
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LET LARGE LANGUAGE MODELS FIND THE DATA TO
TRAIN THEMSELVES

Anonymous authors
Paper under double-blind review

ABSTRACT

The current iterative development process for large language models (LLMs) is
heavily data-centric, relying on human researchers and engineers to manually an-
alyze model performance and determine what data to acquire for further training.
However, this human-supervised approach is costly and may fail to identify opti-
mal training signals. Its scalability is further limited as models become increas-
ingly capable and may eventually exceed human intelligence. To address these
issues, we propose an automated framework that enables models to autonomously
discover and strategically acquire the most valuable training data to enhance their
performance. It establishes a self-improving framework where models can invoke
APIs to crawl and/or generate tailored datasets from various resources and en-
vironments, and retrain themselves. The data selection decisions are shaped by
reinforcement feedback signals that reward performance gains while penalizing
computational overhead. This formulation incentivizes models to develop self-
knowledge about their strengths and areas for improvement in order to efficiently
select training data. Empirical results demonstrate that LLMs operating within
our framework are able to autonomously and strategically acquire valuable train-
ing data to enhance their performance across a variety of skills in 1,000 diverse
in-house test tasks and three public benchmarks.

1 INTRODUCTION

Large language models (LLMs) (Zhao et al., 2023) have seen remarkable progress in various do-
mains and tasks with extensive training on massive data. Currently, one of the most important
aspects of developing LLMs is data engineering, which typically involves teams of researchers
and engineers meticulously examining model outputs, identifying shortcomings, and then collecting
and curating next-iteration training data from various sources to refine model performance (Achiam
et al., 2023; Anil et al., 2023; Dubey et al., 2024). While this method has yielded impressive results,
it is not without inherent limitations. The human-driven nature of this process introduces poten-
tial biases and inefficiencies, as it relies heavily on the intuition and expertise of the development
team (Wang et al., 2023; Sun et al., 2024). Furthermore, as these AI models continue to evolve in
complexity and capability, there is a growing concern that they may soon exceed human intelligence
in certain domains, which raises questions about the long-term viability and scalability of current
development practices (Burns et al., 2024).

In this work, we conceptualize and prototype an ACTIVE DATA SEARCH (ADS) framework that fa-
cilitates LLMs to automatically acquire training data from external environments for training them-
selves, without human supervision. In ADS, existing data collection and curation methods are
encapsulated into APIs and the LLMs themselves determine when and how they use these APIs for
data acquisition. The APIs may involve a wide range of data crawling, filtering, cleaning, refine-
ment, synthesis, and manual annotation techniques to obtain tailored training data. The data sources
are also varied, from raw texts extracted via web searches to documents sourced across various
platforms, as well as supervised demonstrations generated by AI assistants.

We achieve the above automatic process through development of an optimizer that generates these
APIs sequentially based on the target task. Specifically, the optimizer first analyzes the required
capabilities for successful task completion, then strategically invokes appropriate API calls to collect
training data for performance improvement. To facilitate the optimizer’s decision-making process in
obtaining optimal training data, we propose a reinforcement learning strategy for optimizer training,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

leveraging feedback reward signals from the policy to maximize task performance while minimizing
computational costs by iterative rejection sampling (RS) (Bai et al., 2022a) and direct preference
optimization (DPO) (Rafailov et al., 2024). This refinement process fosters the development of
self-knowledge regarding the model’s strengths and weaknesses, enabling more efficient training
data discovery and utilization. Compared to recent studies (Lozhkov et al., 2024; Wettig et al.,
2024; Zhou et al., 2024a) that focus on improving the quality of training data agnostically, a unique
characteristic of our framework is its model- and task-specific nature for data acquisition, enabling
more tailored and targeted performance enhancement.

In our experiments, we build on top of two popular open-source LLMs: Qwen-2-7B-Instruct (Yang
et al., 2024a) and Gemma-2-9B-Instruct (Riviere et al., 2024), and establish three distinct types
of APIs for knowledge acquisitions, utilization, and enhancement. Experimental results across
1,000 in-house test tasks with both reward model (RM) and GPT-4 evaluation demonstrate that
the LLM equipped with ADS presents consistent performance improvements, achieving a win rate
of more than 80% in RM judgment compared to the initial baseline. Moreover, in three public
benchmarks: AlpacaEval 2.0 (Dubois et al., 2024), Arena-Hard (Li et al., 2024), and MT-Bench
(Zheng et al., 2024), ADS exhibits generalized performance enhancement, even enabling the rel-
ative smaller 7B/9B LLMs to compete with the larger 72B/27B counterparts. It is worth noting
that across tasks of varying categories and complexities, ADS typically improves performance in
knowledge, reasoning, and challenging tasks. To sum up, we highlight our contributions as follows:

• We pioneer the idea of automating the data search process for training LLMs, a task cur-
rently handled by expert human efforts, making a further step towards fully automated
self-improving AI systems capable of continuous learning and adaptation.

• We propose the ACTIVE DATA SEARCH (ADS) framework, which encapsulates existing
data collection and synthesis methods into APIs, enabling LLMs to generate optimal API
calls for efficient data discovery through interactions with diverse environments.

• We showcase the effectiveness of ADS by conducting comprehensive experiments on 1,000
diverse in-house test tasks and three public benchmarks. Our results demonstrate that LLMs
equipped with ADS exhibit substantial performance improvements. Furthermore, we pro-
vide an in-depth analysis of the underlying factors contributing to the efficacy of ADS.

2 RELATED WORK

LLM as an Optimizer With the progressive advancement of LLMs, LLM-as-an-optimizer (i.e.,
maximizing a downstream metric of an AI system using LLMs without human intervention) has
emerged as a new paradigm, where the input optimization task and the output solution are described
in natural language and processed by an LLM. This approach has been pioneered in automatic
prompt engineering (Pryzant et al., 2023; Zhou et al., 2023; Wang et al., 2024; Guo et al., 2024;
Yang et al., 2024b; Xiao et al., 2024), pipeline optimization of LLM-based agents (Zhang et al.,
2024; Khattab et al., 2024; Yuksekgonul et al., 2024; Zhuge et al., 2024; Zhou et al., 2024b), and new
algorithm discovery (Liu et al., 2024a; Lu et al., 2024). Our research distinguishes itself from these
previous studies as our optimization goal is to enhance the fundamental capabilities of LLMs through
automated data collection and curation, which is very important given that data is the (perhaps most)
major power engine for today’s LLMs. Moreover, existing work simply prompts off-the-shelf LLMs
for optimization, which can lead to sub-optimal performance as these LLMs have not been explicitly
trained to do so. Conversely, we develop methods to fine-tune the optimizer models.

Synthetic Data Generation Synthetic data, which leverages the generation capability of LLMs
for data construction, has become crucial components across various stages in LLMs develop-
ment (Long et al., 2024), including pre-training (Gunasekar et al., 2023; Li et al., 2023; Ben Allal
et al., 2024), supervised fine-tuning (Taori et al., 2023; Mukherjee et al., 2023; Xu et al., 2023),
and preference learning (Rafailov et al., 2024; Dubey et al., 2024; Adler et al., 2024). Instead of
contributing to the booming spectrum by proposing yet another data synthesis method, we introduce
a meta-optimization framework, which aims to integrate different data synthesis techniques and de-
velop the best strategy (our optimizer) to leverage them. More recently, there is also a growing
interest in targeted data synthesis for enhancing the model’s particular weaknesses (Lee et al., 2024;
BAAI, 2024; Cheng et al., 2024). Nevertheless, these approaches require extensive evaluation to
spot the weaknesses, which sometimes necessitates expert-level knowledge for test set design and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

API	Trajectory
Thought:	I	have	knowledge	
gaps	in	…	Therefore,	I	need	
to	make	API	calls	to	collect
training	data	to	improve	...
API	Calls:	
crawl(query),
clean(data,rule)
refine(data,method),
synthesis(model,topic),
annotation(question),

Performance
Cost	Collecting

Optimizer
ℳ"

Target	Task
L

Policy	Optimization

Optimizer	Refinement

Policy
ℳ(

Optimizer
ℳ"

M#
⋮
M'

K#, O#
⋮

K' , O'
Target	Task

L
Optimizer	Buffer
ℬ = L, M, K, O

Trajectory
Sampling

Reinforcement	Learning

Policy
Jℳ(

Policy
Jℳ(Policy
Jℳ(Policy
Jℳ'
(

Policy	Updating

Environment
Web	Search

AI	Assistants

Manual	
Annotation
…

Policy	
Updating

Training	Data

Documents

Examples

Annotations
……

Figure 1: Overview of ACTIVE DATA SEARCH (ADS) framework. Upper: The optimizer is devel-
oped to generate optimal API calls and execute them in the environment for training data acquisition.
The policy is then updated using the collected training data. Bottom: To make effective and efficient
data-collecting decisions, the optimizer is iteratively refined through reinforcement learning.

result analysis. In contrast, our work strives to develop self-knowledge capabilities; the AI system
knows its strengths and areas for improvement without any external feedback or guidance. Specif-
ically, given only a small set of representative task queries, the optimizer introspects and identifies
potential capability gaps that prevent the policy from completing the target task, and strategically
generates optimal API calls to collect training data for addressing the identified gaps.

Self-Improving of LLMs Developing an autonomous self-improving system has been a major
focus of current LLM research. Conventional reinforcement learning from human feedback (RLHF)
methods (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al., 2022; Dong et al., 2024; Liu et al.,
2024b; Rosset et al., 2024) train a reward model from human preference data and subsequently use
this model to fine-tune LLMs via reinforcement learning. The reliance on human preference data of
course can be removed for scenarios where the correctness of output can be validated automatically
and unambiguously (Zelikman et al., 2022; Gulcehre et al., 2023; Singh et al., 2023). For general
instruction following, recent studies have built upon the success of LLM-as-a-judge (Zheng et al.,
2024) and leverage AI feedback for self-improvement, an approach also known as RLAIF (Bai et al.,
2022b; Lee et al., 2023). Yuan et al. (2024) and Wu et al. (2024) have further advanced this concept
by employing LLMs to provide self-rewarding feedback on their own generated outputs. Unlike
previous work that constrains the system from leveraging external signals, our framework allows
for information inflow from external environments through the interactions of API calls, potentially
elevating the upper bounds of self-improving.

3 SELF-IMPROVING VIA ACTIVE DATA SEARCH

The primary objective of our ACTIVE DATA SEARCH (ADS) framework is to endow AI systems
with the capability to acquire valuable training data from external environments for retraining them-
selves, thereby facilitating self-improvement with minimal human supervision. As illustrated in
Figure 1, we develop an optimizer model for a policy model. The optimizer model is designed to
discover tailored training datasets to improve the policy by generating textual API calls to inter-
act with various resources and environments. In this section, we start with a brief introduction to
the problem formulation, followed by an overall description of policy optimization and optimizer
refinement processes. We defer the details of our prototype implementations in Section 4.

3.1 PROBLEM FORMULATION

Given a target task T and a policy model Mp, the goal of ADS is to maximize the performance of
the policy model on T through active search for optimal training data. The data search process is
conducted by an optimizer model Mo and a set of pre-defined APIs. Each API requires some input
parameters and returns output data gathered from various environments. These APIs can be imple-
mented through a variety of established methods, which may encompass but are not limited to data
crawling, filtering, cleaning, refinement, synthesis, and manual annotation. The resultant data can

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

also be sourced from a broad spectrum, such as internet search engines, LLM-based AI assistants,
or crowdsourcing annotation services. To mitigate excessive and unnecessary API invocations, we
assign varying costs to different APIs according to their practical complexities. Following com-
mon practice, each target task is represented by a set of instructions Q, which serve as input for the
optimizer model. The output of this model is an action trajectory A, comprising multiple API calls.

3.2 POLICY OPTIMIZATION

The system optimizes its policy model Mp for a given target task T through the following steps.
First, the optimizer model Mo is instructed to conduct a comprehensive analysis of the instructions
Q, identifying the essential required capabilities. Following this, Mo performs an introspective
assessment of its own proficiencies and deficiencies on these identified capabilities, and generates
sequential API calls A = [a1, a2, ..., aK] for data acquisition, where K is the number of API calls
and is determined on-the-fly. Notably, the above process is completed by the optimizer as free-form
text generation, enabling seamless incorporation of any pre-defined APIs.

Next, we execute each API call ak in the environment E , and collect the returned data to obtain a
training dataset D, which may include a variety of data types such as raw documents, supervised
demonstrations, and preference data, following the best practice of current LLM training. Finally,
we train the original Mp on the tailored training dataset to update its knowledge and capacities,
resulting in an updated policy model M̂p.

3.3 OPTIMIZER REFINEMENT

To make efficient data-collecting decisions, the optimizer model Mo should be aware of the
strengths and weaknesses of the policy model Mp. Therefore, we propose an iterative training pro-
cess for optimizer refinement. First of all, we assume a set of training tasks T = {T}, where reliable
performance measurements are available. It is important to note that we do not make this assumption
at test-time since the evaluation of arbitrary real-world tasks can be complex and resource-intensive.
Instead, we posit that the self-knowledge developed for the optimizer during the training phase can
be effectively generalized to novel test tasks.

We then employ reinforcement learning and consider both performance gains and API costs in re-
ward design. The training is conducted iteratively. At each iteration, we sample multiple API
trajectories A = {A} for each training task T . We then execute the data acquisition and policy
training processes accordingly and collect the corresponding performance gain S(A) and API cost
C(A). To avoid potential data leakage, we partition the instruction set Q of T into an observed set
Qo and another held-out set Qh. The optimizer can only see the examples in the observed set and
the performance gains are measured based on the held-out set. This results in a set of quadruple
B = {(T,A, S,C)}. We then optimize Mo

t to Mo
t+1 on B with reinforcement learning algorithms

such as rejection sampling (Bai et al., 2022a) and direct preference optimization (Rafailov et al.,
2024). The complete process of optimizer refinement is described in Algorithm 1.

Algorithm 1 Optimizer Refinement Procedure in ADS

Require: Training tasks T , policy model Mp, optimizer model Mo, environment E .
1: for iteration t in N do
2: Initialize optimizer buffer B = {}.
3: for task T in T do
4: Split task instructions Q into observed set Qo and held-out set Qh.
5: Sample API trajectories A ∼ Mo

t (·|Qo).
6: for trajectory A in A do
7: Execute A in E to acquire data to update Mp to M̂p.
8: Collect performance gain S(A) of M̂p on Qh, and API cost C(A).
9: Add (T,A, S,C) to B.

10: end for
11: end for
12: Optimize Mo

t to Mo
t+1 using reinforcement learning on B.

13: end for
14: return Mo

N .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

API Name Parameter Return Description Cost
Information Retrieval Query Document Sparse and Dense Retrieval Low
Demonstration Generation Topic Instruction-Response Pair Synthesis with the Policy Medium
Question Answering Question Question-Answer Pair Annotated by Stronger LLM High

Table 1: Implementation details of our data collecting APIs.

4 EXPERIMENTAL SETUP

4.1 APIS

We design three distinct data-collecting APIs to facilitate the acquisition, utilization, and enhance-
ment of knowledge. The first API is Information Retrieval, which employs both sparse and
dense retrieval to retrieve relevant documents from external knowledge databases such as Wikipedia,
thereby supporting knowledge acquisition, analogous to the pre-training stage of LLMs. The second
API is Demonstration Generation, which utilizes the policy model to generate appropriate
exemplar instruction-response pairs, tailored to various knowledge application scenarios, reminis-
cent of the alignment stages of LLMs. The last API is Question Answering, which resorts
to the wisdom of human experts, mimicking how humans learn from each other. 1. It provides to-
the-point answers to questions proposed by the optimizer model. Notably, this framework is not
restrictive and can accommodate additional APIs as needed. In each API trajectory, these APIs
are invoked sequentially, e.g., api name 1(api param 1)...api name n(api param n).
Subsequently, the corresponding API calls are executed to formalize the training dataset. We then
combine the training datasets from different API calls to update the policy model. For tasks where
the model possesses the required capabilities, a “none” option is incorporated. We present the API
implementation details in Table 1.

To avoid excessive API calls, e.g., asking questions that the policy model already knows the an-
swer to, we take into account the API cost in our implementation. The cost associated with each
API varies according to their practical complexities and computational overhead. Concretely, we
assign relative costs as follows: Information Retrieval is at one since retrieval is fast and
cheap, Demonstration Generation at two given generation is slow and resource-intensive,
and Question Answering at three as it requires a more powerful model or manual efforts.
Further implementation details of APIs are provided in Appendix A.

4.2 DATASET

To train and evaluate the optimizer model, it is essential to collect a diverse set of “target tasks”
for which we aim to optimize the performance of the policy model. For this purpose, we adopt the
general instruction-following dataset Llama-3-Magpie-Air-3M-v0.1 (Xu et al., 2024). Each instruc-
tion in this dataset is associated with several labels such as task category, intent, and difficulty. The
instructions and labels are generated by Llama-3-8B-Instruct (Dubey et al., 2024). Subsequently, we
group the instructions with identical labels into different clusters, with each cluster representing a
distinct “target task”. We discard tasks with fewer than five instructions. The resulting dataset com-
prises 10,239 distinct tasks, which we partition into 8,739 tasks for training, 500 tasks for validating,
and 1,000 tasks for testing. In the train and valid splits, we allocate three observed instructions per
task for trajectory generation and reserve two held-out instructions for performance measurement.
This approach ensures that the optimizer learns to improve performance at task level rather than in-
stance level, as over-fitting on the observed instructions may not necessarily translate performance
gains on the held-out instructions. For the test split, to enhance the robustness of evaluation, we aug-
ment the initial five instructions per task to 100 using Self-Instruct (Wang et al., 2023), with three
instructions as observed and 97 as held-out. More details of our dataset are shown in Appendix B.

4.3 EVALUATION METHODS

In-house Evaluation We employ both the RM and GPT-4 (Achiam et al., 2023) to compare re-
sponses generated by the original and updated policy models on held-out instructions across our test
tasks. We report the average win, tie, and lose rate across all tasks. For RM evaluation, we sample
five API trajectories and compute the average RM score among them, ensuring statistical robustness.
For GPT-4 judgment, we employ a head-to-head comparison using the pairwise evaluation prompt

1For efficiency and reproducibility, we employ a stronger LLM as a proxy for human supervision in practice.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

proposed by Zheng et al. (2024). We try two different response orders to prevent order sensitivity.
To save token usage, we only sample one trajectory and test on two held-out instructions per task.

Generalizing to Public Benchmarks We additionally utilize three well-established benchmarks
for further evaluating the generalizability of the trained optimizer models, including AlpacaEval 2.0
(Dubois et al., 2024), Arena-Hard (Li et al., 2024), and MT-Bench (Zheng et al., 2024). AlpacaEval
2.0 includes 805 instructions for daily chat scenarios while Arena-Hard contains 500 more chal-
lenging real-world questions. MT-Bench consists of 80 multi-turn dialogues spanning eight distinct
domains2. Since the original version of MT-Bench contains incorrect reference responses, we fol-
low previous works (Adler et al., 2024; Wan et al., 2024) to use the updated version for evaluation.
The proposed approach aims to optimize the performance on specific target tasks. However, these
benchmarks (AlpacaEval 2.0, Arena-Hard, and MT-Bench) cover a wide range of distinct tasks,
which can be too broad to be considered as a single target task. To conduct meaningful experiments,
we make the following adaptations. First, we cluster the original instructions based on task cate-
gory and difficulty, utilizing the approach in Xu et al. (2024). This process yields 38, 34, and 21
“target tasks” for AlpacaEval 2.0, Arena-Hard, and MT-Bench, respectively. Then, we employ the
Self-Instruct approach to generate three new instructions for each task and use them as the observed
instructions for that task. We only assess model performance on the original instructions provided
in these benchmarks. Following conventions (Meng et al., 2024; Adler et al., 2024), we conduct
a standard evaluation using GPT-4 judgment. We adhere to the default setups and report the win
rate of the updated policy models against the GPT-4 baseline for each benchmark. Additionally,
we conduct a supplementary evaluation using RM as judgment and report the average adjusted win
rate, calculated as win rate + 0.5× tie rate. For both RM and GPT-4 judgments, we also report the
weighted averages of these benchmarks based on their number of samples. Further details of the
evaluation process can be found in Appendix D.

4.4 TRAINING DETAILS

We employ Qwen-2-7B-Instruct (Yang et al., 2024a) and Gemma-2-9B-Instruct (Riviere et al., 2024)
as our policy models3. The optimizer model is initialized using the corresponding policy model.

During each iteration of ADS, the optimizer model generates five API trajectories per target task,
based on the observed instructions. To further enhance the diversity of the trajectories, we incorpo-
rate three additional default trajectories, each corresponding to a specific API type. These trajecto-
ries are executed in the data-collecting environments to construct a comprehensive training dataset.
Next, the policy model is updated through either in-context learning or fine-tuning using this training
data. Considering the frequent policy model updating for each target task, we use in-context learn-
ing to maintain computational efficiency while preserving performance, since extensive research has
demonstrated that in-context learning can achieve comparable effectiveness to fine-tuning (Mosbach
et al., 2023; Agarwal et al.). We then determine the reward signal of each API call trajectory by
evaluating the performance gains of the updated policy model on the held-out instructions. We use
FsfairX-Llama-3-RM-v0.1 (Xiong et al., 2024) as the RM for evaluation. Finally, we iteratively
update the optimizer model by direct preference optimization (DPO) (Rafailov et al., 2024) on the
chosen and rejected trajectories with the highest and lowest rewards. To ensure training stability, we
perform warm-up rejection sampling (RS) (Bai et al., 2022a) on the chosen trajectories exhibiting
the highest rewards before iterative DPO for optimizer model training. In Section 6.1, we further
illustrate the comparison between DPO and RS, as well as investigate the impact of the default API
trajectories. The iterative training process of the optimizer model is presented as follows:

• Prompting: Mo is initialized from Mp without fine-tuning, then direct prompting.
• RS Iteration 0: Mo

0 is initialized from Mo, then warm-up RS on chosen API trajectories.
• DPO Iteration 1, 2, 3: Mo

1, Mo
2, Mo

3 are initialized from Mo
0, Mo

1, Mo
2, then DPO on

chosen and rejected API trajectories.

To enhance the optimizer model’s capacity for reward improvements while minimizing API costs,
we introduce a novel cost-control approach, which draws inspiration from the length-control strategy

2Given that our dataset focuses on single-turn tasks, we evaluate the 1st turn performance for consistency.
3Since our training data are generated by Llama-3-8B-Instruct, we exclude it from our choices of policy

models to avoid any potential biases.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Prompting
 vs. Original

RS Iter 0
 vs. Original

DPO Iter 1
 vs. Original

DPO Iter 2
 vs. Original

DPO Iter 3
 vs. Original

23.4

20.9

16.1

13.9

11.2

39.9

41.7

20.4

9.4

4.5

36.7

37.4

63.5

76.7

84.3

Updated (Left) Wins Tie Original (Right) Wins

60.8

52.2

47.1

37.6

39.1

17.1

21.5

17.8

16.9

14.9

22.1

26.4

35.2

45.6

46.0

25.3

22.5

16.6

15.8

13.3

7.7

6.6

4.5

4.0

4.1

67.0

70.9

78.9

80.2

82.6

48.4

45.6

47.5

47.1

45.7

18.4

14.7

13.3

15.2

14.3

33.2

39.8

39.2

37.8

40.1

(a) Qwen-2-7B-Instruct
RM Judge.

(b) Qwen-2-7B-Instruct
GPT-4 Judge.

(c) Gemma-2-9B-Instruct
RM Judge.

(d) Gemma-2-9B-Instruct
GPT-4 Judge.

Figure 2: Comparisons between responses generated by the updated and original policy models
across in-house test tasks with both RM and GPT-4 judgments. The updated policy models are
developed on training data collected by different iterations of optimizer models.

employed in LLM alignment (Wu et al., 2024). Our approach posits that among trajectories with
comparable rewards, those associated with lower costs are more valuable for optimization and thus
deserve higher reinforcement feedback. Specifically, we introduce a cost tier parameter τ ∈ [0, 1]
to control the trade-off between rewards and costs. Trajectories within the top-tier rewards ranging
[(1−τ)Rmax+τRmin, Rmax] are considered to have similar performance. From this subset, we select
the trajectory with the lowest cost as the chosen trajectory. Conversely, for the reject trajectory, we
select the one with the highest cost within [Rmin, (1 − τ)Rmin + τRmax]. To maintain an optimal
balance between reward and cost, we empirically determine the cost tier parameter at 0.1. We further
conduct experiments to illustrate the effectiveness of the proposed cost-control approach in Section
6.2. More information on training details can be found in Appendix C.

5 MAIN RESULTS

5.1 IN-HOUSE EVALUATION

Figure 2 illustrates the evaluation results on target tasks across in-house test split. We compare the
responses generated by the updated and original policy models, displaying the task win, tie, and lose
rates with both RM and GPT-4 judgments.

ADS presents significant superiority across 1,000 in-house test tasks. We can first observe
that the prompting method yields slight performance gains. For instance, the updated policy model
achieves a win rate of 36.7% compared to the original policy model’s 23.4% in RM judgment,
and 22.1% to 17.1% in GPT-4 judgment for Qwen-2-7B-Instruct. Following the iterative training
process, the final model exhibits a remarkable enhancement, with a win rate of 84.3% versus 11.2%
in RM evaluation and 46.0% versus 14.9% in GPT-4 evaluation. These substantial performance
improvements can be attributed to the valuable training data discovered by the optimizer model in
ADS, which enhances the knowledge and capabilities required to accomplish these test tasks.

Iterative ADS boosts consistent performance improvements. During the initial iteration of
DPO training, our optimizer model exhibits rapid adaptation to high-reward API trajectories. Con-
sequently, the updated policy model achieves substantial improvements in win rates: from 37.4% to
63.5% according to RM judgment, and from 26.4% to 35.2% as evaluated by GPT-4 for Qwen-2-
7B-Instruct. As the number of training iterations increases, the updated policy model consistently
demonstrates improved win rates. Given that the training tasks remain constant across different iter-
ations, we posit that the consistent performance gains are from the automatic weakness identification
and refinement during the iterative training process, thus progressively increasing the probabilities
of generating optimal API trajectories for self-improvement.

5.2 PUBLIC BENCHMARKS

In Table 2, we present the evaluation results on three public benchmarks, including AlpacaEval 2.0,
Arena-Hard, and MT-Bench. We compare the responses generated by the policy model and the
GPT-4 baseline model and show the win rates with both RM and GPT-4 judgments.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Models RM Judgment GPT-4 Judgment
AE AH MT Avg. AE AH MT Avg.

Qwen-2-7B-Instruct (Mp) 31.7 56.1 66.9 42.6 24.0 25.6 55.9 26.4
Prompting (Mo → Mp) 33.2 57.0 68.1 43.8 24.9 26.7 52.5 27.2
RS Iteration 0 (Mo

0 → Mp) 32.4 56.7 68.1 43.2 24.2 26.7 53.8 26.8
DPO Iteration 1 (Mo

1 → Mp) 34.9 57.9 66.9 45.0 28.6 28.0 53.8 29.8
DPO Iteration 2 (Mo

2 → Mp) 36.5 60.6 69.4 47.1 30.6 28.8 57.7 31.5
DPO Iteration 3 (Mo

3 → Mp) 38.8 61.1 71.9 48.8 31.9 30.1 59.4 32.8
∆ to Qwen-2-7B-Instruct (+22.3%) (+8.9%) (+7.5%) (+14.6%) (+32.9%) (+17.7%) (+6.2%) (+24.3%)

Gemma-2-9B-Instruct (Mp) 28.6 70.0 71.3 46.0 34.8 37.5 55.0 36.9
Prompting (Mo → Mp) 28.0 59.2 70.0 41.7 33.8 30.0 56.3 33.7
RS Iteration 0 (Mo

0 → Mp) 30.5 65.6 71.3 45.5 35.3 34.8 51.3 36.0
DPO Iteration 1 (Mo

1 → Mp) 30.4 48.4 66.9 39.0 36.7 22.4 54.4 32.6
DPO Iteration 2 (Mo

2 → Mp) 33.0 67.9 70.6 47.8 36.2 35.2 57.5 37.1
DPO Iteration 3 (Mo

3 → Mp) 32.8 65.7 69.4 46.8 37.0 37.4 56.9 38.3
∆ to Gemma-2-9B-Instruct (+14.5%) (-6.1%) (-2.6%) (+1.6%) (+6.3%) (-0.2%) (+3.4%) (+3.7%)

Llama-3.1-70B-Instruct 53.0 76.7 83.8 63.3 39.5 57.0 75.0 47.9
Qwen-2-72B-Instruct 38.9 66.8 73.1 50.9 35.1 48.3 66.9 41.7
Gemma-2-27B-Instruct 33.6 80.2 75.0 52.8 37.0 49.9 60.6 43.0

Table 2: Comparisons between responses generated by the updated policy models and the baseline
GPT-4 on AlpacaEval 2.0 (AE), Arena-Hard (AH), and MT-Bench (MT) with both reward model
(RM) and GPT-4 judgment. Percentages indicate the relative improvements/decreases observed in
the final iteration of the updated policy model when compared to the original policy model.

Ro
le

Pl

ay
in

g

Pl
an

ni
ng

Re
as

on
in

g

Da
ta

An

al
ys

is
Co

di
ng

 &
 D

eb
ug

gi
ng

In
fo

rm
at

io
n

Se
ek

in
g M
at

h

Ed
iti

ng

Ad
vi

ce

Se
ek

in
g

Br
ai

ns
to

rm
in

g

Cr
ea

tiv
e

W
rit

in
g

10

15

20

25

30

35

40

45

W
in

 R
at

e
(%

)

Original
Prompting
RS Iter 0

DPO Iter 1
DPO Iter 2
DPO Iter 3

Ve
ry

 E
as

y

Ea
sy

M
ed

iu
m

Ha
rd

Ve
ry

 H
ar

d

10

15

20

25

30

35

40

45

W
in

 R
at

e
(%

)

Original
Prompting
RS Iter 0

DPO Iter 1
DPO Iter 2
DPO Iter 3

Figure 3: Fine-grained evaluation of different updated policy models and the original Qwen-2-7B-
Instruct across various task categories (left) and difficulties (right) in AlpacaEval 2.0.

ADS demonstrates generalized capabilities on public benchmarks. For the target tasks from
public benchmarks, our approach exhibits generalized improvements. Overall, the updated policy
model of Qwen-2-7B-Instruct shows significant relative gains across all benchmarks, with an av-
erage enhancement of +14.6% and +24.3% in RM and GPT-4 judgment, respectively. Notably, in
AlpacaEval 2.0, the improvements are even more pronounced, e.g., +22.3% in RM evaluation and
+32.9% in GPT-4 evaluation. These findings reveal that our optimizer model, despite being trained
on limited target tasks, demonstrates the capacity to find valuable training data for practical tasks,
effectively addressing the challenges for real-world task optimization.

ADS enhances policy model to rival that of more powerful LLMs. We show that with the
help of training data collected from our optimizer model, smaller and weaker policy models can
achieve comparable results to those of larger and stronger LLMs. Specifically, in the RM evaluation
within AlpacaEval 2.0, Qwen-2-7B-Instruct with ADS achieves a win rate of 38.8%, which is almost
equivalent to the performance of the substantially larger Qwen-2-72B-Instruct. Similarly, in the
GPT-4 evaluation, Gemma-2-9B-Instruct with ADS, achieves a win rate of 37.0%, matching the
performance of larger Gemma-2-27B-Instruct.

ADS typically enhances knowledge-intensive and reasoning-related tasks. We conduct a fine-
grained evaluation across distinct task categories in AlpacaEval 2.0. The results of Qwen-2-7B-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Iter 1 Iter 2 Iter 3
30

40

50

60

70

80
W

in
 R

at
e

(%
)

63.5

76.7

84.3

53.1

64.2

80.6

45.6
50.0 49.1

Iter 1 Iter 2 Iter 3
26

27

28

29

30

31

32

33

W
in

 R
at

e
(%

)

29.8

31.5

32.8

29.0 29.2

30.2

27.5
28.0

28.6

(a) In-house Test Tasks. (b) Public Benchmarks.

Prompting Ours w/o Default w/o DPO

Figure 4: Ablation study results of Qwen-2-7B-Instruct across in-house test tasks with RM judg-
ment (left) and public benchmarks with GPT-4 judgment (right), where “w/o DPO” refers to the
replacement of direct preference optimization with rejection sampling algorithm, while “w/o De-
fault” denotes the exclusion of default API trajectories for optimizer model training.

Instruct are illustrated in Figure 3 (left). We find that compared to the original baseline, ADS
improves the performance in most of the categories, especially for those that require substantial
general or specific knowledge and advanced reasoning abilities, such as information-seeking, role-
playing, reasoning, and planning. However, in categories like editing, creative writing, and coding
& debugging, our approach only has slight improvements or maintains comparable to the baseline.
This limited enhancement can be potentially attributed to the inherent nature of these tasks, which
primarily involve format and style rewriting, as well as fragment modifications, presenting inherent
challenges for optimization through in-context learning from acquired training data.

ADS particularly improves in complex and challenging tasks. In Figure 3 (right), we further
demonstrate the performance across tasks with various levels of difficulty. The results reveal that
ADS yields more substantial improvements as task complexity increases. Specifically, the relative
performance enhancement increases from +14.2% for very easy tasks to a remarkable +76.5% for
tasks categorized as very hard. These results further demonstrate the potential of ADS for continu-
ous self-improving, typically in complex tasks that lack expert supervision.

6 ABLATION AND ANALYSIS

6.1 ABLATION STUDIES

In this section, we delve into the key components in our practical implementation of ADS, focusing
on the training algorithm and the construction of API trajectories. We first investigate and compare
the performance of the optimizer model when trained iteratively using rejection sampling and direct
preference optimization. Subsequently, we analyze the influence of adding default API trajectories
into the optimizer model’s training process. The evaluation results across in-house test tasks with
RM judgment and public benchmarks with GPT-4 judgment are shown in Figure 4.

DPO enhances discrimination between chosen and rejected trajectories. We can observe that
compared to rejection sampling, the implementation of direct preference optimization substantially
improves the optimizer model’s capacity to differentiate between chosen and rejected API trajec-
tories, which is illustrated by a significant increase in the average win rate from 49.1% to 84.3%
across in-house test tasks. Similarly, in public benchmarks, the win rate improved from 28.6% to
32.8%. This enhanced discriminative capability facilitates more effective weakness identification
and decision-making processes of our optimizer model, ultimately leading to high-reward API tra-
jectory exploration and optimal training data acquiring for deficiency enhancement.

Incorporating default API trajectories enhances trajectory diversity. In addition to the five
trajectories sampled by the optimizer during its training process, we incorporate three default tra-
jectories, each corresponding to a distinct data-collecting API in our implementation. Table 4 in
Appendix C illustrates an example of both default and generated trajectories. The inclusion of these
default API trajectories alongside the self-generated candidates results in a more diverse set of tra-
jectories for optimizer model training, facilitating improved average win rates across all iterations,
both in in-house test tasks and public benchmarks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6.2 ANALYSIS RESULTS

Maximize Win Rate
Minimize API Cost

Maximize Win Rate
Minimize API Cost

Figure 5: Effectiveness of self-explored training
data and cost-control mechanism in maximizing
win rate while minimizing API cost.

We further make an in-depth analysis to inves-
tigate the factors contributing to the efficacy
of ADS, focusing on two key aspects: the ad-
vantages of self-explored training data and the
implementation of the cost-control mechanism.
To evaluate the impact of self-explored training
data, we compare the API trajectories generated
by our optimizer model against those curated
using a baseline strategy. This baseline ap-
proach utilizes the Question Answering
API for each observed instruction in the tar-
get task to construct the corresponding API
trajectory. Subsequently, we employ the col-
lected data for policy model optimization in
both cases. Regarding the cost-control mecha-
nism, we compare our method with an alterna-
tive approach that prioritizes reward maximiza-
tion without considering API costs. Figure 5 illustrates these analytical results, encompassing both
in-house test tasks using RM judgment (left) and public benchmarks with GPT-4 judgment (right).

Self-explored data presents more suitable for LLMs training. Despite employing the most so-
phisticated and expensive Question Answering API for training data construction, the ap-
proach without self-explored training data achieves a relatively lower win rate, e.g., 81.9% versus
84.3% across in-house test tasks, while incurring higher API costs, e.g., 9,000 versus 8,219, com-
pared to our approach. The optimizer model in ADS is designed to automatically identify and
address the potential capability gaps in specified tasks based on the developed self-knowledge. Con-
sequently, our approach provides a more tailored and targeted performance improvement.

Cost-control mechanism reduces the API cost while improving performance. To maximize the
potential for self-improvement while maintaining appropriate resource allocation, we implement
a cost-control mechanism that optimizes the trade-off between minimizing costs and maximizing
performance during the training process of the optimizer model, as detailed in Section 4.4. In
comparison to the approach that focuses solely on maximizing performance without considering
costs, our method not only achieves a lower cost as expected but also demonstrates an improved win
rate. The performance improvements can be attributed to the increased trajectory diversity compared
to the reward maximization approach. This observation indicates that our approach enables the
development of a robust and cost-effective system for data acquisition, ultimately contributing to
improved overall performance and reduced computational overhead.

7 CONCLUSION & LIMITATIONS

In this study, we explored enabling LLMs to autonomously acquire optimal training data for self-
improvement with minimal human intervention. We proposed a novel framework, ACTIVE DATA
SEARCH (ADS), which utilizes LLMs themselves as an optimizer to strategically invoke appro-
priate APIs, facilitating the discovery of tailored training datasets from external environments for
self-training. To ensure efficient data-collecting decisions, we introduced an iterative refinement
algorithm for the optimizer, guided by reinforcement feedback signals aiming to maximize task per-
formance while minimizing computation costs. Through a series of experiments on 1,000 in-house
test tasks and three public benchmarks, we demonstrated the effectiveness and generalizability of
ADS. Notably, ADS exhibited the capacity to enhance the performance of smaller and weaker lan-
guage models to be comparable with larger and stronger LLMs on AlpacaEval 2.0. This automated
process of data discovery and self-training presents opportunities to reduce the reliance on human
expertise in LLM development, providing a new direction for future research in this domain.

The current implantation is a proof-of-concept with several limitations. First, the optimizer and
policy models are separate. Unifying them is an interesting avenue for future work. Second, the
APIs included currently are far from covering all existing data techniques. Third, we did not consider
multi-turn optimization of the policy models in the framework.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. ArXiv preprint, abs/2303.08774, 2023.

Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H Anh, Pallab Bhattacharya, Annika Brundyn,
Jared Casper, Bryan Catanzaro, Sharon Clay, Jonathan Cohen, et al. Nemotron-4 340b technical
report. ArXiv preprint, abs/2406.11704, 2024.

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Luis Rosias, Stephanie CY Chan, Biao
Zhang, Aleksandra Faust, and Hugo Larochelle. Many-shot in-context learning. In ICML 2024
Workshop on In-Context Learning.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Jo-
han Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal
models. ArXiv preprint, abs/2312.11805, 2023.

Beijing Academy of Artificial Intelligence BAAI. Infinity instruct, 2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. ArXiv preprint, abs/2204.05862,
2022a.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
lessness from ai feedback. ArXiv preprint, abs/2212.08073, 2022b.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra.
Cosmopedia: how to create large-scale synthetic data for pre-training, 2024.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbren-
ner, Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong generaliza-
tion: Eliciting strong capabilities with weak supervision. In Forty-first International Conference
on Machine Learning, 2024.

Jiale Cheng, Yida Lu, Xiaotao Gu, Pei Ke, Xiao Liu, Yuxiao Dong, Hongning Wang, Jie Tang, and
Minlie Huang. Autodetect: Towards a unified framework for automated weakness detection in
large language models. ArXiv preprint, abs/2406.16714, 2024.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, SHUM KaShun, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. Transactions on Machine Learning Research, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
ArXiv preprint, abs/2407.21783, 2024.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. Advances in Neural Information Processing Systems,
36, 2024.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. ArXiv preprint, abs/2308.08998, 2023.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are
all you need. ArXiv preprint, abs/2306.11644, 2023.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In The Twelfth International Conference on Learning Representations, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Saiful
Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, Heather Miller, et al. Dspy: Compil-
ing declarative language model calls into state-of-the-art pipelines. In The Twelfth International
Conference on Learning Representations, 2024.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton
Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. Rlaif: Scaling reinforcement learning
from human feedback with ai feedback. ArXiv preprint, abs/2309.00267, 2023.

Nicholas Lee, Thanakul Wattanawong, Sehoon Kim, Karttikeya Mangalam, Sheng Shen, Gopala
Anumanchipali, Michael W Mahoney, Kurt Keutzer, and Amir Gholami. Llm2llm: Boosting
llms with novel iterative data enhancement. ArXiv preprint, abs/2403.15042, 2024.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gon-
zalez, and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and
benchbuilder pipeline. ArXiv preprint, abs/2406.11939, 2024.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. ArXiv preprint, abs/2309.05463, 2023.

Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In Forty-first International Conference on Machine Learning, 2024a.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and Jialu
Liu. Statistical rejection sampling improves preference optimization. In The Twelfth International
Conference on Learning Representations, 2024b.

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo Wang. On
llms-driven synthetic data generation, curation, and evaluation: A survey. In Findings of the
Association for Computational Linguistics, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, 2019.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu, 2024.

Chris Lu, Samuel Holt, Claudio Fanconi, Alex J Chan, Jakob Foerster, Mihaela van der Schaar, and
Robert Tjarko Lange. Discovering preference optimization algorithms with and for large language
models. ArXiv preprint, abs/2406.08414, 2024.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. ArXiv preprint, abs/2405.14734, 2024.

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Dietrich Klakow, and Yanai Elazar. Few-shot
fine-tuning vs. in-context learning: A fair comparison and evaluation. In Findings of the Associ-
ation for Computational Linguistics: ACL 2023, pp. 12284–12314, 2023.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4. ArXiv
preprint, abs/2306.02707, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35, 2022.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with “gradient descent” and beam search. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma 2: Improving open
language models at a practical size. ArXiv preprint, abs/2408.00118, 2024.

Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general
preferences. ArXiv preprint, abs/2404.03715, 2024.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
Liu, James Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training
for problem-solving with language models. Transactions on Machine Learning Research, 2023.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33, 2020.

Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin Zhang, Zhenfang Chen, David Cox, Yiming
Yang, and Chuang Gan. Principle-driven self-alignment of language models from scratch with
minimal human supervision. Advances in Neural Information Processing Systems, 36, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Fanqi Wan, Ziyi Yang, Longguang Zhong, Xiaojun Quan, Xinting Huang, and Wei Bi. Fusechat:
Knowledge fusion of chat models. ArXiv preprint, abs/2402.16107, 2024.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-
level prompt optimization. In The Twelfth International Conference on Learning Representations,
2024.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), 2023.

Leandrovon Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, and Shengyi Huang. Trl: Transformer reinforcement learning, 2020.

Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqi Chen. Qurating: Selecting high-quality
data for training language models. In Forty-first International Conference on Machine Learning,
2024.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, 2020.

Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu, Yuandong Tian, Jiantao Jiao, Jason Weston,
and Sainbayar Sukhbaatar. Meta-rewarding language models: Self-improving alignment with
llm-as-a-meta-judge. ArXiv preprint, abs/2407.19594, 2024.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighof. C-pack: Packaged resources to
advance general chinese embedding. ArXiv preprint, abs/2309.07597, 2023.

Tim Z Xiao, Robert Bamler, Bernhard Schölkopf, and Weiyang Liu. Verbalized machine learn-
ing: Revisiting machine learning with language models. In ICML 2024 Workshop on In-Context
Learning, 2024.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint. In Forty-first International Conference on Machine Learning, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
ArXiv preprint, abs/2304.12244, 2023.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with
nothing. ArXiv preprint, abs/2406.08464, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. ArXiv preprint,
abs/2407.10671, 2024a.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024b.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,
and Jason E Weston. Self-rewarding language models. In Forty-first International Conference on
Machine Learning, 2024.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic” differentiation” via text. ArXiv preprint, abs/2406.07496,
2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35, 2022.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun
Wu. Offline training of language model agents with functions as learnable weights. In Forty-first
International Conference on Machine Learning, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. ArXiv
preprint, abs/2303.18223, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Fan Zhou, Zengzhi Wang, Qian Liu, Junlong Li, and Pengfei Liu. Programming every example:
Lifting pre-training data quality like experts at scale. ArXiv preprint, abs/2409.17115, 2024a.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, et al. Symbolic learning enables self-evolving agents.
ArXiv preprint, abs/2406.18532, 2024b.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jurgen
Schmidhuber. Language agents as optimizable graphs. ArXiv preprint, abs/2402.16823, 2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. ArXiv
preprint, abs/1909.08593, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DETAILS OF APIS

In this section, we first present the prompt for API trajectory generation of the optimizer
model in Figure 6, then show the detailed implementation of our data collecting APIs, in-
cluding (1) Information Retrieval, which facilitates efficient knowledge acquisition; (2)
Demonstration Generation, which enables various knowledge utilization scenarios; and
(3) Question Answering, which serves to enhance and refine the acquired knowledge.

Prompt for API Trajectory Generation

Task Overview
Your goal is to analyze input prompts, identify knowledge gaps, and strategically use
provided APIs to enhance your knowledge and capabilities.

Provided APIs
You will have access to the following APIs to obtain additional data for improvements:
1. “information retrieval(query: string)”: Retrieves relevant documents for a given search
query. Use for factual knowledge gaps.
2. “example instantiation(topic: string)”: Generates practical instances based on a given
topic. Use for applying knowledge to concrete situations.
3. “question answering(question: string)”: Provides answers to a given question. Use for
deeper understanding of knowledge.

Constraints and Guidelines
1. Focus on common and general knowledge and capabilities requirements across all the
input prompts.
2. Use API calls only to address competence gaps when necessary, not to directly solve the
prompts.
3. If you need to make API calls, formatted as <api calls><api>api name 1(api param 1)
</api><api>api name 2(api param 2) </api>...</api calls>
4. If you do not need to make API calls, formated as <api calls>none</api calls>

Input:
{observed instructions}

Figure 6: Prompt for API trajectory generation of the optimizer model. {observed instructions} is
the placeholder for the observed instructions in the target task.

Information Retrieval For our retrieval corpus, we utilize the Wikipedia (en) from December
20th, 2022 4, encompassing approximately 8.59 million paragraphs. Our retrieval process employs
a two-stage approach. Initially, we implement sparse retrieval using the BM25 5 algorithm to iden-
tify the top 1,000 most relevant documents for a given search query. Subsequently, we refine this
selection through dense retrieval, leveraging the BGE-Large-EN-v1.5 (Xiao et al., 2023) embedding
model to obtain the most appropriate document from the previously identified candidates.

Demonstration Generation To obtain knowledge utilization examples, we employ an approach
that relies solely on the policy model itself without incorporating external tools. Specifically, we
leverage the policy model to synthesize demonstrations by generating instructions and correspond-
ing responses based on a given knowledge topic. The prompt used for demonstration generation is
shown in Figure 7.

Question Answering To enhance the comprehension of acquired knowledge, we employ Llama-
3.1-70B-Instruct (Dubey et al., 2024) as a replacement for human experts to generate comprehensive
responses to complex questions. The prompt used for question answering is illustrated in Figure 8.

4https://huggingface.co/datasets/Cohere/wikipedia-22-12
5https://github.com/xhluca/bm25s

15

https://huggingface.co/datasets/Cohere/wikipedia-22-12
https://github.com/xhluca/bm25s

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Prompt for Demonstration Generation

Generate an Instruction and the corresponding comprehensive Response related to the Topic.

Topic: {topic}

Figure 7: Prompt for Demonstration Generation. {topic} is the placeholder for the knowledge topic.

Prompt for Question Answering

Provide a detailed Answer to the given Question.

Question: {question}

Figure 8: Prompt for question answering. {question} is the placeholder for the given question.

B DETAILS OF DATASET

We group instructions into clusters based on three key attributes: category, intent, and difficulty.
The category attribute represents the broad task type, encompassing areas such as creative writing,
reasoning, and coding. The intent attribute indicates the primary objectives within the instructions,
including getting helpful tips, identifying logical fallacy, develop software extensions. The difficulty
attribute quantifies the complexity of following the instructions, ranging from very easy to very hard.

Statistics Train Valid Test
Task 8,739 500 1,000
Category 12 12 12
Intent 4,982 371 902
Difficulty 5 5 5
Obs. Inst. Per Task 3 3 3
Held. Inst. Per Task 2 2 97

Table 3: Statistics of train, valid, and test splits.

To improve the robustness of evaluation re-
sults, we augment the size of the held-out set
for each target task in the test split. Specifi-
cally, we leverage five existing instructions as
seed examples, and prompt GPT-4 to generate
new instructions that are significantly different
from these initial examples but belong to the
same task (Wang et al., 2023). To maintain
distinctiveness, we employ a filtering mecha-
nism whereby any generated instructions with
a Rouge-L similarity score exceeding 0.7 when compared to the original instructions are eliminated.
The prompt for instruction augmentation is illustrated in Figure 9. The statistics of our train, valid,
and test splits are shown in Table 3.

C DETAILS OF TRAINING PROCESS

For policy model updating, we employ ICL on the collected training dataset for each target task,
including retrieved documents, instantialized instruction-response pairs, and answers to complex
questions, as the supplementary information to address the given held-out instruction. The prompt
for ICL of the policy model is shown in Figure 10.

For optimizer model updating, We train the optimizer model with a batch size of 128 and a maximum
sequence length of 2048. The training is conducted on a single node with 8x80GB Nvidia A100
GPUs for one epoch per iteration. We perform RS for a single iteration and DPO for three iterations.
The models are optimized using the AdamW (Loshchilov & Hutter, 2019) optimizer with β1 = 0.9
and β2 = 0.999. We use a weight decay of 0.0 and gradient clipping of 1.0. A cosine learning rate
schedule is employed, with a warmup ratio of 0.1 and a maximum learning rate of 2e-5 for RS and
5e-7 for DPO. The β parameter in DPO is set to 0.01. Our training framework is developed based
on the HuggingFace Transformers (Wolf et al., 2020) and TRL (Werra et al., 2020). We show an
example of default and generated API trajectories in Table 4.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Prompt for Task-Specific Instructions Augmentation

Given 5 instructions as demonstrations within a specific task, please generate 100 new
distinct instructions that are relevant to the same task but significantly different from the
demonstrations provided.

Task: {task}

Here are 5 demonstrations:
Instruction 1: {seed instruction 1}
Instruction 2: {seed instruction 2}
Instruction 3: {seed instruction 3}
Instruction 4: {seed instruction 4}
Instruction 5: {seed instruction 5}

Now, please generate 100 new distinct instructions that are:

1. Significantly different from the demonstrations.
2. Within the same task or domain as the demonstrations.
3. Similar in complexity and difficulty to the demonstrations.
4. Varied in their approach to the task (e.g., different aspects or sub-tasks within the task).
5. Consistent with the tone and style of the demonstrations.

Please format your generated instructions as follows:

Generated Instruction 1: [Your generated instruction]
Generated Instruction 2: [Your generated instruction]
Generated Instruction 3: [Your generated instruction]
...

Figure 9: Prompt for task-specific instructions augmentation. {task} is the placeholder for the given
task. {seed instruction i} is the placeholder for i-th seed instruction.

Prompt for ICL

{collected data}

Your task is to read the above text to answer the following question.

1. Note that the above information is only visible to you, don’t indicate that you have read
above text in your answer. For example, don’t say “according to the information provided
above”.
2. Do not solely rely on the provided information. You know much more than the provided
information. Use it as a hint to write an comprehensive, informative, elaborate, and helpful
answer.

{held out instruction}

Figure 10: Prompt for ICL of the policy model. {collected data} is the placeholder for the training
dataset derived from the optimizer model. {held out instruction} is the placeholder for the held-out
instruction in the target task.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Example of Default and Generated API Trajectories
Observed Instructions:
Explain the implications of the Einstein-Podolsky-Rosen paradox on quantum entanglement.
Describe the mathematical formulation of the wave function collapse in the Copenhagen interpretation.
Analyze the potential applications of quantum tunneling in developing next-generation transistors.

Generated API Trajectory:
Analysis of Requirements

After analyzing the input prompts, I have identified the required background knowledge and broader capa-
bilities as follows:
1. Advanced knowledge of quantum physics
2. Ability to explain complex scientific concepts
3. Understanding of quantum mechanics principles
4. Familiarity with practical applications of quantum theory

Competence Assessment

I have knowledge gaps in quantum mechanics principles and capability gaps in explaining complex scien-
tific concepts. Therefore, I need to make API calls for this set of prompts.

API Calls

<api calls>
<api>retrieve information(“Quantum mechanics principles”)</api>
<api>get instances(“Quantum theory application”)</api>
<api>ask question(“How to describe and analysis complex scientific concepts?”)</api>
</api calls>

Default API Trajectory:
Analysis of Requirements

After analyzing the input prompts, I have identified the required background knowledge and broader capa-
bilities.

Competence Assessment

I have knowledge gaps and capability gaps. Therefore, I need to make API calls for this set of prompts.

API Calls

<api calls>
<api>ask question(“Explain the implications of the Einstein-Podolsky-Rosen paradox on quantum entan-
glement.”)</api>
<api>ask question(“Describe the mathematical formulation of the wave function collapse in the Copen-
hagen interpretation.”)</api>
<api>ask question(“Analyze the potential applications of quantum tunneling in developing next-
generation transistors.”)</api>
</api calls>

Table 4: An example of default and generated API trajectories for a set of observed instructions.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D DETAILS OF EVALUATION SETUPS

We first show the detailed implementation of our in-house evaluation and public benchmarks in
Table 5. Then, we provide the corresponding task statistics of AlpacaEval 2.0, Arena-Hard, and
MT-Bench in Table 6 and Table 7 by category and difficulty, respectively.

Benchmark # Task # Ins. Baseline Model RM Judgment GPT-4 Judgment
In-house Test Split 1,000 97,000 Original Policy Model FsfairX-Llama-3-RM-v0.1 GPT-4-1106-Preview
AlpacaEval 2.0 38 805 GPT-4-1106-Preview FsfairX-Llama-3-RM-v0.1 GPT-4-1106-Preview
Arena-Hard 34 500 GPT-4-0314 FsfairX-Llama-3-RM-v0.1 GPT-4-1106-Preview
MT-Bench 21 80 GPT-4-0314 FsfairX-Llama-3-RM-v0.1 GPT-4-0125-Preview

Table 5: Implementation details of evaluation on in-house test tasks and public benchmarks.

Category AlpacaEval 2.0 Arena-Hard MT-Bench
Number Percentage Number Percentage Number Percentage

Advice Seeking 79 9.8% 12 2.4% 4 5.0%
Brainstorming 25 3.1% 5 1.0% 1 1.3%
Coding & Debugging 42 5.2% 204 40.8% 7 8.8%
Creative Writing 54 6.7% 6 1.2% 5 6.3%
Data Analysis 7 0.9% 66 13.2% 3 3.8%
Editing 73 9.1% 19 3.8% 5 6.3%
Information Seeking 381 47.3% 63 12.6% 21 26.3%
Math 40 5.0% 56 11.2% 17 21.3%
Planning 61 7.6% 45 9.0% 3 3.8%
Reasoning 27 3.4% 17 3.4% 11 13.8%
Role Playing 14 1.7% 4 0.8% 3 3.8%

Table 6: The task category statistics of AlpacaEval 2.0, Arena-Hard, and MT-Bench.

Difficulty AlpacaEval 2.0 Arena-Hard MT-Bench
Number Percentage Number Percentage Number Percentage

Very Easy 27 3.4% 0 0.0% 1 1.3%
Easy 491 61.0% 81 16.2% 25 31.3%
Medium 256 31.8% 339 67.8% 52 65.0%
Hard 25 3.1% 79 15.8% 2 2.5%
Very Hard 6 0.7% 1 0.2% 0 0.0%

Table 7: The task difficulty statistics of AlpacaEval 2.0, Arena-Hard, and MT-Bench.

E COMPARISON BETWEEN ADS AND DATA CONSTRUCTION BASELINES

In this section, we expand our experimental evaluation by comparing the proposed ADS framework
with several baseline methods for training data construction. These methods include: (1) Prompt-
ing, which constructs API trajectories through optimizer model prompting without fine-tuning; (2)
Retrieval Augmentation, which employs both sparse and dense retrieval to identify relevant doc-
uments based on target task instructions, similar to the Information Retrieval API; (3)
Self-Instruct, which utilizes the policy model to generate new instruction-response pairs for the tar-
get task, functioning analogously to the Demonstration Generation API; (4) Rule-based
QA, which leverages an stronger LLM to answer each instruction in the target task, comparable to
the Question Answering API. The empirical results presented in Table 8 indicate that ADS,
incorporating all three APIs, significantly outperforms these baseline methods across both in-house
test tasks and public benchmarks, and maintaining its simplification without human intervention.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Methods Qwen-2-7B-Instruct Gemma-2-9B-Instruct
In-house Test Tasks Public Benchmarks In-house Test Tasks Public Benchmarks

Prompting 36.7 27.2 67.0 33.7
Retrieval Augmentation 24.2 26.8 46.4 32.6
Self-Instruct 55.8 31.6 76.9 35.1
Rule-based QA 81.9 32.0 79.7 36.0
ADS 84.3 32.8 82.6 38.3

Table 8: Comparison between ADS and training data construction baseline methods.

F INFLUENCE OF THE INSTRUCTION-FOLLOWING DATASET

Since we adopt the instructions from Llama-3-Magpie-Air-3M-v0.1 (Xu et al., 2024) as the task
instructions in our optimizer training process, we conduct a controlled experiment to ensure a fair
comparison. Specifically, we fine-tune our base models using this dataset and evaluate their per-
formance on public benchmarks before and after fine-tuning. As shown in Table 9, the fine-tuning
process leads to a notable degradation in model performance. This decline can be attributed to the
fact that our base models (Qwen-2-7B-instruct and Gemma-2-9-Instruct) have already undergone
extensive fine-tuning with high-quality training data, whereas the Llama-3-Magpie-Air-3M-v0.1
dataset may contain relatively lower-quality data. These empirical findings substantiate that the per-
formance improvements observed in our experiments stem from the effectiveness of the proposed
ADS, rather than from the instruction-following dataset.

Methods Qwen-2-7B-Instruct Gemma-2-9B-Instruct
AlpacaEval 2.0 Arena-Hard MT-Bench Average AlpacaEval 2.0 Arena-Hard MT-Bench Average

Base Model 24.0 25.6 55.9 26.4 34.8 37.5 55.0 36.9
Base Model w/ Magpie 11.9 11.7 43.1 13.6 14.8 12.0 44.9 15.5

Table 9: Comparison between the base models before and after fine-tuning on the instruction-
following dataset, where “w/ Magpie” denotes the base models after fine-tuning.

20

	Introduction
	Related Work
	Self-Improving via Active Data Search
	Problem Formulation
	Policy Optimization
	Optimizer Refinement

	Experimental Setup
	APIs
	Dataset
	Evaluation Methods
	Training Details

	Main Results
	In-house Evaluation
	Public Benchmarks

	Ablation and Analysis
	Ablation Studies
	Analysis Results

	Conclusion & Limitations
	Details of APIs
	Details of Dataset
	Details of Training Process
	Details of Evaluation Setups
	Comparison between ADS and Data Construction Baselines
	Influence of the Instruction-following Dataset

