
Under review as a conference paper at ICLR 2023

SGD THROUGH THE LENS OF KOLMOGOROV COM-
PLEXITY

Anonymous authors
Paper under double-blind review

ABSTRACT

We initiate a thorough study of the dynamics of stochastic gradient descent (SGD)
under minimal assumptions using the tools of entropy compression. Specifically, we
characterize a quantity of interest which we refer to as the accuracy discrepancy.
Roughly speaking, this measures the average discrepancy between the model
accuracy on batches and large subsets of the entire dataset. We show that if this
quantity is sufficiently large, then SGD finds a model which achieves perfect
accuracy on the data in O(1) epochs. On the contrary, if the model cannot perfectly
fit the data, this quantity must remain below a global threshold, which only depends
on the size of the dataset and batch.
We use the above framework to lower bound the amount of randomness required
to allow (non-stochastic) gradient descent to escape from local minima using
perturbations. We show that even if the model is extremely overparameterized,
at least a linear (in the size of the dataset) number of random bits are required to
guarantee that GD escapes local minima in subexponential time.

1 INTRODUCTION

Stochastic gradient descent (SGD) is at the heart of modern machine learning. However, we are still
lacking a theoretical framework that explains its performance for general, non-convex functions. Cur-
rent results make significant assumptions regarding the model. Global convergence guarantees only
hold under specific architectures, activation units, and when models are extremely overparameterized
(Du et al., 2019; Allen-Zhu et al., 2019; Zou et al., 2018; Zou and Gu, 2019). In this paper, we take a
step back and explore what can be said about SGD under the most minimal assumptions. We only
assume that the loss function is differentiable and L-smooth, the learning rate is sufficiently small
and that models are initialized randomly. Clearly, we cannot prove general convergence to a global
minimum under these assumptions. However, we can try and understand the dynamics of SGD - what
types of execution patterns can and cannot happen.

Motivating example: Suppose hypothetically, that for every batch, the accuracy of the model after
the Gradient Descent (GD) step on the batch is 100%. However, its accuracy on the set of previously
seen batches (including the current batch) remains at 80%. Can this process go on forever? At first
glance, this might seem like a possible scenario. However, we show that this cannot be the case. That
is, if the above scenario repeats sufficiently often the model must eventually achieve 100% accuracy
on the entire dataset.

To show the above, we identify a quantity of interest which we call the accuracy discrepancy (formally
defined in Section 3). Roughly speaking, this is how much the model accuracy on a batch differs from
the model accuracy on all previous batches in the epoch. We show that when this quantity (averaged
over epochs) is higher than a certain threshold, we can guarantee that SGD convergence to 100%
accuracy on the dataset within O(1) epochs w.h.p1. We note that this threshold is global, that is, it
only depends on the size of the dataset and the size of the batch. In doing so, we provide a sufficient
condition for SGD convergence.

The above result is especially interesting when applied to weak models that cannot achieve perfect
accuracy on the data. Imagine a dataset of size n with random labels, a model with n0.99 parameters,
and a batch of size log n. The above implies that the accuracy discrepancy must eventually go below

1With high probability means a probability of at least 1− 1/n, where n is the size of the dataset.

1

Under review as a conference paper at ICLR 2023

the global threshold. In other words, the model cannot consistently make significant progress on
batches. This is surprising because even though the model is underparameterized with respect to the
entire dataset, it is extremely overparameterized with respect to the batch. We verify this observation
experimentally (Appendix B). This holds for a single GD step, but what if we were to allow many
GD steps per batch, would this mean that we still cannot make significant progress on the batch? This
leads us to consider the role of randomness in (non-stochastic) gradient descent.

It is well known that overparameterized models trained using SGD can perfectly fit datasets with ran-
dom labels (Zhang et al., 2017). It is also known that when models are sufficiently overparameterized
(and wide) GD with random initialization convergences to a near global minimum (Du et al., 2019).
This leads to an interesting question: how much randomness does GD require to escape local minima
efficiently (in polynomial time)? It is obvious that without randomness we could initialize GD next
to a local minimum, and it will never escape it. However, what about the case where we are provided
an adversarial input and we can perturb that input (for example, by adding a random vector to it),
how many bits of randomness are required to guarantee that after the perturbation GD achieves good
accuracy on the input in polynomial time?

In Section 4 we show that if the amount of randomness is sublinear in the size of the dataset, then
for any differentiable and L-smooth model class (e.g., a neural network architecture), there are
datasets that require an exponential running time to achieve any non-trivial accuracy (i.e., better than
1/2 + o(1) for a two-class classification task), even if the model is extremely overparameterized. This
result highlights the importance of randomness for the convergence of gradient methods. Specifically,
it provides an indication of why SGD converges in certain situations and GD does not. We hope this
result opens the door to the design of randomness in other versions of GD.

Outline of our techniques We consider batch SGD, where the dataset is shuffled once at the
beginning of each epoch and then divided into batches. We do not deal with the generalization
abilities of the model. Thus, the dataset is always the training set. In each epoch, the algorithm goes
over the batches one by one, and performs gradient descent to update the model. This is the "vanilla"
version of SGD, without any acceleration or regularization (for a formal definition, see Section 2).
For the sake of analysis, we add a termination condition after every GD step: if the accuracy on the
entire dataset is 100% we terminate. Thus, in our case, termination implies 100% accuracy.

To achieve our results, we make use of entropy compression, first considered by Moser and Tardos
(2010) to prove a constructive version of the Lovász local lemma. Roughly speaking, the entropy
compression argument allows one to bound the running time of a randomized algorithm2 by leveraging
the fact that a random string of bits (the randomness used by the algorithm) is computationally
incompressible (has high Kolmogorov complexity) w.h.p. If one can show that throughout the
execution of the algorithm, it (implicitly) compresses the randomness it uses, then one can bound the
number of iterations the algorithm may execute without terminating. To show that the algorithm has
such a property, one would usually consider the algorithm after executing t iterations, and would try
to show that just by looking at an "execution log" of the algorithm and some set of "hints", whose size
together is considerably smaller than the number of random bits used by the algorithm, it is possible
to reconstruct all of the random bits used by the algorithm.

We apply this approach to SGD with an added termination condition when the accuracy over the
entire dataset is 100%. Thus, termination in our case guarantees perfect accuracy. The randomness
we compress is the bits required to represent the random permutation of the data at every epoch.
So indeed the longer SGD executes, the more random bits are generated. We show that under our
assumptions it is possible to reconstruct these bits efficiently starting from the dataset X and the
model after executing t epochs. The first step in allowing us to reconstruct the random bits of the
permutation in each epoch is to show that under the L-smoothness assumption and a sufficiently
small step size, SGD is reversible. That is, if we are given a model Wi+1 and a batch Bi such that
Wi+1 results from taking a gradient step with model Wi where the loss is calculated with respect to
Bi, then we can uniquely retrieve Wi using only Bi and Wi+1. This means that if we can efficiently
encode the batches used in every epoch (i.e., using less bits than encoding the entire permutation of
the data), we can also retrieve all intermediate models in that epoch (at no additional cost). We prove
this claim in Section 2.

2We require that the number of the random bits used is proportional to the execution time of the algorithm.
That is, the algorithm flips coins for every iteration of a loop, rather than just a constant number at the beginning
of the execution.

2

Under review as a conference paper at ICLR 2023

The crux of this paper is to show that when the accuracy discrepancy is high for a certain epoch, the
batches can indeed be compressed. To exemplify our techniques let us consider the scenario where,
in every epoch, just after a single GD step on a batch we consistently achieve perfect accuracy on the
batch. Let us consider some epoch of our execution, assume we have access to X , and let Wf be the
model at the end of the epoch. If the algorithm did not terminate, then Wf has accuracy at most 1− ε
on the entire dataset (assume for simplicity that ε is a constant). Our goal is to retrieve the last batch
of the epoch, Bf ⊂ X (without knowing the permutation of the data for the epoch). A naive approach
would be to simply encode the indices in X of the elements in the batch. However, we can use Wf to
achieve a more efficient encoding. Specifically, we know that Wf achieves 1.0 accuracy on Bf but
only 1− ε accuracy on X . Thus it is sufficient to encode the elements of Bf using a smaller subset
of X (the elements classified correctly by Wf , which has size at most (1− ε) |X|). This allows us to
significantly compress Bf . Next, we can use Bf and Wf together with the reversibility of SGD to
retrieve Wf−1. We can now repeat the above argument to compress Bf−1 and so on, until we are
able to reconstruct all of the random bits used to generate the permutation of X in the epoch. This
will result in a linear reduction in the number of bits required for the encoding.

In our analysis, we show a generalized version of the scenario above. We show that high accuracy
discrepancy implies that entropy compression occurs. For our second result, we consider a modified
SGD algorithm that instead of performing a single GD step per batch, first perturbs the batch with a
limited amount of randomness and then performs GD until a desired accuracy on the batch is reached.
We assume towards contradiction that GD can always reach the desired accuracy on the batch in
subexponential time. This forces the accuracy discrepancy to be high, which guarantees that we
always find a model with good accuracy. Applying this reasoning to models of sublinear size and
data with random labels we arrive at a contradiction, as such models cannot achieve good accuracy
on the data. This implies that when we limit the amount of randomness GD can use for perturbations,
there must exist instances where GD requires exponential running time to achieve good accuracy.

Related work There has been a long line of research proving convergence bounds for SGD under
various simplifying assumptions such as: linear networks (Arora et al., 2019; 2018), shallow networks
(Safran and Shamir, 2018; Du and Lee, 2018; Oymak and Soltanolkotabi, 2019), etc. However, the
most general results are the ones dealing with deep, overparameterized networks (Du et al., 2019;
Allen-Zhu et al., 2019; Zou et al., 2018; Zou and Gu, 2019). All of these works make use of NTK
(Neural Tangent Kernel)(Jacot et al., 2018) and show global convergence guarantees for SGD when
the hidden layers have width at least poly(n,L) where n is the size of the dataset and L is the depth
of the network. We note that the exponents of the polynomials are quite large.

A recent line of work by Zhang et al. (2022) notes that in many real world scenarios models do not
converge to stationary points. They instead take a different approach which, similar to us, studies the
dynamics of neural networks. They show that under certain assumptions (e.g., considering a fully
connected architecture with sub-differentiable and coordinate-wise Lipschitz activations and weights
laying on a compact set) the change in training loss gradually converges to 0, even if the full gradient
norms do not vanish.

In (Du et al., 2017) it was shown that GD can take exponential time to escape saddle points, even
under random initialization. They provide a highly engineered instance, while our results hold for
many model classes of interest. Jin et al. (2017) show that adding perturbations during the executions
of GD guarantees that it escapes saddle points. This is done by occasionally perturbing the parameters
within a ball of radius r, where r depends on the properties of the function to be optimized. Therefore,
a single perturbation must require an amount of randomness linear in the number of parameters.

2 PRELIMINARIES

We consider the following optimization problem. We are given an input (dataset) of size n. Let us
denote X = {xi}ni=1 (Our inputs contain both data and labels, we do not need to distinguish them
for this work). We also associate every x ∈ X with a unique id of dlog ne bits. We often consider
batches of the input B ⊂ X . The size of the batch is denoted by b (all batches have the same size).
We have some model whose parameters are denoted by W ∈ Rd, where d is the model dimension.
We aim to optimize a goal function of the following type: f(W) = 1

n

∑
x∈X fx(W), where the

functions fx : Rd → R are completely determined by x ∈ X . We also define for every set A ⊆ X:
fA(W) = 1

|A|
∑
x∈A fx(W). Note that fX = f .

3

Under review as a conference paper at ICLR 2023

We denote by acc(W,A) : Rd × 2X → [0, 1] the accuracy of model W on the set A ⊆ X (where
we use W to classify elements from X). Note that for x ∈ X it holds that acc(W,x) is a binary
value indicating whether x is classified correctly or not. We require that every fx is differentiable and
L-smooth: ∀W1,W2 ∈ Rd, ‖∇fx(W1)−∇fx(W2)‖ ≤ L‖W1 −W2‖. This implies that every fA
is also differentiable and L-smooth. To see this consider the following:

‖∇fA(W1)−∇fA(W2)‖ = ‖ 1

|A|
∑
x∈A
∇fx(W1)− 1

|A|
∑
x∈A
∇fx(W2)‖

=
1

|A|
‖
∑
x∈A
∇fx(W1)−∇fx(W2)‖ ≤ 1

|A|
∑
x∈A
‖∇fx(W1)−∇fx(W2)‖ ≤ L‖W1 −W2‖

We state another useful property of fA:

Lemma 2.1. Let W1,W2 ∈ Rd and α < 1/L. For any A ⊆ X , if it holds that W1 − α∇fA(W1) =
W2 − α∇fA(W2) then W1 = W2.

Proof. Rearranging the terms we get thatW1−W2 = α∇fA(W1)−α∇fA(W2). Now let us consider
the norm of both sides: ‖W1−W2‖ = ‖α∇fA(W1)−α∇fA(W2)‖ ≤ α·L‖W1−W2‖ < ‖W1−W2‖
Unless W1 = W2, the final strict inequality holds which leads to a contradiction.

The above means that for a sufficiently small gradient step, the gradient descent process is reversible.
That is, we can always recover the previous model parameters given the current ones, assuming that
the batch is fixed. We use the notion of reversibility throughout this paper. However, in practice we
only have finite precision, thus instead of R we work with the finite set F ⊂ R. Furthermore, due to
numerical stability issues, we do not have access to exact gradients, but only to approximate values
∇̂fA. For the rest of this paper, we assume these values are L-smooth on all elements in Fd. That is,

∀W1,W2 ∈ Fd, A ⊆ X, ‖∇̂fA(W1)− ∇̂fA(W2)‖ ≤ L‖W1 −W2‖

This immediately implies that Lemma 2.1 holds even when precision is limited. Let us state the
following theorem:

Theorem 2.2. Let W1,W2, ...,Wk ∈ Fd ⊂ Rd, A1, A2, ..., Ak ⊆ X and α < 1/L. If it holds that
Wi = Wi−1 − α∇̂fAi−1

(Wi−1), then given A1, A2, ..., Ak−1 and Wk we can retrieve W1.

Proof. Given Wk we iterate over all W ∈ Fd until we find W such that Wk = W − α∇̂fAi−1
(W).

Using Lemma 2.1, there is only a single element such that this equality holds, and thus W = Wk−1.
We repeat this process until we retrieve W1.

SGD We analyze the classic SGD algorithm presented in Algorithm 1. One difference to note
in our algorithm, compared to the standard implementation, is the termination condition when the
accuracy on the dataset is 100%. In practice the termination condition is not used, however, we only
use it to prove that at some point in time the accuracy of the model is 100%.

Algorithm 1: SGD

1 i← 1 // epoch counter
2 W1,1 is an initial model
3 while True do
4 Take a random permutation of X , divided into batches {Bi,j}n/bj=1

5 for j from 1 to n/b do
6 if acc(Wi,j , X) = 1 then Return Wi,j

7 Wi,j+1 ←Wi,j − α∇fBi,j (Wi,j)

8 i← i+ 1, Wi,1 ←Wi−1,n/b+1

4

Under review as a conference paper at ICLR 2023

Kolmogorov complexity The Kolmogorov complexity of a string x ∈ {0, 1}∗, denoted by K(x),
is defined as the size of the smallest prefix Turing machine which outputs this string. We note that
this definition depends on which encoding of Turing machines we use. However, one can show that
this will only change the Kolmogorov complexity by a constant factor (Li and Vitányi, 2019).

We also use the notion of conditional Kolmogorov complexity, denoted by K(x | y). This is the
length of the shortest prefix Turing machine which gets y as an auxiliary input and prints x. Note that
the length of y does not count towards the size of the machine which outputs x. So it can be the case
that |x| � |y| but it holds that K(x | y) < K(x). We can also consider the Kolmogorov complexity
of functions. Let g : {0, 1}∗ → {0, 1}∗ then K(g) is the size of the smallest Turing machine which
computes the function g.

The following properties of Kolmogorov complexity will be of use. Let x, y, z be three strings:

• Extra information: K(x | y, z) ≤ K(x | z) +O(1) ≤ K(x, y | z) +O(1)

• Subadditivity: K(xy | z) ≤ K(x | z, y)+K(y | z)+O(1) ≤ K(x | z)+K(y | z)+O(1)

Random strings have the following useful property (Li and Vitányi, 2019):
Theorem 2.3. For an n bit string x chosen uniformly at random, and some string y independent of x
(i.e., y is fixed before x is chosen) and any c ∈ N it holds that Pr[K(x | y) ≥ n− c] ≥ 1− 1/2c.

Entropy and KL-divergence Our proofs make extensive use of binary entropy and KL-divergence.
In what follows we define these concepts and provide some useful properties.

Entropy: For p ∈ [0, 1] we denote by h(p) = −p log p− (1− p) log(1− p) the entropy of p. Note
that h(0) = h(1) = 0.

KL-divergence: For p, q ∈ (0, 1) let DKL(p ‖ q) = p log p
q + (1 − p) log 1−p

1−q be the Kullback
Leibler divergence (KL-divergence) between two Bernoulli distributions with parameters p, q. We
also extend the above for the case where q, p ∈ {0, 1} as follows: DKL(1 ‖ q) = DKL(0 ‖ q) =
0, DKL(p ‖ 1) = log(1/p), DKL(p ‖ 0) = log(1/(1 − p)). This is just notation that agrees with
Lemma 2.4. We also state the following result of Pinsker’s inequality applied to Bernoulli random
variables: DKL(p ‖ q) ≥ 2(p− q)2.

Representing sets Let us state some useful bounds on the Kolmogorov complexity of sets. A more
detailed explanation regarding the Kolmogorov complexity of sets and permutations together with
the proof to the lemma below appears in Appendix A.
Lemma 2.4. Let A ⊆ B, |B| = m, |A| = γm, and let g : B → {0, 1}. For any set Y ⊆ B let
Y1 = {x | x ∈ Y, g(x) = 1} , Y0 = Y \ Y1 and κY = |Y1|

|Y | . It holds that

K(A | B, g) ≤ mγ(log(e/γ)−DKL(κB ‖ κA)) +O(logm)

3 ACCURACY DISCREPANCY

Figure 1: A visual summary of our notations.

First, let us define some useful notation (Wi,j , Bi,j are formally defined in Algorithm 1):

• λi,j = acc(Wi,j , X). This is the accuracy of the model in epoch i on the entire dataset X , before
performing the GD step on batch j.

• ϕi,j = acc(Wi,j , Bi,j−1). This is the accuracy of the model on the (j − 1)-th batch in the i-th
epoch after performing the GD step on the batch.

5

Under review as a conference paper at ICLR 2023

• Xi,j =
⋃j
k=1Bi,k (note that ∀i,Xi,0 = ∅, Xi,n/b = X). This is the set of elements in the first j

batches of epoch i. Let us also denote nj = |Xi,j | = jb (Note that ∀j, i1, i2, |Xi1,j | = |Xi2,j |,
thus i need not appear in the subscript).

• λ′i,j = acc(Wi,j , Xi,j−1), λ′′i,j = acc(Wi,j , X \Xi,j−1), where λ′i,j is the accuracy of the model
on the set of all previously seen batch elements, after performing the GD step on the (j − 1)-th
batch and λ′′i,j is the accuracy of the same model, on all remaining elements (j-th batch onward).
To avoid computing the accuracy on empty sets, λ′i,j is defined for j ∈ [2, n/b + 1] and λ′′i,j is
defined for j ∈ [1, n/b].

• ρi,j = DKL(λ′i,j ‖ ϕi,j) is the accuracy discrepancy for the j-th batch in iteration i and ρi =∑n/b+1
j=2 ρi,j is the accuracy discrepancy at iteration i.

In our analysis, we consider t epochs of the SGD algorithm. Our goal for this section is to derive a
connection between

∑t
i=1 ρi and t.

Bounding t: Our goal is to use the entropy compression argument to show that if
∑t
i=1 ρi is

sufficiently large we can bound t. Let us start by formally defining the random bits which the
algorithm uses. Let ri be the string of random bits representing the random permutation of X at
epoch i. As we consider t epochs, let r = r1r2 . . . rt.

Note that the number of bits required to represent an arbitrary permutation of [n] is given by:
dlog(n!)e = n log n− n log e+O(log n) = n log(n/e) +O(log n),

where in the above we used Stirling’s approximation. Thus, it holds that |r| = t(n log(n/e) +
O(log n)) and according to Theorem 2.3, with probability at least 1 − 1/n2 it holds that K(r) ≥
tn log(n/e)−O(log n).

In the following lemma we show how to use the model at every iteration to efficiently reconstruct the
batch at that iteration, where the efficiency of reconstruction is expressed via ρi.
Lemma 3.1. It holds w.h.p that ∀i ∈ [t] that: K(ri |Wi+1,1, X) ≤ n log n

e − bρi + n
b ·O(log n)

Proof. Recall that Bi,j is the j-th batch in the i-th epoch, and let Pi,j be a permutation of Bi,j
such that the order of the elements in Bi,j under Pi,j is the same as under ri. Note that given X ,
if we know the partition into batches and all permutations, we can reconstruct ri. According to
Theorem 2.2, given Wi,j and Bi,j−1 we can compute Wi,j−1. Let us denote by Y the encoding of
this procedure. To implement Y we need to iterate over all possible vectors in Fd and over batch
elements to compute the gradients. To express this program we require auxiliary variables of size
at most O(log min {d, b}) = O(log n). Thus it holds that K(Y) = O(log n). Let us abbreviate
Bi,1, Bi,2, ..., Bi,j as (Bi,k)jk=1. We write the following.
K(ri | X,Wi+1,1) ≤ K(ri, Y | X,Wi+1,1) +O(1) ≤ K(ri | X,Wi+1,1, Y) +K(Y | X,Wi+1,1) +O(1)

≤ O(log n) +K((Bi,k, Pi,k)
n/b
k=1 | X,Wi+1,1, Y)

≤ O(log n) +K((Bi,k)
n/b
k=1 | X,Wi+1,1, Y) +K((Pi,k)

n/b
k=1 | X,Wi+1,1, Y)

≤ O(log n) +K((Bi,k)
n/b
k=1 | X,Wi+1,1, Y) +

n/b∑
j=1

K(Pi,j)

Let us bound K((Bi,k)
n/b
k=1 | X,Wi+1,1, Y) by repeatedly using the subadditivity and extra informa-

tion properties of Kolmogorov complexity.

K((Bi,k)
n/b
k=1 | X,Y,Wi+1,1) ≤ K(Bi,n/b | X,Wi+1,1) +K((Bi,k)

n/b−1
k=1 | X,Y,Wi+1,1, Bi,n/b) +O(1)

≤ K(Bi,n/b | X,Wi+1,1) +K((Bi,k)
n/b−1
k=1 | X,Y,Wi,n/b, Bi,n/b) +O(1)

≤ K(Bi,n/b | X,Wi+1,1) +K(Bi,n/b−1 | X,Wi,n/b, Bi,n/b)

+K((Bi,k)
n/b−2
k=1 | X,Y,Wi,n/b−1, Bi,n/b, Bi,n/b−1) +O(1)

≤ ... ≤ O(
n

b
) +

n/b∑
j=1

K(Bi,j | X,Wi,j+1, (Bi,k)
n/b
k=j+1) ≤ O(

n

b
) +

n/b∑
j=1

K(Bi,j | Xi,j ,Wi,j+1)

6

Under review as a conference paper at ICLR 2023

where in the transitions we used the fact that given Wi,j , Bi,j−1 and Y we can retrieve Wi,j−1. That
is, we can always bound K(... | Y,Wi,j , Bi,j−1, ...) by K(... | Y,Wi,j−1, Bi,j−1, ...) +O(1).

To encode the order Pi,j inside each batch, b log(b/e) +O(log b) bits are sufficient. Finally we get
that: K(ri | X,Wi+1,1) ≤ O(nb) +

∑n/b
j=1[K(Bi,j | Xi,j ,Wi,j+1) + b log(b/e) +O(log b)].

Let us now boundK(Bi,j−1 | Xi,j−1,Wi,j). KnowingXi,j−1 we know thatBi,j−1 ⊆ Xi,j−1. Thus
we need to use Wi,j to compress Bi,j−1. Applying Lemma 2.4 with parameters A = Bi,j−1, B =
Xi,j−1, γ = b/nj−1, κA = ϕi,j , κB = λ′i,j and g(x) = acc(Wi,j , x). We get the following:

K(Bi,j−1 | Xi,j−1,Wi,j) ≤ b(log(
e · nj−1

b
)− ρi,j) +O(log nj−1)

Adding b log(b/e) +O(log b) to the above, we get the following bound on every element in the sum:

b(log(
e · nj−1

b
)− ρi,j) + b log(b/e) +O(log b) +O(log nj−1) ≤ b log nj−1 − bρi,j +O(log nj−1)

Note that the most important term in the sum is −bρi,j . That is, the more the accuracy of Wi,j on the
batch, Bi,j−1, differs from the accuracy of Wi,j on the set of elements containing the batch, Xi,j−1,
we can represent the batch more efficiently. Let us now bound the sum:

∑n/b+1
j=2 [b log nj−1 − bρi,j +

O(log nj−1)]. Let us first bound the sum over b log nj−1:
n/b+1∑
j=2

b log nj−1 =

n/b∑
j=1

b log jb =

n/b∑
j=1

b(log b+ log j)

= n log b+ b log(n/b)! = n log b+ n log
n

b · e
+O(log n) = n log

n

e
+O(log n)

Finally, we can write that:

K(ri | X,Wi+1,1) ≤ O(
n

b
) +

n/b+1∑
j=2

[b log nj−1 − bρi,j +O(log n)] ≤ n log
n

e
− bρi +

n

b
·O(log n)

Using the above we know that when the value ρi is sufficiently high, the random permutation of
the epoch can be compressed. We use the fact that random strings are incompressible to bound
1
t

∑t
i=1 ρi.

Theorem 3.2. If the algorithm does not terminate by the t-th iteration, then it holds w.h.p that
∀t, 1t

∑t
i=1 ρi ≤ O(n logn

b2).

Proof. Using arguments similar to Lemma 3.1, we can show that K(r,W1,1 | X) ≤ K(Wt+1,1) +

O(t)+
∑t
k=1K(rk | X,Wk+1,1) (formally proved in Lemma A.3). Combining this with Lemma 3.1,

we get that K(r,W1,1 | X) ≤ K(Wt+1,1) + t[n(log(n/e) + n·O(logn)
b − bρi +O(log n)].

Our proof implies that we can reconstruct not only r, but also W1,1 using X,Wt+1,1. Due to the
incompressibility of random strings, we get that w.h.pK(r,W1,1 | X) ≥ d+tn log(n/e)−O(log n).
Combining the lower and upper bound for K(r,W1,1 | X) we can get the following inequality:

d+ tn log(n/e)−O(log n) ≤ d+ t[n(log(n/e) +
n ·O(log n)

b
+O(log n)]−

t∑
i=1

bρi (1)

=⇒ 1

t

t∑
i=1

ρi ≤
n ·O(log n)

b2
+
O(log n)

b︸ ︷︷ ︸
β(n,b)

+
O(log n)

bt
= O(

n log n

b2
)

Let β(n, b) be the exact value of the asymptotic expression in Inequality 1. Theorem 3.2 says that as
long as SGD does not terminate the average accuracy discrepeancy cannot be too high. Using the
contra-positive we get the following useful corollary (proof is deferred to Appendix A.3).

Corollary 3.3. If ∀k, 1k
∑k
i=1 ρi > β(n, b) + γ, for γ = Ω(b−1 log n), then w.h.p SGD terminates

within O(1) epochs.

7

Under review as a conference paper at ICLR 2023

The case for weak models Using the above we can also derive some interesting negative results
when the model is not expressive enough to get perfect accuracy on the data. It must be the case that
the average accuracy discrepancy tends below β(n, b) over time. We verify this experimentally on
the MNIST dataset (Appendix B), showing that the average accuracy indeed drops over time when
the model is weak compared to the dataset. We also confirm that the dependence of the threshold in b
is indeed inversely quadratic.

4 THE ROLE OF RANDOMNESS IN GD INITIALIZATION

Our goal for this section is to show that when the amount of randomness in the perturbation is too
small, for any model architecture which is differentiable and L-smooth there are inputs for which
Algorithm 2 requires exponential time to terminate, even for extremely overparameterized models.

Perturbation families Let us consider a family of 2` functions indexed by length ` real valued
vectors Ψ` = {ψz}z∈R` . Recall that throughout this paper we assume finite precision, thus every z
can be represented using O(`) bits. We say that Ψ` is a reversible perturbation family if it holds that
∀z ∈ R`, ψz is one-to-one. We often use the notation Ψ`(W), which means pick z ∈ R` uniformly
at random, and apply ψz(W). We often refer to Ψ` as simply a perturbation.

We note that the above captures a wide range of natural perturbations. For example ψz(W) = W+Wz

where Wz[i] = z[i mod `]. Clearly ψz(W) is reversible.

Gradient descent The GD algorithm we analyze is formally given in Algorithm 2.

Algorithm 2: GD(W,Y, δ) Input: initial model W , dataset Y , desired accuracy δ

1 i = 1, T = o(2m) + poly(d)
2 W = Ψ`(W)
3 while acc(W,Y) < δ and i < T do
4 W ←W − α∇fY (W)
5 i← i+ 1

6 Return W

Let us denote by m the number of elements in Y . We make the following 2 assumptions for the rest
of this section: (1) ` = o(m). (2) There exists T = o(2m) + poly(d) and a perturbation family Ψ`

such that for every input W,Y within T iterations GD terminates and returns a solution that has at
least δ accuracy on Y with constant probability. We show that the above two assumptions cannot
hold together. That is, if the amount of randomness is sublinear in m, there must be instances with
exponential running time, even when d� m.

To show the above, we define a variant of SGD, which uses GD as a sub procedure (Algorithm 3).
Assume that our data set is a binary classification task (it is easy to generalize our results to any
number of classes), and that elements in X are assigned random labels. Furthermore, let us assume
that d = o(n), e.g., d = n0.99. It holds that w.h.p we cannot train a model with d parameters that
achieves any accuracy better than 1/2 + o(1) on X (Lemma A.4). Let us take ε to be a small constant.
We show that if assumptions 1 and 2 hold, then Algorithm 3 must terminate and return a model with
1/2 + Θ(1) accuracy on X , leading to a contradiction. Our analysis follows the same line as the
previous section, and uses the same notation.

Reversibility First, we must show that Algorithm 3 is still reversible. Note that we can take the
same approach as before, where the only difference is that in order to get Wi,j from Wi,j+1 we
must now get all the intermediate values from the call to GD. As the GD steps are applied to the
same batch, this amounts to applying Lemma 2.1 several times instead of once per iteration. More
specifically, we must encode for every batch a number Ti,j = o(2b) + poly(d) = o(2b) + poly(n)
(recall that d = o(n)) and apply Lemma 2.1 Ti,j times.

This results in ψz(Wi,j). If we know z,Ψ` then we can retrieve ψz and efficiently retrieve Wi,j using
only O(log d) = O(log n) additional bits (by iterating over all values in Fd). Therefore, in every

8

Under review as a conference paper at ICLR 2023

Algorithm 3: SGD’

1 i← 1 // epoch counter
2 W1,1 is an initial model
3 while True do
4 Take a random permutation of X , divided into batches {Bi,j}n/bj=1

5 for j from 1 to n/b do
6 if acc(Wi,j , X) ≥ 1/2(1− ε) then Return Wi,j

7 Wi,j+1 ← GD(Wi,j , Bi,j ,
1

2(1−2ε))

8 i← i+ 1, Wi,1 ←Wi−1,n/b+1

iteration we have the following additional terms: log T +O(log n) + ` = o(b) +O(log n). Summing
over n/b iterations we get o(n) per epoch. We state the following Lemma analogous to Lemma 3.1.
Lemma 4.1. For Algorithm 3 it holds w.h.p that ∀i ∈ [t] that: K(ri |Wi+1,1, X,Ψ`) ≤ n log n

e −
bρi + β(n, b) + o(n).

We show that under our assumptions, Algorithm 3 must terminate, leading to a contradiction.
Lemma 4.2. Algorithm 3 with b = Ω(log n) terminates within O(T) iterations w.h.p.

Proof. Our goal is to lower bound ρi =
∑n/b+1
j=2 DKL(λ′i,j ‖ ϕi,j). Let us first upper bound λ′i,j .

Using the fact that λ′i,j ≤
nλi,j

(j−1)b (Lemma A.5) combined with the fact that λi,j ≤ 1/2(1− ε) as long
as the algorithm does not terminate, we get that ∀j ∈ [2, n/b+ 1] it holds that λ′i,j ≤ n

2(1−ε)(j−1)b .
Using the above we conclude that as long as we do not terminate it must hold that λ′i,j ≤ 1

2(1−ε)2

whenever j ∈ I = [(1− ε)n/b+ 1, n/b+ 1]. That is, λ′i,j must be close to λi,j towards the end of
the epoch, and therefore must be sufficiently small. Note that |I| ≥ εn/b.
We know that as long as the algorithm does not terminate it holds that ϕi,j > 1/2(1− 2ε) with some
constant probability. Furthermore, this probability is taken over the randomness used in the call to GD
(the randomness of the perturbation). This fact allows us to use Hoeffding-type bounds for the ϕi,j
variables. If ϕi,j > 1/2(1− 2ε) we say that it is good. Therefore in expectation a constant fraction
of ϕi,j , j ∈ I are good. Applying a Hoeffding type bound we get that w.h.p a constant fraction of
ϕi,j , j ∈ I are good. Denote these good indices by Ig ⊆ I . We are now ready to bound ρi.

ρi =

n/b+1∑
j=2

DKL(λ′i,j ‖ ϕi,j) ≥
∑
j∈Ig

DKL(λ′i,j ‖ ϕi,j) ≥
∑
j∈Ig

DKL(
1

2(1− ε)2
‖ 1

2(1− 2ε)
)

≥ Θ(
n

b
) · ε(1

2(1− 2ε)
− 1

2(1− ε)2
)2 = Θ(

n

b
) · ε5 = Θ(

n

b
)

Where in the transitions we used the fact that KL-divergence is non-negative, and Pinsker’s inequality.
Finally, requiring that b = Ω(log n) we get that bρi−β(n, b)− o(n) = Θ(n)−Θ(n logn

log2 n
)− o(n) =

Θ(n). Following the same calculation as in Corollary 3.3, this guarantees termination within O(logn
n)

epochs, or O(T · nb ·
logn
n) = O(T) iterations (gradient descent steps).

The above leads to a contradiction. It is critical to note that the above does not hold if T = 2m = 2b

or if ` = Θ(n), as both would imply that the o(n) term becomes Θ(n). We state our main theorem:
Theorem 4.3. For any differentiable and L-smooth model class with d parameters and a perturbation
class Ψ` such that ` = o(m) there exist an input data set Y of size m such that GD requires Ω(2m)
iterations to achieve δ accuracy on Y , even if δ = 1/2 + Θ(1) and d� m.

REFERENCES

Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds
global minima of deep neural networks. In ICML, volume 97 of Proceedings of Machine Learning
Research, pages 1675–1685. PMLR, 2019.

9

Under review as a conference paper at ICLR 2023

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In ICML, volume 97 of Proceedings of Machine Learning Research, pages
242–252. PMLR, 2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes
over-parameterized deep relu networks. CoRR, abs/1811.08888, 2018.

Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural
networks. In NeurIPS, pages 2053–2062, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In ICLR. OpenReview.net, 2017.

Robin A. Moser and Gábor Tardos. A constructive proof of the general lovász local lemma. J. ACM,
57(2):11:1–11:15, 2010.

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient
descent for deep linear neural networks. In ICLR (Poster). OpenReview.net, 2019.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. In ICML, volume 80 of Proceedings of Machine Learning
Research, pages 244–253. PMLR, 2018.

Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer relu neural networks.
In ICML, volume 80 of Proceedings of Machine Learning Research, pages 4430–4438. PMLR,
2018.

Simon S. Du and Jason D. Lee. On the power of over-parametrization in neural networks with
quadratic activation. In ICML, volume 80 of Proceedings of Machine Learning Research, pages
1328–1337. PMLR, 2018.

Samet Oymak and Mahdi Soltanolkotabi. Towards moderate overparameterization: global conver-
gence guarantees for training shallow neural networks. CoRR, abs/1902.04674, 2019.

Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Convergence and
generalization in neural networks. In NeurIPS, pages 8580–8589, 2018.

Jingzhao Zhang, Haochuan Li, Suvrit Sra, and Ali Jadbabaie. Neural network weights do not converge
to stationary points: An invariant measure perspective. In ICML, volume 162 of Proceedings of
Machine Learning Research, pages 26330–26346. PMLR, 2022.

Simon S. Du, Chi Jin, Jason D. Lee, Michael I. Jordan, Aarti Singh, and Barnabás Póczos. Gradient
descent can take exponential time to escape saddle points. In NIPS, pages 1067–1077, 2017.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to escape
saddle points efficiently. In ICML, volume 70 of Proceedings of Machine Learning Research,
pages 1724–1732. PMLR, 2017.

Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications,
4th Edition. Texts in Computer Science. Springer, 2019.

A OMITTED PROOFS AND EXPLENATIONS

A.1 REPRESENTING SETS AND PERMUTATIONS

Throughout this paper, we often consider the value K(A) where A is a set. Here the program
computing A need only output the elements of A (in any order). When considering K(A | B) such
that A ⊆ B, it holds that K(A | B) ≤ dlog

(|B|
|A|
)
e+O(log |B|). To see why, consider Algorithm 4.

In the algorithm iA is the index of A when considering some ordering of all subsets of B of size
|A|. Thus dlog

(|B|
|A|
)
e bits are sufficient to represent iA. The remaining variables i,mA,mB and any

10

Under review as a conference paper at ICLR 2023

Algorithm 4: Compute A given B as input

1 mA ← |A| ,mB ← |B| , i← 0, iA is a target index
2 for every subset C ⊆ B s.t |C| = mA (in a predetermined order) do
3 if i = iA then Print C
4 i← i+ 1

additional variables required to construct the set C are all of size at most O(log |B|) and there is at
most a constant number of them.

During our analysis, we often bound the Kolmogorov complexity of tuples of objects. For example,
K(A,P | B) where A ⊆ B is a set and P : A → [|A|] is a permutation of A (note that A,P
together form an ordered tuple of the elements of A). Instead of explicitly presenting a program
such as Algorithm 4, we say that if K(A | B) ≤ c1 and c2 bits are sufficient to represent P , thus
K(A,P | B) ≤ c1 + c2 +O(1). This just means that we directly have a variable encoding P into the
program that computes A given B and uses it in the code. For example, we can add a permutation to
Algorithm 4 and output an ordered tuple of elements rather than a set. Note that when representing a
permutation of A, |A| = k, instead of using functions, we can just talk about values in dlog k!e. That
is, we can decide on some predetermined ordering of all permutations of k elements, and represent a
permutation as its number in this ordering.

A.2 OMITTED PROOFS FOR SECTION 2

Lemma A.1. For p ∈ [0, 1] it holds that h(p) ≤ p log(e/p).

Proof. Let us write our lemma as:

h(p) = −p log p− (1− p) log(1− p) ≤ p log(e/p)

Rearranging we get:

− (1− p) log(1− p) ≤ p log p+ p log(1/p) + p log e

=⇒ −(1− p) log(1− p) ≤ p log e

=⇒ − ln(1− p) ≤ p

(1− p)

Note that − ln(1− p) =
∫ p
0

1
(1−x)dx ≤ p ·

1
(1−p) . Where in the final transition we use the fact that

1
(1−x) is monotonically increasing on [0, 1]. This completes the proof.

Lemma A.2. For p, γ, q ∈ [0, 1] where pγ ≤ q, (1− p)γ ≤ (1− q) it holds that

qh(
pγ

q
) + (1− q)h(

(1− p)γ
(1− q)

) ≤ h(γ)− γDKL(p ‖ q)

11

Under review as a conference paper at ICLR 2023

Proof. Let us expand the left hand side using the definition of entropy:

qh(
pγ

q
) + (1− q)h(

(1− p)γ
(1− q)

)

= −q(pγ
q

log
pγ

q
+ (1− pγ

q
) log(1− pγ

q
))

− (1− q)((1− p)γ
(1− q)

log
(1− p)γ
(1− q)

+ (1− (1− p)γ
(1− q)

) log(1− (1− p)γ
(1− q)

))

= −(pγ log
pγ

q
+ (q − pγ) log

q − pγ
q

)

− ((1− p)γ log
(1− p)γ
(1− q)

+ ((1− q)− (1− p)γ) log
(1− q)− (1− p)γ

1− q
)

= −γ log γ − γDKL(p ‖ q)

− (q − pγ)(log
q − pγ
q

)− ((1− q)− (1− p)γ) log
(1− q)− (1− p)γ

1− q
)

Where in the last equality we simply sum the first terms on both lines. To complete the proof we use the
log-sum inequality for the last expression. The log-sum inequality states that: Let {ak}mk=1 , {bk}

m
k=1

be non-negative numbers and let a =
∑m
k=1 ak, b =

∑m
k=1 bk, then

∑m
k=1 ai log ai

bi
≥ a log a

b . We
apply the log-sum inequality with m = 2, a1 = q − pγ, a2 = (1 − q) − (1 − p)γ, a = 1 − γ and
b1 = q, b2 = 1− q, b = 1, getting that:

(q − pγ)(log
q − pγ
q

) + ((1− q)− (1− p)γ) log
(1− q)− (1− p)γ

1− q
) ≥ (1− γ) log(1− γ)

Putting everything together we get that

− γ log γ − γDKL(p ‖ q)

− (q − pγ)(log
q − pγ
q

)− ((1− q)− (1− p)γ) log
(1− q)− (1− p)γ

1− q
)

≤ −γ log γ − (1− γ) log(1− γ)− γDKL(p ‖ q) = h(γ)− γDKL(p ‖ q)

Lemma 2.4. Let A ⊆ B, |B| = m, |A| = γm, and let g : B → {0, 1}. For any set Y ⊆ B let
Y1 = {x | x ∈ Y, g(x) = 1} , Y0 = Y \ Y1 and κY = |Y1|

|Y | . It holds that

K(A | B, g) ≤ mγ(log(e/γ)−DKL(κB ‖ κA)) +O(logm)

Proof. The algorithm is very similar to Algorithm 4, the main difference is that we must first compute
B1, B0 from B using g, and select A1, A0 from B1, B0, respectively, using two indices iA1 , iA0 .
Finally we print A = A1 ∪A0. We can now bound the number of bits required to represent iA1 , iA0 .
Note that |B1| = κBm, |B0| = (1− κB)m. Note that for A1 we pick γκAm elements from κBm
elements and for A0 we pick γ(1− κA)m elements from (1− κB)m elements. The number of bits
required to represent this selection is:

dlog

(
κBm

γκAm

)
e+ dlog

(
(1− κB)m

γ(1− κA)m

)
e ≤ κBmh(

γκA
κB

) + (1− κB)mh(
γ(1− κA)

(1− κB)
)

≤ m(h(γ)− γDKL(κB ‖ κA)) ≤ mγ(log(e/γ)−DKL(κB ‖ κA))

Where in the first inequality we used the fact that ∀0 ≤ k ≤ n, log
(
n
k

)
≤ nh(k/n), Lemma A.2 in

the second transition, and Lemma A.1 in the third transition. Note that when κA = 0, 1 We only have
one term of the initial sum. For example, for κA = 1 we get:

dlog

(
κBm

γκAm

)
e = dlog

(
κBm

γm

)
e ≤ κBmh(

γ

κB
)

≤ mγ log(eκB/γ) = mγ(log(e/γ)− log(1/κB))

And similar computation yields mγ(log(e/γ)− log(1/(1−κB))) for κA = 0. Finally, the additional
O(logm) factor is due to various counters and variables, similarly to Algorithm 4.

12

Under review as a conference paper at ICLR 2023

A.3 OMITTED PROOFS FOR SECTION 3

Lemma A.3. It holds that K(r,W1,1 | X) ≤ K(Wt+1,1) +O(t) +
∑t
k=1K(rk | X,Wk+1,1).

Proof. Similarly to the definition of Y in Lemma 3.1, let Y ′ be the program which receives
X, ri,Wi+1,1 as input and repeatedly applies Theorem 2.2 to retrieve Wi,1. As Y ′ just needs
to reconstruct all batches from X, ri and call Y for n/b times, it holds that K(Y ′) = O(log n).
Using the subadditivity and extra information properties of K(), together with the fact that W1,1 can
be reconstructed given X,Wt+1,1, Y

′, we write the following:

K(r | X) ≤ K(r,W1,1, Y
′,Wt+1,1 | X) +O(1) ≤ K(W1,1,,Wt+1,1, Y

′ | X) +K(r | X,Y ′,Wt+1,1) +O(1)

≤ K(Wt+1,1 | X) +K(r | X,Y ′,Wt+1,1) +O(log n)

First, we note that: ∀i ∈ [t − 1],K(ri | X,Y ′,Wi+2,1, ri+1) ≤ K(ri | X,Y ′,Wi+1,1) + O(1).
Where in the last inequality we simply execute Y ′ on X,Wi+2,1, ri+1 to get Wi+1,1. Let us write:

K(r1r2 . . . rt | X,Y ′,Wt+1,1) ≤ K(rt | X,Y ′,Wt+1,1) +K(r1r2 . . . rt−1 | X,Y ′,Wt+1,1, rt) +O(1)

≤ K(rt | X,Wt+1,1) +K(r1r2 . . . rt−1 | X,Y ′,Wt,1) +O(1)

≤ K(rt | X,Wt+1,1) +K(rt−1 | X,Wt,1) +K(r1r2 . . . rt−2 | X,Y ′,Wt−1,1) +O(1)

≤ · · · ≤ O(t) +

t∑
k=1

K(rk | X,Wk+1,1)

Combining everything together we get that:

K(r | X) ≤ K(Wt+1,1) +O(t) +

t∑
k=1

K(rk | X,Wk+1,1)

Corollary 3.3. If ∀k, 1k
∑k
i=1 ρi > β(n, b) + γ, for γ = Ω(b−1 log n), then w.h.p SGD terminates

within O(1) epochs.

Proof. Let us simplify Inequality 1.

d+ tn log(n/e)−O(log n) ≤ d+ t[n(log(n/e) +
n ·O(log n)

b
+O(log n)]−

t∑
i=1

bρi

=⇒ −O(log n) ≤ t[n ·O(log n)

b
+O(log n)]−

t∑
i=1

bρi

=⇒ (

t∑
i=1

ρi)− tβ(n, b) ≤ O(log n)/b

Our condition implies that
∑t
i=1 ρi > t(β(n, b) + γ). This allows us to rewrite the above inequality

as:

tγ ≤ O(log n)/b =⇒ t = O(1)

A.4 OMITTED PROOFS FOR SECTION 4

Lemma A.4. Let X be some set of size n and let f : X → {0, 1} be a random binary function. It
holds w.h.p that there exists no function g : X → {0, 1} such that K(g | X) = o(n) and g agrees
with f on n(1/2 + Θ(1)) elements in X .

13

Under review as a conference paper at ICLR 2023

Proof. Let us assume that g agrees with f on all except εn elements in X and bound ε. Using
Theorem 2.3, it holds w.h.p that K(f | X) > n−O(log n). We show that if ε is sufficiently far from
1/2, we can use g to compress f below its Kolmogorov complexity, arriving at a contradiction.

We can construct f using g and the set of values on which they do not agree, which we denote
by D. This set is of size εn and therefore can be encoded using log

(
n
εn

)
≤ nh(ε) bits (recall that

∀0 ≤ k ≤ n, log
(
n
k

)
≤ nh(k/n)) given X (i.e., K(D | X) ≤ nh(ε)). To compute f(x) using D, g

we simply check if x ∈ D and output g(x) or 1− g(x) accordingly. The total number of bits required
for the above is K(g,D | X) ≤ o(n) + nh(ε) (where auxiliary variables are subsumed in the o(n)
term). We conclude that K(f | X) ≤ o(n) + nh(ε). Combining the upper and lower bounds on
K(f | X), it must hold that o(n) + nh(ε) ≥ n−O(log n) =⇒ h(ε) ≥ 1− o(1). This inequality
only holds when ε = 1/2 + o(1).

Lemma A.5. It holds that 1− n(1−λi,j)
(j−1)b ≤ λ

′
i,j ≤

nλi,j

(j−1)b .

Proof. We can write the following for j ∈ [2, n/b+ 1]:

nλi,j =
∑
x∈X

acc(Wi,j , x) =
∑

x∈Xi,j−1

acc(Wi,j , x) +
∑

x∈X\Xi,j−1

acc(Wi,j , x)

= (j − 1)bλ′i,j + (n− (j − 1)b)λ′′i,j

=⇒ λ′i,j =
nλi,j − (n− (j − 1)b)λ′′i,j

(j − 1)b

Setting λ′′i,j = 0 we get

λ′i,j =
nλi,j − (n− (j − 1)b)λ′′i,j

(j − 1)b
≤ nλi,j

(j − 1)b

And setting λ′′i,j = 1 we get

λ′i,j =
nλi,j − (n− (j − 1)b)λ′′i,j

(j − 1)b
≥ 1− n(1− λi,j)

(j − 1)b

B EXPERIMENTS

Experimental setup We perform experiments on MNIST dataset and the same data set with random
labels (MNIST-RAND). We use SGD with learning rate 0.01 without momentum or regularization.
We use a simple fully connected architecture with a single hidden layer, GELU activation units (a
differentiable alternative to ReLU) and cross entropy loss. We run experiments with a hidden layer of
size 2, 5, 10. We consider batches of size 50, 100, 200. For each of the datasets we run experiments
for all configurations of architecture sizes and batch sizes for 300 epochs.

Results Figure 2 and Figure 3 show the accuracy discrepancy and accuracy over epochs for all
configurations for MNIST and MNIST-RAND respectively. Figure 4 and Figure 5 show for every
batch size the accuracy discrepancy of all three model sizes on the same plot. All of the values
displayed are averaged over epochs, i.e., the value for epoch t is 1

t

∑
i xi.

First, we indeed observe that the scale of the accuracy discrepancy is inversely quadratic in the
batch size, as our analysis suggests. Second, for MNIST-RAND we can clearly see that the average
accuracy discrepancy tends below a certain threshold over time, where the threshold appears to be
independent of the number of model parameters. We see similar results for MNIST when the model
is small, but not when it is large. This is because the model does not reach its capacity within the
timeframe of our experiment.

14

Under review as a conference paper at ICLR 2023

Figure 2: Full results for the MNIST dataset.

Figure 3: Full results for the MNIST-RAND dataset.

15

Under review as a conference paper at ICLR 2023

Figure 4: We plot for every batch size the accuracy discrepancies of the 3 different models. Results
for MNIST.

Figure 5: We plot for every batch size the accuracy discrepancies of the 3 different models. Results
for MNIST-RAND.

16

	Introduction
	Preliminaries
	Accuracy discrepancy
	The role of randomness in GD initialization
	Omitted proofs and explenations
	Representing sets and permutations
	Omitted proofs for Section 2
	Omitted proofs for Section 3
	Omitted proofs for section 4

	Experiments

