rates of APPO and MR, with varying number of preference feedback.

(DPPO) (An et al., 2023), Inverse Preference Learning (IPL) (Hejna & Sadigh, 2024). MR is an
instance of IQL (Kostrikov et al., 2022) trained with a Markovian reward model, while PT as-
sumes a general sequential reward model implemented with transformer (Vaswani, 2017) architec-
ture. DPPO directly optimizes policy without any reward model, and other baseline methods are
based on IQL (Kostrikov et al., 2022). We experiment with the practical version of APPO in Algo-
rithm 4, with the same reward model as MR and λ =3e-2. More details are presented in Appendix G.

6.1 EVALUATION RESULTS

Table 1 shows the performances of algorithms on Meta-world control tasks. APPO outperforms
or shows comparable performances in almost every dataset. It is noteworthy that APPO performs
better than the policy trained with ground truth rewards, in dial-turn and button-press-topdown-
wall datasets. Also we observe that MR is a strong baseline, as reported in previous works (Hejna &
Sadigh, 2024; Choi et al., 2024). From this result, we can conclude that APPO performs comparably
to the state-of-the-art baselines, even in the presence of the provable statistical guarantee.

Effect of Conservatism Regularizer. We investigate the effect of conservatism regularizer λ, the
coefficient to balance the adversarial loss Ladv

ϕ and the trajectory-pair ℓ1 loss Eϕ. In Figure 1, APPO
successfully learns with a wide range of λ, but properly tuned λ leads to better performance and
stability. We note that APPO has only one algorithmic hyperparameter λ, in contrast to IQL-based
algorithms (MR, PT, DPPO), which have at least two hyperparameters (expectile parameter and
temperature), and DPPO, which specifically has two hyperparameters (conservative regularizer and
smoothness regularizer).

Effect of Preference Dataset Size. In PbRL, learning from small preference datasets is desired
for cost-efficient learning. We evaluate the effect of preference dataset size on the performance of
APPO varying the number of feedback from 100 to 2000. Figure 2 shows that APPO is robust to
the size of preference data, displaying comparable variance with MR, a strong baseline as evidenced
in Table 1. Note that APPO outperforms a policy trained with ground truth rewards, using only 100
preference feedback.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY

We describe the details of the experiments in Section 6 and Section G including training protocol
and neural network architecture. We provide supplementary materials including the code used to
run experiments, along with the instructions for environment setting and commands. In addition, we
provide the code for generating figures in the supplementary material. As explained in Section 6,
we use the Meta-world medium-replay dataset from Choi et al. (2024). The dataset is available
in the official repository of Choi et al. (2024), with download instructions provided therein.
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A ADDITIONAL RELATED WORK

Empirical PbRL. Incorporating preference feedback into reinforcement learning has been explored
through several different approaches. One common method involves training a reward model from
preferences, which is then used to train a standard RL algorithm (Christiano et al., 2017; Ibarz et al.,
2018). A variety of techniques have emerged in this area, including unsupervised pre-training (Lee
et al., 2021), exploration driven by uncertainty (Liang et al., 2022), data augmentation (Park et al.,
2022), meta-learning approach (Hejna III & Sadigh, 2023), to list a few. Another prominent line of
research focuses on preference learning via active query methods (Shin et al., 2023; Hwang et al.,
2024; Choi et al., 2024), where benchmarks have demonstrated strong empirical results.

Beyond the conventional Markov reward model, some studies have proposed alternative reward
structures. For example, Kim et al. (2023) employed transformer architectures for reward modeling,
while Liu et al. (2022) and Hejna & Sadigh (2024) explored learning action-value functions rather
than directly modeling rewards. Several approaches also bypass explicit reward models entirely,
instead optimizing policies directly (An et al., 2023; Kang et al., 2023; Hejna et al., 2024).

B DETAILS ON POLICY EVALUATION SUBROUTINE

We present a simple policy evaluation subroutine in Algorithm 3. It requires online rollout and
access to the reference policy. The idea of policy evaluation using online rollout is adopted from
Chang et al. (2024), while the analysis is standard.

Algorithm 3 PE: Monte Carlo Policy Evaluation

1: Input: Reference policy µ, Current policy πt, Estimated reward r̂, Number of rollout K
2: for h ∈ [H] do
3: Collect K i.i.d. trajectories {(sk1 , ak1 , . . . , skH , akH)}Kk=1

4: where akj ∼ µj(· | skj ) for j < h, akh ∼ 1
2 (µh + πth)(· | skh), and akj ∼ πtj(· | skj ) for j > h

5: Compute qkh =
∑H
j=h r̂(s

k
j , a

k
j ), then set Dth = {(skh, akh, qkh)}Kk=1

6: Least square value function estimation Q̄th = argminf∈F
1
K

∑
(s,a,q)∈Dt

h
(f(s, a)− q)2

7: end for
8: Return {Q̄th}Hh=1

We have the following guarantee.
Lemma B.1. With probability at least 1− δ, Algorithm 3 guarantees that, for every (t, h) ∈ [T ]×
[H],

Es∼dµh,a∼ 1
2 (µ

h+πt
h)

[(
Q̄th(s, a)−Qπ

t

h,rt(s, a)
)2]
≤ c3R

2 log(TH|F|/δ)
K2

=: ϵ2PE

where c3 is an absolute constant.

Proof. Since
∥∥∥Qπh,r∥∥∥∞ ≤ R for any policy π and r ∈ RH , Lemma E.4 with B = R and K = K2

leads to

Es∼dµh,a∼ 1
2 (µ

h+πt
h)

[(
Q̄th(s, a)−Qπ

t

h,rt(s, a)
)2]
≤ c3R

2 log(|F|/δ)
K2

for any fixed (t, h) ∈ [T ]×[H]. The union bound over all (t, h) ∈ [T ]×[H] concludes the proof.
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C THEORETICAL ANALYSIS OF APPO-ROLLOUT

In this section, we provide theoretical analyses of APPO-rollout, a naı̈ve algorithm to find the
solution to the optimization problem (3). The ideas presented in this section are relevant to the proof
of Theorem 4.1, and the result itself is valuable for comparison with related works.

Before the theorem statement, we define step-wise concentrability which is always bounded by CTR.

Definition 2 (Step-wise concentrability). CST = maxh∈[H] sup(s,a)∈S×A
dπ

⋆

h (s,a)
dµh(s,a)

Lemma C.1. It always holds that CST ≤ CTR.

Proof. For a fixed pair (s, a), consider the set of trajectories T (s, a) := {τ = (s1, a1, . . . , sH , aH) :
sh = s, ah = a}. Then we have that

dπh(s, a) =

∫
T (s,a)

dπ(τ)dτ.

for any fixed policy π. Therefore, for every (s, a) ∈ S ×A, we have that

dπ
⋆

h (s, a)

dµh(s, a)
=

∫
T (s,a)

dπ
⋆

(τ)dτ∫
T (s,a)

dµ(τ)dτ
≤ sup

τ

dπ
⋆

(τ)

dµ(τ)
= CTR.

Taking supremum on both sides, we conclude the proof.

Theorem C.2. Suppose Assumptions 1 and 4 hold. With probability at least 1− δ, Algorithm 1 with

λ = Θ(CTR), λ > CTR, η =
√

2 log |A|
R2T achieves

V π
⋆

1,r⋆ − V π̂1,r⋆

≤ O

√log
|R|
δ

(
CTRκ

√
H√

M
+

R√
K1

+
R√
N

)
+RH

√
log |A|
T

+RH

√
CST

K2
log

TH|F|
δ

 .

Setting T = Θ
(
R2H2 log |A|

ϵ2

)
, N = K1 = Θ

(
R2 log(|R|/δ)

ϵ2

)
, M = Θ

(
C2

TRκ
2H log(|R|/δ)

ϵ2

)
, and

K2 = Θ
(
R2H2CST log(TH|F|/δ)

ϵ2

)
, Algorithm 2 achieves ϵ-optimal policy, i.e. V π

⋆

1,r⋆ − V π̄1,r⋆ ≤ ϵ.

Discussion on Theorem C.2. We compare this bound with PbRL algorithms with known transi-
tion (or online rollout). In comparison to FREEHAND (Zhan et al., 2024a), APPO-rollout has a
nearly identical rate for labeled data, but FREEHAND does not require extra unlabeled trajecto-
ries. However, this is a trade-off between statistical and computational complexity. Another com-
parable algorithm is DR-PO (Chang et al., 2024), which establishes Θ

(
(CTR+CSFT)κ

2 log(|R|/δ)
ϵ2

)
sample complexity for labeled data. Note that they assume homogeneous rewards, thus the H de-
pendence is missing. Their bound is tighter in CTR at the cost of dependence on additional factor
CSFT = supπ∈D supτ

dπ(τ)
dµ(τ) where D is a set of policies close to µ in terms of KL divergence. This

is because DR-PO does not ensure conservatism.

For simplicity, we introduce some notations regarding optimization objectives in Algorithm 1. For
r, r̃ ∈ RH , we define

L̂topt(r; r̃) := Eτ∼Drollout [r(τ)]− Eτ∼Dtraj [r(τ)] + λÊDtraj(r; r̃)

and its population version as
Ltopt(r; r̃) := Eτ∼πt [r(τ)]− Eτ∼µ [r(τ)] + λE(r; r̃).

C.1 OPTIMIZATION ERROR

In this section, we prove that the (finite-sample) optimization objective L̂topt(r; r̂) is close to its
population version, Ltopt(r; r̃). The result ensures that rt is a good approximation of the solution to
the optimization program with infinite samples, i.e.

rt ≈ argmin
r∈RH

Ltopt(r; r̂).
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Lemma C.3. With probability at least 1− δ/2, for all t ∈ [T ], we have

Lopt(r
t; r̂) ≤ Lopt(r

⋆; r̂) + 2ϵ̃approx

where ϵ̃approx is defined in Lemma C.4.

Proof. We have the following decomposition:

Ltopt(r
t; r̂)− Ltopt(r

⋆; r̂)

= Ltopt(r
t;πt)− L̂topt(r

t; r̂)︸ ︷︷ ︸
(I)

+ L̂topt(r
t; r̂)− L̂topt(r

⋆; r̂)︸ ︷︷ ︸
(II)

+ L̂topt(r
⋆; r̂)− Ltopt(r

⋆; r̂)︸ ︷︷ ︸
(III)

Conditioned on the event defined by Lemma D.2, (I) and (III) are bounded by ϵopt. Moreover, the
optimality of rt implies (II)≤ 0.

Lemma C.4. With probability at least 1− δ/2, for every t ∈ [T ] and r ∈ RH , it holds that∣∣∣Ltopt(r; r̂)− L̂topt(r; r̂)
∣∣∣ ≤ R

√
log(6|R|/δ)

2K1
+ 2R

√
2 log(6|R|/δ)

N
:= ϵ̃approx

Proof. Fix r ∈ RH , and note that∣∣∣Ltopt(r; r̂)− L̂topt(r; r̂)
∣∣∣

≤
∣∣∣Eτ∼Dt

rollout
[r(τ)]− Eτ∼πt [r(τ)]

∣∣∣+ ∣∣Eτ∼Dtraj [r(τ)]− Eτ∼µ[r(τ)]
∣∣

+
∣∣E(τ0,τ1)∼Dtraj

[
(r − r̂)(τ0)− (r − r̂)(τ1)

]
− E(τ0,τ1)∼µ

[
(r − r̂)(τ0)− (r − r̂)(τ1)

]∣∣ .
Since |r(τ)| ≤ R and |(r− r̂)(τ)| ≤ R for any trajectory τ , each term can be bounded by Hoeffding
inequality. Specifically, each of these three events occurs with probability at least 1− δ/6:∣∣∣Eτ∼Dt

rollout
[r(τ)]− Eτ∼πt [r(τ)]

∣∣∣ ≤ R
√

log(6/δ)

2K1
,

∣∣Eτ∼Dtraj [r(τ)]− Eτ∼µ[r(τ)]
∣∣ ≤ R√ log(6/δ)

2N
,

∣∣E(τ0,τ1)∼Dtraj

[
(r − r̂)(τ0)− (r − r̂)(τ1)

]
− E(τ0,τ1)∼µ

[
(r − r̂)(τ0)− (r − r̂)(τ1)

]∣∣ ≤ 2R

√
log(6/δ)

2N
.

Taking union bound over these events and all r ∈ RH , with probability at least 1− δ/2, it holds that∣∣∣Ltopt(r; r̂)− L̂topt(r; r̂)
∣∣∣ ≤ R

√
log(6|R|/δ)

2K1
+R

√
log(6|R|/δ)

2N
+ 2R

√
log(6|R|/δ)

2N

≤ R

√
log(6|R|/δ)

2K1
+ 2R

√
2 log(6|R|/δ)

N

for every r ∈ RH .

C.2 POLICY UPDATE

We present the guarantee regarding the policy update steps. The proofs in this section are based
on the standard analysis of the policy natural policy gradient (also referred to as trust region policy
optimization) (Cai et al., 2020; Chang et al., 2024).
Lemma C.5. With probability at least 1− δ/4, it holds that

1

T

T∑
t=1

(
V π

⋆

1,rt(s1)− V π
t

1,rt(s1)
)
≤ RH

√
log |A|
2T

+ 2HϵPE

√
2CST
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Proof of Lemma C.5. The performance difference lemma (Lemma E.1) implies that

T∑
t=1

(
V π

⋆

1,rt(s1)− V π
t

1,rt(s1)
)

=

T∑
t=1

Eπ⋆

[
H∑
h=1

⟨Qπ
t

h,rt(sh, ·), π⋆h(· | sh)− πth(· | sh)⟩

]

=

T∑
t=1

H∑
h=1

Es∼dπ⋆

h

[
⟨Q̄th(s, ·), π⋆h(· | s)− πth(· | s)⟩

]
︸ ︷︷ ︸

(I)

+

T∑
t=1

H∑
h=1

Es∼dπ⋆

h

[
⟨(Qπ

t

h,rt − Q̄th)(s, ·), π⋆h(· | sh)− πth(· | sh)⟩
]

︸ ︷︷ ︸
(II)

Bounding (I). Decompose the inner product inside the expectation:

⟨ηQ̄th(sh, ·), π⋆h(· | s)− πth(· | s)⟩
⟨ηQ̄th(sh, ·), π⋆h(· | s)− πt+1

h (· | s)⟩+ ⟨ηQ̄th(sh, ·), πt+1
h (· | s)− πth(· | s)⟩

≤ ⟨ηQ̄th(sh, ·), π⋆h(· | s)− πt+1
h (· | s)⟩+ η

∥∥Q̄th(sh, ·)∥∥∞ ∥∥π⋆h(· | s)− πt+1
h (· | s)

∥∥
1

≤ ⟨ηQ̄th(sh, ·), π⋆h(· | s)− πt+1
h (· | s)⟩+ ηR

∥∥π⋆h(· | s)− πt+1
h (· | s)

∥∥
1

(12)

where we use Hölder’s inequality with the fact that
∥∥Q̄th∥∥∞ ≤ R. Now recall that the policy update

step (Line 7) in Algorithm 1 leads to

πt+1
h (· | s) = 1

Zth(s)
πth(· | s) exp

(
ηQ̄th(s, ·)

)
where Zth(s) =

∑
a∈A π

t
h(a | s) exp

(
ηQ̄th(s, a)

)
. Using the relationship ηQ̄th(s, a) = logZth(s) +

log πt+1
h (a | s)− log πth(a | s), it holds that

⟨ηQ̄th(sh, ·), π⋆h(· | s)− πt+1
h (· | s)⟩

= ⟨logZth(s) + log πt+1
h (· | s)− log πth(· | s), π⋆h(· | s)− πt+1

h (· | s)⟩
= ⟨log πt+1

h (· | s)− log πth(· | s), π⋆(· | s)− πt+1
h (· | s)⟩

= ⟨log πt+1
h (· | s)− log πth(· | s), π⋆(· | s)⟩ −DKL

(
πt+1
h (· | s)∥πth(· | s)

)
= ⟨log

πt+1
h (· | s)
π⋆h(· | s)

+ log
π⋆h(· | s)
πth(· | s)

, π⋆h(· | s)⟩ −DKL

(
πt+1
h (· | s)∥πth(· | s)

)
= DKL

(
π⋆h(· | s)∥πth(· | s)

)
−DKL

(
π⋆h(· | s)∥πt+1

h (· | s)
)
−DKL

(
πt+1
h (· | s)∥πth(· | s)

)
≤ DKL

(
π⋆h(· | s)∥πth(· | s)

)
−DKL

(
π⋆h(· | s)∥πt+1

h (· | s)
)
− 1

2

∥∥π⋆h(· | s)− πt+1
h (· | s)

∥∥2
1

where the second equality holds since Zth(s) is a constant given s, and the last inequality holds due
to Pinsker’s inequality. Combining this bound with (12), we obtain
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T∑
t=1

⟨ηQ̄th(sh, ·), π⋆h(· | s)− πth(· | s)⟩

=

T∑
t=1

(
DKL

(
π⋆h(· | s)∥πth(· | s)

)
−DKL

(
π⋆h(· | s)∥πt+1

h (· | s)
))

+

T∑
t=1

(
ηR
∥∥π⋆h(· | s)− πt+1

h (· | s)
∥∥
1
− 1

2

∥∥π⋆h(· | s)− πt+1
h (· | s)

∥∥2
1

)

≤
T∑
t=1

(
DKL

(
π⋆h(· | s)∥πth(· | s)

)
−DKL

(
π⋆h(· | s)∥πt+1

h (· | s)
))

+

T∑
t=1

η2R2

2

= DKL

(
π⋆h(· | s)∥π1

h(· | s)
)
−DKL

(
π⋆h(· | s)∥πT+1

h (· | s)
)
+
η2R2T

2

≤ log |A|+ η2R2T

2

where the first inequality holds since ∀x ∈ R ax − x2/2 ≤ a2/2, and the second inequality holds

due to the fact that π1
h = Unif(A). Finally, setting η =

√
2 log |A|
R2T , (I) is bounded by

(I) =
H∑
h=1

Es∼dπ⋆

h

[
T∑
t=1

⟨Q̄th(s, ·), π⋆(· | s)− πt(· | s)⟩

]

≤
H∑
h=1

log |A|
η

+
ηR2T

2
= RH

√
T log |A|

2

Bounding (II). We condition on the event defined by Lemma B.1. Then we have

∣∣∣Es∼dπ⋆

h

[
⟨(Qπ

t

h,rt − Q̄th)(s, ·), π⋆h⟩
]∣∣∣

=
∣∣∣E(s,a)∼dπ⋆

h

[
Qπ

t

h,rt(s, a)− Q̄th(s, a)
]∣∣∣

≤

√
E(s,a)∼dπ⋆

h

[(
Qπ

t

h,rt(s, a)− Q̄th(s, a)
)2]

≤

√√√√2

(
max
h∈[H]

sup
(s,a)∈S×A

dπ
⋆

h (s, a)

dµh(s, a)

)
Es∼dµh,a∼ 1

2 (π
t
h+µh)

[(
Qπ

t

h,rt(s, a)− Q̄th(s, a)
)2]

≤
√
2CSTϵ2PE

where the first inequality holds due to Jensen’s inequality, and the second inequality uses importance
sampling, and the last inequality uses Lemma B.1.
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∣∣∣Es∼dπ⋆

h

[
⟨(Qπ

t

h,rt − Q̄th)(s, ·), πth⟩
]∣∣∣

=
∣∣∣Es∼dπ⋆

h ,a∼πt
h

[
Qπ

t

h,rt(s, a)− Q̄th(s, a)
]∣∣∣

≤

√
Es∼dπ⋆

h ,a∼πt
h

[(
Qπ

t

h,rt(s, a)− Q̄th(s, a)
)2]

≤

√
2

(
max
h∈[H]

sup
s∈S

dπ
⋆

h (s)

dµh(s)

)
Es∼dµh,a∼ 1

2 (π
t
h+µh)

[(
Qπ

t

h,rt(s, a)− Q̄th(s, a)
)2]

≤

√
2

(
max
h∈[H]

sup
s∈S

dπ
⋆

h (s)

dµh(s)

)
Es∼dµh,a∼ 1

2 (π
t
h+µh)

[(
Qπ

t

h,rt(s, a)− Q̄th(s, a)
)2]

≤
√
2CSTϵ2PE.

Therefore, we obtain the bound

(II) ≤
T∑
t=1

H∑
h=1

∣∣∣Es∼dπ⋆

h

[
⟨(Qπ

t

h,rt − Q̄th)(s, ·), π⋆h(· | sh)⟩
]∣∣∣

+

T∑
t=1

H∑
h=1

∣∣∣Es∼dπ⋆

h

[
⟨(Qπ

t

h,rt − Q̄th)(s, ·), πth(· | sh)⟩
]∣∣∣

≤ 2THϵPE

√
2CST.

We conclude the proof by combining the bounds on (I) and (II).

Now we prove Theorem C.2 based on the lemmas.

Proof of Theorem C.2. We condition on the event defined by Lemma E.2 (with δ′ = δ/4),
Lemma C.3, and Lemma C.5, that hold simultaneously with probability at least 1 − δ. Consider
the following sub-optimality decomposition at step t:

V π
⋆

1,r⋆ − V π
t

1,r⋆ = V π
⋆

1,r⋆ − V π
⋆

1,r̂ + V π
⋆

1,r̂ − V π
⋆

1,rt + V π
⋆

1,rt − V π
t

1,r⋆ + V π
t

1,rt − V π
t

1,rt

= V π
⋆

1,r⋆−r̂ − V
µ
1,r⋆−r̂︸ ︷︷ ︸

(I) : MLE estimation error

+ V π
⋆

1,r̂−rt − V
µ
1,r̂−rt − V

πt

1,r⋆ + V µ1,r⋆ + V π
t

1,rt − V
µ
1,rt︸ ︷︷ ︸

(II) : Optimization error

+ V π
⋆

1,rt − V π
t

1,rt︸ ︷︷ ︸
(III) : Policy update regret

, (13)

where we omit the initial state s1 for simplicity.

Bounding (I). Since we condition on the event defined by Lemma E.2, we have

(I) = V π
⋆

1,r⋆−r̂ − V
µ
1,r⋆−r̂

= Eτ0∼π⋆,τ1∼µ
[
r⋆(τ0)− r⋆(τ1)− r̂(τ0) + r̂(τ1)

]
≤
√
Eτ0∼π⋆,τ1∼µ [|r⋆(τ0)− r⋆(τ1)− r̂(τ0) + r̂(τ1)|2]

≤
√
CTREτ0,τ1∼µ [|r⋆(τ0)− r⋆(τ1)− r̂(τ0) + r̂(τ1)|2]

≤
√
CTRϵr(δ/4).
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Bounding (II). We can relate the terms V π
⋆

1,r̂−rt − V
µ
1,r̂−rt to E(rt;P ⋆, r̂). By Assumption 4, we

have that

V π
⋆

1,r̂−rt − V
µ
1,r̂−rt

= Eτ0∼π⋆,τ1∼µ
[
r̂(τ0)− r̂(τ1)− rt(τ0) + rt(τ1)

]
≤ CTREτ0,τ1∼µ

[
|r̂(τ0)− r̂(τ1)− rt(τ0) + rt(τ1)|

]
= CTRE(rt; r̂) ≤ λE(rt; r̂)

where the last inequality holds since E(rt; r̂) is non-negative and λ ≥ CTR. Further, Lemma C.3
implies

λE(rt; r̂) ≤ V π
t

1,r⋆ − V
µ
1,r⋆ − V π

t

1,rt + V µ1,rt + λE(r⋆; r̂) + 2ϵ̃approx

≤ V π
t

1,r⋆ − V
µ
1,r⋆ − V π

t

1,rt + V µ1,rt + λϵ̃r(δ/4) + 2ϵ̃approx

where the last inequality holds due to Lemma E.2:

E(r⋆; r̂) = Eτ0,τ1∼µ
[
|r̂(τ0)− r̂(τ1)− r⋆(τ0) + r⋆(τ1)|

]
≤
√

Eτ0,τ1∼µ [|r̂(τ0)− r̂(τ1)− r⋆(τ0) + r⋆(τ1)|2] ≤ ϵr(δ/4).

Therefore, we have

(II) ≤ λϵr(δ/4) + 2ϵ̃approx.

Bounding Sub-optimality. Putting the bounds on (I) and (II) into (13), we have

V π
⋆

1,r⋆ − V π
t

1,r⋆

≤
√
CTRϵr(δ/4) + λϵr(δ/4) + 2ϵ̃approx + V π

⋆

1,rt − V π
t

1,rt (14)

Since Algorithm 1 returns the mixture policy π̂ = 1
T

∑T
t=1 π

t, the sub-optimality is V π
⋆

1,r⋆ −V π̂1,r⋆ =
1
T

∑T
t=1

(
V π

⋆

1,r⋆ − V π
t

1,r⋆

)
. Using the bound in (14) and Lemma C.5, it holds that

V π
⋆

1,r⋆ − V π̂1,r⋆

=
1

T

T∑
t=1

(
V π

⋆

1,r⋆ − V π
t

1,r⋆

)
≤
√
CTRϵr(δ/4) + λϵr(δ/4) + 2ϵ̃approx +

1

T

T∑
t=1

(
V π

⋆

1,rt − V π
t

1,rt

)
≤
√
CTRϵr(δ/4) + λϵr(δ/4) + 2ϵ̃approx +RH

√
log |A|
2T

+ 2HϵPE

√
CST

≤ O

√log
|R|
δ

(
CTRκ

√
H√

M
+

R√
K1

+
R√
N

)
+RH

√
log |A|
T

+RH

√
CST

K2
log

TH|F|
δ
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D DETAILED PROOF OF THEOREM 4.1

For simplicity, we introduce some notations regarding optimization objectives in Algorithm 2. For
f ∈ FH , we define

L̂topt(f ; P̃ , r̃) :=

H∑
h=1

E(sh,ah)∼Dtraj

[
fh ◦ πth(sh)− fh(sh, ah)

]
+ λÊDtraj(f ; P̃ , r̃)

and its population version as

Ltopt(f ; P̃ , r̃) :=

H∑
h=1

E(sh,ah)∼dµh

[
fh ◦ πth(sh)− fh(sh, ah)

]
+ λE(f ; P̃ , r̃)

D.1 OPTIMIZATION ERROR

In this section, we prove that the (finite-sample) optimization objective L̂topt(f ; P̂ , r̂) is close to its
population versionLtopt(f ; P̃ , r̃). The result ensures that f t is a good approximation for the solutions
to the optimization program with infinite samples, i.e.

f t ≈ argmin
f∈FH

Ltopt(f ;P
⋆, r̂).

Remark. For this section, we assume that the maximum likelihood transition estimator P̂ is com-
puted using half of Dtraj, and the losses L̂topt(f ; P̂ , r̂) are computed from the other half. This in-
creases the sample complexity only by a constant factor, but helps avoid union bound over P in the
proof of Lemma D.2.

Lemma D.1. With probability at least 1− δ/2, for all t ∈ [T ], we have that

Ltopt(f
t; r̂) ≤ Ltopt(Q

πt

; r̂) + 2ϵapprox

where ϵapprox is defined in Lemma D.2.

Proof. Consider this decomposition:

Ltopt(f
t; r̂)− Ltopt(Q

πt

; r̂)

= Ltopt(f
t; r̂)− L̂topt(f

t; P̂ , r̂)︸ ︷︷ ︸
(I)

+ L̂topt(f
t; P̂ , r̂)− L̂topt(Q

πt

; P̂ , r̂)︸ ︷︷ ︸
(II)

+ L̂topt(Q
πt

; P̂ , r̂)− Ltopt(Q
πt

; r̂)︸ ︷︷ ︸
(III)

.

Conditioned on the event defined by Lemma D.2, (I) and (III) are bounded by ϵapprox. Moreover,
the optimality of f t implies (II)≤ 0.

Lemma D.2. With probability at least 1− δ/2, for every t ∈ [T ] and f ∈ FH , it holds that∣∣∣L̂topt(f ; P̂ , r̂)− Ltopt(f ; r̂)
∣∣∣ ≤ 8R

√
H3T log(8H|F|/δ)

N
+ 2RHϵP (δ/8) := ϵapprox.

Proof. Due to the policy update in Line 7 of Algorithm 2, the policies {πth}(t,h)∈[T ]×[H] belongs to
the following function class:

Π =

π(a | s) = exp
(∑T

i=1 ηf
i(s, a)

)
∑
a′∈A exp

(∑T
i=1 ηf

i(s, a′)
) : f i ∈ F for all i ∈ [T ]

 .

It is clear that |Π| ≤ |F|T .
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Step 1. Fix h ∈ [H], f ∈ F , and π ∈ Π. Since |f ◦ π(s)| ≤ R for all s ∈ S, Hoeffding inequality
implies that

∣∣∣Esh∈Dtraj [f ◦ π(sh)]− Esh∼dµh [f ◦ π(sh)]
∣∣∣ ≤ R√ log(8/δ)

2N

with probability at least 1− δ/8. Similarly, since |f(s, a)| ≤ R for all (s, a) ∈ S ×A, it holds that

∣∣∣E(sh,ah)∼Dtraj [f(sh, ah)]− E(sh,ah)∼dµh [f(sh, ah)]
∣∣∣ ≤ R√ log(8/δ)

2N

with probability at least 1− δ/8. Thus, with probability at least 1− δ/4, we have∣∣∣E(sh,ah)∼Dtraj [f ◦ π(sh)− f(sh, ah)]− E(sh,ah)∼dµh [f ◦ π(sh)− f(sh, ah)]
∣∣∣

≤
∣∣∣E(sh,ah)∼Dtraj [f ◦ π(sh)]− E(sh,ah)∼dµh [f ◦ π(sh)]

∣∣∣
+
∣∣∣E(sh,ah)∼Dtraj [f(sh, ah)]− E(sh,ah)∼dµh [f(sh, ah)]

∣∣∣
≤ R

√
2 log(8/δ)

N
.

Consider union bound over all h ∈ [H], f ∈ F , and π ∈ Π. Since πth ∈ Π for every (t, h) ∈
[T ]× [H], with probability at least 1− δ/4, we have∣∣∣∣∣

H∑
h=1

E(sh,ah)∼Dtraj

[
fh ◦ πth(sh)− fh(sh, ah)

]
−

H∑
h=1

E(sh,ah)∼dµh

[
fh ◦ πth(sh)− fh(sh, ah)

]∣∣∣∣∣
≤

H∑
h=1

∣∣∣E(sh,ah)∼Dtraj

[
fh ◦ πth(sh)− fh(sh, ah)

]
− E(sh,ah)∼dµh

[
fh ◦ πth(sh)− fh(sh, ah)

]∣∣∣
≤ RH

√
2 log(8H|F||Π|/δ)

N
≤ 2RH

√
T log(8H|F|/δ)

N
.

for every f ∈ F .

Step 2. We have that

|ÊDtraj(f ; P̂ , r̂)− E(f ;P ⋆, r̂)| ≤ |ÊDtraj(f ; P̂ , r̂)− E(f ; P̂ , r̂)|+ |E(f ; P̂ , r̂)− E(f ;P ⋆, r̂)|. (15)

Again, we use Hoeffding inequality to bound the first term. Fix f ∈ FH and π = {πh}Hh=1 ∈ ΠH

and consider the function rπ
P̂ ,f

(Recall that rπ
h,P̂ ,f

(s, a) = fh(s, a) − P̂ (fh+1 ◦ πh+1)(s, a) for all
h ∈ [H] and (s, a) ∈ S ×A). Since |(rπ

P̂ ,f
− r̂)(τ)| ≤ 2RH for any trajectory τ , we have that∣∣∣E(τ0,τ1)∼Dtraj

[∣∣∣(rπ
P̂ ,f
− r̂)(τ0)− (rπ

P̂ ,f
− r̂)(τ1)

∣∣∣]− E(τ0,τ1)∼µ

[∣∣∣(rπ
P̂ ,f
− r̂)(τ0)− (rπ

P̂ ,f
− r̂)(τ1)

∣∣∣]∣∣∣
≤ 2RH

√
2 log(8/δ)

N

with probability at least 1−δ/8. Applying union bound over all f ∈ FH and π ∈ ΠH , since πth ∈ Π
for every (t, h) ∈ [T ]× [H], it holds that

|ÊDtraj(f ; P̂ , r̂)− E(f ; P̂ , r̂)| ≤ 2RH

√
2H log(8|F||Π|/δ)

N
≤ 4RH

√
HT log(8|F|/δ)

N
(16)

for every f ∈ F , with probability at least 1− δ/8.
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On the other hand, the second term in (15) is bounded by

|E(f ; P̂ , r̂)− E(f ;P ⋆, r̂)|

≤ E(τ0,τ1)∼µ

[∣∣∣∣∣
H∑
h=1

(P ⋆ − P̂ )(fh ◦ πth)(s0h, a0h)−
H∑
h=1

(P ⋆ − P̂ )(fh ◦ πth)(s1h, a1h)

∣∣∣∣∣
]

≤ Eτ0∼µ

[
H∑
h=1

∣∣∣(P ⋆ − P̂ )(fh ◦ πth)(s0h, a0h)∣∣∣
]
+ Eτ1∼µ

[
H∑
h=1

∣∣∣(P ⋆ − P̂ )(fh ◦ πth)(s1h, a1h)∣∣∣
]

= 2Eτ∼µ

[
H∑
h=1

∣∣∣(P ⋆ − P̂ )(fh ◦ πth)(sh, ah)∣∣∣
]

≤ 2REτ∼µ

[
H∑
h=1

∥∥∥P ⋆(· | sh, ah)− P̂ (· | sh, ah)∥∥∥
1

]

= 2R

H∑
h=1

E(sh,ah)∼dµh

[∥∥∥P ⋆(· | sh, ah)− P̂ (· | sh, ah)∥∥∥
1

]
where the first inequality holds since we have ||a| − |b|| ≤ |a − b| for all a, b ∈ R, and the
third inequality holds due to Hölder’s inequality with the fact that ∥fh ◦ πth∥∞ ≤ R. Furthermore,
Lemma E.3 implies

|E(f ; P̂ , r̂)− E(f ;P ⋆, r̂)| ≤ 2R

H∑
h=1

E(sh,ah)∼dµh

[∥∥∥P ⋆(· | sh, ah)− P̂ (· | sh, ah)∥∥∥
1

]

≤ 2R

H∑
h=1

√
E(sh,ah)∼dµh

[∥∥∥P ⋆(· | sh, ah)− P̂ (· | sh, ah)∥∥∥2
1

]
≤ 2RHϵP (δ/8) (17)

with probability at least 1−δ/8. Taking union bound of the two event (16) and (17), with probability
at least 1− δ/4, it holds that

|ÊDtraj(f ; P̂ , r̂)− E(f ;P ⋆, r̂)| ≤ 2RH

√
HT log(8|F|/δ)

N
+ 2RHϵP (δ/8)

for every f ∈ F .

Finally, we conclude the proof by combining the bounds in Step 1 and Step 2. With probability at
least 1− δ/2, for every f ∈ F , it hols that∣∣∣L̂topt(f ; P̂ , r̂)− Ltopt(f ; r̂)

∣∣∣
≤

∣∣∣∣∣
H∑
h=1

E(sh,ah)∼Dtraj

[
fh ◦ πth(sh)− fh(sh, ah)

]
−

H∑
h=1

E(sh,ah)∼dµh

[
fh ◦ πth(sh)− fh(sh, ah)

]∣∣∣∣∣
+
∣∣∣ÊDtraj(f ; P̂ , r̂)− E(f ;P ⋆, r̂)

∣∣∣
≤ 4RH

√
T log(8H|F|/δ)

N
+ 2RH

√
HT log(8|F|/δ)

N
+ 2RHϵP (δ/8)

≤ 8R

√
H3T log(8H|F|/δ)

N
+ 2RHϵP (δ/8).

D.2 POLICY UPDATE

The analysis on the policy update step in Algorithm 2 follows the same argument in Lemma C.5.
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Lemma D.3. For any sequence of functions {f t}Tt=1, the policy update (Line 7) in Algorithm 2
guarantees that

1

T

T∑
t=1

(
V π

⋆

1,rt(s1)− V π
t

1,rt(s1)
)
≤ RH

√
log |A|
2T

where rt = rπ
t

P⋆,ft , i.e. rth(s, a) = f th(s, a) − P ⋆(f th+1 ◦ πth+1)(s, a) for all h ∈ [H] and (s, a) ∈
S ×A.

Proof. Since we have the Bellman equation f th = rth + P ⋆h (f
t
h+1 ◦ πth+1) for all h ∈ [H], we can

apply the performance difference lemma (Lemma E.1) to obtain

T∑
t=1

(
V π

⋆

1,rt(s1)− V π
t

1,rt(s1)
)
=

T∑
t=1

H∑
h=1

Eπ⋆

[
⟨f th(sh, ·), π⋆h(· | sh)− πth(· | sh)⟩

]
.

Rearranging the inner product term, we see that

⟨ηf th(sh, ·), π⋆h(· | s)− πth(· | s)⟩
⟨ηf th(sh, ·), π⋆h(· | s)− πt+1

h (· | s)⟩+ ⟨ηf th(sh, ·), πt+1
h (· | s)− πth(· | s)⟩

≤ ⟨ηf th(sh, ·), π⋆h(· | s)− πt+1
h (· | s)⟩+ η

∥∥f th(sh, ·)∥∥∞ ∥∥π⋆h(· | s)− πt+1
h (· | s)

∥∥
1

≤ ⟨ηf th(sh, ·), π⋆h(· | s)− πt+1
h (· | s)⟩+ ηR

∥∥π⋆h(· | s)− πt+1
h (· | s)

∥∥
1

(18)

where we use Hölder’s inequality with the fact that ∥f th∥∞ ≤ R. Now recall that the policy update
step in Algorithm 3 leads to

πt+1
h (· | s) = 1

Zth(s)
πth(· | s) exp

(
ηf th(s, ·)

)
where Zth(s) =

∑
a∈A π

t
h(a | s) exp (ηf th(s, a)). Using the relationship ηf th(s, a) = logZth(s) +

log πt+1
h (a | s)− log πth(a | s), it holds that

⟨ηf th(sh, ·), π⋆h(· | s)− πt+1
h (· | s)⟩

= ⟨logZth(s) + log πt+1
h (· | s)− log πth(· | s), π⋆h(· | s)− πt+1

h (· | s)⟩
= ⟨log πt+1

h (· | s)− log πth(· | s), π⋆(· | s)− πt+1
h (· | s)⟩

= ⟨log πt+1
h (· | s)− log πth(· | s), π⋆(· | s)⟩ −DKL

(
πt+1
h (· | s)∥πth(· | s)

)
= ⟨log

πt+1
h (· | s)
π⋆h(· | s)

+ log
π⋆h(· | s)
πth(· | s)

, π⋆h(· | s)⟩ −DKL

(
πt+1
h (· | s)∥πth(· | s)

)
= DKL

(
π⋆h(· | s)∥πth(· | s)

)
−DKL

(
π⋆h(· | s)∥πt+1

h (· | s)
)
−DKL

(
πt+1
h (· | s)∥πth(· | s)

)
≤ DKL

(
π⋆h(· | s)∥πth(· | s)

)
−DKL

(
π⋆h(· | s)∥πt+1

h (· | s)
)
− 1

2

∥∥π⋆h(· | s)− πt+1
h (· | s)

∥∥2
1

where the second equality holds since Zth(s) is a constant given s, and the last inequality holds due
to Pinsker’s inequality. Combining this bound with (18), we obtain
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T∑
t=1

⟨ηf th(sh, ·), π⋆h(· | s)− πth(· | s)⟩

=

T∑
t=1

(
DKL

(
π⋆h(· | s)∥πth(· | s)

)
−DKL

(
π⋆h(· | s)∥πt+1

h (· | s)
))

+

T∑
t=1

(
ηR
∥∥π⋆h(· | s)− πt+1

h (· | s)
∥∥
1
− 1

2

∥∥π⋆h(· | s)− πt+1
h (· | s)

∥∥2
1

)

≤
T∑
t=1

(
DKL

(
π⋆h(· | s)∥πth(· | s)

)
−DKL

(
π⋆h(· | s)∥πt+1

h (· | s)
))

+

T∑
t=1

η2R2

2

= DKL

(
π⋆h(· | s)∥π1

h(· | s)
)
−DKL

(
π⋆h(· | s)∥πT+1

h (· | s)
)
+
η2R2T

2

≤ log |A|+ η2R2T

2

where the first inequality holds since ∀x ∈ R ax − x2/2 ≤ a2/2, and the second inequality holds

due to the fact that π1
h = Unif(A). Finally, setting η =

√
2 log |A|
R2T , we have

T∑
t=1

V π
⋆

1,rt − V π
t

1,rt =

T∑
t=1

Eπ⋆

[
H∑
h=1

⟨f th(sh, ·), π⋆h(· | sh)− πth(· | sh)⟩

]

=

H∑
h=1

Eπ⋆

[
T∑
t=1

⟨f th(sh, ·), π⋆h(· | sh)− πth(· | sh)⟩

]

≤
H∑
h=1

(
log |A|
η

+
ηR2T

2

)
= RH

√
T log |A|

2
.

Finally, we prove Theorem 4.1.

Proof of Theorem 4.1. For simplicity, we write rt = rπ
t

P⋆,ft , i.e. rth(s, a) = f th(s, a) − P ⋆h (f th+1 ◦
πth+1)(s, a) for all (s, a) ∈ S × A and h ∈ [H]. The condition rt ∈ RH is not required, we only
rely on the boundedness ∥rth∥∞ ≤ R for all h, that Assumption 3 guarantees.

Condition on the events in Lemma E.2 (with δ′ = δ/2) and Lemma D.1, that hold simultaneously
with probability at least 1− δ. Consider the following sub-optimality decomposition at step t:

V π
⋆

1,r⋆ − V π
t

1,r⋆ = V π
⋆

1,r⋆ − V π
⋆

1,r̂ + V π
⋆

1,r̂ − V π
⋆

1,rt + V π
⋆

1,rt − V π
t

1,r⋆ + V π
t

1,rt − V π
t

1,rt

= V π
⋆

1,r⋆−r̂ − V
µ
1,r⋆−r̂︸ ︷︷ ︸

(I) : MLE estimation error

+ V π
⋆

1,r̂−rt − V
µ
1,r̂−rt − V

πt

1,r⋆ + V µ1,r⋆ + V π
t

1,rt − V
µ
1,rt︸ ︷︷ ︸

(II) : Optimization error

+ V π
⋆

1,rt − V π
t

1,rt︸ ︷︷ ︸
(III) : Policy update regret

, (19)

where we omit the initial state s1 for simplicity.
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Bounding (I). Using Lemma E.2, the MLE estimation error is bounded by:

(I) = V π
⋆

1,r⋆−r̂ − V
µ
1,r⋆−r̂

= Eτ0∼π⋆,τ1∼µ
[
r⋆(τ0)− r⋆(τ1)− r̂(τ0) + r̂(τ1)

]
≤
√
Eτ0∼π⋆,τ1∼µ [|r⋆(τ0)− r⋆(τ1)− r̂(τ0) + r̂(τ1)|2]

≤
√
CTREτ0,τ1∼µ [|r⋆(τ0)− r⋆(τ1)− r̂(τ0) + r̂(τ1)|2]

≤
√
CTRϵr(δ/2)

Bounding (II). We can relate the terms V π
⋆

1,r̂−rt−V
µ
1,r̂−rt to the trajectory-pair ℓ1 loss E(f t;P ⋆, r̂).

By Assumption 4, we have that

V π
⋆

1,r̂−rt − V
µ
1,r̂−rt

= Eτ0∼π⋆,τ1∼µ
[
r̂(τ0)− r̂(τ1)− rt(τ0) + rt(τ1)

]
≤ CTREτ0,τ1∼µ

[
|r̂(τ0)− r̂(τ1)− rt(τ0) + rt(τ1)|

]
= CTREτ0,τ1∼µ

[
|rπ

t

P⋆,ft(τ0)− rπ
t

P⋆,ft(τ1)− r̂(τ0) + r̂(τ1)|
]

= CTRE(f t;P ⋆, r̂) ≤ λE(f t;P ⋆, r̂)

where the last inequality holds since E(f t;P ⋆, r̂) is non-negative and λ ≥ CTR. Further, Lemma D.1
and Lemma E.1 implies

λE(f t;P ⋆, r̂) ≤
H∑
h=1

E(sh,ah)∼dµh

[
Qπ

t

h ◦ πth(sh)−Qπ
t

h (sh, ah)
]
+ λE(Qπ

t

;P ⋆, r̂)

−
H∑
h=1

E(sh,ah)∼dµh

[
f th ◦ πth(sh)− f th(sh, ah)

]
+ 2ϵapprox

=
(
V π

t

1,r⋆ − V
µ
1,r⋆

)
+ λE(Qπ

t

;P ⋆, r̂)−
(
V π

t

1,rt − V
µ
1,rt

)
+ 2ϵapprox.

On the other hand, note that

rπ
t

P⋆,Qπt (τ) =

H∑
h=1

(
Qπ

t

h (sh, ah)− P ⋆(Qπ
t

h+1 ◦ πth+1)(sh, ah)
)

=

H∑
h=1

(
Qπ

t

h (sh, ah)− P ⋆V π
t

h+1(sh, ah)
)

=

H∑
h=1

r⋆h(sh, ah) = r⋆(τ)

for any τ = (s1, a1, . . . , sH , aH), i.e. rπ
t

P⋆,Qπt = r⋆. Thus, we have

λE(Qπ
t

;P ⋆, r̂) = λE(τ0,τ1)∼µ
[∣∣{r⋆(τ0)− r⋆(τ1)} − {r̂(τ0)− r̂(τ1)}∣∣]

≤ λ
√

E(τ0,τ1)∼µ

[
|{r⋆(τ0)− r⋆(τ1)} − {r̂(τ0)− r̂(τ1)}|2

]
≤ λϵr(δ/2)

where the inequality follows from Lemma E.2. Combining the results, we obtain

(II) =
(
V π

⋆

1,r̂−rt − V
µ
1,r̂−rt

)
−
(
V π

t

1,r⋆ − V
µ
1,r⋆

)
+
(
V π

t

1,rt − V
µ
1,rt

)
≤ λE(Qπ

t

;P ⋆, r̂) + 2ϵapprox ≤ λϵr(δ/2) + 2ϵapprox
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Bounding Sub-optimality. Finally, we bound the sub-optimality V π
⋆

1,r⋆−V π̂1,r⋆ . Putting the bounds
on (I) and (II) into (19), we have

V π
⋆

1,r⋆ − V π
t

1,r⋆

≤
√
CTRϵr(δ/2) + λϵr(δ/2) + 2ϵapprox + V π

⋆

1,rt − V π
t

1,rt (20)

Since Algorithm 2 returns the mixture policy π̂ = 1
T

∑T
t=1 π

t, the sub-optimality is V π
⋆

1,r⋆ −V π̂1,r⋆ =
1
T

∑T
t=1

(
V π

⋆

1,r⋆ − V π
t

1,r⋆

)
. Using the bounds we derived and Lemma D.3, it holds that

V π
⋆

1,r⋆ − V π̂1,r⋆

=
1

T

T∑
t=1

(
V π

⋆

1,r⋆ − V π
t

1,r⋆

)
≤
√
CTRϵr(δ/2) + λϵr(δ/2) + 2ϵapprox +

1

T

T∑
t=1

(
V π

⋆

1,rt − V π
t

1,rt

)
≤
√
CTRϵr(δ/2) + λϵr(δ/2) + 2ϵapprox +RH

√
log |A|
2T

≤ O

(
CTR

√
κ2H log(|R|/δ)

M
+R

√
H3T log(H|F|/δ)

N
+RH

√
log(H|P|/δ)

N
+RH

√
log |A|
T

)

≤ O

(
CTR

√
κ2H log(|R|/δ)

M
+RH

√
max{HT log(H|F|/δ), log(H|P|/δ)}

N
+RH

√
log |A|
T

)
.

E SUPPORTING LEMMAS

Lemma E.1 (Performance Difference Lemma (Kakade & Langford, 2002)). Let P be any transition
probability, and denote the corresponding value function by V . Let π, p̃i be any policies. For any
reward r, we have that

V π1,r(s1)− V π̃1,r(s1) =
H∑
h=1

Esh∼dπh
[
⟨Qπ̃h,r(sh, ·), π(· | sh)− π̃(· | sh)⟩

]
Proof. Recursively apply the Bellman equation, we obtain

V π1,r(s1)− V π̃1,r(s1) = Eπ[r(s1, a1) + V π2,r(s2)]− Eπ[V π̃1,r(s1)]
= Eπ[Qπ̃1,r(s1, a1)− V π̃2,r(s2) + V π2,r(s2)]− Eπ[V π̃1,r(s1)]
= Eπ[Qπ̃1,r(s1, a1)− V π̃1,r(s1)] + Eπ[V π2,r(s2)− V π̃2,r(s2)]
= Eπ[⟨Qπ̃1,r(s1, ·), π(· | s1)− π̃(· | s1)⟩] + Eπ[V π2,r(s2)− V π̃2,r(s2)]
= · · ·

=

H∑
h=1

Esh∼dπh
[
⟨Qπ̃h,r(sh, ·), π(· | sh)− π̃(· | sh)⟩

]
.

Lemma E.2 (Lemma 2 in Zhan et al. (2024a)). With probability at least 1− δ′, we have

Eτ0,τ1∼µ
[
|(r̂(τ0)− r̂(τ1))− (r⋆(τ0)− r⋆(τ1))|2

]
≤ c1κ

2H log(|R|/δ′)
M

:= ϵ2r(δ
′) (21)
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Lemma E.3 (Lemma 3 in Zhan et al. (2024a)). With probability at least 1 − δ′, for all h ∈ [H], it
holds that

E(sh,ah)∼dµh

[∥∥∥P̂h(· | sh, ah)− P ⋆(· | sh, ah)∥∥∥2
1

]
≤ c2 log(H|P|/δ′)

N
:= ϵ2P (δ

′) (22)

where c2 is an absolute constant.

Lemma E.4 (Lemma 15 in Song et al. (2023)). Fix any B > 0, δ ∈ (0, 1) and assume we have a
class of real-valued functionsH : X → [−B,B]. Suppose we have K i.i.d. samples {(xk, yk)}Kk=1

where xk ∼ ρ and yk = h⋆(xk)+ϵk where h⋆ ∈ H and {ϵk}Kk=1 are independent random variables
such that E[ϵk | xk] = 0. Additionally, suppose that maxk |yk| ≤ R and supx∈X |h⋆(x)| ≤ B.
Then, with probability at least 1−δ, the least square estimator ĥ ∈ argminh∈H

∑K
k=1(h(xk)−yk)2

satisfies:

Ex∼ρ
[(
ĥ(x)− h⋆(x)

)2]
≤ c2B

2 log(|H|/δ)
K

where c2 is an absolute constant.

Algorithm 4 APPO (Practical version)

1: Input: Batch size B, Learning rates αϕ, αψ, αθ, constants λ > 0, τ ∈ (0, 1)
2: Train reward model r̂ based on Dpref ▷ Utilize any reward learning method
3: for step= 1, 2, . . . do
4: Sample mini-batch of transition tuples Btup and trajectory pairs Btraj from Dtraj

5: Train Q functions ϕi ← ϕi − αϕ∇ϕiLλϕi(Btup,Btraj) for i ∈ {1, 2} (9)
6: Update target Q function ϕ̄i = (1− τ)ϕ̄i + τϕi for i ∈ {1, 2}
7: Train V function ψ ← ψ − αψ∇ψLψ(Btup) (10)
8: Train actor θ ← θ + αθ∇θLθ(Btup) (11)
9: end for
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F ADDITIONAL EXPERIMENTS

F.1 EVALUATION ON META-WORLD MEDIUM-EXPERT DATASET

To further demonstrate the generalization capability of APPO, we collected the Meta-world
medium-expert dataset following the data collection procedures outlined in prior works (Hejna
& Sadigh, 2024; Choi et al., 2024). Detailed information regarding the dataset is provided in Sec-
tion G. For comparison, we use MR, the most effective baseline method identified in Table 1. The
hyperparameters are presented in Table 4. The results, shown in Table 2, indicate that APPO con-
sistently outperforms or performs on par with MR.

# of feedback 500 1000

Dataset dial-turn sweep-into dial-turn sweep-into

MR 15.80±12.73 14.32±3.39 26.08±18.78 8.48±1.92

APPO 32.40±13.56 12.80±5.35 39.20±15.69 14.56±6.25

Table 2: Success rates on Meta-world medium-expert dataset with 500, 1000 preference feed-
back, averaged over 5 random seeds.

F.2 EFFECT OF DATASET SIZE
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Figure 3: Success rates of APPO and MR evaluated in Meta-world medium-replay datasets,
with varying dataset sizes. The number of preference feedback is fixed at 1000.

To examine the impact of dataset size |Dtraj|, we conducted experiments with varying sizes of the
Meta-world medium-replay datasets. As shown in Figure 2, the performance of MR fluctuates
with changes in dataset size, whereas the performance of APPO exhibits a more consistent and
gradual response to dataset size variations.

F.3 LEARNING CURVES FROM EXPERIMENTS.

Figure 4 and Figure 5 shows the learning curves of the experiments in Table 1 and Table 2. Each
algorithm is trained for 250, 000 gradient steps, with evaluations conducted every 5, 000 steps. The
success rates of the last five evaluation points are averaged and then reported in Table 1 and Table 2.
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Dataset BPT box-close dial-turn sweep BPT-wall sweep-into drawer-open lever-pull

Size (×105) 1.0 8.0 3.0 7.0 1.5 1.0 1.0 3.0

Table 3: The sizes of Meta-world medium-replay datasets (Choi et al., 2024). The abbreviation
BPT indicates button-press-topdown.

G EXPERIMENTAL DETAILS

G.1 DATASETS

The Meta-World medium-replay dataset from Choi et al. (2024) consists of replay buffers gen-
erated by SAC (Haarnoja et al., 2018) agents achieving approximately 50% success rate. The dataset
sizes are detailed in Table 3.

The Meta-world medium-expert dataset was collected following the procedures described in
prior works (Hejna & Sadigh, 2024; Choi et al., 2024). Each dataset contains trajectories from five
sources: (1) the expert policy, (2) expert policies for randomized variants and goals of the task, (3)
expert policies for different tasks, (4) a random policy, and (5) an ϵ-greedy expert policy that takes
greedy actions with a 50% probability. These trajectories are included in the dataset in proportions
of 1 : 1 : 2 : 4 : 4, respectively. Additionally, standard Gaussian noise was added to the actions of
each policy. The dataset sizes match those of the medium-replay dataset.

G.2 IMPLEMENTATION AND HYPERPARAMETERS.

For a fair comparison with baseline methods, we train the reward model and MR following the offi-
cial implementation of Choi et al. (2024). The reward model is implemented by an ensemble model
of 3 fully connected neural networks with three hidden layers, each containing 128 neurons. For
critics (Q and V) and policies, we use fully connected neural networks with three hidden layers,
each containing 256 neurons. Other values are listed in Table 4. We find that using a lower learning
rate for π and softer target network updates further stabilizes the training process of APPO. Experi-
ments were run on Intel Xeon Gold 6226R CPU and Nvidia GeForce RTX 3090 GPU, each training
session consists of 250, 000 gradient steps which take 3− 4 hours to complete.
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Algorithm Component Value

Reward model

Neural networks 3-layers, hidden dimension 128
Activaton ReLU for hidden activations, Tanh for final activation
Optimizer Adam (Kingma & Ba, 2014) with learning rate 1e-3
Batch size 512
Epochs 300
Ensembles 3

MR

Neural networks (Q, V, π) 3-layers, hidden dimension 256
Activaton ReLU for hidden activations
Q, V, π optimizer Adam with learning rate 3e-4
Batch size 256
Target network soft update 0.005
β (IQL advantage weight) 3.0
τ (IQL expectile parameter) 0.7
discount factor 0.99

APPO

Neural networks (Q, V, π) 3-layers, hidden dimension 256
Activaton LeakyReLU for hidden activations
Q,V, α optimizer Adam with learning rate 3e-4
π optimizer Adam with learning rate 3e-5
Batch size 256 transitions and 16 trajectory pairs
Target network soft update 0.001
discount factor 0.99

Table 4: Implementation details and hyperparameters. For the reward model and MR algorithm, we
follow the official implementation of Choi et al. (2024).
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Figure 4: Learning Curves from the experiments in Table 1.
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Figure 5: Learning Curves from the experiments in Table 2.
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