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Figure 1: Autoregressive modeling of audio. (a) Next-token prediction: sequential token generation in chronological
order (left to right), which aligns with the natural temporal structure of audio; (b) Next-scale prediction: multi-scale
token maps are autoregressively generated from coarse to fine scales (lower to higher resolutions). Tokens are
generated in parallel within each scale, which reduces about 40x the AR prediction iteration.

Abstract

Audio generation has achieved remarkable001
progress with the advance of sophisticated gen-002
erative models, such as diffusion models (DMs)003
and autoregressive (AR) models. However, due004
to the naturally significant sequence length of005
audio, the efficiency of audio generation re-006
mains an essential issue to be addressed, espe-007
cially for AR models that are incorporated in008
large language models (LLMs). In this paper,009
we analyze the token length of audio tokeniza-010
tion and propose a novel Scale-level Audio011
Tokenizer (SAT), with improved residual quan-012
tization. Based on SAT, a scale-level Acoustic013
AutoRegressive (AAR) modeling framework is014
further proposed, which shifts the next-token015
AR prediction to next-scale AR prediction, sig-016
nificantly reducing the training cost and infer-017
ence time. To validate the effectiveness of the018
proposed approach, we comprehensively ana-019
lyze design choices and demonstrate the pro-020
posed AAR framework achieves a remarkable021
35× faster inference speed and +1.33 Fréchet022
Audio Distance (FAD) against baselines on the023
AudioSet benchmark.024

1 Introduction025

Autoregressive (AR) modeling (Achiam et al.,026

2023; Sun et al., 2024) has been widely used in027

the generation domain, which typically involves028

two steps - token quantization (Esser et al., 2021;029

Yu et al., 2021) and next-token prediction (Achiam 030

et al., 2023; Touvron et al., 2023). Specifically, the 031

token quantization aims to convert the inputs to 032

a sequence of discrete tokens and the next-token 033

prediction models the conditional distribution of 034

one token based on previous ones. AR approaches 035

have shown significant success in textual model- 036

ing, e.g., large language models (LLMs) (Vaswani 037

et al., 2017; Devlin et al., 2018; Touvron et al., 038

2023; Achiam et al., 2023) and even visual model- 039

ing (Dosovitskiy et al., 2020; Chang et al., 2022). 040

However, despite its effectiveness, AR-based audio 041

generation remains under-explored. 042

Unlike natural language which is discrete and 043

can be easily tokenized into a short series of to- 044

kens, audio demonstrates more challenges to be dis- 045

cretized without losing perceptual quality given its 046

long sequence and continuity nature. Previous ap- 047

proaches (Défossez et al., 2022; Yang et al., 2023a; 048

Kumar et al., 2024; Zeghidour et al., 2021) lever- 049

age multi-stage residual quantization (RQ) (Lee 050

et al., 2022) to model the raw waveform with dif- 051

ferent frequencies. However, the multi-stage RQ 052

will significantly increase the token length, lead- 053

ing to difficulty in the subsequent next-token pre- 054

diction. Another paradigm (Baevski et al., 2020) 055

focuses on the semantics of the waveform and lever- 056

ages pre-trained models (e.g., Hubert (Hsu et al., 057

2021)) to cluster the embeddings in the semantic 058
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space and then quantize the embeddings based on059

cluster centers. Though semantic embeddings can060

successfully reconstruct the waveform, the recon-061

struction quality and generalization capability are062

bottlenecked by the pre-trained encoder.063

In addition, compared to text and images, audio064

waveform typically has a much longer sequence065

length due to the high sampling rates, such that066

about 960000 sequence length in 1 min audio clip067

with 16kHz. Since AR models predict tokens in a068

sequential manner, the inference cost is quadrati-069

cally correlated to the sequence length, making the070

AR-based audio generation slow and computation-071

ally expensive, as illustrated in Fig. 1 (a).072

VAR (Tian et al., 2024; Li et al., 2024a,c), a re-073

cent variant of AR models shifts from token-wise074

to scale-wise AR prediction scheme with a multi-075

scale tokenizer, showcasing improved efficiency076

and scalability in visual domains. However, apply-077

ing scale-wise prediction to raw audio generation078

remains challenging due to the high temporal res-079

olution of audio signals, making efficient audio080

generation difficult with existing methods. Large081

token length from the tokenizer will burden the082

AR modeling. Unlike the 2D visual tokenizer that083

compresses images in spatial (vertical and horizon-084

tal) axes, the audio tokenizer typically only com-085

presses along the temporal axis, making it chal-086

lenging to achieve a high compression rate. To087

address this issue, we leverage a trade-off between088

token length and the residual depth. Specifically,089

multi-scale quantization reduces the token number090

in each scale, allowing for more residual layers091

under the same total token constraint, thereby en-092

hancing performance. This observation highlights093

the potential of multi-scale designs for tokenizer094

optimization, especially for audio applications.095

In this paper, we explore the Scale-level096

Audio Tokenizer and Multi-Scale Acoustic097

AutoRegressive Modeling in audio generation, as098

illustrated in Fig. 1 (b). On the one hand, to shorten099

the audio token length, we utilize a scale-level100

audio tokenizer (SAT) which improves the tradi-101

tional residual quantization with a multi-scale de-102

sign and compresses the token length according103

to the scale index. On the other hand, we further104

shorten the inference step during the autoregres-105

sive prediction. Based on the multi-scale audio106

tokenizer, we propose acoustic autoregressive mod-107

eling (AAR) which models the audio tokens with108

a next-scale paradigm. Since each scale contains109

multiple audio tokens, the AAR can lead to much110

fewer autoregressive step numbers during inference 111

compared to the traditional token-level modeling. 112

By reducing both the token length and the autore- 113

gressive step number, our approach achieves not 114

only a superior generated audio quality but also a 115

remarkably faster (about 35×) inference speed. 116

Our contribution is three-fold: 117

• We present Scale-level Audio Tokenizer 118

(SAT) for audio reconstruction which can effi- 119

ciently compress audio sequence to tokenizers 120

with different scales. 121

• Based on SAT, we introduce scale-level 122

Acoustic AutoRegressive modeling (AAR), 123

significantly reducing the inference latency 124

and training cost. 125

• Extensive experiments are conducted to an- 126

alyze the performance of the proposed ap- 127

proach, providing insights into its capabilities 128

and potential applications in the field of audio 129

synthesis. 130

2 Related Works 131

Raw audio discretization. Before the develop- 132

ment of Variational Autoencoders (VAEs) (Van 133

Den Oord et al., 2017; Razavi et al., 2019), con- 134

verting continuous domains into discrete represen- 135

tations was a significant challenge in generative 136

modeling. VAEs facilitate the effective quantiza- 137

tion of inputs into structured priors using power- 138

ful encoder-decoder networks, allowing manipu- 139

lation in tasks like generation and understanding 140

(Achiam et al., 2023; Touvron et al., 2023; Cail- 141

lon and Esling, 2021). Recent innovations, such 142

as VQGAN (Esser et al., 2021) and RQGAN (Lee 143

et al., 2022), have further advanced these priors, 144

improving model generalization and inspiring nu- 145

merous works in audio discretization (Oord et al., 146

2016; Caillon and Esling, 2021; Siuzdak et al., 147

2024; Li et al., 2024b). In the audio domain, En- 148

codec (Défossez et al., 2022) employs an archi- 149

tecture similar to SoundStream (Zeghidour et al., 150

2021), using an encoder-decoder model to recon- 151

struct audio, incorporating residual quantization 152

and a spectrogram-style discriminator to enhance 153

audio quality. In contrast, HIFI-codec (Yang et al., 154

2023a) uses group residual quantization to refine 155

the representation in the initial quantization layer. 156

Kumar et al. (Kumar et al., 2024) have made sig- 157

nificant contributions to audio reconstruction by 158
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Figure 2: Our model involves two distinct training phases. Stage 1: Scale-level Audio Tokenizer (SAT) to encode
an audio sample into a series of K tokens scales, donated as R = (r1, r2, . . . , rK). Each scale encodes information
in different frequencies of the audio waveform. Stage 2: Acoustic AutoRegressive (AAR) modeling via next-scale
prediction relies on the pre-trained SAT to predict each scale-level token ri by conditioning on all previously
predicted scales r<i and a CLAP token (Wu et al., 2023b) as the start token. The CLAP token is derived from
ground truth audio. During training, we use the standard cross-entropy loss and the attention mask as figured above
to ensure that each ri can only be attributed by r≤i and the start token.

introducing multi-spectrogram loss and quantizer159

dropout to enhance bitrate efficiency. Building160

upon these advances, our work poses an important161

question: can we use fewer tokens to represent low-162

frequency information, thereby efficiently reducing163

the burden while maintaining high-quality audio re-164

construction? To address this, we propose a Scale-165

level Audio Tokenizer, which encodes audio on166

different scales, capturing hierarchical features that167

improve both the efficiency and quality of audio168

generation and reconstruction.169

Autoregressive modeling The autoregressive170

model (Chowdhery et al., 2023; Hoffmann et al.,171

2022), as a different approach from diffusion mod-172

els, leverages efficient Large Language Models173

(LLMs) (Vaswani et al., 2017; Devlin et al., 2018;174

Touvron et al., 2023; Achiam et al., 2023; Kreuk175

et al., 2022; Wu et al., 2023a) to generate the next176

tokens sequentially to construct the output. Due to177

its sequential nature, autoregressive models have178

excelled in text generation, machine translation,179

and other sequence prediction tasks. Recently,180

autoregressive models have also made significant181

processes in the image generation domain (Chang182

et al., 2022; Sun et al., 2024). By treating image183

pixels or patches as sequences, these models can184

generate high-quality images by sequentially pre-185

dicting each part of the image.186

3 Preliminary: Vanilla Audio Tokenizer187

Audio quantization. Consider an audio signal188

a ∈ RC×T , where C represents the number of189

audio channels and T is the number of samples over190

the duration of the signal. Traditional approach191

(Kumar et al., 2024; Défossez et al., 2022; Yang192

et al., 2023a) in audio tokenizer often involves a 193

1D convolutional-based autoencoder frameworks to 194

compress audio waveform to latent space x ∈ Rl×d 195

where l is the token length and then utilizes a vector 196

quantization to quantize the latent tokens: 197

x = E(a), x̂ = Q(x), â = D(x̂) (1) 198

where E(·) donates encoder, Q(·) a vector quanti- 199

zatier, and D(·) a decoder. A vector quantizer Q 200

maps each feature vector in the latent space x to the 201

closest vector in a learnable codebook Z ∈ Rd×V 202

with V vectors of dimension d. Specifically, vec- 203

tor quantization x̂ = Q(x) involves looking up 204

the closest match for each feature vector in x with 205

vectors in Z by minimizing Euclidean distance: 206

x̂ = argminz∈Z ||x− z||2 (2) 207

where x̂ represents the quantized output and x is 208

the input to the quantizer. 209

However, due to the complexity of the au- 210

dio waveform, particularly in handling frequency- 211

specific information, a residual quantization ap- 212

proach is typically employed. In residual quan- 213

tization, a sequence of vector quantizers Q = 214

{Q1,Q2, · · · ,QK} is used, where each quantizer 215

Qi iteratively quantizes the residual error from 216

the previous step. Specifically, after each quan- 217

tization step, the residual error is computed as 218

δi = xi − x̂i and passed to the next quantizer as 219

the input xi = δi−1. The final quantized represen- 220

tation f̂ is obtained by summing the outputs from 221

all quantizers 222

x̂ =

r∑
i=1

x̂i (3) 223
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which is then decoded by the decoder D(x̂) to pro-224

duce the reconstructed output â.225

Loss function. To train audio quantized autoen-226

coder, we leverage a combination of loss functions227

including the reconstructed time-domain loss Lt,228

reconstructed frequency domain loss Lf , discrimi-229

native loss LG, residual quantization loss Lvq, and230

commitment loss Lcommit (Défossez et al., 2022) :231

L = λtLt+λfLf+λGLG+Lvq+λcomLcom. (4)232

Specifically, reconstructed time-domain loss mea-233

sures the absolute difference between a and â as234

Lt = ||a− â|| (5)235

and frequency domain loss assesses the difference236

over mel-spectrograms across n time scales as237

Lf =
n∑

i=1

||Si(a)− Si(â)||+ ||Si(a)− Si(â)||22

(6)238

where Si represents the transformation to the mel-239

spectrogram at scale i. The discriminative loss is240

derived from a multi-scale STFT discriminator, as241

introduced in (Zeghidour et al., 2021) to ensure the242

model captures high-fidelity audio features across243

various time-frequency scales. The vector quantiza-244

tion loss encourages the encoded features to match245

the codebook vectors, and the commitment loss246

penalizes deviations from these vectors, ensuring247

that the encoder commits to the quantized space as248

Lvq =

r∑
i=1

||sg(xi)− zi||22

Lcom =

r∑
i=1

||xi − sg(zi)||22.
(7)249

Analysis. The baseline audio tokenizer can suc-250

cessfully discretize audio tokens. However, due251

to the residual quantization, the token length rep-252

resenting each audio will be significant which253

severely hinders the efficiency in the autoregres-254

sive modeling. Considering each quantizer in resid-255

ual quantization basically divides and represents256

the audio into different frequency bands (Défossez257

et al., 2022; Kumar et al., 2024; Yang et al., 2023a),258

we aim to further adjust the token length based on259

its represented frequencies, i.e., lower-frequency260

parts can be represented with fewer tokens. To this261

end, we introduce the Scale-level Audio Tokenizer262

to reduce the number of tokens being used.263

4 Method 264

Our approach consists of two major stages: (1) 265

In the first stage, we train a Scale-level Audio 266

Tokenizer (SAT) to convert continuous audio sig- 267

nals into discrete tokens using multi-scale residual 268

quantization. (2) The second stage reformulates 269

the Acoustic AutoRegressive modeling (AAR) in a 270

next-scale manner and models the tokens obtained 271

from the frozen SAT tokenizer with a transformer 272

structure. 273

4.1 Scale-level Audio Tokenizer 274

In Scale-level Audio Tokenizer (SAT), we employ 275

the same encoder-decoder architecture as baseline 276

tokenizer (Défossez et al., 2022) but incorporate 277

multi-scale residual quantization (MSRQ) to en- 278

hance efficiency and flexibility in audio representa- 279

tion. In MSRQ, as shown in Fig. 2 (a), the quantizer 280

Qi is defined the same as the baseline setting as 281

ri = Qi(ri−1) while the feature map ri−1 is first 282

downsampled from its original dimension lK × d 283

to a lower resolution lk × d where K is the scale 284

number of the last index and k is the scale number 285

of the correct index. After downsampling, the look- 286

up procedure is performed to match each feature 287

vector with the closest codebook vector Zi. After 288

the look-up, the processed quantized vector zi is 289

upsampled back to the original dimension lK × d 290

to ensure consistency across scales. Due to the 291

loss of high-frequency information from downsam- 292

pling, we employ a 1D convolutional layer after 293

upsampling to restore the lost details and enhance 294

the fidelity of the reconstructed audio. Specifically, 295

this convolutional layer processes the upsampled 296

feature vectors according to the equation 297

ϕ(r̂) = γ × conv(r̂) + (1− γ)× r̂ (8) 298

where conv(·) applies a 1D convolution with a ker- 299

nel size of 9. This design effectively combines 300

the original features with the transformed outputs, 301

while preserving the reparameterization inherent to 302

vector quantization, controlled by the quantization 303

residual ratio γ. In the Appendix, we provide a 304

pseudo-code for the scale-level audio tokenizer. 305

4.2 Acoustic AutoRegressive Modeling 306

Vanilla autoregressive modeling. Autoregres- 307

sive modeling is first introduced by (Sutskever 308

et al., 2014; Bahdanau et al., 2014) and quickly 309

spread to different modalities such as image (Sun 310

et al., 2024), video (Weissenborn et al., 2019) and 311
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3D modeling (Siddiqui et al., 2024). In autoregres-312

sive modeling, a sequence of data points is modeled313

as a product of conditional probabilities. For a se-314

quence x = (x1, x2, . . . , xT ), its joint distribution315

can be expressed and modeled as316

p(x1, x2, ..., xT ) =
T∏
t=1

p(xt|x1, x2, ....xt−1).

(9)317

This approach is widely used across various do-318

mains due to its flexibility and ability to capture de-319

pendencies within data. For any continuous modal-320

ity, it is traditional to first train a tokenizer to dis-321

cretize the input into tokens, which can then be322

modeled using a discrete categorical distribution.323

This step involves mapping the continuous data to324

a sequence of discrete tokens x = (x1, x2, . . . , xT )325

that are fed into an autoregressive model to pre-326

dict the next token in the sequence, based on the327

preceding tokens. In the context of transformers,328

which have become the dominant architecture for329

autoregressive modeling, the attention mechanism330

plays a crucial role in training. The attention mech-331

anism allows the model to focus on different parts332

of the input sequence when making predictions. To333

ensure that the model adheres to the autoregressive334

property, where each token xi is predicted based335

only on previous tokens x1, x2, . . . , xi−1, an atten-336

tion mask is applied. Mathematical, the attention337

mask M is defined as338

Mij =

{
1, if i ≤ j

0, otherwise
(10)339

where guarantee the modeling’s performance on340

predicting xi is only relevant to its preceding to-341

kens.342

After the completion of training of such a model343

P using cross-entropy loss, it can efficiently handle344

complex dependencies and generate new samples345

by sequentially predicting each token conditioned346

on its predecessors (Achiam et al., 2023; Touvron347

et al., 2023; Sun et al., 2024).348

This capability makes autoregressive models349

well-suited for generating data that requires a coher-350

ent and consistent sequence. However, their capac-351

ity for audio generation is still under-explored due352

to the huge sequence length required for audio data.353

The sheer number of tokens needed to represent354

even short audio clips can lead to computational355

inefficiencies and challenges in maintaining tempo-356

ral coherence. To efficiently solve such a challenge,357

we combine the unique property of our SAT to ef- 358

ficiently generate audio via scale-level Acoustic 359

AutoRegressive modeling. 360

Acoustic autoregressive modeling. To shorten 361

the inference step, we propose Acoustic autore- 362

gressive modeling (AAR). This approach, distinct 363

from traditional vanilla autoregressive models that 364

predict token sequences one by one, involves pre- 365

dicting across different scales. Attributed by SAT, 366

our method represents an audio sample as a series 367

of scale-level representations: 368

R = (r1, r2, . . . , rK) (11) 369

By efficiently expressing it as joint modeling, the 370

audio sequence is defined as: 371

p(R) =

K∏
i=1

p(ri|r1, r2, ..., ri−1) (12) 372

In this formulation, each ri represents a distinct 373

scale in the hierarchical representation of the audio 374

signal. The model predicts each scale by condition- 375

ing on all previously predicted scales, effectively 376

capturing both global structures and fine-grained 377

details of the audio. This hierarchical approach 378

reduces the complexity associated with long se- 379

quence lengths by leveraging multi-scale depen- 380

dencies, thereby enhancing the model’s efficiency 381

and ability to maintain temporal coherence. To suc- 382

cessfully implement our method, we modify the 383

attention mask M for each scale ri to focus only 384

on the relevant scales: 385

Mij =

{
1, if i ≤ j

0, otherwise
(13) 386

This attention mask ensures that the model only at- 387

tends to r1, r2, . . . ri−1 when predicting ri ignoring 388

future scales and reducing unnecessary computa- 389

tions. A detailed description of the implementation 390

is summarized in the Appendix. 391

5 Experiment 392

5.1 Evaluation Metrics and Settings 393

We evaluate FAD (Kilgour et al., 2018), MEL dis- 394

tance (Kumar et al., 2024), and STFT distance (Ku- 395

mar et al., 2024) as reference for reconstruction, 396

and FAD (Kilgour et al., 2018), ISc and KL (Sali- 397

mans et al., 2016) for generation. FAD, built upon 398

VGGish (Chen et al., 2020), is the metric to in- 399

dicate the similarity of the generated and target 400
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ID Method Dataset
Reconstruction Generation

|L| rFAD↓ MEL↓ gFAD↓ KL↓
1 Vanilla AR (baseline) AS 750 1.39 1.33 10.05 3.01
2 DiffSound (Yang et al., 2023b) AS - - - 9.76 4.21
3 AudioLCM (Liu et al., 2024b) AC + LP - - - 3.92 1.20
4 AudioLDM 2 (Liu et al., 2024a) AS + 7 more - - - 1.42 0.98
5 AAR (ours) AS 455 1.09 1.33 6.01 2.27

Table 1: We evaluated the performance of our AAR model against other methods using rFAD and MEL Distance
to measure reconstruction quality, and gFAD and KL Divergence to assess generation quality, where ↓ indicates
that lower values are better. In this context, |L| denotes the token length. Additionally, AS, AC, and LP denote the
datasets AudioSet, AudioCaps, and LP-Musicaps, respectively.

time↓ FAD↓ ISc↑ KL↓0

1

2

3

4

5

6

7

8
next-token next-scale

Figure 3: Performance of autoregressive model when
classifier-free guidance is 10. next-token: AR via next-
token prediction; next-scale: our AAR.

samples effectively. MEL distance quantifies the401

difference in mel-spectrogram features, and STFT402

distance measures the short-time Fourier transform403

discrepancies between the generated and target au-404

dio signals, which focus more on high-frequency405

information for audio. Additionally, ISc, simulat-406

ing its performance on image generation, is used to407

evaluate the generated sample diversity and quality.408

KL divergence is utilized to measure the difference409

between the probability distributions of the gener-410

ated and target samples.411

We conducted all experiments on the AudioSet412

(Gemmeke et al., 2017) dataset. To effectively eval-413

uate the performance of our audio tokenizer, we414

divided the original 10-second evaluation set into415

n segments, each matching the window size of416

our model for reconstruction. After reconstruct-417

ing these segments, we reassembled them into a418

complete audio stream. For autoregressive genera-419

tion, we randomly selected one segment from the420

evaluation set and used it as the ground truth.421

5.2 Implementation Details 422

Tokenizer. In stage 1, we utilize multi-scale 423

residual quantization (MSRQ) of codebook size 424

1024 with the Soundstream autoencoder framework 425

(Zeghidour et al., 2021). The model is trained 426

for 100 epochs using the Adam optimizer with 427

β1 = 0.5 and β2 = 0.9. We apply a cosine learn- 428

ing rate scheduler with initial learning rate 3e-4 and 429

set the loss weights to λt = 0.1, λf = 3, λG = 3, 430

and λcom = 1. Our discriminator updated 2/3 times 431

during training. 432

Transformer. In stage 2, our primary focus is on 433

scale-level acoustic autoregressive modeling. To 434

achieve this, we employ a GPT-2-style transformer 435

(Radford et al., 2019) with adaptive normalization 436

(Zhang et al., 2018) and depth of 16. We utilize 437

CLAP audio embeddings (Wu et al., 2023b) as 438

our start tokens. Since one-second audio segments 439

often contain limited meaningful information, we 440

opt to use 10-second audio embeddings to capture 441

richer context, even when generating one-second 442

clips. For training, we adopt the AdamW optimizer 443

with a learning rate of 1e-4, using a linear learning 444

rate scheduler. Additionally, we apply a weight 445

decay of 0.05 and implement warmup settings with 446

an initial warmup proportion of 0.005 and an end 447

warmup proportion of 0.01. 448

5.3 Main Results Analysis 449

We compare the performance of our approach with 450

previous approaches. As shown in Tab 1, our pro- 451

posed SAT tokenizer suppresses the baseline en- 452

codec (Défossez et al., 2022) by 0.3 FAD in the re- 453

construction task, despite using fewer tokens (750 454

tokens v.s. 455 tokens). This shows that by in- 455

creasing quantization while reducing the number 456

of tokens, we can efficiently improve reconstruc- 457

tion quality while using fewer tokens. 458
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# scales # tokens FAD MEL STFT
10 207 1.81 1.55 2.08
16 303 1.52 1.46 1.80

Table 2: Ablation study of SAT performance in number
of scales.

Scheduler # tokens FAD MEL STFT
Logarithmic 303 1.52 1.46 1.80
Quadratic 455 1.40 1.37 1.86

Linear 601 1.38 1.39 2.02

Table 3: Ablation study on scale setting of SAT. All
scale settings are trained in the same numbers of scale.

For the audio generation, we introduce an au-459

toregressive model with next-token prediction as460

the baseline. To ensure a fair comparison, we em-461

ploy two encoders (Encodec (Défossez et al., 2022)462

for AR and our SAT for AAR) with similar per-463

formance. We find that our proposed AAR shows464

superior performance in terms of both latency and465

audio quality. As shown in Fig. 3, the next-scale466

prediction demonstrates a remarkable improvement467

in audio generation, achieving a 35x speed improve-468

ment (0.225s v.s. 7.866s) and generation enhance-469

ment (FAD 5.55 v.s. 6.88). More analysis of train-470

ing costs is available in the Appendix.471

5.4 Ablation Experiments472

We conduct ablation experiments to validate the473

effectiveness of the components in SAT and AAR.474

Effect of discriminator We explored multiple475

discriminator configurations to optimize the perfor-476

mance of our Scale-level Audio Tokenizer (SAT).477

As illustrated in Tab 6, we tested two different dis-478

criminator setups: one using only a multi-scale479

short-time Fourier transform (STFT) discrimina-480

tor (Zeghidour et al., 2021) and another combining481

the multi-scale STFT discriminator with a multi-482

Latent dim. FAD MEL STFT
8 1.47 1.55 2.15
16 1.38 1.52 2.14
32 1.60 1.43 2.05
64 1.09 1.33 1.98

Table 4: Ablation study on latent dimension. We fix
the scale to 16 and use the same quadratic scale setting.
"Latent dim." represents dimension of latent representa-
tion.

Window FAD MEL STFT
1s 1.22 1.36 1.85
5s 1.29 1.41 1.93

Table 5: Ablation study on temporal window.

STFTD MPD MSD FAD MEL STFT
1.38 1.36 1.76
2.29 1.65 2.12

Table 6: Ablation study on discriminator choice.
STFTD stands for Multi-scale short-time fourier trans-
form discriminator, MPD stands for multi-period dis-
criminator, MSD stands for multi-scale discriminator.

period discriminator (MPD) (Kong et al., 2020) and 483

a multi-scale discriminator (MSD) (Kumar et al., 484

2019). Our results indicate that using only a multi- 485

scale STFT discriminator is sufficient for effective 486

reconstruction. 487

Effect of the scale setting. To find the optimal 488

combination of SAT configuration, we start with 489

Encodec in 128 latent dimensions with 10 quan- 490

tizers (Défossez et al., 2022) and test multiple 491

scales with shared codebooks of different sizes 492

and individual codebooks for each scale. In par- 493

ticular, Tab 2 shows that enlarging the scale to 494

16 consistently improved audio quality. As illus- 495

trated in Tab 3, we tested the performance of linear, 496

quadratic and logarithmic scheduling on 16 scales: 497

linear scheduling provides a balanced number of 498

tokens for each scale; quadratic scheduling focuses 499

more on the early or late stages of the process; 500

and logarithmic scheduling offers a more gradual 501

progression. We believe the suboptimal perfor- 502

mance observed in logarithmic scheduling is due 503

to its lack of high-frequency information represen- 504

tation at larger scales even though it also builds a 505

complete information flow for audio. Quadratic 506

scheduling, in particular, proved to be more effi- 507

cient, requiring fewer tokens than linear scheduling 508

(455 v.s. 601) and also achieves comparable recon- 509

struction performance in audio quality. 510

To further improve the model’s capacity, we 511

fixed the decoder dimension to 1024 and tested 512

latent dimensions of 8, 16, 32, and 64. As Tab 4 in- 513

dicated, our SAT achieves its superior performance 514

in the latent dimension of 64. 515

Effect of temporal windows change. To effec- 516

tively validate the performance of our scale schedul- 517

7



ID Description FAD↓ IS↑ KL↓ Latency↓ (s)
1 Vanila AR 10.05 2.42 3.01 7.86
2 AAR 9.24−0.81 2.69+0.27 2.94−0.07 0.21−7.21

3 + Attn. Norm 8.80−1.25 2.80+0.38 2.79−0.22 0.25−7.61

4 + CFG 6.44−3.61 3.52+0.90 2.32−0.69 0.25−7.61

5 + Top-k 6.25−3.81 3.59+1.17 2.30−0.71 0.25−7.61

6 + Top-p 6.01−4.04 3.68+1.26 2.27−0.74 0.25−7.61

Table 7: Ablation study on components of AAR. vanilla AR and AAR are implemented in GPT-2 style transformer
with adaptive layer normalization; "Attn. Norm" represents normalizing q and k into unit vector before attention;
"CFG" means classifier free guidance scale of 2; Top-k and Top-p are sampling strategies where Top-k randomly
selects from the top 200 indices, and Top-p (nucleus sampling) selects tokens with a cumulative probability of 0.95.
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Figure 4: Performance of AAR in different classifier-
free guidance scales from 2 to 18 (left to right), with
each point incremented by 2. The red line represents
Fréchet Audio Distance (FAD) v.s. Inception Score
(ISc), while the blue line represents Kullback-Leibler
divergence (KL) vs. Inception Score (ISc).

ing in audio reconstruction, we train our SAT using518

5-second audio windows with the 5× original quan-519

tizer setting. This approach allows us to assess our520

SAT’s ability to handle varying temporal dimen-521

sions and capture essential audio features over dif-522

ferent time scales. By experimenting with different523

window sizes, we aim to determine the optimal524

configuration for maintaining high reconstruction525

quality while maximizing efficiency. The results of526

these experiments are presented in Tab 5. we find527

that the reconstruction quality between 1-second528

and 5-second windows is similar, suggesting that529

our SAT performs well across diverse time win-530

dows, maintaining consistent quality and demon-531

strating robustness in handling varying temporal532

scales.533

Effect of AAR and sampling technique. We534

evaluate our AAR with the same setting as the535

baseline vanilla AR with roadmap shown in Tab 7.536

We notice that our AAR can not only improve the537

generation abilities but also significantly reduce538

the inference time to an acceptable range. More- 539

over, the introduction of attention normalization 540

can stabilize the training and further enhance the 541

model’s performance, leading to improved FAD 542

and IS scores. The addition of CFG and advanced 543

sampling techniques such as top-k and top-p sam- 544

pling continues to push the boundaries of audio 545

generation quality. 546

Effect of classifier-free guidance. As shown in 547

Fig. 4, we evaluate the relationship between the 548

Inception Score with Fréchet Audio Distance and 549

Inception Score with KL divergence across differ- 550

ent Classifier-Free Guidance scales. We find that as 551

the CFG scales increase, the ISc improves, while 552

both FAD and KL metrics converge and stabilize 553

at CFG = 14 and finally achieving FAD 5.19. 554

6 Conclusion 555

In this paper, we introduced a novel approach for 556

audio generation using a multi-scale autoregressive 557

model via next-scale prediction. This framework 558

leverages the scale-level audio tokenizer, which 559

efficiently compresses audio sequences into tok- 560

enizers of varying scales, thereby improving effi- 561

ciency while maintaining high fidelity. Through 562

comprehensive experiments, we demonstrated the 563

superior performance of our method in generating 564

high-quality audio compared to traditional autore- 565

gressive methods. 566

Our approach provides an efficient solution for 567

audio generation. By incorporating a multi-scale 568

residual quantization technique, the model effec- 569

tively reduces the sequence length required for gen- 570

eration, leading to enhanced efficiency and reduced 571

computational demands. 572
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7 Limitations.573

Despite the strong performance of next-scale pre-574

diction in general audio generation with text con-575

trol, several limitations remain that warrant further576

exploration. Signal-level audio tokenizers, such as577

those employed in this work, often rely on residual578

quantization to capture information across different579

frequencies. While effective, this approach faces580

challenges in managing long token lengths, particu-581

larly for high-resolution audio signals. To mitigate582

this, we adopt a multi-scale approach that reduces583

token length while maintaining reconstruction qual-584

ity. However, semantic tokenizers offer a promis-585

ing alternative by achieving shorter token lengths586

with higher information density. Integrating seman-587

tic information into multi-scale quantized tokens588

could further reduce token length while enhancing589

the richness and efficiency of latent representations.590

Addressing this integration and improving scalabil-591

ity will be a key direction for our future research.592
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Algorithm 1 Multi-scale residual quantization
Input: Raw Audio Signal A
Parameter: Encoder E , Decoder D, Quantizer
QK

i=1

Hyper-parameter: multi-scale Reso-
lution (tk)

K
k=1, interpolation method

ϕ

1: f = E(A)
2: R = []
3: for k in (1, 2, ...K) do
4: if k = K then
5: rk = Qk(f)
6: zk = lookup(Qk, rk)
7: else
8: rk = Qk(interpolate(f, tk))
9: zk = lookup(Qk, rk)

10: zk = interpolate(zk, tK)
11: end if
12: R = R+ rk
13: f = f − ϕ(zk)
14: end for
15: return R

A Supplementary material814

A.1 Multi-Scale Residual Quantization815

Multi-scale residual quantization (MSRQ) in our816

SAT is designed to efficiently encode audio sig-817

nals by leveraging multiple quantization stages on818

different scales. Specifically, the MSRQ process819

begins with the raw audio signal being encoded820

into a feature representation. This representation821

is then passed through a series of quantizers, each822

corresponding to a different scale. For each scale,823

the feature map is downsampled to match the target824

resolution before quantization. After quantization,825

the feature map is upsampled back to its original826

resolution. Due to information loss in interpolation,827

the upsampled feature map is further processed828

through our upsampling network to recover the829

information for each scale. The residual error, cal-830

culated after each quantization step, is passed to831

the next quantizer, allowing the model to refine the832

audio representation iteratively. The pesudo-code833

implementation can be shown in Algorithm 1.834

A.2 Scale-level Acoustic AutoRegressive835

Generation.836

Our AAR method begins by taking the scale-level837

tokens generated by the MSRQ process. These to-838

Algorithm 2 Multi-scale AR Generation
Input: Text T
Parameter: Decoder D, GPT AR, conditional
Model C
Hyper-parameter: multi-scale Reso-
lution (tk)

K
k=1, interpolation method

ϕ

1: x0 = C(T )
2: R = [], S = [x0]
3: for k in (1, 2, ...K) do
4: xk = AR(S)
5: R = R+ xk
6: if k = K then
7: break
8: else
9: xk = interpolate(xk, tK)

10: xk = ϕ(interpolate(xk, tk+1))
11: end if
12: S = S + xk
13: end for
14: A = D(R)
15: return A

kens are organized hierarchically, with each scale 839

capturing different levels of detail in the audio sig- 840

nal—from coarse, low-frequency information to 841

fine, high-frequency details. In generation, the 842

process is structured to predict these scales sequen- 843

tially, starting from the coarsest scale and progress- 844

ing to finer scales. As Algorithm 2 illustrated, our 845

AAR first initializes the generation process by pro- 846

ducing an initial latent representation from the in- 847

put text using a conditional model. This initial 848

representation serves as the starting point for the au- 849

toregressive prediction. The model then proceeds 850

through each scale, beginning with the coarsest, 851

and generates the corresponding tokens by condi- 852

tioning on the sequence of tokens generated thus 853

far. After each scale’s tokens are predicted, they 854

are interpolated and refined to align with the reso- 855

lution of the next finer scale. This iterative process 856

continues until all scales are generated, ensuring a 857

smooth and coherent progression from low to high- 858

frequency details. Finally, the aggregated tokens 859

from all scales are decoded into a complete audio 860

signal, resulting in a high-fidelity output that effec- 861

tively captures the nuances of the original audio. 862

A.3 Scale Scheduling 863

In our paper, we explore three types of scale 864

scheduling: Linear, Quadratic, and Logarithmic. 865
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Specifically, Linear scheduling ensures that the dif-866

ference between each scale is consistent and linear.867

For example, in our linear scheduling approach, we868

start from a scale of 1 and increase to 75 using 16869

scales, resulting in a difference of approximately870

5 between each consecutive scale. The detail vi-871

sualization of our scale setting can be shown in872

Fig. 5.873

2 4 6 8 10 12 14 16
Scale

0

10

20

30

40

50

60

70

#
to

ke
n

s

linear quadratic logrithmeic

Figure 5: Visualization of Linear, Quadratic, and Loga-
rithmic scale scheduling across the range from 1 to 75.

A.4 Codebook Utilization874

We analyze the codebook utilization across differ-875

ent models. In particular, we observe that the code-876

book utilization for Encodec (Défossez et al., 2022)877

consistently reaches 99%, indicating that the en-878

tire codebook is actively used during the encoding879

process. In contrast, our SAT model exhibits a880

lower utilization rate. Specifically, we find that881

the codebook utilization in every scale of the SAT882

model remains at approximately 60%. We hypoth-883

esize that this discrepancy is caused by the inherent884

structure of the SAT model, where each time we885

downsample the input and apply quantization, the886

model becomes increasingly selective in its use of887

the codebook entries.888

A.5 Training Cost Analysis889

Our AAR exhibits strong performance in terms of890

latency and quality while also efficiently reducing891

the training cost of the model. To be more specific,892

the vanilla AR achieved an FAD of 8.07 with a893

classifier-free guidance scale of 4 after training for894

100 epochs, while our AAR achieved an improved895

FAD of 5.70 under the same settings in just 45896

epochs. As shown in Tab 8, to achieve the same897

capacity of vanilla AR, our AAR only needs to898

train 20 epochs and efficiently save approximately899

80% training cost.900

Epoch Method FAD↓ IS↑ KL↓
100 AR 7.19 2.78 2.73
10 AAR 7.57+0.38 2.97+0.19 2.74+0.01

20 AAR 6.83−0.36 3.24+0.46 2.53−0.20

30 AAR 6.36−0.83 3.49+0.71 2.40−0.33

40 AAR 6.32−0.87 3.55+0.77 2.32−0.41

45 AAR 6.13−1.06 3.63+0.85 2.28−0.45

Table 8: Comparison of training cost between vanilla
AR and our AAR. All results are generated within
classifier-free guidance scale of 4.
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Figure 6: Ablation study of upsampling functions on
SAT.

A.6 Upsampling Function 901

In our work, to efficiently recover information loss 902

from downsampling, we use a 1D convolutional 903

layer after vanilla upsampling to ensure unique in- 904

formation on each scale is preserved and accurately 905

represented. We evaluated its effectiveness through 906

three configurations: unshared (each quantizer has 907

its own convolutional layer); partially shared (ap- 908

proximately three quantizers share one layer); and 909

fully shared (all quantizers use the same layer) to 910

validate the effectiveness of this approach in distin- 911

guishing and splitting information across different 912
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Figure 7: Ablation study of upsampling functions on
AAR.
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scales for multi-scale reconstruction, and so on,913

generation. Our experiments (see Fig. 6) show that914

the performance of unshared, partially shared, and915

fully shared networks in reconstruction is similar,916

indicating that all configurations effectively main-917

tain audio quality during reconstruction. However,918

their impact on generation can be seen in Fig. 7,919

where the partially shared architecture significantly920

improves generation quality.921
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