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ABSTRACT

We revisit the classical Hopfield network from a spiked covariance perspective,
showing how the Hebbian coupling matrix forms a low-rank perturbation of the
identity. This viewpoint links outlier eigenvalues in the sample covariance ma-
trix to latent signal vectors, explaining how multiple signals can fuse into a single
spurious state. We propose a hierarchical algorithm that uses Hopfield updates to
iteratively partition the data, isolating more granular spiked subspaces until no fur-
ther mergers remain. Unlike classical approaches focusing on capacity alone, our
method reveals latent signals even when they are strongly correlated. Experiments
on MNIST and LFW confirm that these signals serve as interpretable “prototypes”
and improve clustering initialization.

1 INTRODUCTION

The classical Hopfield network Hopfield (1982) is renowned for its ability to store and retrieve
binary memory patterns, though it suffers from well-known capacity limitations and the emergence
of undesired spurious states McEliece et al. (1987). Although recent advances (e.g., Krotov &
Hopfield (2016); Demircigil et al. (2017); Ramsauer et al. (2021)) have pushed the network beyond
these historical bounds, the classical model provides valuable analytic tractability—making it an
ideal platform for understanding fundamental phenomena such as spurious memory formation.

In parallel, the theory of spiked covariance models has revealed how outlier eigenvalues in large
random matrices encode meaningful low-rank signals within high-dimensional noise Bloemendal
et al. (2016); Ding & Yang (2021). We show that Hebbian learning in classical Hopfield networks
induces precisely such a spiked structure on the coupling matrix, interpreted as a perturbation from
the identity. This observation both explains the network’s preference for dominant eigenvector di-
rections and highlights how multiple signals can become fused into a single spurious state when
sample-based interactions lead to overlap among outlier eigenvectors.

Although related work has leveraged spectral properties for improving Hopfield training Benedetti
et al. (2024); Agliari et al. (2024), to the best of our knowledge, we present the first explicit connec-
tion to the spiked covariance model. We leverage this viewpoint to propose a hierarchical procedure
that iteratively extracts latent signal vectors. Whenever multiple signals collapse into a single Hop-
field memory, it indicates an inconsistency between the number of outlier eigenvalues (spikes) and
the converged states, suggesting the need for finer decomposition. We then isolate the spiked sub-
space via Hopfield updates and remove high-entropy (uncertain) samples that can cause the dynam-
ics to become “stuck” in one merged state. While our ultimate goal is to reduce each sub-dataset to a
single spike, practical limits (e.g., maximum recursion depth) may result in sub-datasets containing
more than one. Nevertheless, this hierarchical approach produces a set of interpretable prototypes,
capturing salient latent signals even under finite-sample noise and correlated data.
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2 BACKGROUND

2.1 CLASSICAL HOPFIELD NETWORK (BRIEF REVIEW)

Consider K memory patterns {ξj}Kj=1 ⊂ {−1, 1}M , each of dimension M . A classical Hopfield
network stores these patterns by constructing a symmetric coupling matrix W ∈ RM×M , whose
element Wij measures the strength of interaction between neurons i and j. A common choice is
Hebb’s rule (Hopfield, 1982; Hebb, 2005):

W =
1

K
ΞΞT − IM , Ξ = [ξ1, . . . , ξK ]. (1)

Here, IM is the M ×M identity matrix. The state of the network at time t is a(t) ∈ {−1, 1}M ,
updated iteratively:

a(t+1) = sign
[
W a(t)

]
. (2)

Under ideal conditions, each stored pattern ξj (or small variations around it) is a stable attractor.
However, in practice, spurious stable states and capacity issues often arise.

2.2 SPIKED COVARIANCE MODEL

We next recall the spiked covariance framework (Bloemendal et al., 2016), which describes data
vectors as a low-rank signal plus noise. Suppose we observe N samples {ai}Ni=1 ⊂ RM , stacked
into A ∈ RM×N . Their empirical (sample) covariance is

Q =
1

N
AAT . (3)

In the population model, each sample

a = z +

r∑
l=1

yl ul, (4)

with z ∈ RM an i.i.d. noise vector (mean zero, unit variance), scalars yl (mean zero, unit variance),
and r deterministic signal vectors {ul}. The population covariance is:

Σ = IM + U UT , U = [u1,u2, . . . ,ur] ∈ RM×r. (5)

When M is comparable to N , eigenvalues of Σ exceeding 1 +
√
M/N produce outlier sample

eigenvalues of Q, with corresponding eigenvectors aligning to the population latent eigenvector.
These outlier sample eigenvalues are saparated from bulk of the spectrum with edge boundaries:

γ± :=

√
M

N
+ (

√
M

N
)−1 ± 2 (6)

3 HEBB RULE AND SPIKED POPULATION COVARIANCE

3.1 FROM HEBBIAN WEIGHTS TO A SPIKED COVARIANCE MATRIX

Observe that the Hebbian coupling equation 1 is a rank-K perturbation of the identity:

W = 1
K ΞΞT − IM . (7)

Meanwhile, a spiked covariance can be written

Σ = IM + 1
K ΞΞT . (8)

Hence:

Proposition 3.1 (Hebbian↔ Spiked Covariance) If we drop the {−1, 1} constraint on patterns,
then

W = Σ− 2 IM where Σ = IM + 1
K ΞΞT .
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Figure 1: Number of spikes vs. number of converged Hopfield states.

Proof. Set U = 1√
K

Ξ. Then UUT = 1
K ΞΞT . Clearly, W = Σ− 2 IM . □

3.2 DYNAMICS TOWARD PRINCIPAL COMPONENTS

Proposition 3.2 (Linearized Hopfield Dynamics) Relax the sign function in eq. (2) and consider

a(t+1) = W a(t), W = Σ− 2 IM . (9)

If Σ = V ΛV T has eigenvalues {λi}, then each coordinate along vi evolves by a factor (λi − 2).
Hence, components with λi > 3 grow exponentially.

Proof. Since W = V (Λ − 2IM )V T , writing a(t) =
∑

i c
(t)
i vi gives c(t+1)

i = (λi − 2) c
(t)
i . If

λi > 3, vi dominates as t→∞. □

In other words, the top eigenvalues of Σ (spikes) attract the system state.

3.3 SAMPLE COVARIANCE AND MERGED SPURIOUS STATES

We do not observe Σ directly, but only Q. If Q has r outlier eigenvalues, we might expect r stable
Hopfield attractors. In practice, multiple signals can merge into a single attractor, or extra spurious
attractors may appear.

Empirical Example on MNIST. Figure 1 shows how many outlier eigenvalues are detected in
Q (i.e. spikes) vs. the number of unique Hopfield converged states, for subsets of MNIST digits.
Mergers reduce the final count of stable states. A concrete four-digit illustration (0,4,6,8) in Figure 2
shows how two separate states each blend two digit classes. Recursively splitting each merged state
using newly constructed networks eventually recovers distinct directions.

4 PROPOSED METHOD

In this section, we present a hierarchical algorithm that uncovers latent signal vectors in a spiked
covariance setting by recursively applying Hopfield updates. The procedure alleviates the problem
of multiple signals merging into a single memory, ultimately extracting one prototype (i.e., one
spiked direction) per latent subspace.

4.1 PROBLEM FORMULATION

We restate the central problem under the spiked covariance framework. Let {ai}Ni=1 ⊂ RM be a
dataset of N samples, each modeled as

ai = zi +

r∑
l=1

yil ul,

where zi has i.i.d. zero-mean components (unit variance), and {ul} are underlying latent signals of
interest. Our goal is to identify these latent vectors despite finite-sample noise and spurious correla-
tions, ultimately yielding a collection of prototype vectors that capture the data’s salient structures.
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(a) Initial data points
and spectrum.

(b) Unique converged
states (all samples).

(c) Spectrum after de-
composing the first
state (digits 4,6).

(d) Converged states
after decomposing the
first state.

(e) Spectrum after de-
composing the second
state (digits 0,8).

(f) Converged states
after decomposing the
second state.

Figure 2: MNIST example with digits 0,4,6,8. Hopfield merges them into two states, but re-
building networks on each subset recovers four directions.

4.2 HIERARCHICAL HOPFIELD DECOMPOSITION (HHD)

We propose Hierarchical Hopfield Decomposition (HHD), which recursively splits data whenever
multiple latent signals remain merged in a single Hopfield memory. Each recursion level checks how
many outlier (spiked) eigenvalues the current sub-dataset has; if more than one spike is found, we
apply Hopfield updates to partition the sub-dataset into distinct stable states. The process continues
until at most one spike per sub-dataset remains or until depth/size constraints are met.

If the spike count r remains unchanged from the previous recursion, we remove high-entropy sam-
ples that align nearly equally with all spiked directions. Formally, for a sample ai, define

pij =
exp(a⊤

i vj)∑r
k=1 exp(a

⊤
i vk)

, Hi = −
r∑

j=1

pij log pij ,

where {vj} are the spiked eigenvectors. Samples with Hi above a threshold are removed, preventing
near-degenerate “tie” states in the Hopfield update and allowing further subspace splitting.

Prototype Extraction. Once the recursion terminates in a leaf node, we take the corresponding
eigenvector(s) as the final prototype(s). A depth-first traversal gathers these leaf prototypes. Samples
can then be assigned to the nearest prototype via cosine similarity or other distance measures.

5 EXPERIMENTS ON PROTOTYPE EXTRACTION

We test HHD on MNIST LeCun et al. (1998) and LFW Huang et al. (2008). Figure 3 contrasts
HHD prototypes with PCA components on MNIST. Unlike PCA, which enforces orthogonality,
HHD can isolate both correlated and uncorrelated directions, yielding sharper digit-specific features.
Figure 4 shows a similar effect on faces: at higher recursion, prototypes split into more specialized
or individual-specific components, revealing a hierarchy from broad facial angles down to unique
expressions.
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(a) HHD

(b) PCA (c) Projection scatter

Figure 3: (a) Prototypes from HHD at various recursion depths. (b) Top principal components
from PCA. (c) Scatter plots of data projections onto five HHD prototypes. Certain prototypes share
correlated features, while others discriminate different digits.

Figure 4: Example of two prototypes extracted from LFW at different recursion levels. Higher-level
prototype (top row) captures a broad expression, while deeper recursion (bottom row) yields features
of a specific individual.

Clustering. We compare k-means initializations on MNIST subsets: random, k-means++ Arthur
& Vassilvitskii (2006), PCA-based, and HHD-based (our prototypes). Table 1 reports V-measure
Rosenberg & Hirschberg (2007), ARI Steinley (2004), and AMI Vinh et al. (2010). HHD-based
achieves the highest averages, indicating that prototypes aligned with true latent directions help
cluster formation.

6 CONCLUSION

We showed that classical Hopfield networks, via Hebbian coupling, inherently implement a spiked
covariance model whose outlier eigenvalues correspond to meaningful latent directions. Under finite
samples, these directions sometimes merge, yielding spurious states. Proposed Hierarchical Hop-
field Decomposition splits merged states, moving to finer spiked subspaces. Experiments elucidate
how this approach can be leveraged to isolate correlated signals in high-dimensional data.

Table 1: Mean clustering metrics on 25 random MNIST subsets (150 samples each). Standard
deviations in subscripts. The best mean in each column is bold.

METHOD V-MEASURE ARI AMI

K-MEANS++ 0.518±0.028 0.232±0.046 0.368±0.035

RANDOM 0.514±0.041 0.219±0.049 0.354±0.051

PCA-BASED 0.523±0.035 0.249±0.043 0.368±0.046

HHD-BASED 0.539±0.034 0.259±0.055 0.386±0.044
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A ALGORITHM PSEUDOCODE

We present the pseudocode for Hierarchical Hopfield Decomposition (HHD) here.

Algorithm 1 Hierarchical Hopfield Decomposition
1: Input: data matrix A ∈ RM×N (N samples as columns), minimum cluster size Cmin, maxi-

mum depth Dmax.
2: Output: hierarchical tree of sub-datasets.
3: Initialize depth← 0, rprev ←∞.
4: function RECURSIVEDECOMPOSE(A, depth, rprev):

5: Q =
√

M
N

−1

· AA⊤

N // scaled sample covariance
6: Compute eigenvalues λ1 ≥ · · · ≥ λM of Q, and let spikedIdx ⊂ {1, . . . ,M} collect indices

of λi > γ+ (section 2.2).
7: r ← |spikedIdx| // number of spiked eigenvalues
8: if (r ≤ 1) or (depth ≥ Dmax) or (N < Cmin) then
9: return leaf node containing {col. indices of A} and r.

10: if (r ≥ rprev) then:
11: Remove the columns of A with high entropies w.r.t. the spiked eigenvectors
12: return RECURSIVEDECOMPOSE(A, depth, rprev)
13: // Construct Hopfield coupling matrix
14: W = N−1 AA⊤ − IM .
15: // Perform Hopfield updates until convergence
16: S(0) ← sign(A⊤)
17: repeat:
18: S(new) = sign

(
W S

)
19: if (S(new) == S) then break
20: else S ← S(new)

21: // Partition data columns by unique stable states:
22: Let U be the set of distinct columns of S⊤.
23: Initialize C ← ∅.
24: for each state u ∈ U do
25: Let Au be the submatrix of Nu columns of A that satisfy S⊤[:, i] = u.
26: if

(
Nu ≥ Cmin

)
then

27: C ← C ∪ {RECURSIVEDECOMPOSE(Au, depth + 1, r)}
28: return C
29: end function
30: return RECURSIVEDECOMPOSE

(
A, 0,∞

)

B ABLATION STUDY ON ENTROPY REMOVAL

We investigated how removing high-entropy samples influences the hierarchical Hopfield decompo-
sition. We compare two conditions:

1. No Removal: The algorithm never prunes samples based on entropy.

2. With Removal: The algorithm discards columns whose entropy is within 0.1 of the maxi-
mum entropy at each recursion step.

Both conditions use the same maximum recursion depth Dmax = 50 and minimum cluster size
Cmin = 1. In Table 2, we report several tree-level metrics (§4.2) that summarize the final decompo-
sition.

Discussion: Without removing high-entropy samples, the decomposition quickly settles into a
small number of leaf nodes at a shallow depth, each leaf containing multiple spikes on average. In
contrast, enabling entropy removal forces additional splits, yielding a deeper decomposition (average
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Table 2: Ablation study on entropy removal. We compare a run with no entropy removal to one
that removes any sample whose entropy is within 0.1 of the maximum. Both experiments used
Dmax = 50 and Cmin = 1.

#Leaves Avg. Depth Avg. Spikes #Multi-Spike Leaves Avg. Leaf Size

No Removal 4 1.00 6.50 2 70.00
With Removal 27 13.41 1.30 7 5.22

leaf depth of 13.41) and smaller leaf sizes of 5.22. The average number of spikes per leaf is also
reduced to about 1.30, indicating that most leaves are nearly single-spike subspaces. Although this
process creates more total leaves and sometimes yields leaves with more than one spike (7 multi-
spike leaves), the overall decomposition is more fine-grained. Hence, high-entropy sample removal
helps avoid early entanglements of signals in a single state, allowing the algorithm to proceed further
toward single-spike sub-datasets.

C DISCUSSION AND FUTURE DIRECTIONS

A central advantage of HHD is its hierarchical splitting of data. At higher recursion levels, broad pat-
terns may merge multiple classes; at deeper levels, specialized directions emerge. Depending on the
application, one can stop at intermediate depths for semi-granular prototypes or proceed until each
sub-dataset is pure. Averaging sub-datasets offers an alternative “mean representative” approach if a
single spiked factor is too strict. Future extensions include partial supervision, embedding methods,
or alternate definitions of “entropy” to refine the sample-removal step.
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