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Abstract

Faces synthesized by diffusion models (DMs) with high-quality and controllable
attributes pose a significant challenge for Deepfake detection. Most state-of-the-art
detectors only yield a binary decision, incapable of forgery localization, attribution
of forgery methods, and providing analysis on the cause of forgeries. In this
work, we integrate Multimodal Large Language Models (MLLMs) within DM-
based face forensics, and propose a fine-grained analysis triad framework called
VLForgery, that can 1) predict falsified facial images; 2) locate the falsified face
regions subjected to partial synthesis; and 3) attribute the synthesis with specific
generators. To achieve the above goals, we introduce VLF (Visual Language
Forensics), a novel and diverse synthesis face dataset designed to facilitate rich
interactions between ‘Visual’ and ‘Language’ modalities in MLLMs. Additionally,
we propose an extrinsic knowledge-guided description method, termed EkCot,
which leverages knowledge from the image generation pipeline to enable MLLMs
to quickly capture image content. Furthermore, we introduce a low-level vision
comparison pipeline designed to identify differential features between real and fake
that MLLMs can inherently understand. These features are then incorporated into
EkCot, enhancing its ability to analyze forgeries in a structured manner, following
the sequence of detection, localization, and attribution. Extensive experiments
demonstrate that VLForgery outperforms other state-of-the-art forensic approaches
in detection accuracy, with additional potential for falsified region localization and
attribution analysis.

1 Introduction

AI-generated faces have enriched human life by creating realistic virtual characters that enhance our
experiences in various creative industries. However, the domain of AI-generated face forensics is
encountering unprecedented challenges due to the rapid advancement of generative models [8, 55,
49, 12, 24, 57]. In particular, diffusion models [38, 35] generate synthetic faces with substantially
higher fidelity than earlier technologies such as variational autoencoders (VAEs) [41], rendering it
increasingly challenging for detectors to identify subtle forgery artifacts. This development has led to
a significant surge in the proliferation of forgeries, which present grave threats to personal privacy
and security.

Several pioneering studies [3, 17, 44, 4, 48, 54] have investigated diffusion model (DM)-generated
image forensics and demonstrated the effectiveness of their proposed models. However, a notable
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limitation of these approaches is their lack of clear analysis for the underlying causes of the forgeries.
Specifically, most existing studies focus solely on detection, neglecting the localization of forgeries or
attributing specific generation methods to them.

Recently, multimodal large language models (MLLMs) have emerged as powerful tools for complex
scene characterization.By leveraging extensive pre-training on both images and text, MLLMs can
interpret visual tasks through natural language, providing a more nuanced understanding of forensic
analysis [53, 14]. However, MLLM-based models face two primary limitations. First, forensic
analysis research with MLLMs has largely focused on traditional face-swapping Deepfakes [36, 22],
with limited analysis of DM-based synthetic faces. While recent work [53, 14] has shown that
automated descriptions generated by MLLMs (e.g., ChatGPT-4) or manual annotations guiding
MLLM training, effectively capture artifacts in traditional face-swapping Deepfakes, these approaches
still face challenges in generating credible forgery descriptions, particularly for high-fidelity DM-
based images where subtle artifacts often evade detection. The primary issue lies in their reliance on
subjective human-defined judgment biases to guide the generation of descriptions. Such descriptions
may not align with the forgery knowledge that the models inherently understand. Additionally,
MLLMs are typically trained for semantic-level visual alignment, lacking fine-grained forensic
perception capabilities, which can lead to hallucinations in the generated descriptions. Second, none
of the existing MLLM-based methods attempt fine-grained DeepFake forensics that simultaneously
addresses Detection, Localization, and Attribution.

To address these challenges, we propose a triad framework-encompassing detection, localization,
and attribution-designed for AI-generated face forensics, referred to as VLForgery. In the proposed
framework, to address the lack of data specifically tailored for DM-based partial synthesis face, we
create diverse prompt repositories and templates to build a new multimodal Visual Language Forensic
(VLF) dataset, suitable for the triad tasks of detection, localization, and attribution.

Second, to enhance the reliability of MLLMs-generated descriptions, we introduce a low-level vision
comparison pipeline that identifies low-level vision discrepancies between real and fake sample
sets, guiding MLLMs to generate high-confidence descriptions. Building on this, we develop a
description generation module, where we design an Extrinsic knowledge-guided Chain-of-thought
(EkCot) method. This method also integrates additional knowledge from the generation pipeline,
enabling the model to quickly grasp image content. Third, we develop a unified MLLMs fine-tuning
and inference module, where we aggregate the generated images and corresponding descriptions to
fine-tune MLLMs.

Specifically, VLForgery incorporates external information relevant to DM-based image generation
with the low-level vision discrepancies between real and fake to structure a systematic analytical
approach, allowing MLLMs to evaluate the image through the following steps: 1) Detection: identify
whether the image is real or AI-generated; 2) Localization: For synthetic images, determine if the
forgery is partial (only specific regions are altered) or full (the entire image is synthetic). For partial
forgeries, locate the altered regions; 3) Attribution: Determine the likely method or model used to
generate the forgery.

Our contribution can be summarized as follows:

• We investigate the potential of MLLMs in tackling AI-generated face forensics challenges
by proposing the framework VLForgery. Additionally, we designed an extrinsic knowledge-
guided chain-of-thought method, termed EkCot, that can assist the MLLMs in achieving
fine-grained forensics performance.

• We introduce the VLF dataset, a new multimodal Visual Language Forensic dataset generated
by diffusion models, designed to address the needs of fine-grained forensics tasks.

• We present a comprehensive evaluation experiment tailored to assess VLForgery on fine-
grained forensic tasks. This evaluation encompasses three task scenarios, and 9 DM-based
face types.

2 Related Work

2.1 DM-Generated Images

Recent advancements have centered on diffusion models [38], which have demonstrated exceptional
performance in generating high-fidelity face images with high quality. Many studies have also
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Figure 1: The comparison pipeline of low-level vision. By extracting the most distinctive low-level
vision descriptors that differentiate the real and fake sample sets, we establish judgment biases for
the MLLMs.

incorporated attention mechanisms to enhance the controllability of generated content [18, 23] such
as text-guided [35, 30, 45, 32, 50, 2] and subject-guided [37, 21, 52, 16]. These achievements have
led to the proposal of many DM-based datasets, such as object-oriented image datasets [56, 7, 39] and
face-oriented image datasets [5, 24]. However, most DM-based partially synthesized face datasets
suffer from poor quality and lack sufficient ground truth to support more fine-grained forensics tasks,
such as forgery localization and attribution.

2.2 Fine-grained Forensics of DM-based Images

For Detecting tasks, traditional works usually attempt to find the traces left by diffusion models to
expose synthesized images. For example, Chen et al. [3] proposed DRCT, a universal framework to
enhance the generalizability of the existing detectors for detecting DM-based images. Recognizing the
robust semantic comprehension capabilities of pre-trained vision-language models (e.g., CLIP [34]),
recent studies [17, 31] have demonstrated their promising results in detecting DM-generated images.
For Locating tasks, a primary goal is for the detector to provide predictions with a localization
map indicating which regions have been manipulated or to identify forgery artifacts within DM-
based images. Guo et al. [10] proposed a hierarchical fine-grained Image Forgery Detection and
Localization (IFDL) framework consisting of three components: a multi-branch feature extractor,
localization, and classification modules. Zhang et al. [51] centers on detecting and segmenting artifact
areas that are only perceptible to human observers, rather than identifying the full manipulation
region. For Attributing tasks, the objective is to recognize the specific diffusion model that generates
the images. Guarnera et al. [9] concentrate on attributing DM-generated images through a multi-
level hierarchical approach. However, the aforementioned studies address the tasks of detection,
localization, and attribute individually, and there is a notable absence of research that integrates these
tasks into a unified framework.

2.3 Multimodal Large Language Models in Forensics

Recently, some studies have commenced utilizing MLLMs to investigate analytical ability within
the field of forensics. Jia et al. [15] pioneered the exploration of the forensic capabilities of prompt
engineering using ChatGPT. Zhang et al. [53] proposed incorporating common-sense reasoning to
enhance traditional deepfake detection by manually labeling the manipulated regions and extending it
to develop a Visual Question Answering (VQA) framework. Huang et al. [14] recently proposed
an automatic method utilizing GPT-4o for annotations, thereby replacing human annotators. These
studies primarily focus on traditional Deepfakes and are limited to single-forensic scenarios, lacking
the capability to locate or attribute forgery areas in synthesized images. In the case of forgery artifacts
from high-fidelity faces generated by diffusion models, generating credible forgery analyses may
pose greater challenges. Ours, compared to other MLLM-based forensic frameworks, can guide
MLLMs to generate highly credible fine-grained forgery descriptions and is applicable to a broader
range of forgery types and more complex forensic scenarios.
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Figure 2: Construction of three modules for VLForgery framework: Data Acquisition, Description
Generation Module, and MLLMs Fine-tuning and Inference Module.

3 VLForgery Framework

With the development of generative technologies, methods like diffusion models have emerged.
Compared with traditional generative AI techniques (eg, VAE), the diffusion models enable partial
synthesis guided by masks and text descriptions, as well as full synthesis through identity insertion
or text descriptions. Therefore, our VLF dataset encompasses both partial and full synthesis types.
In the following sections, we will demonstrate how to acquire their corresponding prompts and/or
images. Furthermore, we will elaborate on the specific details of our proposed Description Generation
Module and MLLMs Fine-tunning and Inference Module in VLForgery.

3.1 Data Acquisition

This section primarily outlines the pipeline details for collecting data. We synthesized all DM-
generated data according to the requirements of the fine-grained forensics tasks. The details of the
generation, involving partial and full synthesis, will be described in the following sections. For a
more detailed introduction to the dataset, please refer to Sec. B.

3.1.1 Partial Synthesis

In this part, we define the pipeline for partial synthesis. An exemplar pipeline is illustrated in Fig. 2(a).

To ensure the high quality of the partially synthesized images, we utilized the well-established facial
dataset CelebAMask-HQ [19] as a data source since it already contains landmarks for various face
attributes such as nose, brow, hair, ears, eyes, and teeth. Then, we use GPT-4o to generate each
facial attribute dictionary and prompt template. For each image, we randomly combine masks to
generate masked faces. Based on the generated masked face, we choose and combine templates for
the corresponding attributes, then randomly select descriptive keywords from the relevant attribute
dictionary to populate the templates, thereby generating the final prompt for image partial synthesis.
During the image generation phase, we input the generated masked face, corresponding final prompt,
and pristine face into the Inpainting Generator to produce an inpainted face.
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3.1.2 Full Synthesis
We introduce two types of fully synthesized forgery: generating identity insertion (Fig. 2(b)) and
non-existent faces (Fig. 2(c)). Both generation approaches utilize the same prompt template with
slight modifications. In the face identity insertion pipeline, the objective is to preserve the original
facial identity while situating it within a new scene. This pipeline initially uses a Face Feature
Extractor to capture identity-specific features. In the generation of non-existent faces, the diffusion
model creates images of completely new faces that are unrelated to any existing individual based on a
given prompt.

3.2 Description Generation Module

This module leverages the extrinsic information required throughout the low-level vision comparison
pipeline and the data acquisition processes to guide the construction of the forgery analysis description
for each type of forgery sample in the VLF dataset. In this section, we introduce the workflows of
the low-level vision comparison pipeline and the construction of EKCot separately. We provide a
detailed low-level vision analysis along with all the details and data you may need (refer to Sec C).

3.2.1 Low-level Feature Comparison Pipeline

Motivation: In previous studies[46, 14], researchers attempted to generate explainable descriptions for
Deepfakes using Vision Large Language Models. However, hallucinations are commonly observed in
VQA tasks. Forensic analysis places more emphasis on the perception of image fine-grained details
compared with general VQA tasks. Therefore, in the absence of ground-truth labels to supervise
these explainable descriptions, how can we determine their correctness?

To address this challenge, we aim to seek forensic features that the model itself can understand to
discriminate the authenticity of an image, thereby mitigating the model’s struggles with explainable
description generation. Therefore, we propose a low-level vision comparison pipeline that leverages
the visual feature understanding capabilities of vision-large-language models (VLLMs) to identify
low-level vision discrepancies between real and fake sample sets, as illustrated in Fig. 1. First, we
randomly select one image from the real sample set and another from the fake sample set, as I1
and I2. Notably, the VLLMs is unaware of which image is real and which is fake. Furthermore, to
comprehensively verify the low-level visual discrepancies between the real and fake sample sets,
we selected ten distinct aspects and designed corresponding descriptive templates for each, as Ttem

(refer to Sec. C.1).

Initially, I1 and I2 are processed by the vision encoder Ev , which generates the corresponding token
representations Timg. These tokens, along with the comparison template tokens Ttem, are then fed
into the V LLM() for generating low-level vision discrepancies text Ol. It is formulated as:

T 1
img, T

2
img = Ev(I1, I2), (1a)

O1
l , O

2
l = V LLM(T 1

img, T
2
img, Ttem). (1b)

Judgment Bias filtering: Given O1
l , O

2
l , we first perform tokenization and part-of-speech tagging

to extract compound noun phrases. Next, we compute the proportion of each extracted compound
noun phrase across all low-level vision discrepancy texts. Finally, we identify the top ten phrases
with the largest proportion difference between the real and fake sample sets, selecting them as the
judgment biases for the MLLMs. These phrases are then used to generate the final usable judgment
bias descriptors through a predefined template (refer to Sec. C.3).

Furthermore, to avoid potential model interpretation biases, we selected the Llama-3.2-11B-Vision[1]
model as the VLLM for the low-level vision comparison pipeline, ensuring consistency with the
models used in subsequent stages.

3.2.2 Construction of EkCot
As shown in Fig. 2(d), we utilized MLLMs as the description generation model to construct a chain of
thought for forgery analysis, termed EkCot. Initially, we propose a General Rule template designed
to integrate the extrinsic information required for generating desired data. The extrinsic information
includes the prompts used within the pipeline, the corresponding ground truth for the generated image,
and the low-level vision judgment bias, which are subsequently combined to serve as prompt inputs
for MLLMs. The ground truth encompasses several categories, including real/fake, forgery type,
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forgery region, and forgery method. For pristine images, the forgery type, forgery region and forgery
method values are set to ’none’ by default. Additionally, image original features are provided as
visual inputs to the MLLMs. Furthermore, we utilize the Llama-3.2-11B-Vision[1] as the description
generation model.

3.3 MLLMs Fine-tuning and Inference Module

In this module, we designed the final fine-tuning data structure and the details of MLLMs fine-tuning.
Final Fine-tuning Data Structure. The final fine-tuning data is composed in the form of triplets:

<visual, question, answer>. For question’s format, we use ChatGPT-4o to generate a range of

question formats, as shown in Fig. 2(e), for example: ‘Is this image real or fake? Can you provide
the reasoning behind your judgment?’ For each triplet, the question is presented in a randomly
generated format. Additionally, each image is linked to its corresponding specific description (i.e., the
answer). For the answer’s format, we designed it to address three primary forensic tasks: detection,

localization, and attribution. The answer format follows this pattern: ‘Detection Result: real/fake’ +
Aresult + ‘Forgery Type’ + ‘Falsified Region’ + ‘Forgery Method’, where Aresult denotes the analysis
of detection results. For analysis steps, our objective is to guide the model to adopt a chain of thought,

performing each step sequentially as follows: 1)Real or Fake Judgment: The authenticity of the
image is first assessed. If an image is identified as a forgery, the type of forgery is then classified into
one of three categories: partial synthesis, identity insertion, and non-existent faces. The reasons for
the detection result are further analyzed. 2) Localization of Falsified Region: If the forgery involves
partial synthesis, the specific regions of manipulation (e.g., nose, brow, hair, ear) are identified. In
cases involving multiple edits (e.g., hairAndnose), each forged region is localized. 3) Attribution of
Synthesis Face Generator: The final step determines the generator of the synthesis face. Fine-tunning

and Inference Process. We fine-tune the MLLMs on the final fine-tuning data through a structured
two-step process (Fig. 2(f)). Inspired by LLaVA [25], we adopt their published Llava-1.5-7B model
and training architecture. First, we fine-tune a projector to align the facial visual features extracted
from the frozen CLIP visual encoder with the corresponding question text features. This alignment
links the synthetic face’s forgery artifacts with corresponding ground truth and detailed forgery
descriptions. Second, we employ Low-Rank Adaptation (LoRA) [13] (rank=128, alpha=256) to
selectively update the model by adjusting only the LoRA parameters, effectively fine-tuning the
pre-trained language model.

During inference, the input is structured as a tuple <image, question>. For the questions, we continue
to use ChatGPT-4 to generate diverse question formats, ensuring input variety. Finally, the model’s
response is structured, similar to the final fine-tuning data‘s answer format.

This approach ensures the model conducts forensic analysis on input faces in a structured, stepwise
manner according to a pre-defined reasoning framework, thereby improving both its fine-grained
forgery analysis and forensic accuracy.

Table 1: VLF dataset.

Type Source
Samples

train test

Pristine
FFHQ 42k 14k

FF++ (original) 12k 4.5k
CelebA-HQ 18k 6k

DM-based Partial Synthesis
SDXL 76k 19k
SD2 76k 19k

Kandinsky2.2 76k 19k

DM-based Full Synthesis

SDXL 24k 6k
SD2 24k 6k
SD3 24k 6k

Kandinsky2.2 24k 6k
Flux 24k 6k

InstantID 8.1k 2.5k
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Question:
The image contains a human face. Would you say it’s

unedited or modified? What factors influenced your

judgment?

VLForgey(Ours：image vision+EkCot:[Low-Level Vision Judgment Bias+Extrinsic Knowledge])
Detection Result: fake
Forgery analysis: The image appears to be fake due to several characteristics that align with those of AI-generated images. Firstly, the
overall quality of the image is exceptionally high, with no visible compression artifacts, sharpening artifacts, or color artifacts. This is
consistent with the fact that fake images often exhibit higher image quality. Additionally, the image lacks any unnatural semantic signs, which
is a common trait of fake images.
Upon closer inspection, it is evident that the image is a non-existent face, as the man's face does not match any real person. The falsified
region is the full synthesis of the image, as it is a completely generated image rather than a manipulated or edited version of an existing one.
The forgery method used to generate this image is likely SDXL, as it is a common method used for generating high-quality images. The
image's style and quality are consistent with those produced by SDXL.
Forgery Type: non-existent faces
Falsified Region: full synthesis
Forgery Method: SDXL

Llava-v1.5-7B (only Image
Vision + Extrinsic Knowledge)
Detection Result: fake
Forgery analysis: The image appears to be
a fake face generated by a model, as
evidenced by the unnatural appearance of
the man's face and the lack of depth and
texture. The image also lacks the subtle
imperfections and nuances that are
characteristic of real photographs.
Forgery Type: non-existent faces
Falsified Region: full synthesis
Forgery Method: SDXL (Fake)(Fake,non-existent faces,full synthesis,SDXL)

Low-Level Vision Knowledge 

Llava-v1.5-7B（0 shot)
The human face in the image is natural, as it is a man with a beard and mustache. The evidence
supporting this conclusion is the presence of the man's facial hair, which is a distinctive feature of his

appearance. The man is also wearing a suit, which further indicates that he is a real person. The image
shows the man sitting next to a dog, and the dog is also a real animal, which further supports the idea
that the scene is a natural one.

(Real)

ChatGPT-4.5
Based on the image you provided, the human face appears to be a natural one. Here’s the reasoning:Facial Features: The human face in the image has realistic proportions, such as the
symmetry of the eyes, nose, and mouth. There are no unusual distortions or artifacts that are common in AI-generated faces (e.g., mismatched eyes, odd skin texture, or unaligned
features).Expression: The facial expression, combined with the dog's interaction, looks natural. The subject’s pose and gaze are coherent, which aligns with how a real human would behave
in a portrait.Lighting and Shadows: The lighting on the human face is consistent, with shadows falling naturally based on the light sources. Fake faces sometimes have unnatural or
inconsistent lighting, where the shadows don't match the facial contours properly.Textural Detail: The skin texture, hair, and other details like the mustache appear natural, with no visible
pixelation or blurring that is sometimes seen in generated content.This evidence suggests that the human face in this image is real, rather than artificially generated. However, further
analysis using forensic tools could offer additional verification. (Real)

Figure 3: Qualitative results. The upper left presents a synthesis face from full synthesis. Ours
is presented in contrast to the responses of Llava-v1.5-7B (0 shot), Llava-v1.5B-7B (conditional
fine-tune), and Chatgpt-4.5, respectively. The lower-right bracket provides the result annotations.

4 Experiment

4.1 Experimental Settings

Datasets. All facial samples in experiments were sourced from the VLF. The VLF dataset consists
of 12 subsets, with each subset divided into training and test sets in a 4:1 ratio, as illustrated in
Table 1.

Compared Baselines. We selected four types of models for evaluation: 1) Naive convolutional
neural networks (CNNs): Xception [6], Resnet-50 [11]. 2) Typical frequency detectors: SPSL
[26], F3Net[33], SRM[29], NPR[40]. 3) Typical Spatial detectors: GramNet[28], SAFE[20],
CNNspot[43], DRCT [3]. 4) VLLM-based method:CLIPping [17], Llava-1.5-7B[25], Qwen2.5-VL-
7B[47], Llama3.2-11B-Vision[1].

Implementation Details. All experiments are based on the PyTorch and trained with 8 NVIDIA
RTX L40. For training, we utilized the Adam optimizer with a learning rate of 2e-5 and a batch size
of 128 for 3 epochs.

Table 2: Evaluation on Full Synthesis type. Results on different training and testing subsets using
VLForgery. Accuracy is used for evaluation.

Train
Full Synthesis(%)↑

Avg(%)↑Non-existent Id-insertion
SDXL SD2 SD3 Kandinsky2.2 Flux InstantID

SDXL 99.35 98.47 96.02 98.78 98.7 87.38 96.45
SD2 99.47 99.97 98.38 99.40 98.92 80.67 96.13
SD3 99.65 97.23 99.98 97.95 99.70 21.93 86.07

Kandinsky2.2 99.95 99.37 97.95 99.95 99.67 93.75 98.44
Flux 98.01 95.85 98.10 98.25 100.00 48.10 74.89

InstantID 90.38 87.05 60.83 87.40 84.97 92.97 83.94

Table 3: Evaluation on Partial Synthesis type. Results on different training and testing subsets using
VLForgery. Accuracy is used for evaluation.

Train Partial Synthesis(%)↑ Avg(%)↑SDXL SD2 Kandinsky2.2
SDXL 80.35 68.78 98.08 82.40
SD2 54.53 61.77 93.01 69.77

Kandinsky2.2 42.09 34.20 95.93 57.41
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4.2 Evaluation of Multi-task Forensics

4.2.1 Task1: Detecting the Authenticity of Faces

Table 4: Cross-generator dataset evaluation on ACC metric. All methods are trained on SDXL and
evaluated on other subsets. ∗ indicates the use of trained models provided by the authors. Note that
‘PS’ means Partial Synthesis, and ‘FS’ means Full Synthesis.

Type Method Train–SDXL(%)↑ SD2(%)↑ Kandinsky2.2(%)↑ SD3(%)↑ Flux(%)↑ InstantID(%)↑ Avg(%)↑
PS FS PS FS PS FS

Naive Resnet-50[11] 35.09 99.73 11.87 95.67 58.40 97.37 90.58 94.03 94.58 75.26
Xception[6] 68.19 99.98 40.10 97.58 96.89 99.68 97.72 99.03 99.57 88.75

Frequency

SPSL[26] 31.62 99.98 4.79 96.92 51.42 99.83 96.92 99.28 95.09 75.09
F3Net[33] 74.09 99.91 46.97 99.45 81.65 99.90 99.33 99.98 99.84 89.01
SRM[29] 59.21 99.95 12.30 98.65 98.34 99.57 98.43 98.17 97.06 84.63
NPR[40] 42.67 99.98 10.22 98.98 70.51 99.57 98.25 99.75 99.37 79.92

Spatial

GramNet[28] 34.17 99.98 14.28 96.93 48.37 99.65 93.43 99.27 88.45 74.94
SAFE[20] 56.47 82.08 54.08 81.55 56.32 78.98 88.43 57.05 71.43 61.66

CNNspot[43] 26.30 97.93 9.04 73.00 26.97 74.12 39.95 70.00 73.60 54.55
DRCT∗[3] 57.65 99.41 58.52 97.71 99.33 99.92 65.97 59.06 98.92 81.83

VLLM-Based

CLIPping Adapter[17] 36.29 99.91 32.13 94.37 75.04 98.38 98.58 97.95 97.05 81.03
CLIPping Linear Probing[17] 61.79 99.98 54.33 97.18 87.33 99.65 97.88 99.03 99.80 88.55

Llava-1.5-7B[25] 69.92 99.92 51.07 99.97 99.56 99.74 97.66 99.12 99.69 87.07
Qwen2.5VL-7B∗[47] 4.77 4.32 3.78 21.88 31.92 6.55 3.82 3.00 46.13 14.02

Llama-3.2-11B-Vision∗[1] 53.46 64.97 52.13 68.95 58.42 69.63 47.80 63.05 58.49 59.66
VLForgery

(ours) 78.62 99.98 66.32 99.97 99.96 99.97 99.98 99.97 99.57 93.82

Table 5: Evaluation of falsified regions localization performance across distinct generators. Accuracy
is used for evaluation.

Train hair(%)↑ Avg(%)↑ brows(%)↑ Avg(%)↑ ears(%)↑ Avg(%)↑ nose(%)↑ Avg(%)↑
SDXL SD2 Kandinsky2.2 SDXL SD2 Kandinsky2.2 SDXL SD2 Kandinsky2.2 SDXL SD2 Kandinsky2.2

SDXL 88.99 86.91 92.44 91.13 73.84 53.36 72.61 66.60 59.16 51.99 72.01 61.05 77.25 56.53 91.34 75.04
SD2 79.68 82.63 85.42 82.58 65.38 62.64 66.84 64.95 40.30 50.33 52.66 47.76 58.46 75.45 86.67 73.53

Kandinsky2.2 58.53 50.47 85.79 64.93 34.33 13.67 79.38 42.46 29.76 24.98 71.61 42.12 14.01 16.11 89.04 39.72

Intra-type performance with MLLMs. In this task, we first evaluate the Full Synthesis type per-
formance with VLForgery. As shown in Table 2, the Full Synthesis type comprises two subtypes:
Non-existent and Id-insertion. The non-existent face subtype consists of five distinct subsets, each
corresponding to a specific generator. For the non-existent subtype, training and testing within each
subset surpass 99.35% accuracy, while cross-subset testing achieves an average accuracy of 91.66%.
Conversely, cross-subtype performance varies significantly. For instance, training on the Flux subset
and testing on InstantID results in a classification accuracy drop to 48.1%.

Table 3 presents the performance evaluation of the Partial Synthesis type. This type consists of
three subsets, each associated with a specific generator. Training was conducted on each of the
three subsets, and testing was subsequently performed across all subsets. As indicated in Table 3,
training on partial synthesis samples generated by SDXL-based models yields superior generalization
performance.

Based on these observations, detectors trained with full-synthesis images are typically trained based
on global features, focusing on the overall structure and content of the image. Also, they primarily
focus on analyzing the integrity of the entire image. However, partial synthesis images often involve
modifications to small areas of the image, and these details may not be obvious in the global features.
Therefore, when these detectors encounter partial synthesis images with only a small local area
tampered with, they may fail to capture the subtle changes, leading to a reduced recognition rate for
local tampering.

Cross-Generator Faces Classification. We propose evaluating the generalization performance of
distinct generators, encompassing both Full Synthesis and Partial Synthesis types. As illustrated
in Table 4, all detectors were trained on samples with partial synthesis and full synthesis from the
SDXL-based model, and subsequently tested on other subsets. For each compared method, we trained
for 10 epochs and validated their performance on the final epoch. VLForgery exhibits a notable
advantage, especially in accurately detecting partially synthesized face images

4.2.2 Task2: Locating the Falsified Regions
We evaluate the localization capabilities of VLForgery for four distinct regions (i.e., nose, brow, hair,
and ears), as shown in Table 5. The Partial Synthesis type contains edited faces with single-edit and
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Table 6: Evaluation of model’s attribution accuracy on VLF.
Method FS_SDXL FS_SD2 FS_SD3 FS_IID FS_Kan2.2 FS_Flux PS_SDXL _PS_SD2 PS_Kan2.2 Avg.
resnet50 99.93 99.53 84.43 98.82 99.23 99.87 11.81 6.09 76.48 75.13
xception 99.98 99.97 87.93 99.57 99.37 99.52 16.87 27.64 91.81 80.30

efficientb4 99.99 99.88 88.93 98.15 98.95 99.90 27.61 27.85 81.43 80.29
Guarnera et al. 99.78 99.87 86.65 97.72 99.92 99.43 35.75 12.71 90.17 80.22

VLForgery 93.27 92.47 93.24 90.42 89.13 82.43 63.64 60.20 73.45 82.03

Table 7: Ablation Study of the VLForgery’s forgery description generation component in the detection
task. ‘VF’, and ‘EkCot’ represent visual input features in forgery description generation, and extrinsic
knowledge-guided chain-of-thought, respectively

Detection(%)↑Method SDXL SD2 Kandinsky2.2 SD3 Flus InstantID
Name VF EKCot Partial Synthesis Full Synthesis Partial Synthesis Full Synthesis Partial Synthesis Full Synthesis

VariantA 69.92 99.92 51.07 99.97 99.56 99.74 97.66 99.12 99.69
VariantB ✓ 68 99.99 47.64 99.98 99.18 99.99 99.98 99.98 99.84

Ours ✓ ✓ 78.62 99.98 66.32 99.97 99.96 99.97 99.98 99.97 99.57

Table 8: Ablation Study of the VLForgery’s forgery description generation component in the localiza-
tion task. ‘VF’, and ‘EkCot’ represent visual input features in forgery description generation, and
extrinsic knowledge-guided chain-of-thought, respectively.

Localization(%)↑Method hair brows ears nose
Name VF EKCot SDXL SD2 Kandinsky2.2 SDXL SD2 Kandinsky2.2 SDXL SD2↑ Kandinsky2.2 SDXL SD2 Kandinsky2.2

VariantA 54.41 55.06 59.49 38.63 33.10 46.76 22.56 18.44 30.46 38.63 28.10 42.82
VariantB ✓ 88.77 78.51 97.48 66.09 39.44 75.61 45.25 34.86 74.56 40.36 46.95 96.13

Ours ✓ ✓ 88.99 86.91 92.44 73.84 53.36 72.61 59.16 51.99 72.01 77.25 56.53 91.34

multi-edit. Additionally, this type is categorized into three subtypes based on distinct generators.
Each subtype was trained separately, and tested across all subtypes, with validation results tallied
across the four facial regions. Note that, if a multi-edited face is detected with the result ‘earAndnose’,
but the ground truth is ‘earAndhair’, the detection of the ear region is marked as correct, while the
hair region is marked as incorrect.

Why Use Natural Language Instead of Masks for Localization Results? Fig. 4 illustrated a compari-
son of localization results between VLForgery and PSCC-Net (IFDL method). For subtle falsified
facial regions, such as brows and nose, IFDL methods often struggle to identify them accurately,
being easily influenced by extraneous features from the image background, which leads to incor-
rect localization. In contrast, for facial localization, where tampered areas are limited, VLForgey
leverages natural language descriptions instead of mask images to reduce the difficulty of localization.

:hair :brow
:nose

Andbrow
:brow

:hair
Andnose
Andbrow

:hair
Andbrow

hair brow
brow
nose brow

hair
nose

hair
brow

VLForgery

(ours)

PSCC-Net

Partial

Synthesis

Edit

Region

Figure 4: Comparative results of tamper facial local-
ization capabilities between IFDL method and VL-
Forgery. Both models were trained on partial synthe-
sis generated by SDXL, and tested on Kandinsky2.2
samples. Mislocalized areas are marked in red.

This approach significantly enhances local-
ization accuracy and minimizes susceptibil-
ity to interference from background features.
Furthermore, to quantify the performance
gap in localization between ours and the
IFDL method, we selected 1,000 samples
from the Partial Synthesis test set. We used
the IFDL method to generate mask images,
which were then manually evaluated. A lo-
calization was deemed correct if any part of
the manipulated area was slightly visible in
the mask image; otherwise, it was considered
incorrect. As shown in Table 9, our method
demonstrates a clear advantage in accurately
localizing manipulated regions.

Cross-Generator Falsified Region Localiza-
tion. As observed in Table 5, localization
accuracy for hair consistently remains the highest, followed by the nose, brows, and then the ears. For
instance, when trained and tested on SDXL samples, the hair localization accuracy reached 88.99%.
In contrast, localization accuracy for smaller regions, such as the ears, decreases to 59.16%.
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Table 9: Evaluation of falsified regions localization performance across distinct generators with
VLForgery and IFDL method.

Method SD2(%)↑ Kandinsky2.2(%)↑

hair brows ears nose hair brows ears nose
PSCC-Net [27] 53.57 39.47 41.20 29.73 60.71 68.42 63.16 44.44

VLForgery 86.91 53.36 51.99 56.53 92.44 72.61 72.01 91.34

4.2.3 Task3:Attributing Source Models of Synthesis Faces
In this task, we focus on evaluating the VLForgery’s capability to capture the synthesis semantic
patterns of different generators. We fine-tuned VLForgery on the VLF training set, which includes all
subsets, and tested its performance across each generator for the two synthesis types. As shown in
Tab. 6, the attribution performance for full synthesis is superior, with an average accuracy of 91.71%.
However, attribution accuracy for partial synthesis falls below 70%. We attribute this disparity to the
detection difficulty of partial synthesis.

4.3 Ablation Study

Two main factors affect VLForgery forensics performance: (1) the impact of EkCot compared to
outputting only forgery detection results, and (2) the influence of additional visual input features on
forensics performance in EkCot. We conducted ablation studies for both detection and localization
tasks. Table 7 presents the ablation results for the detection task, demonstrating a significant
performance improvement in detecting partially synthesized images when using the EkCot. Table 8
displays the ablation results for the localization task, where the model’s localization capability
significantly decreased without EkCot. And compared to the forgery description generation method
without visual assistance, the model performed better on SDXL and SD2 samples, though it showed
some limitations on Kandinsky 2.2 generated samples.

4.4 Qualitative Study

The primary advantage of the multimodal large language models (MLLMs) is their flexible output,
allowing them to provide a comprehensive analysis of the synthesized images. As shown in Fig. 3, we
compared VLForgery with some existing MLLMs, demonstrating that VLForgery enables detailed
capabilities, including forgery analysis, localization of falsified regions, and synthesis attribution.

5 Conclusion
In this paper, we introduce VLForgery, a framework designed for AI-generated faces in fine-grained
forensics scenarios. To address the lack of partially synthesized face datasets, we constructed VLF.
Additionally, we introduce EkCot, which provides a fine-grained analysis of forgery artifacts. The
satisfying performance of the proposed framework is justified by extensive evaluations.
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A Additional Introduction

A.1 Limitations

Most existing detectors for AI-generated content can achieve relatively good generalization on fully
synthesized images with minimal training data. However, as discussed in the main text, we introduced
additional samples in VLF partial synthesis. These samples incorporate real features from the pristine
images to confuse detectors and evade detection. Even when these partially synthesized images
are included in the training set, many binary classifiers still suffer from performance degradation.
Although our VLF framework achieves the best generalization performance, it still falls short of our
desired outcomes. Furthermore, the cross-generalization ability between different types of models,
such as training on full synthesis and testing on traditional face-swapping deepfakes, is inherently
limited due to differences in the generation processes. Enhancing generalization for more unknown
generation methods remains a field worth exploring.

Moreover, for the VLF dataset, different generators and varying prompts may leave distinct forgery
semantics. It is necessary to expand the dataset and evaluate the detection and generalization
performance across these different forgery semantics.

A.2 Future Works

First, we plan to expand the VLF dataset to encompass a broader range of forgery types, generators,
and a more diverse and randomized set of semantic attributes. Second, we seek to enhance the
model’s generalization across varying forgery types by developing more robust model architectures
and investigating more reliable techniques for generating forgery descriptions.

B Details of VLF Dataset Construction

B.1 Details of Partial Synthesis Pipeline

In this part, we define the pipeline for partial synthesis, which includes three steps: 1) Mask
Preparation; 2) Prompt Design; 3) Image Generation.

Mask Preparation. To ensure the high quality of the partially synthesized images, we utilized
the well-established facial dataset CelebAMask-HQ [19] as a data source since it already contains
landmarks for various face attributes such as nose, brow, hair, ears, eyes, and teeth. However,
to improve the robustness of our later fine-grained analysis framework for more highly realistic
generated images, we only focus on nose, brow, hair, and ears landmarks since they can usually be
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generated more realistically. Other attributes such as eyes and teeth, are often generated with more
obvious artifacts like misaligned pupils or incorrectly positioned teeth, even with specific prompt
design. Therefore, we ignore them during the generation phase but keep their original appearance in
the generated image.

Prompt Design. For the selected attributes, we use GPT-4o to generate each facial attribute dictionary
and prompt template. For each image, we randomly combine masks to generate masked faces.
Therefore, each masked face may contain i ∈ {1, 2, 3, 4} masks. Based on the generated masked face,
we choose and combine templates for the corresponding attributes, then randomly select descriptive
keywords from the relevant attribute dictionary to populate the templates, thereby generating the final
prompt for image partial synthesis.

Image Generation. During the image generation phase, we input the generated masked face,
corresponding final prompt, and pristine face into the Inpainting Generator to produce an inpainted
face. For the Inpainting Generator, several widely used open-source models were selected: SDXL,
SD2, and Kandinsky2.2. Furthermore, to better simulate real-world scenarios, certain forgery
methods extract modified regions and overlay them onto the corresponding area of the pristine image,
preserving the unedited portions of the original. These retained portions can then be leveraged to
interfere with forensic detectors, thereby facilitating evasion. Consequently, we included this category
of partial synthesis in our dataset.

B.2 Details of Full Synthesis Pipeline

Prompt Design. With advancements in generative models, particularly text-guided models that
now support longer input prompts to deliver more diverse outputs. In this context, we propose
a semantic attribute dictionary, created with guidance from ChatGPT-4o, specifically designed to
support the generating of realistic faces across diverse real-world scenarios. And, we further devised
a corresponding prompt template, (i.e., Prompt Warehouse Template, as shown in Fig. 2(b, c)).
By encompassing diverse real-world scenarios and stylistic elements, this template is structured to
simulate realistic facial characteristics across varied photographic conditions.

Image Generation. We introduce two types of fully synthesized forgery: generating identity insertion
(Fig. 2(b)) and non-existent faces (Fig. 2(c)). Both generation approaches utilize the same prompt
template with slight modifications. In the face identity insertion pipeline, the objective is to preserve
the original facial identity while situating it within a new scene. This pipeline initially uses a Face
Feature Extractor to capture identity-specific features. These identity features are then integrated
with the final prompt template and input into the ID-preserving Generator to produce the synthesized
image. InstantID [42] was chosen as the model of choice, with all identities sourced from the
CelebAMask-HQ [19] facial datasets. In the generation of non-existent faces, the diffusion model
creates images of completely new faces that are unrelated to any existing individual based on a given
prompt. In this case, the final prompt is created by randomly selecting keywords from the semantic
attribute dictionary and inserting them into the prompt template, which then serves as the sole input
to the Text-to-Image Generator. For the Text-to-Image Generator, we selected several open-source
models that support extended text inputs, including Flux, SD3, Kandinsky2.2, SD2, and SDXL.

B.3 Details of Attribute Dictionary

Facial Attribute Dictionary: For fine-grained facial manipulations, the dictionary mainly includes
the following attributes:

• [size]: Defines the relative size of facial features.
• [shape]: Specifies the contour and structure of facial features.
• [color]: Describes the color characteristics of facial elements.
• [styles]: Indicates the stylistic choices applied to facial features.
• [description]: Provides a textual description of the face.
• [additional_features]: Lists extra details, such as freckles, scars, wrinkles, or facial expres-

sions, that add realism to the modifications.

The data source of the facial attribute dictionary is shown in Fig. B.1 (a).

Semantic Attribute Dictionary: For semantic attribute dictionary, including following attributes:
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（b）Semantic Attribute Dictionary（a）Facial Attribute Dictionary

Figure B.1: The data source of facial attribute dictionary and semantic attribute dictionary.

• [style_of_photo]: Defines the overall stylistic direction of the image.
• [subject]: Specifies the characteristic attributes of the subject.
• [important_feature]: Important attributes of the subject.
• [more_details]: Further attributes of the subject.
• [pose_or_action]: Interaction between the subject and the scene.
• [framing]: Indicates whether body features are included.
• [lighting]: Lighting conditions in the scene.
• [camera_angle]: Camera shooting angle.
• [camera_properties]: Different parameters produce varying focus effects.
• [photographer]: Similar to camera parameters, the photographer’s choices affect the presen-

tation of the image.

The data source of each attribute is shown in Fig. B.1 (b).

B.4 Examples of VLF Dataset

We selected a subset of samples from the VLF dataset and organized them by categorizing based on
different generators and detailed characteristics.

Fig. B.2 illustrates the partial synthesis generated by different generators guided by the facial attribute
dictionary.

Fig. B.3 illustrates the full synthesis generated by different generators guided by the semantic attribute
dictionary.

C Details of Low-Level Vision Comparison Pipeline

In this section, we elaborate on three aspects: low-level vision prompt design, low-level vision
description analysis, and low-level vision bias analysis.

C.1 Design of Low-Level Vision Prompt

Due to the high fidelity of existing DM-based images, it is challenging to explore subtle differences
between them and real images from a purely visual perspective. However, images generated by
different generators still exhibit certain common characteristics that distinguish them from real images.
We refer to these characteristics as low-level vision biases.

One key challenge is determining the specific aspects in which these low-level vision biases manifest,
such as lighting, noise, or color distribution. To address this, we investigate these biases from the
following 10 low-level perspectives:
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Figure B.2: Examples of Partial Synthesis in VLF.

Figure B.3: Examples of Full Synthesis in VLF.
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10 Perspectives:
Are the edges sharp, blurry, or fragmented? Are the outlines complete or irregular? Are there any areas with particularly high or low edge

density? Do the edges follow a specific direction (e.g., horizontal, vertical, diagonal)? Provide specific examples of edge and contour
characteristics in different parts of the image.

Analyze the brightness and contrast of the image in detail. Is the image overall too bright, too dark, or well-balanced? Are there any areas with
extreme highlights or shadows? Describe the distribution of contrast across the image. Are there any signs of overexposure or underexposure?
Provide specific examples of brightness and contrast variations in different parts of the image.

Is the image overall sharp or blurry? If blurry, what type of blur is present (e.g., motion blur, Gaussian blur, defocus blur)? Are there specific
areas that are more blurred than others? Compare the sharpness of different regions in the image. Provide specific examples of sharp and blurry
areas.

What are the dominant colors, and how are they distributed across the image? Are the colors evenly distributed, or are there any anomalies
like oversaturation, color distortion, or color blocks? Analyze the brightness and saturation of colors in different parts of the image. Provide
specific examples of color characteristics and anomalies.

Are there any geometric distortions, such as stretching, warping, or asymmetry? Are there any compression artifacts, like blocky patterns or
jagged edges? Analyze the symmetry of the image. Are there any unnatural deformations? Provide specific examples of distortions and
anomalies in different parts of the image.

Is the image noisy? If so, what type of noise is present (e.g., Gaussian noise, salt-and-pepper noise, quantization noise)? Describe the
intensity and distribution of noise across the image. Analyze the texture complexity—is it uniform or varied? Are there any directional patterns in
the texture? Provide specific examples of noise and texture characteristics in different parts of the image.

Is the lighting uniform or uneven? Are the shadows natural and consistent with the lighting direction, or do they appear unnatural? Compare
the highlights and shadows in different parts of the image. Are there any lighting anomalies, such as overly bright or dark areas? Provide specific
examples of lighting and shadow characteristics.

Are the details rich and well-defined, or are they lacking? How does the resolution affect the clarity of the image? Are there any areas where
details are particularly sharp or blurry? Check for any loss of detail in specific regions. Provide specific examples of detail and resolution
characteristics.

"Are there any compression artifacts, sharpening artifacts, or color artifacts? Describe the location and intensity of these artifacts. Are there
any signs of unnatural image processing? Identify any abnormal regions in the image and describe their characteristics. Provide specific
examples of artifacts and anomalies.

Does the image have a high or low dynamic range? Is the tone mapping natural, or does it appear unnatural? Check how well the highlights
and shadows retain details. Are there any tone mapping anomalies, such as clipped highlights or crushed shadows? Provide specific examples of
dynamic range and tone mapping characteristics.

Limit
Do not use relative terms like more, less, etc.

Template
Compare the low-level visual features of image_1 and image_2. Focus on the following aspects for each image: [{Perspectives[idx]}]. Format your
response as follows: - image_1: [description], - image_2: [description]. But note: {limit}.

Figure C.1: The details of the prompt template employed within the low-level vision comparison
pipeline for the full synthesis.

• Edges and contours.
• Brightness and contrast.
• Blurriness and sharpness.
• Color distribution.
• Distortions and anomalies.
• Noise and texture.
• Lighting and shadows.
• Level of detail and resolution.
• Artifacts and anomalies.
• Dynamic range and tone mapping.

Based on these ten perspectives, we designed corresponding prompt templates. The low-level vision
comparison prompt for full synthesis is shown in Fig. C.1.

Specifically, for partial synthesis, since we only need to explore the low-level differences between
the synthesized regions and their corresponding real counterparts, we incorporate region-specific
nouns as parameters in the prompt. The low-level vision comparison prompt for partially synthesized
images is illustrated in Fig. C.2.

C.2 Analysis of Low-Level Vision Description

To mitigate survivor bias and potential discrepancies in low-level vision bias across different genera-
tors, for each category of full synthesis samples, we generated 12,000 differential descriptions from
10 distinct low-level vision perspectives, resulting in a total of 120,000 differential descriptions per
full synthesis subset. Subsequently, we selected compound nouns from the 12,000 descriptions for
each perspective and calculated their frequency proportions. In addition, it is necessary to generate
corresponding real-image low-level vision comparison descriptions based on the synthesis sample
categories and subsequently calculate the frequency proportions of compound nouns.
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10 Perspectives:
Describe the edges and contours in the {region} of the image in detail. Are the edges sharp, blurry, or fragmented? Are the outlines complete

or irregular? Are there any areas with particularly high or low edge density in the {region}? Do the edges follow a specific direction (e.g.,
horizontal, vertical, diagonal)? Provide specific examples of edge and contour characteristics in the {region}.

Analyze the brightness and contrast in the {region} of the image in detail. Is the {region} overall too bright, too dark, or well-balanced? Are
there any areas with extreme highlights or shadows in the {region}? Describe the distribution of contrast across the {region}. Are there any signs
of overexposure or underexposure in the {region}? Provide specific examples of brightness and contrast variations in the {region}.

Evaluate the blurriness and sharpness of the {region} in the image in detail. Is the {region} overall sharp or blurry? If blurry, what type of blur is
present (e.g., motion blur, Gaussian blur, defocus blur)? Are there specific areas within the {region} that are more blurred than others? Compare
the sharpness of different parts of the {region}. Provide specific examples of sharp and blurry areas in the {region}.

Describe the color distribution in the {region} of the image in detail. What are the dominant colors in the {region}, and how are they distributed?
Are the colors evenly distributed in the {region}, or are there any anomalies like oversaturation, color distortion, or color blocks? Analyze the
brightness and saturation of colors in the {region}. Provide specific examples of color characteristics and anomalies in the {region}.

Check for any distortions or anomalies in the {region} of the image in detail. Are there any geometric distortions in the {region}, such as
stretching, warping, or asymmetry? Are there any compression artifacts in the {region}, like blocky patterns or jagged edges? Analyze the
symmetry of the {region}. Are there any unnatural deformations in the {region}? Provide specific examples of distortions and anomalies in the
{region}.

"Analyze the noise and texture in the {region} of the image in detail. Is the {region} noisy? If so, what type of noise is present (e.g., Gaussian
noise, salt-and-pepper noise, quantization noise)? Describe the intensity and distribution of noise across the {region}. Analyze the texture
complexity in the {region}—is it uniform or varied? Are there any directional patterns in the texture of the {region}? Provide specific examples of
noise and texture characteristics in the {region}.

Analyze the lighting and shadows in the {region} of the image in detail. Is the lighting in the {region} uniform or uneven? Are the shadows in the
{region} natural and consistent with the lighting direction, or do they appear unnatural? Compare the highlights and shadows in different parts of
the {region}. Are there any lighting anomalies in the {region}, such as overly bright or dark areas? Provide specific examples of lighting and
shadow characteristics in the {region}.

Evaluate the level of detail and resolution in the {region} of the image in detail. Are the details in the {region} rich and well-defined, or are they
lacking? How does the resolution affect the clarity of the {region}? Are there any areas within the {region} where details are particularly sharp or
blurry? Check for any loss of detail in specific parts of the {region}. Provide specific examples of detail and resolution characteristics in the
{region}.

Check for any artifacts or anomalies in the {region} of the image in detail. Are there any compression artifacts, sharpening artifacts, or color
artifacts in the {region}? Describe the location and intensity of these artifacts in the {region}. Are there any signs of unnatural image processing in
the {region}? Identify any abnormal regions within the {region} and describe their characteristics. Provide specific examples of artifacts and
anomalies in the {region}.

Analyze the dynamic range and tone mapping in the {region} of the image in detail. Does the {region} have a high or low dynamic range? Is
the tone mapping in the {region} natural, or does it appear unnatural? Check how well the highlights and shadows in the {region} retain details.
Are there any tone mapping anomalies in the {region}, such as clipped highlights or crushed shadows? Provide specific examples of dynamic
range and tone mapping characteristics in the {region}.

Limit
Do not use relative terms like more, less, etc.

Template
Compare the low-level visual features of image_1 and image_2. Focus on the following aspects for each image: [{Perspectives[idx]}]. Format your
response as follows: - image_1: [description], - image_2: [description]. But note: {limit}.

Figure C.2: The details of the prompt template employed within the low-level vision comparison
pipeline for the partial synthesis.

A simple example of the full synthesis samples in the SDXL category is illustrated in Fig. C.3.
This image illustrate the proportion of compound nouns at the low-level vision perspective for edges
and contours, with the upper-left image displaying the noun proportion ranking for synthesis, and the
lower-left image showing the noun proportion ranking for real.

To identify the nouns that may serve as judgment biases for MLLMs, we computed the maximum
differences in noun proportions between real and synthesis images, with the results presented in
the right half of Fig. C.3. It is evident that, compared to the SDXL category of synthesis images,
real images exhibit a 20% proportion of ‘smooth outlines’, ‘well-defined contours’, and ‘noticeable
fragmentation’, while over 70% display ‘low edge densities’. In contrast, synthesis images have less
than 20% exhibiting ‘low edge densities, but a significantly higher proportion of ‘high edge densities’,
alongside low-level visual features, such as ‘irregular outlines’ and ‘lower edge density’, not present
in real images.

Therefore, for synthesis images in SDXL category, the judgment biases derived from the low-level
vision analysis at the edges and contours perspective are as follows: they are likely to exhibit features
such as irregular outlines and lower edge density, and, in comparison to real images, they are more
prone to display high edge density.

A simple example of the partial synthesis samples in the SDXL category is illustrated in Fig. C.4
and Fig. C.5. Notably, for partial synthesis images, we generated differential descriptions from 10
distinct low-level vision perspectives for each of four selected regions, as outlined in Sec. B.1. For
each category of partial synthesis images, a total of 480,000 differential descriptions were generated.
We observed that even for partial synthesis derived from the same real, differences in the modified
region led to slight differences in low-level vision bias. Therefore, in Fig. C.4 and Fig. C.5, we
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Fake Low-Level Features

Real Low-Level Features

Figure C.3: The low-level vision bias obtained after processing full synthesis images through the
low-level comparison pipeline.

Real Low-Level Features

Fake Low-Level Features

Figure C.4: The low-level vision bias obtained after processing hair-tampered images through the
low-level comparison pipeline.

present the ranked data for two types of regions with significant size differences–hair (i.e., Fig. C.4)
and brows (i.e., Fig. C.5) (low-level vision perspective: lighting and shadows).

It can be observed that even within the same low-level vision aspect, judgment bias varies significantly
across different regions. For instance, in Fig. C.4, real images exhibit more pronounced characteristics
in lighting and shadows perspective, such as ‘overly bright areas’, ‘dark regions’, and ‘significant
lighting anomalies’ when compared to manipulated images with hair modifications. However, in
Fig. C.5, real images compared to eyebrow-edited fake images display ‘higher contrast’, a ‘more
natural appearance’, and ‘multiple lighting angles’—features that are not observed in the manipulated
images.

Fake Low-Level Features

Real Low-Level Features

Figure C.5: The low-level vision bias obtained after processing brow-tampered images through the
low-level comparison pipeline.
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C.3 Analysis of Low-Level Vision Bias

During the noun selection process, issues such as synonymy, ambiguous terms, and minimal propor-
tions differences in noun characteristics between real and fake images often arise. Consequently, not
every feature with a large proportional difference should be considered a judgment bias. For example,
‘low edge density’ and ‘low edge densities’ in Fig. C.3, as well as ‘different parts’ and ‘left side’
in Fig. C.4, illustrate such cases. Therefore, manual filtering is required to identify distinguishing
low-level vision features that can effectively differentiate real from fake images.

In Fig. C.6, we demonstrate the process of applying the low-level vision comparison pipeline to a fake
image generated by SDXL. The pipeline extracts low-level vision biases, which are then manually
filtered to obtain the final judgment bias descriptors.

D Full Experiment Result of VLF

This section provides a detailed description of all aspects involved in the experimental phase of
the VLForgery framework, including the quantification of textual outputs, error analysis, additional
metric evaluations, and extended experiments.

D.1 Quantitative Analysis of Results

Name Train–SDXL%↓ SD2%↓ Kandinsky2.2%↓ SD3%↓ Flux%↓ InstantID%↓ Avg%↓
PS FS PS FS PS FS

VariantA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
VariantB 0.00 3.52 0.00 3.11 0.00 3.88 1.60 5.83 6.45 2.71

Table D.1: Error study.

Result quantification: We employed regular expressions to filter MLLM outputs across multiple
tasks. During testing, while the answers seemed correct, they did not always match the groundtruth
due to issues like case mismatches (e.g., ‘True’ vs. ‘true’, ‘Fake’ vs. ‘fake’). Although synonyms did
occur (e.g., ‘fake’ vs. ‘false’), such cases were extremely rare. To address this, we created a synonym
pool and preprocessed the results. If the model’s output matched an entry in the synonym pool, we
considered it correct (e.g., ‘false’ was treated as ‘fake’).

Error Analysis: To address the inconsistency in detection results, we analyzed two key issues: 1.
Variant A: Mismatch between authenticity judgment and forgery type (e.g., detected as ‘real’ but
labeled as ‘full synthesis’). 2. Variant B: Mismatch between forgery type and falsified region (e.g.,
labeled as ‘full synthesis’ but falsified region is ‘hair’). The results are shown in Tab D.1.

D.2 Experimental Results Supplement

Comparative Analysis of Single and Multi-edited Images. Given that multi-edited faces may
disturb the detector’s judgment, we divided the test data for each region into single-edited and
multi-edited groups. We fine-tuned VLForgery on SDXL partial synthesis and subsequently tested it
on both single-edited and multi-edited faces across four regions’ test sets. As shown in Fig. D.1, we
visualized the localization results of these two groups for four regions, respectively.

The results reveal that, although localization difficulty varies across regions, single-edit images are
generally easier to locate compared to multi-edit images.

Additional metrics for evaluation. We introduce two additional metrics, F1 and Precision, to
comprehensively evaluate the detection performance of different models. Tab. D.2 illustrates the
precision performance of different models across various subset test sets, while Tab. D.3 demonstrates
their F1 performance on the same subsets.

E Additional Information on VLForgery

In this section, we present all additional details related to the VLForgery framework that were not
covered in previous sections. These include the prompt design, question formulation, and inference
result examples used in the fine-tuning and inference modules of MLLMs; the full low-level vision
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**Artifacts:**
   - Most fake images lack visible
compression artifacts, sharpening
artifacts, or color artifacts, while real
images may occasionally show these.
   - Fake images often exhibit higher image
quality.
   - A small number of fake images may
show unnatural semantic signs.

**Blurriness and Sharpness:**
   - Most real and fake images show little
visible blur.
   - Some fake images may still have blurry
areas.
   - Real images often have clearer and
more detailed skin textures compared to
fake ones.
   - A few fake images may show
unfocused blur.

**Brightness and Contrast:**
   - Most real images have balanced
brightness and contrast, while some fake
images may show imbalances.
   - Real images usually have neutral
overall tones, while some fake images
may have more varied tones.
   - Most images have balanced exposure,
but some fake images may show uneven
exposure.

*Color Distribution:**
   - Both real and fake images generally have
uniform color distribution, but fake images
may be slightly less uniform.
   - A very small number of fake images may
have a dominant earthy tone, which is rare in
real images.
   - Real images may show soft glows around
subjects, which is uncommon in fake images.
   - Real images are more likely to have
oversaturated colors or natural tones
compared to fake images.

**Distortions and Anomalies:**
   - Most real images are natural
close-up portraits under natural
light.
   - Real images often have
features captured at low
resolution, which is rare in fake
images.

Figure C.6: The process of manually extracting final judgment bias descriptors from low-level vision
bias

hair hair hairbrow ear nose brow ear nose brow ear nose

Ac
cu
ra
cy

SD2 SDXLkandinsky2.2

Figure D.1: Visualization of model’s localization accuracy on single-edited and multi-edited faces.
The Large ACC area means better localization capability.

22



Method Train–SDXL↑ SD2↑ Kandinsky2.2↑ SD3↑ Flux↑ InstantID↑ Avg↑
PS FS PS FS PS FS

Resnet-50 90.77 89.82 76.88 89.43 94.24 89.6 88.9 89.27 77.71 87.4
Xception 79.83 64.69 69.94 64.14 84.9 64.62 64.17 64.47 43.19 66.66

SPSL 90.1 90.08 57.95 89.8 93.67 90.07 89.8 90.02 78.26 85.53
DRCT∗ 86.7 78.02 86.87 77.73 91.83 78.11 70.2 67.84 59.55 77.38

NPR 65.52 58.43 31.27 58.19 75.84 58.33 58.01 58.38 36.8 55.64
CLIPping Adapter 53.45 49.96 50.42 48.54 70.37 49.58 49.63 49.47 28.78 50.02

CLIPping LP 66.4 50.25 63.48 49.54 73.64 50.16 49.72 50.01 29.58 53.64
SRM 69.34 54.66 31.96 54.33 78.97 54.56 54.28 54.21 32.78 53.9
F3Net 91.40 81.91 87.08 81.84 92.14 81.91 81.82 81.92 65.34 82.81

GramNet 87.42 86.52 74.38 86.16 90.77 86.48 85.71 86.44 70.29 83.80
SAFE 61.92 42.73 60.89 42.58 61.85 41.8 44.57 34.15 21.3 45.75

CNNspot 91.4 92.59 78.5 90.3 91.59 90.43 83.59 89.93 79.64 87.55
VLForgery 91.41 81.04 89.98 81.03 93.12 81.03 81.04 81.03 63.94 82.62

Table D.2: Precision.

Method Train–SDXL↑ SD2↑ Kandinsky2.2↑ SD3↑ Flux↑ InstantID↑ Avg↑
PS FS PS FS PS FS

Resnet-50 50.61 94.52 20.56 92.45 72.11 93.32 89.73 91.59 85.32 76.69
Xception 73.55 78.56 50.98 77.4 90.5 78.41 77.47 78.1 60.25 73.91

SPSL 46.81 94.77 8.85 93.22 66.39 94.7 93.22 94.42 85.86 75.36
DRCT∗ 69.25 87.43 69.93 86.58 95.43 87.68 68.02 63.15 74.34 77.98

NPR 51.68 73.76 15.41 73.29 73.08 73.57 72.95 73.65 53.71 62.34
CLIPping Adapter 43.23 66.61 39.25 64.1 72.63 65.93 66.02 65.73 44.4 58.66

CLIPping LP 64.01 66.88 58.55 65.62 79.9 66.73 65.94 66.46 45.63 64.41
SRM 63.87 70.67 17.76 70.07 87.6 70.5 69.97 69.85 49.01 63.26
F3Net 81.84 90.02 61.02 89.79 86.58 90.01 89.73 90.05 78.99 84.23

GramNet 49.13 92.77 23.96 91.23 63.11 92.6 89.4 92.41 78.33 74.77
SAFE 59.07 56.21 57.28 55.94 58.96 54.66 59.27 42.73 32.81 52.99

CNNspot 40.85 95.18 16.21 80.73 41.67 81.47 54.06 78.72 76.5 62.82
VLForgery 84.53 89.52 76.36 89.51 96.42 89.51 89.52 89.51 77.87 86.97

Table D.3: F1.

bias results from the low-level vision comparison pipeline; as well as comparative examples of
inference results from other multimodal language models.

E.1 Details of the Fine-Tuning and Inference Modules

This section describes the fine-tuning and inference module and the various templates required for
EkCot generation.

Fig. E.1 outlines the specific contents of the general rule template involved in the description
generation module. The templates incorporate additional knowledge, such as ground truth and
low-level vision bias, represented by specific placeholders. For example, ‘detection_result’ indicates
whether the image is real or fake, ‘text_prompt’ represents the prompt used during the image
generation process, and ‘judgmentbias’ denotes the low-level vision judgment bias knowledge
required for analysis.

Fig. E.2 illustrates all the question formats randomly generated by GPT-4o for the final fine-tuning
dataset.

E.2 Comparison of the Inference Result with Other MLLMs

We randomly selected three representative samples of forged images, each corresponding to a distinct
type of forgery, and demonstrated the reasoning outcomes generated by our framework in comparison
to those produced by other open-source Multimodal Large Language Models (MLLMs). Fig. E.3
presents the analysis results generated by different reasoning models for a synthetic image created
through identity insertion. Fig. E.4 presents the analysis results generated by different reasoning
models for a synthetic image created through sdxl model. Fig. E.5 presents the analysis results
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You are an expert in detecting and analyzing face forgeries.

We categorize detection tasks into three primary aspects:
        1.Detecting the authenticity of faces.
        2.Identifying falsified regions.
        3.Tracing the generation process of forgery faces.
We also categorize forgery datasets into five types of forgerys

1.Facial fine-grained semantic editing.
        2.Identity transformation.
        3.Non-existent faces.
You will be provided with the following informations:
        - A text prompt used during the generation process of the image: {text_prompt}
        - The detection result of the image: {detection_result}
        - The forgery type of the image: {forgery_type}
        - The falsified region of the image: {falsified_region}
        - The method used to generate the forgery: {forgery_method}

I need your help to determine whether an image is AI-generated or real. I have provide you with
an image and tell you all the groundtruth and informations about this image, but I am unsure what
specific features make it fake or real . Based on my research, here are some key differences
between real and AI-generated images that you should analyze:{judgmentbias}

**Output format:**
1.**Detection Result**: real/fake.
2.**Forgery analysis**: Based on the key differences I have provided to you. analyze the image I
provide and explain why it might be fake or real. Focus on identifying specific features or
anomalies that align with the characteristics of AI-generated images as described above. Provide a
detailed explanation of your findings.
3.**Forgery Type**: facial fine-grained semantic editing/identity transformation/non-existent
faces/none.
4.**Falsified Region**: hair/ear/nose/brow/....../full synthesis/none.
5.**Forgery Method**:
SDXL/SD2/Kandinsky/Flux/Midjourney....../Playground/Titan/Ideogram/none.

**Rules**:
       1. Do not use bold for any titles in the output.
       2. Generate answers strictly within the word limit.

Figure E.1: Specific details of the General Rule Template used in the forgery description module.

generated by different reasoning models for a partial synthetic image created through sdxl-inpainting
model.
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Does this image show a genuine or artificially created human face? What clues help you decide?
Is the human face depicted in this image real or generated? What evidence supports your answer?
Do you believe this face in the image is natural or synthetically created? What leads you to that conclusion?
Looking at this face, is it an authentic human face or a digital imitation? What observations influence your judgment?
Can you tell if the face in this image is unmodified or manipulated? What details did you consider?
Is this a true representation of a human face or a manipulated one? Explain your reasoning.
Would you say this image contains a real human face or an artificial one? What factors helped you determine that?
This image features a human face. Is it authentic or digitally created? What makes you think so?
Do you think the face shown in this image is genuine or doctored? What clues did you find?
Is the human face in this image unedited or altered? What details support your conclusion?
Does this image present a real human face or a computer-generated one? What observations led you to that assessment?
In this image, is the human face natural or modified? What makes you draw that conclusion?
Would you classify the face in this image as real or synthetic? What evidence do you base your answer on?
Is this an actual human face or a digitally constructed one? Describe the signs that influenced your evaluation.
Does this face look like a natural one, or does it appear to be digitally altered? What indicators made you think that?
Can you determine if the human face here is authentic or fabricated? What details did you analyze?
Is the human face shown genuine, or does it have signs of digital editing? What observations led you to your conclusion?
Does this image feature a true human face or a manipulated one? What evidence supports your interpretation?
Do you think the face in this image is original or has been digitally adjusted? Explain your observations.
Is the human face depicted here real or a product of digital manipulation? What clues indicate your choice?
The image contains a human face. Would you say it’s unedited or modified? What factors influenced your judgment?
Is this a faithful depiction of a human face, or does it show signs of alteration? What details influenced your view?
Is the face in this image authentic or tampered with? What observations led you to your conclusion?
Does this appear to be a genuine human face or one that's digitally fabricated? What cues influenced your perspective?
Would you say this image represents a natural human face, or does it seem artificial? What details did you consider?
Is the human face in this image untouched or altered? What leads you to your judgment?
The image depicts a human face. Do you believe it's authentic or digitally altered? Explain your reasoning.
Is this a real human face, or has it been digitally altered? What makes you think that?
Looking at this image. Is it genuine or a fake? What clues lead you to your conclusion?
Do you believe this face looks authentic or manipulated? What reasoning backs up your belief?
Does the image depict a real human face, or does it show evidence of editing? What clues suggest this to you?
Can you identify whether this face is naturally occurring or generated? What led you to that decision?
Does this image show an unmodified human face or one that's digitally constructed? What observations support your claim?
Is the face in this image genuine, or does it appear to be digitally produced? What makes you think so?
Do you see this as a natural human face or a synthetic one? What evidence backs up your impression?
Does the human face in this image seem real, or does it give signs of digital creation? What led you to conclude that?
Would you consider this human face real or manipulated? What details in the image suggest this to you?
Does the human face look natural or altered? What observations support your view?
Do you believe the image presents a real human face, or does it have features of digital editing? What clues support this?
This is a image of a human face. Can you determine if it's real or artificial? What supports your answer?
Does the image contain a natural human face or one that is artificially generated? What leads you to believe that?
Is this a digitally created or a real human face? What evidence do you rely on?
Does the face shown in the image appear genuine or manipulated? What factors influence your decision?
Can you determine if this human face is real or digitally modified? What indicators did you examine?
A human face appears in the image. Do you think it’s real or altered? What makes you say so?
There’s a human face in this image. Is it natural or fake? What evidence supports your conclusion?
This image displays a human face. Is it genuine or manipulated? What leads you to that decision?
A human face is present in this image. Is it authentic or doctored? Provide your reasoning.
This image shows a human face. Do you think it’s real or a forgery? What observations support your answer?

Figure E.2: Randomly generated question descriptions using ChatGPT-4o.
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VLFrorgery

Detection Result: fake
Forgery Analysis: The image exhibits several characteristics that are common in AI-
generated images, such as a lack of visible compression artifacts, sharpening artifacts, or color
artifacts, and a higher image quality compared to real images.   The image has a blurred
background, which is a common feature in fake images.  The lighting in the image is also
unnatural, with a bright and even illumination that is not typical of real-life photography.   
Furthermore, the image has a uniform color distribution, which is a characteristic of AI-
generated images.  Overall, the image appears to be a forgery created using a method such
as InstantID.
Forgery Type: identity insertion
Falsified Region: full synthesis
Forgery Method：InstantID

There’s a human face in this image.
Is it natural or fake?What evidence supports your conclusion?

The human face in the image is natural, as it is a close-up of a man with a beard and glasses. The
evidence supporting this conclusion is the presence of the man's facial features, such as his beard,
glasses, and the wrinkles around his eyes and mouth. These features are typical of a human face and
are not indicative of a fake or artificial representation. 🌋

LLaVA

The face in the image appears to be a combination of natural and artificial elements. Here are some pieces of
evidence that support this conclusion:
1. Facial Features: The face has realistic facial features such as skin texture, wrinkles, and a natural-looking
beard and mustache. These features are typically found in a real person.
2. Lighting and Shadows: The lighting and shadows on the face are consistent with natural lighting, which
suggests that the face is not entirely computer-generated.
3. Reflections in Glasses: The glasses reflect the lights in the background, which is a common feature in real-
life photography. 

Qwen

Llama

The face in this image is not a natural face, but rather a mannequin head. The evidence that supports this
conclusion includes the following:

*   Unnatural skin texture: The skin on the face appears smooth and even, which is not typical of human skin.
Human skin has natural wrinkles, pores, and imperfections that are absent in this image.
*   Lack of facial hair: The mannequin head does not have any facial hair, including eyebrows, eyelashes, or
a beard. Human faces typically have some level of facial hair, especially as people age.
*   Inconsistent eye shape: The eyes on the mannequin head are perfectly round and symmetrical, which is
not characteristic of human eyes. Human eyes are often slightly asymmetrical and have a more irregular
shape.
*   Unnatural eye color: The eyes on the mannequin head appear to be a uniform color, which is not typical of
human eyes. Human eyes often have a range of colors and shades, including brown, blue, green, and hazel.
*   Lack of expression: The mannequin head does not have any visible expression, which is unusual for a
human face. Human faces often display a range of emotions through facial expressions

Figure E.3: Comparison of responses to the full synthesis between other widely used MLLMs and
the VLForgery framework. The sample shown is an identity insertion face generated by the InstantID
model.
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VLFrorgery

Detection Result:fake
Forgery Analysis:  The image appears to be fake due to several characteristics that are
common in AI-generated images.  Firstly, the image has a high level of detail and sharpness,
which is unusual for real images.  The skin texture is also unnatural, with a smooth and
uniform appearance that is not typically seen in real people.  Additionally, the lighting in the
image is overly dramatic, with strong highlights and shadows that are not consistent with
natural lighting.  The overall color palette is also somewhat muted, which is not typical of real
images.  Furthermore, the image has a slightly blurred background, which is not consistent
with the sharp focus on the subject's face.  Finally, the image has a slightly unnatural
composition, with the subject's head tilted at an unusual angle and the camera angle that is not
typical of real photographs.  These features, combined with the overall aesthetic of the image,
suggest that it is likely a fake image generated using AI.
Forgery Type: non-existent faces
Falsified Region: full synthesis
Forgery Method: flux

There’s a human face in this image.
Is it natural or fake?What evidence supports your conclusion?

The face in the image is natural, as it is a woman's face with her eyes, nose, and mouth clearly
visible. The evidence supporting this conclusion is the presence of the woman's facial features,
which are distinct and recognizable. The image does not show any signs of being manipulated
or altered, such as an unnatural skin texture or an overly smooth appearance. The woman's
face appears to be a genuine representation of a human face, without any indication of being
artificial or digitally manipulated. 🌋

LLaVA

The human face in the image appears to be natural. The following evidence supports this
conclusion:\n\n1. Skin Texture and Lighting: The skin texture looks realistic, with natural
lighting that highlights the facial features without any obvious signs of artificial enhancement.
2. Facial Features: The facial features, such as the eyes, nose, and lips, appear to be well-
defined and consistent with natural human anatomy.
3. Hair and Makeup: The hair and makeup look natural and well-executed, without any
exaggerated or artificial elements.
4. **Overall Appearance**: The overall appearance of the face does not exhibit any signs of
digital manipulation, such

Qwen

Llama

The human face in the image appears to be natural, but it is actually a tattoo. The evidence
supporting this conclusion is the presence of a tattoo on the forehead, which is a common
location for tattoos. Additionally, the overall appearance of the face and the surrounding skin
tone suggest that it is a natural face, rather than a fake one

Figure E.4: Comparison of responses to the full synthesis between other widely used MLLMs and
the VLForgery framework. The sample shown is a non-existent face generated by the flux model.
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VLFrorgery

Detection Result:fake
Forgery Analysis:  The image appears to be fake due to several anomalies.  Firstly, the hair
color is too uniform and lacks natural variations, which is a common trait in AI-generated
images.  Additionally, the hair texture seems overly smooth and lacks the natural imperfections
found in real hair.  Furthermore, the lighting and shadows on the hair are not consistent with
real-world lighting conditions, suggesting that the image has been manipulated.  The overall
appearance of the image, including the hair, is too perfect and lacks the subtle nuances found
in real people's faces.
Forgery Type: facial fine-grained semantic editing
Falsified Region: hair
Forgery Method: SDXL

There’s a human face in this image.
Is it natural or fake?What evidence supports your conclusion?

The human face in the image is natural, as it is a woman smiling and posing for a picture. The
evidence supporting this conclusion is the woman's facial features, such as her eyes, nose,
and mouth, which are clearly visible and appear to be in proportion to her face. Additionally, the
woman's expression and overall appearance convey a genuine, natural smile, which is
consistent with a real human face. 🌋

LLaVA

'The face in the image appears to be natural. The lighting, skin texture, and overall appearance
are consistent with a real human face. There are no visible signs of digital manipulation or
artificial features that would suggest otherwise.

Qwen

Llama

The image depicts a human face, specifically a woman's, with a smile. The woman's face appears to be
natural, and there is no evidence to suggest that it is fake. The following reasons support this conclusion:
1. Facial features: The woman's facial features, such as her eyes, nose, and mouth, are all
present and appear to be in proportion to one another. There is no indication of any artificial
enhancements or alterations.2. Skin texture: The skin texture of the woman's face appears to
be smooth and natural, with no visible signs of artificial aging or wrinkles.3. Hair: The woman's
hair is also natural, with no visible signs of artificial coloring or styling.4. Eyes: The woman's
eyes are also natural, with no visible signs of artificial enhancement or alteration.5. Smile: The
woman's smile appears to be genuine and natural, with no visible signs of artificial teeth or
dental work.Overall, based on the evidence presented in the image, it appears that the
woman's face is natural and not fake

Figure E.5: Comparison of responses to the partial synthesis between other widely used MLLMs and
the VLForgery framework. The sample shown is a hair-edited face generated by the sdxl model.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Refer to Sec. A.1.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [TODO]
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Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Refer to Sec. 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [TODO]
Justification: [TODO]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Refer to Sec. 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Refer to Sec. D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Refer to Sec. 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Refer to Sec. 1.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [TODO]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]

Justification: Refer to Sec. E.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [TODO]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [TODO]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [TODO]
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Justification: [TODO]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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