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ABSTRACT

The current iterative development process for large language models (LLMs) is
heavily data-centric, relying on human researchers and engineers to manually an-
alyze model performance and determine what data to acquire for further training.
However, this human-supervised approach is costly and may fail to identify opti-
mal training signals. Its scalability is further limited as models become increas-
ingly capable and may eventually exceed human intelligence. To address these
issues, we propose an automated framework that enables models to autonomously
discover and strategically acquire the most valuable training data to enhance their
performance. It establishes a self-improving framework where models can invoke
APIs to crawl and/or generate tailored datasets from various resources and en-
vironments, and retrain themselves. The data selection decisions are shaped by
reinforcement feedback signals that reward performance gains while penalizing
computational overhead. This formulation incentivizes models to develop self-
knowledge about their strengths and areas for improvement in order to efficiently
select training data. Empirical results demonstrate that LLMs operating within
our framework are able to autonomously and strategically acquire valuable train-
ing data to enhance their performance across a variety of skills in 1,000 diverse
in-house test tasks and three public benchmarks.

1 INTRODUCTION

Large language models (LLMs) (Zhao et al., 2023) have seen remarkable progress in various do-
mains and tasks with extensive training on massive data. Currently, one of the most important
aspects of developing LLMs is data engineering, which typically involves teams of researchers
and engineers meticulously examining model outputs, identifying shortcomings, and then collecting
and curating next-iteration training data from various sources to refine model performance (Achiam
et al., 2023; Anil et al., 2023; Dubey et al., 2024). While this method has yielded impressive results,
it is not without inherent limitations. The human-driven nature of this process introduces poten-
tial biases and inefficiencies, as it relies heavily on the intuition and expertise of the development
team (Wang et al., 2023; Sun et al., 2024). Furthermore, as these AI models continue to evolve in
complexity and capability, there is a growing concern that they may soon exceed human intelligence
in certain domains, which raises questions about the long-term viability and scalability of current
development practices (Burns et al., 2024).

In this work, we conceptualize and prototype an ACTIVE DATA SEARCH (ADS) framework that fa-
cilitates LLMs to automatically acquire training data from external environments for training them-
selves, without human supervision. In ADS, existing data collection and curation methods are
encapsulated into APIs and the LLMs themselves determine when and how they use these APIs for
data acquisition. The APIs may involve a wide range of data crawling, filtering, cleaning, refine-
ment, synthesis, and manual annotation techniques to obtain tailored training data. The data sources
are also varied, from raw texts extracted via web searches to documents sourced across various
platforms, as well as supervised demonstrations generated by AI assistants.

We achieve the above automatic process through development of an optimizer that generates these
APIs sequentially based on the target task. Specifically, the optimizer first analyzes the required
capabilities for successful task completion, then strategically invokes appropriate API calls to collect
training data for performance improvement. To facilitate the optimizer’s decision-making process in
obtaining optimal training data, we propose a reinforcement learning strategy for optimizer training,
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leveraging feedback reward signals from the policy to maximize task performance while minimizing
computational costs by iterative rejection sampling (RS) (Bai et al., 2022a) and direct preference
optimization (DPO) (Rafailov et al., 2024). This refinement process fosters the development of
self-knowledge regarding the model’s strengths and weaknesses, enabling more efficient training
data discovery and utilization. Compared to recent studies (Lozhkov et al., 2024; Wettig et al.,
2024; Zhou et al., 2024a) that focus on improving the quality of training data agnostically, a unique
characteristic of our framework is its model- and task-specific nature for data acquisition, enabling
more tailored and targeted performance enhancement.

In our experiments, we build on top of two popular open-source LLMs: Qwen-2-7B-Instruct (Yang
et al., 2024a) and Gemma-2-9B-Instruct (Riviere et al., 2024), and establish three distinct types
of APIs for knowledge acquisitions, utilization, and enhancement. Experimental results across
1,000 in-house test tasks with both reward model (RM) and GPT-4 evaluation demonstrate that
the LLM equipped with ADS presents consistent performance improvements, achieving a win rate
of more than 80% in RM judgment compared to the initial baseline. Moreover, in three public
benchmarks: AlpacaEval 2.0 (Dubois et al., 2024), Arena-Hard (Li et al., 2024), and MT-Bench
(Zheng et al., 2024), ADS exhibits generalized performance enhancement, even enabling the rel-
ative smaller 7B/9B LLMs to compete with the larger 72B/27B counterparts. It is worth noting
that across tasks of varying categories and complexities, ADS typically improves performance in
knowledge, reasoning, and challenging tasks. To sum up, we highlight our contributions as follows:

• We pioneer the idea of automating the data search process for training LLMs, a task cur-
rently handled by expert human efforts, making a further step towards fully automated
self-improving AI systems capable of continuous learning and adaptation.

• We propose the ACTIVE DATA SEARCH (ADS) framework, which encapsulates existing
data collection and synthesis methods into APIs, enabling LLMs to generate optimal API
calls for efficient data discovery through interactions with diverse environments.

• We showcase the effectiveness of ADS by conducting comprehensive experiments on 1,000
diverse in-house test tasks and three public benchmarks. Our results demonstrate that LLMs
equipped with ADS exhibit substantial performance improvements. Furthermore, we pro-
vide an in-depth analysis of the underlying factors contributing to the efficacy of ADS.

2 RELATED WORK

LLM as an Optimizer With the progressive advancement of LLMs, LLM-as-an-optimizer (i.e.,
maximizing a downstream metric of an AI system using LLMs without human intervention) has
emerged as a new paradigm, where the input optimization task and the output solution are described
in natural language and processed by an LLM. This approach has been pioneered in automatic
prompt engineering (Pryzant et al., 2023; Zhou et al., 2023; Wang et al., 2024; Guo et al., 2024;
Yang et al., 2024b; Xiao et al., 2024), pipeline optimization of LLM-based agents (Zhang et al.,
2024; Khattab et al., 2024; Yuksekgonul et al., 2024; Zhuge et al., 2024; Zhou et al., 2024b), and new
algorithm discovery (Liu et al., 2024a; Lu et al., 2024). Our research distinguishes itself from these
previous studies as our optimization goal is to enhance the fundamental capabilities of LLMs through
automated data collection and curation, which is very important given that data is the (perhaps most)
major power engine for today’s LLMs. Moreover, existing work simply prompts off-the-shelf LLMs
for optimization, which can lead to sub-optimal performance as these LLMs have not been explicitly
trained to do so. Conversely, we develop methods to fine-tune the optimizer models.

Synthetic Data Generation Synthetic data, which leverages the generation capability of LLMs
for data construction, has become crucial components across various stages in LLMs develop-
ment (Long et al., 2024), including pre-training (Gunasekar et al., 2023; Li et al., 2023; Ben Allal
et al., 2024), supervised fine-tuning (Taori et al., 2023; Mukherjee et al., 2023; Xu et al., 2023),
and preference learning (Rafailov et al., 2024; Dubey et al., 2024; Adler et al., 2024). Instead of
contributing to the booming spectrum by proposing yet another data synthesis method, we introduce
a meta-optimization framework, which aims to integrate different data synthesis techniques and de-
velop the best strategy (our optimizer) to leverage them. More recently, there is also a growing
interest in targeted data synthesis for enhancing the model’s particular weaknesses (Lee et al., 2024;
BAAI, 2024; Cheng et al., 2024). Nevertheless, these approaches require extensive evaluation to
spot the weaknesses, which sometimes necessitates expert-level knowledge for test set design and
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Figure 1: Overview of ACTIVE DATA SEARCH (ADS) framework. Upper: The optimizer is devel-
oped to generate optimal API calls and execute them in the environment for training data acquisition.
The policy is then updated using the collected training data. Bottom: To make effective and efficient
data-collecting decisions, the optimizer is iteratively refined through reinforcement learning.

result analysis. In contrast, our work strives to develop self-knowledge capabilities; the AI system
knows its strengths and areas for improvement without any external feedback or guidance. Specif-
ically, given only a small set of representative task queries, the optimizer introspects and identifies
potential capability gaps that prevent the policy from completing the target task, and strategically
generates optimal API calls to collect training data for addressing the identified gaps.

Self-Improving of LLMs Developing an autonomous self-improving system has been a major
focus of current LLM research. Conventional reinforcement learning from human feedback (RLHF)
methods (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al., 2022; Dong et al., 2024; Liu et al.,
2024b; Rosset et al., 2024) train a reward model from human preference data and subsequently use
this model to fine-tune LLMs via reinforcement learning. The reliance on human preference data of
course can be removed for scenarios where the correctness of output can be validated automatically
and unambiguously (Zelikman et al., 2022; Gulcehre et al., 2023; Singh et al., 2023). For general
instruction following, recent studies have built upon the success of LLM-as-a-judge (Zheng et al.,
2024) and leverage AI feedback for self-improvement, an approach also known as RLAIF (Bai et al.,
2022b; Lee et al., 2023). Yuan et al. (2024) and Wu et al. (2024) have further advanced this concept
by employing LLMs to provide self-rewarding feedback on their own generated outputs. Unlike
previous work that constrains the system from leveraging external signals, our framework allows
for information inflow from external environments through the interactions of API calls, potentially
elevating the upper bounds of self-improving.

3 SELF-IMPROVING VIA ACTIVE DATA SEARCH

The primary objective of our ACTIVE DATA SEARCH (ADS) framework is to endow AI systems
with the capability to acquire valuable training data from external environments for retraining them-
selves, thereby facilitating self-improvement with minimal human supervision. As illustrated in
Figure 1, we develop an optimizer model for a policy model. The optimizer model is designed to
discover tailored training datasets to improve the policy by generating textual API calls to inter-
act with various resources and environments. In this section, we start with a brief introduction to
the problem formulation, followed by an overall description of policy optimization and optimizer
refinement processes. We defer the details of our prototype implementations in Section 4.

3.1 PROBLEM FORMULATION

Given a target task T and a policy model Mp, the goal of ADS is to maximize the performance of
the policy model on T through active search for optimal training data. The data search process is
conducted by an optimizer model Mo and a set of pre-defined APIs. Each API requires some input
parameters and returns output data gathered from various environments. These APIs can be imple-
mented through a variety of established methods, which may encompass but are not limited to data
crawling, filtering, cleaning, refinement, synthesis, and manual annotation. The resultant data can
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also be sourced from a broad spectrum, such as internet search engines, LLM-based AI assistants,
or crowdsourcing annotation services. To mitigate excessive and unnecessary API invocations, we
assign varying costs to different APIs according to their practical complexities. Following com-
mon practice, each target task is represented by a set of instructions Q, which serve as input for the
optimizer model. The output of this model is an action trajectory A, comprising multiple API calls.

3.2 POLICY OPTIMIZATION

The system optimizes its policy model Mp for a given target task T through the following steps.
First, the optimizer model Mo is instructed to conduct a comprehensive analysis of the instructions
Q, identifying the essential required capabilities. Following this, Mo performs an introspective
assessment of its own proficiencies and deficiencies on these identified capabilities, and generates
sequential API calls A = [a1, a2, ..., aK ] for data acquisition, where K is the number of API calls
and is determined on-the-fly. Notably, the above process is completed by the optimizer as free-form
text generation, enabling seamless incorporation of any pre-defined APIs.

Next, we execute each API call ak in the environment E , and collect the returned data to obtain a
training dataset D, which may include a variety of data types such as raw documents, supervised
demonstrations, and preference data, following the best practice of current LLM training. Finally,
we train the original Mp on the tailored training dataset to update its knowledge and capacities,
resulting in an updated policy model M̂p.

3.3 OPTIMIZER REFINEMENT

To make efficient data-collecting decisions, the optimizer model Mo should be aware of the
strengths and weaknesses of the policy model Mp. Therefore, we propose an iterative training pro-
cess for optimizer refinement. First of all, we assume a set of training tasks T = {T}, where reliable
performance measurements are available. It is important to note that we do not make this assumption
at test-time since the evaluation of arbitrary real-world tasks can be complex and resource-intensive.
Instead, we posit that the self-knowledge developed for the optimizer during the training phase can
be effectively generalized to novel test tasks.

We then employ reinforcement learning and consider both performance gains and API costs in re-
ward design. The training is conducted iteratively. At each iteration, we sample multiple API
trajectories A = {A} for each training task T . We then execute the data acquisition and policy
training processes accordingly and collect the corresponding performance gain S(A) and API cost
C(A). To avoid potential data leakage, we partition the instruction set Q of T into an observed set
Qo and another held-out set Qh. The optimizer can only see the examples in the observed set and
the performance gains are measured based on the held-out set. This results in a set of quadruple
B = {(T,A, S,C)}. We then optimize Mo

t to Mo
t+1 on B with reinforcement learning algorithms

such as rejection sampling (Bai et al., 2022a) and direct preference optimization (Rafailov et al.,
2024). The complete process of optimizer refinement is described in Algorithm 1.

Algorithm 1 Optimizer Refinement Procedure in ADS

Require: Training tasks T , policy model Mp, optimizer model Mo, environment E .
1: for iteration t in N do
2: Initialize optimizer buffer B = {}.
3: for task T in T do
4: Split task instructions Q into observed set Qo and held-out set Qh.
5: Sample API trajectories A ∼ Mo

t (·|Qo).
6: for trajectory A in A do
7: Execute A in E to acquire data to update Mp to M̂p.
8: Collect performance gain S(A) of M̂p on Qh, and API cost C(A).
9: Add (T,A, S,C) to B.

10: end for
11: end for
12: Optimize Mo

t to Mo
t+1 using reinforcement learning on B.

13: end for
14: return Mo

N .
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API Name Parameter Return Description Cost
Information Retrieval Query Document Sparse and Dense Retrieval Low
Demonstration Generation Topic Instruction-Response Pair Synthesis with the Policy Medium
Question Answering Question Question-Answer Pair Annotated by Stronger LLM High

Table 1: Implementation details of our data collecting APIs.

4 EXPERIMENTAL SETUP

4.1 APIS

We design three distinct data-collecting APIs to facilitate the acquisition, utilization, and enhance-
ment of knowledge. The first API is Information Retrieval, which employs both sparse and
dense retrieval to retrieve relevant documents from external knowledge databases such as Wikipedia,
thereby supporting knowledge acquisition, analogous to the pre-training stage of LLMs. The second
API is Demonstration Generation, which utilizes the policy model to generate appropriate
exemplar instruction-response pairs, tailored to various knowledge application scenarios, reminis-
cent of the alignment stages of LLMs. The last API is Question Answering, which resorts
to the wisdom of human experts, mimicking how humans learn from each other. 1. It provides to-
the-point answers to questions proposed by the optimizer model. Notably, this framework is not
restrictive and can accommodate additional APIs as needed. In each API trajectory, these APIs
are invoked sequentially, e.g., api name 1(api param 1)...api name n(api param n).
Subsequently, the corresponding API calls are executed to formalize the training dataset. We then
combine the training datasets from different API calls to update the policy model. For tasks where
the model possesses the required capabilities, a “none” option is incorporated. We present the API
implementation details in Table 1.

To avoid excessive API calls, e.g., asking questions that the policy model already knows the an-
swer to, we take into account the API cost in our implementation. The cost associated with each
API varies according to their practical complexities and computational overhead. Concretely, we
assign relative costs as follows: Information Retrieval is at one since retrieval is fast and
cheap, Demonstration Generation at two given generation is slow and resource-intensive,
and Question Answering at three as it requires a more powerful model or manual efforts.
Further implementation details of APIs are provided in Appendix A.

4.2 DATASET

To train and evaluate the optimizer model, it is essential to collect a diverse set of “target tasks”
for which we aim to optimize the performance of the policy model. For this purpose, we adopt the
general instruction-following dataset Llama-3-Magpie-Air-3M-v0.1 (Xu et al., 2024). Each instruc-
tion in this dataset is associated with several labels such as task category, intent, and difficulty. The
instructions and labels are generated by Llama-3-8B-Instruct (Dubey et al., 2024). Subsequently, we
group the instructions with identical labels into different clusters, with each cluster representing a
distinct “target task”. We discard tasks with fewer than five instructions. The resulting dataset com-
prises 10,239 distinct tasks, which we partition into 8,739 tasks for training, 500 tasks for validating,
and 1,000 tasks for testing. In the train and valid splits, we allocate three observed instructions per
task for trajectory generation and reserve two held-out instructions for performance measurement.
This approach ensures that the optimizer learns to improve performance at task level rather than in-
stance level, as over-fitting on the observed instructions may not necessarily translate performance
gains on the held-out instructions. For the test split, to enhance the robustness of evaluation, we aug-
ment the initial five instructions per task to 100 using Self-Instruct (Wang et al., 2023), with three
instructions as observed and 97 as held-out. More details of our dataset are shown in Appendix B.

4.3 EVALUATION METHODS

In-house Evaluation We employ both the RM and GPT-4 (Achiam et al., 2023) to compare re-
sponses generated by the original and updated policy models on held-out instructions across our test
tasks. We report the average win, tie, and lose rate across all tasks. For RM evaluation, we sample
five API trajectories and compute the average RM score among them, ensuring statistical robustness.
For GPT-4 judgment, we employ a head-to-head comparison using the pairwise evaluation prompt

1For efficiency and reproducibility, we employ a stronger LLM as a proxy for human supervision in practice.
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proposed by Zheng et al. (2024). We try two different response orders to prevent order sensitivity.
To save token usage, we only sample one trajectory and test on two held-out instructions per task.

Generalizing to Public Benchmarks We additionally utilize three well-established benchmarks
for further evaluating the generalizability of the trained optimizer models, including AlpacaEval 2.0
(Dubois et al., 2024), Arena-Hard (Li et al., 2024), and MT-Bench (Zheng et al., 2024). AlpacaEval
2.0 includes 805 instructions for daily chat scenarios while Arena-Hard contains 500 more chal-
lenging real-world questions. MT-Bench consists of 80 multi-turn dialogues spanning eight distinct
domains2. Since the original version of MT-Bench contains incorrect reference responses, we fol-
low previous works (Adler et al., 2024; Wan et al., 2024) to use the updated version for evaluation.
The proposed approach aims to optimize the performance on specific target tasks. However, these
benchmarks (AlpacaEval 2.0, Arena-Hard, and MT-Bench) cover a wide range of distinct tasks,
which can be too broad to be considered as a single target task. To conduct meaningful experiments,
we make the following adaptations. First, we cluster the original instructions based on task cate-
gory and difficulty, utilizing the approach in Xu et al. (2024). This process yields 38, 34, and 21
“target tasks” for AlpacaEval 2.0, Arena-Hard, and MT-Bench, respectively. Then, we employ the
Self-Instruct approach to generate three new instructions for each task and use them as the observed
instructions for that task. We only assess model performance on the original instructions provided
in these benchmarks. Following conventions (Meng et al., 2024; Adler et al., 2024), we conduct
a standard evaluation using GPT-4 judgment. We adhere to the default setups and report the win
rate of the updated policy models against the GPT-4 baseline for each benchmark. Additionally,
we conduct a supplementary evaluation using RM as judgment and report the average adjusted win
rate, calculated as win rate + 0.5× tie rate. For both RM and GPT-4 judgments, we also report the
weighted averages of these benchmarks based on their number of samples. Further details of the
evaluation process can be found in Appendix D.

4.4 TRAINING DETAILS

We employ Qwen-2-7B-Instruct (Yang et al., 2024a) and Gemma-2-9B-Instruct (Riviere et al., 2024)
as our policy models3. The optimizer model is initialized using the corresponding policy model.

During each iteration of ADS, the optimizer model generates five API trajectories per target task,
based on the observed instructions. To further enhance the diversity of the trajectories, we incorpo-
rate three additional default trajectories, each corresponding to a specific API type. These trajecto-
ries are executed in the data-collecting environments to construct a comprehensive training dataset.
Next, the policy model is updated through either in-context learning or fine-tuning using this training
data. Considering the frequent policy model updating for each target task, we use in-context learn-
ing to maintain computational efficiency while preserving performance, since extensive research has
demonstrated that in-context learning can achieve comparable effectiveness to fine-tuning (Mosbach
et al., 2023; Agarwal et al.). We then determine the reward signal of each API call trajectory by
evaluating the performance gains of the updated policy model on the held-out instructions. We use
FsfairX-Llama-3-RM-v0.1 (Xiong et al., 2024) as the RM for evaluation. Finally, we iteratively
update the optimizer model by direct preference optimization (DPO) (Rafailov et al., 2024) on the
chosen and rejected trajectories with the highest and lowest rewards. To ensure training stability, we
perform warm-up rejection sampling (RS) (Bai et al., 2022a) on the chosen trajectories exhibiting
the highest rewards before iterative DPO for optimizer model training. In Section 6.1, we further
illustrate the comparison between DPO and RS, as well as investigate the impact of the default API
trajectories. The iterative training process of the optimizer model is presented as follows:

• Prompting: Mo is initialized from Mp without fine-tuning, then direct prompting.
• RS Iteration 0: Mo

0 is initialized from Mo, then warm-up RS on chosen API trajectories.
• DPO Iteration 1, 2, 3: Mo

1, Mo
2, Mo

3 are initialized from Mo
0, Mo

1, Mo
2, then DPO on

chosen and rejected API trajectories.

To enhance the optimizer model’s capacity for reward improvements while minimizing API costs,
we introduce a novel cost-control approach, which draws inspiration from the length-control strategy

2Given that our dataset focuses on single-turn tasks, we evaluate the 1st turn performance for consistency.
3Since our training data are generated by Llama-3-8B-Instruct, we exclude it from our choices of policy

models to avoid any potential biases.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Prompting
 vs. Original

RS Iter 0
 vs. Original

DPO Iter 1
 vs. Original

DPO Iter 2
 vs. Original

DPO Iter 3
 vs. Original

23.4

20.9

16.1

13.9

11.2

39.9

41.7

20.4

9.4

4.5

36.7

37.4

63.5

76.7

84.3

Updated (Left) Wins Tie Original (Right) Wins

60.8

52.2

47.1

37.6

39.1

17.1

21.5

17.8

16.9

14.9

22.1

26.4

35.2

45.6

46.0

25.3

22.5

16.6

15.8

13.3

7.7

6.6

4.5

4.0

4.1

67.0

70.9

78.9

80.2

82.6

48.4

45.6

47.5

47.1

45.7

18.4

14.7

13.3

15.2

14.3

33.2

39.8

39.2

37.8

40.1

(a) Qwen-2-7B-Instruct 
RM Judge.

(b) Qwen-2-7B-Instruct 
GPT-4 Judge.

(c) Gemma-2-9B-Instruct 
RM Judge.

(d) Gemma-2-9B-Instruct 
GPT-4 Judge.

Figure 2: Comparisons between responses generated by the updated and original policy models
across in-house test tasks with both RM and GPT-4 judgments. The updated policy models are
developed on training data collected by different iterations of optimizer models.

employed in LLM alignment (Wu et al., 2024). Our approach posits that among trajectories with
comparable rewards, those associated with lower costs are more valuable for optimization and thus
deserve higher reinforcement feedback. Specifically, we introduce a cost tier parameter τ ∈ [0, 1]
to control the trade-off between rewards and costs. Trajectories within the top-tier rewards ranging
[(1−τ)Rmax+τRmin, Rmax] are considered to have similar performance. From this subset, we select
the trajectory with the lowest cost as the chosen trajectory. Conversely, for the reject trajectory, we
select the one with the highest cost within [Rmin, (1 − τ)Rmin + τRmax]. To maintain an optimal
balance between reward and cost, we empirically determine the cost tier parameter at 0.1. We further
conduct experiments to illustrate the effectiveness of the proposed cost-control approach in Section
6.2. More information on training details can be found in Appendix C.

5 MAIN RESULTS

5.1 IN-HOUSE EVALUATION

Figure 2 illustrates the evaluation results on target tasks across in-house test split. We compare the
responses generated by the updated and original policy models, displaying the task win, tie, and lose
rates with both RM and GPT-4 judgments.

ADS presents significant superiority across 1,000 in-house test tasks. We can first observe
that the prompting method yields slight performance gains. For instance, the updated policy model
achieves a win rate of 36.7% compared to the original policy model’s 23.4% in RM judgment,
and 22.1% to 17.1% in GPT-4 judgment for Qwen-2-7B-Instruct. Following the iterative training
process, the final model exhibits a remarkable enhancement, with a win rate of 84.3% versus 11.2%
in RM evaluation and 46.0% versus 14.9% in GPT-4 evaluation. These substantial performance
improvements can be attributed to the valuable training data discovered by the optimizer model in
ADS, which enhances the knowledge and capabilities required to accomplish these test tasks.

Iterative ADS boosts consistent performance improvements. During the initial iteration of
DPO training, our optimizer model exhibits rapid adaptation to high-reward API trajectories. Con-
sequently, the updated policy model achieves substantial improvements in win rates: from 37.4% to
63.5% according to RM judgment, and from 26.4% to 35.2% as evaluated by GPT-4 for Qwen-2-
7B-Instruct. As the number of training iterations increases, the updated policy model consistently
demonstrates improved win rates. Given that the training tasks remain constant across different iter-
ations, we posit that the consistent performance gains are from the automatic weakness identification
and refinement during the iterative training process, thus progressively increasing the probabilities
of generating optimal API trajectories for self-improvement.

5.2 PUBLIC BENCHMARKS

In Table 2, we present the evaluation results on three public benchmarks, including AlpacaEval 2.0,
Arena-Hard, and MT-Bench. We compare the responses generated by the policy model and the
GPT-4 baseline model and show the win rates with both RM and GPT-4 judgments.
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Models RM Judgment GPT-4 Judgment
AE AH MT Avg. AE AH MT Avg.

Qwen-2-7B-Instruct (Mp) 31.7 56.1 66.9 42.6 24.0 25.6 55.9 26.4
Prompting (Mo → Mp) 33.2 57.0 68.1 43.8 24.9 26.7 52.5 27.2
RS Iteration 0 (Mo

0 → Mp) 32.4 56.7 68.1 43.2 24.2 26.7 53.8 26.8
DPO Iteration 1 (Mo

1 → Mp) 34.9 57.9 66.9 45.0 28.6 28.0 53.8 29.8
DPO Iteration 2 (Mo

2 → Mp) 36.5 60.6 69.4 47.1 30.6 28.8 57.7 31.5
DPO Iteration 3 (Mo

3 → Mp) 38.8 61.1 71.9 48.8 31.9 30.1 59.4 32.8
∆ to Qwen-2-7B-Instruct (+22.3%) (+8.9%) (+7.5%) (+14.6%) (+32.9%) (+17.7%) (+6.2%) (+24.3%)

Gemma-2-9B-Instruct (Mp) 28.6 70.0 71.3 46.0 34.8 37.5 55.0 36.9
Prompting (Mo → Mp) 28.0 59.2 70.0 41.7 33.8 30.0 56.3 33.7
RS Iteration 0 (Mo

0 → Mp) 30.5 65.6 71.3 45.5 35.3 34.8 51.3 36.0
DPO Iteration 1 (Mo

1 → Mp) 30.4 48.4 66.9 39.0 36.7 22.4 54.4 32.6
DPO Iteration 2 (Mo

2 → Mp) 33.0 67.9 70.6 47.8 36.2 35.2 57.5 37.1
DPO Iteration 3 (Mo

3 → Mp) 32.8 65.7 69.4 46.8 37.0 37.4 56.9 38.3
∆ to Gemma-2-9B-Instruct (+14.5%) (-6.1%) (-2.6%) (+1.6%) (+6.3%) (-0.2%) (+3.4%) (+3.7%)

Llama-3.1-70B-Instruct 53.0 76.7 83.8 63.3 39.5 57.0 75.0 47.9
Qwen-2-72B-Instruct 38.9 66.8 73.1 50.9 35.1 48.3 66.9 41.7
Gemma-2-27B-Instruct 33.6 80.2 75.0 52.8 37.0 49.9 60.6 43.0

Table 2: Comparisons between responses generated by the updated policy models and the baseline
GPT-4 on AlpacaEval 2.0 (AE), Arena-Hard (AH), and MT-Bench (MT) with both reward model
(RM) and GPT-4 judgment. Percentages indicate the relative improvements/decreases observed in
the final iteration of the updated policy model when compared to the original policy model.
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Figure 3: Fine-grained evaluation of different updated policy models and the original Qwen-2-7B-
Instruct across various task categories (left) and difficulties (right) in AlpacaEval 2.0.

ADS demonstrates generalized capabilities on public benchmarks. For the target tasks from
public benchmarks, our approach exhibits generalized improvements. Overall, the updated policy
model of Qwen-2-7B-Instruct shows significant relative gains across all benchmarks, with an av-
erage enhancement of +14.6% and +24.3% in RM and GPT-4 judgment, respectively. Notably, in
AlpacaEval 2.0, the improvements are even more pronounced, e.g., +22.3% in RM evaluation and
+32.9% in GPT-4 evaluation. These findings reveal that our optimizer model, despite being trained
on limited target tasks, demonstrates the capacity to find valuable training data for practical tasks,
effectively addressing the challenges for real-world task optimization.

ADS enhances policy model to rival that of more powerful LLMs. We show that with the
help of training data collected from our optimizer model, smaller and weaker policy models can
achieve comparable results to those of larger and stronger LLMs. Specifically, in the RM evaluation
within AlpacaEval 2.0, Qwen-2-7B-Instruct with ADS achieves a win rate of 38.8%, which is almost
equivalent to the performance of the substantially larger Qwen-2-72B-Instruct. Similarly, in the
GPT-4 evaluation, Gemma-2-9B-Instruct with ADS, achieves a win rate of 37.0%, matching the
performance of larger Gemma-2-27B-Instruct.

ADS typically enhances knowledge-intensive and reasoning-related tasks. We conduct a fine-
grained evaluation across distinct task categories in AlpacaEval 2.0. The results of Qwen-2-7B-
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Figure 4: Ablation study results of Qwen-2-7B-Instruct across in-house test tasks with RM judg-
ment (left) and public benchmarks with GPT-4 judgment (right), where “w/o DPO” refers to the
replacement of direct preference optimization with rejection sampling algorithm, while “w/o De-
fault” denotes the exclusion of default API trajectories for optimizer model training.

Instruct are illustrated in Figure 3 (left). We find that compared to the original baseline, ADS
improves the performance in most of the categories, especially for those that require substantial
general or specific knowledge and advanced reasoning abilities, such as information-seeking, role-
playing, reasoning, and planning. However, in categories like editing, creative writing, and coding
& debugging, our approach only has slight improvements or maintains comparable to the baseline.
This limited enhancement can be potentially attributed to the inherent nature of these tasks, which
primarily involve format and style rewriting, as well as fragment modifications, presenting inherent
challenges for optimization through in-context learning from acquired training data.

ADS particularly improves in complex and challenging tasks. In Figure 3 (right), we further
demonstrate the performance across tasks with various levels of difficulty. The results reveal that
ADS yields more substantial improvements as task complexity increases. Specifically, the relative
performance enhancement increases from +14.2% for very easy tasks to a remarkable +76.5% for
tasks categorized as very hard. These results further demonstrate the potential of ADS for continu-
ous self-improving, typically in complex tasks that lack expert supervision.

6 ABLATION AND ANALYSIS

6.1 ABLATION STUDIES

In this section, we delve into the key components in our practical implementation of ADS, focusing
on the training algorithm and the construction of API trajectories. We first investigate and compare
the performance of the optimizer model when trained iteratively using rejection sampling and direct
preference optimization. Subsequently, we analyze the influence of adding default API trajectories
into the optimizer model’s training process. The evaluation results across in-house test tasks with
RM judgment and public benchmarks with GPT-4 judgment are shown in Figure 4.

DPO enhances discrimination between chosen and rejected trajectories. We can observe that
compared to rejection sampling, the implementation of direct preference optimization substantially
improves the optimizer model’s capacity to differentiate between chosen and rejected API trajec-
tories, which is illustrated by a significant increase in the average win rate from 49.1% to 84.3%
across in-house test tasks. Similarly, in public benchmarks, the win rate improved from 28.6% to
32.8%. This enhanced discriminative capability facilitates more effective weakness identification
and decision-making processes of our optimizer model, ultimately leading to high-reward API tra-
jectory exploration and optimal training data acquiring for deficiency enhancement.

Incorporating default API trajectories enhances trajectory diversity. In addition to the five
trajectories sampled by the optimizer during its training process, we incorporate three default tra-
jectories, each corresponding to a distinct data-collecting API in our implementation. Table 4 in
Appendix C illustrates an example of both default and generated trajectories. The inclusion of these
default API trajectories alongside the self-generated candidates results in a more diverse set of tra-
jectories for optimizer model training, facilitating improved average win rates across all iterations,
both in in-house test tasks and public benchmarks.
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6.2 ANALYSIS RESULTS

Maximize Win Rate
Minimize API Cost

Maximize Win Rate
Minimize API Cost

Figure 5: Effectiveness of self-explored training
data and cost-control mechanism in maximizing
win rate while minimizing API cost.

We further make an in-depth analysis to inves-
tigate the factors contributing to the efficacy
of ADS, focusing on two key aspects: the ad-
vantages of self-explored training data and the
implementation of the cost-control mechanism.
To evaluate the impact of self-explored training
data, we compare the API trajectories generated
by our optimizer model against those curated
using a baseline strategy. This baseline ap-
proach utilizes the Question Answering
API for each observed instruction in the tar-
get task to construct the corresponding API
trajectory. Subsequently, we employ the col-
lected data for policy model optimization in
both cases. Regarding the cost-control mecha-
nism, we compare our method with an alterna-
tive approach that prioritizes reward maximiza-
tion without considering API costs. Figure 5 illustrates these analytical results, encompassing both
in-house test tasks using RM judgment (left) and public benchmarks with GPT-4 judgment (right).

Self-explored data presents more suitable for LLMs training. Despite employing the most so-
phisticated and expensive Question Answering API for training data construction, the ap-
proach without self-explored training data achieves a relatively lower win rate, e.g., 81.9% versus
84.3% across in-house test tasks, while incurring higher API costs, e.g., 9,000 versus 8,219, com-
pared to our approach. The optimizer model in ADS is designed to automatically identify and
address the potential capability gaps in specified tasks based on the developed self-knowledge. Con-
sequently, our approach provides a more tailored and targeted performance improvement.

Cost-control mechanism reduces the API cost while improving performance. To maximize the
potential for self-improvement while maintaining appropriate resource allocation, we implement
a cost-control mechanism that optimizes the trade-off between minimizing costs and maximizing
performance during the training process of the optimizer model, as detailed in Section 4.4. In
comparison to the approach that focuses solely on maximizing performance without considering
costs, our method not only achieves a lower cost as expected but also demonstrates an improved win
rate. The performance improvements can be attributed to the increased trajectory diversity compared
to the reward maximization approach. This observation indicates that our approach enables the
development of a robust and cost-effective system for data acquisition, ultimately contributing to
improved overall performance and reduced computational overhead.

7 CONCLUSION & LIMITATIONS

In this study, we explored enabling LLMs to autonomously acquire optimal training data for self-
improvement with minimal human intervention. We proposed a novel framework, ACTIVE DATA
SEARCH (ADS), which utilizes LLMs themselves as an optimizer to strategically invoke appro-
priate APIs, facilitating the discovery of tailored training datasets from external environments for
self-training. To ensure efficient data-collecting decisions, we introduced an iterative refinement
algorithm for the optimizer, guided by reinforcement feedback signals aiming to maximize task per-
formance while minimizing computation costs. Through a series of experiments on 1,000 in-house
test tasks and three public benchmarks, we demonstrated the effectiveness and generalizability of
ADS. Notably, ADS exhibited the capacity to enhance the performance of smaller and weaker lan-
guage models to be comparable with larger and stronger LLMs on AlpacaEval 2.0. This automated
process of data discovery and self-training presents opportunities to reduce the reliance on human
expertise in LLM development, providing a new direction for future research in this domain.

The current implantation is a proof-of-concept with several limitations. First, the optimizer and
policy models are separate. Unifying them is an interesting avenue for future work. Second, the
APIs included currently are far from covering all existing data techniques. Third, we did not consider
multi-turn optimization of the policy models in the framework.
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A DETAILS OF APIS

In this section, we first present the prompt for API trajectory generation of the optimizer
model in Figure 6, then show the detailed implementation of our data collecting APIs, in-
cluding (1) Information Retrieval, which facilitates efficient knowledge acquisition; (2)
Demonstration Generation, which enables various knowledge utilization scenarios; and
(3) Question Answering, which serves to enhance and refine the acquired knowledge.

Prompt for API Trajectory Generation

# Task Overview
Your goal is to analyze input prompts, identify knowledge gaps, and strategically use
provided APIs to enhance your knowledge and capabilities.

# Provided APIs
You will have access to the following APIs to obtain additional data for improvements:
1. “information retrieval(query: string)”: Retrieves relevant documents for a given search
query. Use for factual knowledge gaps.
2. “example instantiation(topic: string)”: Generates practical instances based on a given
topic. Use for applying knowledge to concrete situations.
3. “question answering(question: string)”: Provides answers to a given question. Use for
deeper understanding of knowledge.

# Constraints and Guidelines
1. Focus on common and general knowledge and capabilities requirements across all the
input prompts.
2. Use API calls only to address competence gaps when necessary, not to directly solve the
prompts.
3. If you need to make API calls, formatted as <api calls><api>api name 1(api param 1)
</api><api>api name 2(api param 2) </api>...</api calls>
4. If you do not need to make API calls, formated as <api calls>none</api calls>

# Input:
{observed instructions}

Figure 6: Prompt for API trajectory generation of the optimizer model. {observed instructions} is
the placeholder for the observed instructions in the target task.

Information Retrieval For our retrieval corpus, we utilize the Wikipedia (en) from December
20th, 2022 4, encompassing approximately 8.59 million paragraphs. Our retrieval process employs
a two-stage approach. Initially, we implement sparse retrieval using the BM25 5 algorithm to iden-
tify the top 1,000 most relevant documents for a given search query. Subsequently, we refine this
selection through dense retrieval, leveraging the BGE-Large-EN-v1.5 (Xiao et al., 2023) embedding
model to obtain the most appropriate document from the previously identified candidates.

Demonstration Generation To obtain knowledge utilization examples, we employ an approach
that relies solely on the policy model itself without incorporating external tools. Specifically, we
leverage the policy model to synthesize demonstrations by generating instructions and correspond-
ing responses based on a given knowledge topic. The prompt used for demonstration generation is
shown in Figure 7.

Question Answering To enhance the comprehension of acquired knowledge, we employ Llama-
3.1-70B-Instruct (Dubey et al., 2024) as a replacement for human experts to generate comprehensive
responses to complex questions. The prompt used for question answering is illustrated in Figure 8.

4https://huggingface.co/datasets/Cohere/wikipedia-22-12
5https://github.com/xhluca/bm25s
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Prompt for Demonstration Generation

Generate an Instruction and the corresponding comprehensive Response related to the Topic.

Topic: {topic}

Figure 7: Prompt for Demonstration Generation. {topic} is the placeholder for the knowledge topic.

Prompt for Question Answering

Provide a detailed Answer to the given Question.

Question: {question}

Figure 8: Prompt for question answering. {question} is the placeholder for the given question.

B DETAILS OF DATASET

We group instructions into clusters based on three key attributes: category, intent, and difficulty.
The category attribute represents the broad task type, encompassing areas such as creative writing,
reasoning, and coding. The intent attribute indicates the primary objectives within the instructions,
including getting helpful tips, identifying logical fallacy, develop software extensions. The difficulty
attribute quantifies the complexity of following the instructions, ranging from very easy to very hard.

Statistics Train Valid Test
# Task 8,739 500 1,000
# Category 12 12 12
# Intent 4,982 371 902
# Difficulty 5 5 5
# Obs. Inst. Per Task 3 3 3
# Held. Inst. Per Task 2 2 97

Table 3: Statistics of train, valid, and test splits.

To improve the robustness of evaluation re-
sults, we augment the size of the held-out set
for each target task in the test split. Specifi-
cally, we leverage five existing instructions as
seed examples, and prompt GPT-4 to generate
new instructions that are significantly different
from these initial examples but belong to the
same task (Wang et al., 2023). To maintain
distinctiveness, we employ a filtering mecha-
nism whereby any generated instructions with
a Rouge-L similarity score exceeding 0.7 when compared to the original instructions are eliminated.
The prompt for instruction augmentation is illustrated in Figure 9. The statistics of our train, valid,
and test splits are shown in Table 3.

C DETAILS OF TRAINING PROCESS

For policy model updating, we employ ICL on the collected training dataset for each target task,
including retrieved documents, instantialized instruction-response pairs, and answers to complex
questions, as the supplementary information to address the given held-out instruction. The prompt
for ICL of the policy model is shown in Figure 10.

For optimizer model updating, We train the optimizer model with a batch size of 128 and a maximum
sequence length of 2048. The training is conducted on a single node with 8x80GB Nvidia A100
GPUs for one epoch per iteration. We perform RS for a single iteration and DPO for three iterations.
The models are optimized using the AdamW (Loshchilov & Hutter, 2019) optimizer with β1 = 0.9
and β2 = 0.999. We use a weight decay of 0.0 and gradient clipping of 1.0. A cosine learning rate
schedule is employed, with a warmup ratio of 0.1 and a maximum learning rate of 2e-5 for RS and
5e-7 for DPO. The β parameter in DPO is set to 0.01. Our training framework is developed based
on the HuggingFace Transformers (Wolf et al., 2020) and TRL (Werra et al., 2020). We show an
example of default and generated API trajectories in Table 4.
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Prompt for Task-Specific Instructions Augmentation

Given 5 instructions as demonstrations within a specific task, please generate 100 new
distinct instructions that are relevant to the same task but significantly different from the
demonstrations provided.

Task: {task}

Here are 5 demonstrations:
Instruction 1: {seed instruction 1}
Instruction 2: {seed instruction 2}
Instruction 3: {seed instruction 3}
Instruction 4: {seed instruction 4}
Instruction 5: {seed instruction 5}

Now, please generate 100 new distinct instructions that are:

1. Significantly different from the demonstrations.
2. Within the same task or domain as the demonstrations.
3. Similar in complexity and difficulty to the demonstrations.
4. Varied in their approach to the task (e.g., different aspects or sub-tasks within the task).
5. Consistent with the tone and style of the demonstrations.

Please format your generated instructions as follows:

Generated Instruction 1: [Your generated instruction]
Generated Instruction 2: [Your generated instruction]
Generated Instruction 3: [Your generated instruction]
...

Figure 9: Prompt for task-specific instructions augmentation. {task} is the placeholder for the given
task. {seed instruction i} is the placeholder for i-th seed instruction.

Prompt for ICL

{collected data}

Your task is to read the above text to answer the following question.

1. Note that the above information is only visible to you, don’t indicate that you have read
above text in your answer. For example, don’t say “according to the information provided
above”.
2. Do not solely rely on the provided information. You know much more than the provided
information. Use it as a hint to write an comprehensive, informative, elaborate, and helpful
answer.

{held out instruction}

Figure 10: Prompt for ICL of the policy model. {collected data} is the placeholder for the training
dataset derived from the optimizer model. {held out instruction} is the placeholder for the held-out
instruction in the target task.
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Example of Default and Generated API Trajectories
Observed Instructions:
Explain the implications of the Einstein-Podolsky-Rosen paradox on quantum entanglement.
Describe the mathematical formulation of the wave function collapse in the Copenhagen interpretation.
Analyze the potential applications of quantum tunneling in developing next-generation transistors.

Generated API Trajectory:
# Analysis of Requirements

After analyzing the input prompts, I have identified the required background knowledge and broader capa-
bilities as follows:
1. Advanced knowledge of quantum physics
2. Ability to explain complex scientific concepts
3. Understanding of quantum mechanics principles
4. Familiarity with practical applications of quantum theory

# Competence Assessment

I have knowledge gaps in quantum mechanics principles and capability gaps in explaining complex scien-
tific concepts. Therefore, I need to make API calls for this set of prompts.

# API Calls

<api calls>
<api>retrieve information(“Quantum mechanics principles”)</api>
<api>get instances(“Quantum theory application”)</api>
<api>ask question(“How to describe and analysis complex scientific concepts?”)</api>
</api calls>

Default API Trajectory:
# Analysis of Requirements

After analyzing the input prompts, I have identified the required background knowledge and broader capa-
bilities.

# Competence Assessment

I have knowledge gaps and capability gaps. Therefore, I need to make API calls for this set of prompts.

# API Calls

<api calls>
<api>ask question(“Explain the implications of the Einstein-Podolsky-Rosen paradox on quantum entan-
glement.”)</api>
<api>ask question(“Describe the mathematical formulation of the wave function collapse in the Copen-
hagen interpretation.”)</api>
<api>ask question(“Analyze the potential applications of quantum tunneling in developing next-
generation transistors.”)</api>
</api calls>

Table 4: An example of default and generated API trajectories for a set of observed instructions.
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D DETAILS OF EVALUATION SETUPS

We first show the detailed implementation of our in-house evaluation and public benchmarks in
Table 5. Then, we provide the corresponding task statistics of AlpacaEval 2.0, Arena-Hard, and
MT-Bench in Table 6 and Table 7 by category and difficulty, respectively.

Benchmark # Task # Ins. Baseline Model RM Judgment GPT-4 Judgment
In-house Test Split 1,000 97,000 Original Policy Model FsfairX-Llama-3-RM-v0.1 GPT-4-1106-Preview
AlpacaEval 2.0 38 805 GPT-4-1106-Preview FsfairX-Llama-3-RM-v0.1 GPT-4-1106-Preview
Arena-Hard 34 500 GPT-4-0314 FsfairX-Llama-3-RM-v0.1 GPT-4-1106-Preview
MT-Bench 21 80 GPT-4-0314 FsfairX-Llama-3-RM-v0.1 GPT-4-0125-Preview

Table 5: Implementation details of evaluation on in-house test tasks and public benchmarks.

Category AlpacaEval 2.0 Arena-Hard MT-Bench
Number Percentage Number Percentage Number Percentage

Advice Seeking 79 9.8% 12 2.4% 4 5.0%
Brainstorming 25 3.1% 5 1.0% 1 1.3%
Coding & Debugging 42 5.2% 204 40.8% 7 8.8%
Creative Writing 54 6.7% 6 1.2% 5 6.3%
Data Analysis 7 0.9% 66 13.2% 3 3.8%
Editing 73 9.1% 19 3.8% 5 6.3%
Information Seeking 381 47.3% 63 12.6% 21 26.3%
Math 40 5.0% 56 11.2% 17 21.3%
Planning 61 7.6% 45 9.0% 3 3.8%
Reasoning 27 3.4% 17 3.4% 11 13.8%
Role Playing 14 1.7% 4 0.8% 3 3.8%

Table 6: The task category statistics of AlpacaEval 2.0, Arena-Hard, and MT-Bench.

Difficulty AlpacaEval 2.0 Arena-Hard MT-Bench
Number Percentage Number Percentage Number Percentage

Very Easy 27 3.4% 0 0.0% 1 1.3%
Easy 491 61.0% 81 16.2% 25 31.3%
Medium 256 31.8% 339 67.8% 52 65.0%
Hard 25 3.1% 79 15.8% 2 2.5%
Very Hard 6 0.7% 1 0.2% 0 0.0%

Table 7: The task difficulty statistics of AlpacaEval 2.0, Arena-Hard, and MT-Bench.

E COMPARISON BETWEEN ADS AND DATA CONSTRUCTION BASELINES

In this section, we expand our experimental evaluation by comparing the proposed ADS framework
with several baseline methods for training data construction. These methods include: (1) Prompt-
ing, which constructs API trajectories through optimizer model prompting without fine-tuning; (2)
Retrieval Augmentation, which employs both sparse and dense retrieval to identify relevant doc-
uments based on target task instructions, similar to the Information Retrieval API; (3)
Self-Instruct, which utilizes the policy model to generate new instruction-response pairs for the tar-
get task, functioning analogously to the Demonstration Generation API; (4) Rule-based
QA, which leverages an stronger LLM to answer each instruction in the target task, comparable to
the Question Answering API. The empirical results presented in Table 8 indicate that ADS,
incorporating all three APIs, significantly outperforms these baseline methods across both in-house
test tasks and public benchmarks, and maintaining its simplification without human intervention.
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Methods Qwen-2-7B-Instruct Gemma-2-9B-Instruct
In-house Test Tasks Public Benchmarks In-house Test Tasks Public Benchmarks

Prompting 36.7 27.2 67.0 33.7
Retrieval Augmentation 24.2 26.8 46.4 32.6
Self-Instruct 55.8 31.6 76.9 35.1
Rule-based QA 81.9 32.0 79.7 36.0
ADS 84.3 32.8 82.6 38.3

Table 8: Comparison between ADS and training data construction baseline methods.

F INFLUENCE OF THE INSTRUCTION-FOLLOWING DATASET

Since we adopt the instructions from Llama-3-Magpie-Air-3M-v0.1 (Xu et al., 2024) as the task
instructions in our optimizer training process, we conduct a controlled experiment to ensure a fair
comparison. Specifically, we fine-tune our base models using this dataset and evaluate their per-
formance on public benchmarks before and after fine-tuning. As shown in Table 9, the fine-tuning
process leads to a notable degradation in model performance. This decline can be attributed to the
fact that our base models (Qwen-2-7B-instruct and Gemma-2-9-Instruct) have already undergone
extensive fine-tuning with high-quality training data, whereas the Llama-3-Magpie-Air-3M-v0.1
dataset may contain relatively lower-quality data. These empirical findings substantiate that the per-
formance improvements observed in our experiments stem from the effectiveness of the proposed
ADS, rather than from the instruction-following dataset.

Methods Qwen-2-7B-Instruct Gemma-2-9B-Instruct
AlpacaEval 2.0 Arena-Hard MT-Bench Average AlpacaEval 2.0 Arena-Hard MT-Bench Average

Base Model 24.0 25.6 55.9 26.4 34.8 37.5 55.0 36.9
Base Model w/ Magpie 11.9 11.7 43.1 13.6 14.8 12.0 44.9 15.5

Table 9: Comparison between the base models before and after fine-tuning on the instruction-
following dataset, where “w/ Magpie” denotes the base models after fine-tuning.
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