
Improving Energy Natural Gradient Descent through
Woodbury, Momentum, and Randomization

Andrés Guzmán-Cordero
Vector Institute, Mila - Quebec AI Institute, Université de Montréal

andres.guzman-cordero@mila.quebec

Felix Dangel
Vector Institute

f.dangel@vectorinstitute.ai

Gil Goldshlager
UC Berkeley

ggoldsh@berkeley.edu

Marius Zeinhofer
ETH Zurich

marius.zeinhofer@sam.math.ethz.ch

Abstract

Natural gradient methods significantly accelerate the training of Physics-Informed
Neural Networks (PINNs), but are often prohibitively costly. We introduce a suite
of techniques to improve the accuracy and efficiency of energy natural gradient
descent (ENGD) for PINNs. First, we leverage the Woodbury formula to dramat-
ically reduce the computational complexity of ENGD. Second, we adapt the Sub-
sampled Projected-Increment Natural Gradient Descent algorithm from the varia-
tional Monte Carlo literature to accelerate the convergence. Third, we explore the
use of randomized algorithms to further reduce the computational cost in the case
of large batch sizes. We find that randomization accelerates progress in the early
stages of training for low-dimensional problems, and we identify key barriers to
attaining acceleration in other scenarios. Our numerical experiments demonstrate
that our methods outperform previous approaches, achieving the same L2 error as
the original ENGD up to 75× faster.

1 Introduction

Using neural networks to solve partial differential equations (PDEs) is a promising and highly active
research direction at the intersection of machine learning and scientific computing. While the idea
is not new [7, 20], it has gained traction with the advent of Physics Informed Neural Networks
(PINNs) [33]. Compared to traditional methods, neural networks avoid the need for sophisticated,
problem-dependent discretization schemes and promise to scale better to high-dimensional problems
[33]. However, it is very challenging to attain the accuracy levels of traditional solvers with neural
networks. This is in large part due to the loss landscape’s non-convexity and ill-conditioning [44].
To address this problem, second-order methods such as energy natural gradient descent [ENGD, 27]
and Kronecker-factored approximate curvature [KFAC, 24, 6] have been proposed. These methods
greatly improve upon the accuracies attainable by first-order optimizers like SGD or Adam [6], but
they suffer from either a high per-iteration cost or a high implementation complexity. As a result,
there remains a significant need for more accurate and efficient methods to train PINNs.

In parallel to the PINN community, neural networks have also been leveraged in conjunction with the
variational Monte Carlo method [VMC, 9] to simulate quantum many-body systems [3, 14, 21, 32].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

VMC+SR∗

[9, 42]
NNs in VMC

[3]
K-FAC

[32]
MinSR†

[4]

SPRING†

[11]

PINNs
[33]

ENGD∗

[27]

K-FAC
[6]

Us†
Nyström
Method

[48]

Sketch
and Solve†

[38]

Sketch
and Precond.

[37]

Low-rank
Approx.†

[13]

Nyström
PCG
[10]

Figure 1: Timeline of VMC, PINN and RLA methods. ∗: Stochastic reconfiguration (SR) and
energy natural gradient descent (ENGD) both precondition their stochastic gradients with the inverse
of an appropriate curvature matrix. †: Inspired by MinSR, we apply Woodbury’s matrix identity to
use the kernel matrix instead of ENGD’s Gauss-Newton matrix, thus reducing the cost to O(N2P)
instead of O(P 3), where N denotes the batch size and P the number of parameters; we further
introduce SPRING for PINNs to transport curvature information across optimization steps; last, we
use a GPU-efficient Nyström approximation to reduce the iteration cost for large batch sizes.

Second-order optimizers are very common within this field and the most popular one, known as
stochastic reconfiguration [SR, 42, 1], shares a similar computational structure to ENGD, owing to a
similar mathematical derivation as a projected functional algorithm [28]. Within the neural network
VMC community, the quest to model complex quantum systems to as high of an accuracy as possible
has led to significant advances in algorithmic implementations of the SR optimizer, including the
use of the Woodbury matrix identity to reduce the computational cost of each optimization step
[MinSR, 4] and the development of momentum schemes that can accelerate the convergence of
natural gradient methods [SPRING, 11].

Given the similarities between VMC and PINNs it is natural to wonder if PINNs can benefit from the
techniques developed in the more mature optimization literature for VMC. In this paper, we answer
this question in the affirmative (See Figure 1). We first show that both MinSR and SPRING can
be adapted to drastically improve ENGD for PINNs. Going beyond transfer, we explore the use of
randomized methods to further reduce the cost of both ENGD and SPRING iterations. Concretely,
our contributions are as follows:

• We transfer ideas from the VMC community to PINNs, showing that the Woodbury
matrix identity drastically improves the computational bottleneck of ENGD for PINNs.
Concretely (details in Section 3), we compute in sample space, as its dimensionality is typ-
ically much smaller than the parameter space. This enables an exact ENGD for PINNs with
up to 106 trainable weights on standard consumer hardware with drastically improved com-
putation time. Unlike K-FAC, the implementation is architecture-agnostic and thus highly
flexible. We then show that the SPRING algorithm introduced in the VMC community can
further improve the training process of PINNs, yielding consistently faster convergence
and removing the need for the expensive line search from ENGD. The resulting method,
summarized in algorithm 1, is straightforward to implement and achieves state-of-the-art
results, and we thus recommend it as the new optimizer of choice for training PINNs.

• Going beyond transfer, we explore the use of randomized algorithms based on a variant
of Nyström’s method [10] to further accelerate both ENGD and SPRING in the case of large
sample sizes. As standard formulations of Nyström’s method require SVDs, which are ex-
tremely slow on GPU in contemporary ML libraries, we develop a GPU-efficient variant of
Nyström that only uses Cholesky solves on square matrices of sketch dimension. We high-
light this GPU-efficient Nyström approximation as an independent contribution which can
be useful in a wide array of machine learning applications. For PINNs, we find that it can
accelerate the early phases of training for low-dimensional problems, and we identify key
barriers to extending this acceleration to the later phases and higher-dimensional settings.

2

• We present thorough empirical evidence for our claims, demonstrating the utility of the
Woodbury identity and the SPRING algorithm as well as the power and the limitations of
randomization. We explore both low- and high-dimensional problems and we meticulously
tune the hyperparameters of each method to attain optimal performance, with final results
supported by more than 4500 training runs in total.

Related work The Woodbury identity has also been used to train neural networks for tradi-
tional machine learning problems [5, 49, 35] and other applications, such as model sparsification
[41], involving the Fisher information matrix in traditional deep learning. Descriptions of the ill-
conditioned landscape of PINNs and some solutions have been explored Rathore et al. [34]. While
the key contribution of Rathore et al. [34] addresses the scalability of Newton’s method to large neu-
ral networks and is thus similar to our results, their focus is on Newton’s method rather than natural
gradient methods. Kiyani et al. [18] evaluate quasi-Newton methods which leverage historical gradi-
ents for improved efficiency and accuracy across stiff and non-linear PDEs. Wang et al. [46] provides
a theoretical framework for gradient alignment in multiobjective PINN training, demonstrating the
potential of second-order methods to resolve directional conflicts through Hessian preconditioning.

2 Background

Physics-Informed Neural Networks PINNs reformulate forward or inverse PDE problems as
least-squares minimization problems. Constraints, such as boundary conditions or data terms are
typically included into the loss function as soft penalties. We illustrate the approach using a general
PDE operator L and Dirichlet boundary conditions. Suppose we aim to solve the PDE

Lu = f in Ω,

u = g on ∂Ω.

Here Ω ⊂ Rd is the computational domain (possibly including time), f is a forcing term and g are
the boundary values. Introducing a neural network ansatz uθ with trainable parameters θ ∈ RP , the
above equation is reformulated as a least-squares minimization problem

L(θ) =
|Ω|
2NΩ

NΩ∑
i=1

(Luθ(xi)− f(xi))
2 +

|∂Ω|
2N∂Ω

N∂Ω∑
i=1

(uθ(x
b
i)− g(xb

i))
2,

where x1, . . . , xNΩ
are randomly drawn points in Ω, and xb

1, . . . , x
b
N∂Ω

are randomly drawn points
on ∂Ω. Note that if it holds L(θ) = 0, then the PDE is satisfied at the points in the interior and the
boundary conditions are met on the boundary points.

Natural Gradient Methods for PINNs It is well-known that PINNs are notoriously difficult to
train with first-order methods [44, 19, 45]. Natural gradient methods present a promising alternative,
able to achieve excellent accuracy far beyond what is possible with first-order methods or quasi-
Newton methods [28, 27, 16, 6]. The natural gradient descent scheme introduced in [27], which we
refer to as energy natural gradient descent is of the form

θk+1 = θk − ηk(G(θk) + λI)−1∇L(θk), k = 0, 1, 2, . . . (1)

where ηk is a well chosen step-size and λ > 0 is a regularization parameter. The matrix G(θk) is the
Riemannian metric induced by the functional Hessian in the tangent space of the ansatz, given by

G(θ) =
|Ω|
NΩ

NΩ∑
i=1

Jθ Luθ(xi)
⊤ Jθ Luθ(xi) +

|∂Ω|
N∂Ω

N∂Ω∑
n=1

Jθ uθ(x
b
n)

⊤ Jθ uθ(x
b
n), (2)

where Jθ denotes the Jacobian with respect to the trainable parameters. Here, we assumed the PDE
operator L to be linear, for a nonlinear PDE operator we use its linearization, compare also to [16].

Scalability of Natural Gradient Methods for PINNs The matrix G(θk) ∈ RP×P is quadratic in
the number of trainable network parameters. Hence, naive approaches to solve G(θk)x = ∇L(θk)
are doomed to fail for larger networks due to the cubic cost O(P 3). Strategies to treat the system
in regimes where direct solvers are infeasible include matrix-free approaches based on the conju-
gate gradient method [16, 23] with matrix-vector products [31, 40], and approximating G(θk) with

3

an easy-to-invert Kronecker-factorization [6]. Both approaches have drawbacks. The matrix-free
strategy suffers from the ill-conditioning of the matrix G(θk) [44] and can require large amounts of
CG iterations to produce an acceptable solution to the linear system. The K-FAC approach [6] is
complex and depends on the network architecture and the PDE. As described in detail in Section 3,
we exploit a different structure in G using a low-rank factorization present in the matrix G(θk), and
we show that it yields a fast and accurate method to solve G(θk)x = ∇L(θk) that can naturally be
combined with powerful techniques of randomized linear algebra.

Variational Monte Carlo To improve the strategies of matrix-free solvers and K-FAC, we draw
inspiration from the field of neural network wavefunctions, which leverages the variational Monte
Carlo method [9] to simulate quantum systems from lattice models [3] to molecules and materials
[14, 21]. Almost all works on neural network wavefunctions are based on an optimization approach
known as stochastic reconfiguration (SR) [42], which is a quantum generalization of natural gradient
descent (see [32], Appendix C). In fact, the same eq. (1) applies for SR, but in this case G(θk) is the
Fisher information matrix. A number of works have demonstrated that such approaches outperform
simpler first-order optimization strategies when training neural network wavefunctions [32, 22, 39].
Recently, Chen & Heyl [4] proposed the MinSR method to tackle the scalability of SR in the VMC
context. The MinSR algorithm is able to directly calculate the SR search direction with a drastically
reduced computational cost, relying on the fact that the rank of G(θk) is upper bounded by the batch
size N . Even more recently, Goldshlager et al. [11] proposed the SPRING algorithm to accelerate
the convergence of MinSR by incorporating a special form of momentum. In Section 3, we show
how these methods can be applied in the context of PINNs.

VMC meets PINNs. It is worth noting that in variational Monte Carlo applications, samples are
drawn from a special probability density xi ∼ p(x) where p(x) depends on the wavefunction itself.
However, this does not change the fundamental structure of the algorithms or the transferability of
techniques from one domain to the other. The unifying principle is that in both application domains
a single probability distribution is used to define the loss function, the natural gradient direction,
and the sampling algorithm. The only difference is that in variational Monte Carlo the distribution
happens to be dependent on the wavefunction, whereas for PINNs the distribution is a weighted
mixture of the uniform distributions over the interior and the boundary.

Sketching Randomized algorithms have made a major impact on numerical linear algebra over
the last two decades, providing faster algorithms for many important problems including low-rank
matrix approximations, linear systems, and eigenvalue solvers [13, 25, 29]. In the current work, we
are particularly interested in the solution of regularized positive definite linear systems of the form

(A+ λI)x = y, (3)

which are crucial for natural gradient methods (compare to equation 1). We will rely on the random-
ized Nyström approximation

Ânys = (AΩ)(Ω⊤AΩ)†(AΩ)⊤ where Ω ∈ Rn×l is standard normal,

where † indicates the Moore-Penrose inverse and the rank l can be chosen to control the cost and the
accuracy of the approximation. This matrix provides the best positive semi-definite approximation
of A whose range coincides with the range of the sketch AΩ; see [25] for a thorough discussion.

3 Methods

Let us get back to the PINN example problem in Section 2 and assume that L is a linear PDE
operator1 Define the residuals rΩ(θ)i = 1/

√
NΩ(Luθ(xi) − f(xi)) with i = 1, . . . , NΩ and

r∂Ω(θ)i = 1/
√
N∂Ω(uθ(x

b
j) − g(xb

j)) with j = 1, . . . , N∂Ω. The loss function can then be written
in a standard nonlinear least-squares form

L(θ) =
1

2
∥r(θ)∥2, with r(θ) =

(
rΩ(θ)
r∂Ω(θ)

)
1If L is nonlinear, we use its linearization.

4

Algorithm 1 SPRING for PINNs
Require: damping λ, momentum µ, learning rate schedule ηk, initial guess θ0, norm constraint C
1: Initialize:
2: θ ← θ0, ϕ0 ← 0
3: for k = 1, . . . ,K do
4: Sample a new batch (x1, . . . , xNΩ , x

b
1, . . . , x

b
N∂Ω

)
5: Calculate Jk, rk
6: ζk ← rk − µJkϕk−1 ▷ Residual shift for SPRING; see equations 7-8
7: ϕk ← J⊤

k

(
JkJ

⊤
k + λI

)−1
ζk ▷ Woodbury form of ENGD, see equation 5

8: ϕk ← (ϕk + µϕk−1)/
√

1− µ2k) ▷ Add back the shift and bias correection
9: θ ← θ − ϕk ·min(ηk,

√
C/||ϕk||) ▷ See Section 3.1 of [11]

10: end for
11: return Trained parameters θ

and we set N = NΩ + N∂Ω and rk = r(θk) and Jk = Jθ r(θk). With this notation, it holds
G(θk) = J⊤

k Jk and ∇L(θk) = J⊤
k rk and the natural gradient scheme equation 1 can be rewritten

as
θk+1 = θk − ηk(J

⊤
k Jk + λI)−1J⊤

k rk. (4)
We again stress that, since Jk is of shape (N,P) the matrix G(θk) is of shape (P, P), hence pro-
hibitively large with a computational cost of O(P 3) for the linear solution.

1) Leveraging Woodbury’s Identity. We now use the push-through identity, an intermediate step
in the proof of the well-known Woodbury formula, to reduce the computational cost to O(N2P).
While these are well-known matrix identities, their relevance for natural gradient methods in the
context of quantum many-body problems was only recently realized in the VMC community and
proposed as minimal norm stochastic reconfiguration (minSR) [4] and further refined by [36]. In
our notation, the push-through identity is

(J⊤
k Jk + λI)−1︸ ︷︷ ︸

∈RP×P

J⊤
k rk = J⊤

k (JkJ
⊤
k + λI)−1︸ ︷︷ ︸
∈RN×N

rk. (5)

Using the right-hand side (ENGD-W) instead of the left, the kernel matrix JkJ
⊤
k ∈ RN×N now

lives in sample space and is thus cheap to invert. Indeed, the complexity O(N2P) of computing
the kernel matrix now dominates the computational cost, a drastic improvement over the O(P 3)
cost of the original ENGD. The matrix JkJ

⊤
k is the neural tangent kernel [15], and various ways of

efficiently computing it have been discussed in [30]. We discuss our approach in the implementation
details in Section 4. We stress again that using the kernel form drastically improves the scalability of
ENGD, allowing network and batch sizes up to P = 106 and N = 103 on consumer hardware while
– up to floating point arithmetic – performing the exact scheme of equation 4. It is worth noting that
the O(N2P) complexity achieved by applying the Woodbury identity is still quadratic in the batch
size N , whereas by applying further approximations K-FAC is able to achieve linear scaling with
respect to the batch size. We have not observed this quadratic scaling to be a bottleneck for realistic
batch sizes.

2) Introducing Momentum. The major drawback of the kernel formulation relative to methods
that work with G(θk) directly2 is that it makes it difficult to aggregate curvature information over
multiple training iterations, which can lead to poor performance in highly stochastic settings. This
problem was addressed by the introduction of the SPRING algorithm, which builds on MinSR by
incorporating a special type of momentum that is tailored to accelerate the convergence of natural
gradient methods [11]. To understand the SPRING algorithm, note first that the ENGD update of
equation 5 is also the solution to a Tikhonov-regularized least-squares problem:

J⊤
k (JkJ

⊤
k + λI)−1rk = argmin

ϕ
||Jkϕ− rk||2 + λ||ϕ||2. (6)

SPRING modifies the regularization term to incorporate the previous momentum direction ϕk−1:

ϕk = argmin
ϕ

||Jkϕ− rk||2 + λ||ϕ− µϕk−1||2. (7)

2or approximations thereof, like K-FAC.

5

Algorithm 2 GPU-Efficient Randomized Nyström Approximation

Require: A ∈ Sn+(R), target rank ℓ, regularizer λ > 0
Ensure: (B,L) so that

Ânys = BBT , (Ânys + λI)−1v =
1

λ
v − 1

λ
B
(
L−T (L−1(BT v))

)
.

1: Ω← randn(n, ℓ) ▷ Gaussian test matrix
2: Y ← AΩ
3: ν ← eps

(
∥Y ∥F

)
▷ small shift

4: Yν ← Y + ν Ω ▷ embed shift in A+ νI
5: C ← chol

(
ΩTYν

)
6: B ← Yν C

−1 ▷ Cholesky solve instead of inversion
7: R← BTB + λI
8: L← chol(R) ▷ for Woodbury solve

This is justified by a connection to the randomized block Kaczmarz method and yields significant
acceleration relative to MinSR [11]. This new optimization problem has closed-form solution

ϕk = µϕk−1 + J⊤
k (JkJ

⊤
k + λI)−1(rk − µJkϕk−1), (8)

and the cost of evaluating this formula is only negligibly higher than for MinSR. Note that MinSR is
recovered by setting µ = 0. Additional insights on the behavior of the iteration 8 and the function of
the hyperparameters λ, µ can be found in [8, 12]. As a new contribution, we add a bias correction of
1/

√
1− µ2t to the SPRING algorithm as is customarily done in other momentum-based optimizers

[17]. The precise algorithm is given in Algorithm 1.

3) Nyström on the Kernel & GPU-Efficient Implementation. We introduce randomization into
ENGD and SPRING by applying a randomized Nyström approximation of the N×N kernel matrix,
potentially reducing the per-iteration cost even beyond the O(N2P) cost attained via Woodbury’s
identity. Unfortunately, the well-known stable algorithm for applying the Nyström approximation
(see [10], algorithm 2.1) requires an SVD of a N × S matrix. This cost is asymptotically negligible
but nonetheless we have found that it is very significant in practice because the SVD runs extremely
slowly on GPU. To ameliorate this problem, we propose a GPU-efficient Nyström approximation
which we summarize in Algorithm 2. Our proposal runs an order of magnitude faster on GPU (see
Appendix B) and enables speed-ups to be obtained even when S is only a single order of magnitude
smaller than N .

The main differences relative to the standard stable algorithm are 1) we skip the QR decomposition
of the test matrix Ω since random Gaussian matrices are already likely to be well-conditioned, 2) we
skip the SVD step and, as a result, we technically return a Nyström approximation of A + νI for a
very small value of ν, and 3) we apply the Woodbury matrix identity (again) to reduce the cost of
matrix-vector products with the inverse of the Nyström approximation.

We leverage this GPU-efficient randomized Nyström approximation in a sketch-and-solve frame-
work [38]; for example for ENGD the randomized version uses the approximation

J⊤
k (JkJ

⊤
k + λI)−1rk ≈ J⊤

k (nys(JkJ
⊤
k) + λI)−1rk, (9)

with the linear solve implemented following algorithm 2. It is known that such a sketch-and-solve
approach can require very large sketch sizes to achieve high accuracy solutions, which has inspired
the proposal of an alternative sketch-and-precondition approach which can attain arbitrary accura-
cies with any sketch size [10]. However, in the PINN setting the CG iterations required by such
an approach involve additional differentiation passes through the operator L, which we have found
nullifies any performance benefit from randomization in practice.

4) Tracking the effective dimension. The accuracy of the randomized Nyström approximation
depends on the effective dimension [10] of the regularized matrix A+ λI . The effective dimension
measures the degrees of freedom of the problem after regularization and serves as a smooth quantifier
of the number of eigenvalues larger than λ. The smaller the effective dimension, the smaller the
sketch size needed to form an accurate Nyström approximation and the better performance we can

6

100 101 102 103 104 105

Iteration

10−5

10−3

10−1

L
2

er
ro

r

5d Poisson (D = 10065)

100 101 102 103 104

Time (s)

10−5

10−3

10−1

L
2

er
ro

r

5d Poisson (D = 10065)

SGD Adam ENGD Hessian-free ENGD (Woodbury)

Figure 2: 5D Poisson: Performance comparison of different optimization algorithms on a five-
dimensional Poisson problem discretized with 10 065 parameters, trained with a tanh-activated mul-
tilayer perceptron. Introducing the Woodbury matrix identity allows ENGD to take more than 30
times more steps and outperform the Hessian-free optimizer by a significant margin.

expect from our randomized algorithms. The effective dimension is defined as

deff(A) = Tr(A(A+ λI)−1) =

n∑
i=1

λi

λi + λ
.

4 Experiments

To show the implications of our contributions, we present 4 experiments, each consisting of more
than 1200 runs on average. First, we show that using the kernel matrix improves ENGD beyond the
performance of the usual baselines. Second, we show that incorporating momentum using SPRING
further accelerates convergence and achieves state-of-the-art results. Moreover, SPRING removes
the need for an expensive line search and performs particularly well in high dimensional settings.
Third, we show that our GPU-efficient Nyström approximation can accelerate the early phases of
training for low-dimensional problems with large batch sizes; in most cases, however, it appears
preferable to use the exact Woodbury formula. Fourth, we show that the regularized kernel matrix
has an effective dimension that is only mildly smaller than the batch size N , which explains the
limited benefits achieved by randomization. Importantly, our randomized algorithms still far outper-
form the original ENGD method, and it is only when comparing to the new Woodbury variants that
they lose their appeal.

Setup To demonstrate our methods, we consider a Poisson equation −∆u(x) = f(x) with dif-
ferent right-hand sides and boundary conditions on the unit square x ∈ [0, 1]d for d = 5, 100. For
d = 5, we use as manufactured solution u(x) =

∑5
i=1 cos(πxi) and right-hand side f = π2u. For

d = 100, we use u(x) = ||x||22 for x ∈ ∂[0, 1]100 and consequently f = −2d. Furthermore, we
consider a 4+1d Heat equation ∂tu(t, x) − κ∆xu(t, x) = 0 for t ∈ [0, 1], x ∈ [0, 1]4 and bound-
ary conditions u(0, x) =

∑4
i=1 sin(2xi) and u(t, x) = exp(−t)

∑4
i=1 sin(2xi), this last one with

x ∈ ∂[0, 1]4. At last, we consider a 9+1d Fokker-Planck equation in logarithmic space given by

∂tq(t, x)−
d

2
− 1

2
∇q(t, x) · x− ||∇q(t, x)||2 −∆q(t, x) = 0, q(0) = log(p∗(0)),

where d = 9, t ∈ [0, 1] and x ∈ R9. In practice, x ∈ [−5, 5]9. The solution q∗ is given by q∗ =
log(p∗) with p∗(t, x) ∼ N (0, exp(−t)I + (1− exp(−t))2I). For further results see Appendix A.

Implementation We use the same sequential architecture consisting of four hidden layers and a
single output for all problems, varying the width of the layers as a function of d. Moreover, we imple-
ment the model using Taylor-mode forward differentiation [2], and use Jacobian vector products to
optimize kernel creation and kernel vector products [15]. To implement a matrix-free alternative to
ENGD, we adopt the Hessian-free optimization method [23, 43], which applies truncated conjugate
gradient iterations and computes exact Gramian-vector products to improve gradient conditioning.

7

100 101 102 103

Time [s]

10−5

10−3

10−1

101

L
2

er
ro

r

5d Poisson (D = 10065)

100 101 102 103

Time [s]

10−2

10−1

100

100d Poisson (D = 1325057)

100 101 102 103

Time [s]

10−4

10−2

100

L
2

er
ro

r

4d Heat (D = 116865)

100 101 102 103

Time [s]

10−3

10−2

10−1

100

101

9+1d log-Fokker–Planck (D = 118145)

ENGD (Woodbury) SPRING ENGD-W (Line Search) KFAC

Figure 3: Performance of ENGD and SPRING on four problems: 5d and 100d Poisson, 4+1d
Heat, and 9+1d log-Fokker-Plancks. SPRING achieves L2 errors not previously seen in the high
dimensional settings, the 100d Poisson and 9+1d log-Fokker-Planck problems. In the latter, the error
is an order of magnitude lower that the previous state-of-the-art KFAC.

We evaluate two other baselines: SGD with tuned momentum and learning rate, and Adam with a
tuned learning rate. Hyperparameter tuning is performed using Weights & Biases [47], as detailed
in Appendix A. Our tuning strategy involves an initial exploratory stage with 50 trials over broad
parameter ranges, followed by a refinement stage with another 50 trials in narrowed regions of in-
terest. Performance is evaluated based on the lowest L2-error in a validation set with a known PDE
solution. All experiments are run on a uniform hardware setup, an RTX 6000 GPU cluster (24 GiB
memory) using double precision, and each optimizer is given an equal compute time budget on the
same fixed PINN task. The complete ranges of hyperparameters, the selected configurations and the
dynamics of training in terms of the iteration count are available in Appendix A.

1) Introducing Woodbury into natural gradient methods for PINNs. We first reproduce the
5-dimensional Poisson problem of Dangel, Müller, and Zeinhofer [6], with batch size of 3500. We
compare the baselines against ENGD-W (see Figure 2), and verify that the exact ENGD already
attains top-tier solution accuracy. Incorporating the Woodbury identity then increases the iteration
speed by more than a factor of 30 and surpasses all other approaches, including the original ENGD
and Hessian-free optimization, in both efficiency and accuracy.

Woodbury is the right way to implement second-order methods such as ENGD.

2) Incorporating momentum to further accelerate ENGD. We next incorporate momentum using
the SPRING algorithm. Figure 3 shows that momentum increases the final accuracy in all cases,
with a large benefit in the high-dimensional setting, i.e. the 100D Poisson problem and the 9+1d
log-Fokker-Planck problem. It is notable that the SPRING algorithm does not use a line search
and is able to outperform ENGD both with and without its line search. The final accuracy attained
by both ENGD with Woodbury and SPRING surpasses even that attained by [6] using the more
complicated KFAC algorithm. This is accentuated with SPRING attaining an L2-error an order of
magnitude lower than KFAC in the 9+1d log-Fokker-Planck problem.

8

100 101 102 103 104

Time [s]

10−5

10−3

10−1

L
2

er
ro

r

N = 1000

100 101 102 103 104

Time [s]

N = 5000

100 101 102 103 104

Time [s]

N = 10000

ENGD (Woodbury) ENGD (Nystrom)

Figure 4: Effect of Nyström on ENGD for the 5D Poisson equation.

SPRING yields state-of-the-art performance without the complexity of KFAC.

3) Randomization for large batch sizes. We have shown that adding momentum to ENGD-W
with a tuned learning rate is the best strategy to optimize PINNs. When the batch size is very large,
even the computation of the kernel matrix can be quite expensive, motivating the use of randomized
algorithms to reduce the cost. We explore the use of a randomized Nyström approximation to ac-
celerate the computation and inversion of the regularized kernel matrix JkJ

⊤
k + λI . In the first set

of experiments, shown in Figure 4, we compare ENGD-W with two randomized variants, one us-
ing the standard stable Nyström approximation and the other using our new GPU-efficient variant,
Algorithm 2. We test batch sizes of 1000, 10 000, and 50 000, all under our standard line-search
procedure and all with a sketch size of 10% of the batch size. The 10% batch size is chosen because
larger batch sizes, even the GPU-efficient algorithm cannot provide substantial cost reductions. We
find that randomization can accelerate the early phase of the training, especially when the batch size
is large, but ultimately exact computations are needed to reach high accuracy results.

In the second set of experiments, shown in Figure 5, we compare SPRING against its two corre-
sponding randomized variants on a 100D Poisson problem. In this case, the performance of the
randomized algorithms is approximately equal to or worse than the performance of SPRING with
exact computations. The main reason that we do not observe any speed-ups from randomization
here is that for high-dimensional problems, the cost of the training is increasingly dominated by the
cost of differentiating through the operator L, which scales linearly with the problem dimension.
Thus, the acceleration of the kernel computation and inversion becomes less relevant. For the 5d
problem, we find a speedup of 2× for a sketch size of 10% of N , and no speedup for values above
25% of N . Given the cost of the matvecs and the Laplacian operator, this is to be expected.

Randomization accelerates the early phases of training for low-dimensional problems
with large batches. It remains an open problem to extend this acceleration to broader

scenarios.

100 101 102 103 104

Time [s]

10−2

10−1

100

L
2

er
ro

r

N = 100

100 101 102 103 104

Time [s]

N = 500

100 101 102 103

Time [s]

N = 1000

SPRING SPRING (Nystrom)

Figure 5: Effect of Nyström on SPRING for the 100D Poisson equation.

9

100 101 102 103

Steps

0.2

0.4

0.6

0.8

1.0

d
e
ff
/N

ENGD (Woodbury)

(a) Effective dimension of ENGD’s regularized ker-
nel matrix in the 5D Poisson experiment relative to
the batch size. N = 3500

100 101 102 103

Steps

0.7

0.8

0.9

d
e
ff
/N

SPRING

(b) Effective dimensions of SPRING’s regularized
kernel matrix in the 100D Poisson experiment rela-
tive to the batch size. N = 150

4) Effective dimension of the regularized kernel matrix. To understand the limited benefits of
randomization, we track the effective dimension of the kernel matrix for both ENGD-W in the 5D
problem and SPRING in the 100D problem, with results in Figure 6a and Figure 6b, respectively.
The effective dimension plateaus at more than 50% of the batch size, which explains why random-
ization with a sketch size of 10% results in a loss of accuracy. Unfortunately, the gap between the
effective dimension and the batch size N is not large enough to squeeze out significant performance
gains without losing accuracy.

Randomization suffers because the sketch sizes needed to attain significant cost
savings are too small to accurately approximate the kernel matrix.

Our findings contrast those of McKay et al. [26] which reported benefits from using randomization
in original version of ENGD. We compare our randomized algorithms to the much stronger baseline
of ENGD-W, and it is exactly the introduction of the Woodbury identity that nullifies the benefits
of randomization by shifting the problem from the high dimensional parameter space to the much
lower dimensional sample space, leaving little room for further dimensionality reduction.

5 Conclusion

We have significantly improved energy natural gradient descent for PINNs by: 1) Woodbury’s
identity to accelerate the inversion of the kernel matrix, thus slashing per-iteration complexity, 2)
SPRING, a momentum scheme that accelerates the convergence of natural gradient methods, and
3) a GPU-efficient Nyström sketch-and-solve approach to approximate the kernel matrix for further
cost reductions in some settings. We demonstrate our methods across four settings: 5d and 100d
Poisson equations, 4+1d Heat equation and 9+1d log-Fokker-Planck equation with batch sizes up to
10 000. In the 5d Poisson case, our methods achieve the same sub-10−3 L2-error as ENGD up to
75× faster, while in the 100d case, SPRING outperforms all previously seen optimizers. In the 4+1d
Heat case our methods perform competitively with previous state of the art methods like KFAC, and
in the 9+1d log-Fokker-Planck problem, SPRING achieves L2-errors an order of magnitude lower
than previous methods. Regarding randomization, we find promising results for low-dimensional
problems with large batch sizes, and we identify barriers to achieving acceleration more generally.

Limitations & future directions Despite promising results in low-dimensional, large batch set-
tings, our randomized approaches exhibit diminishing returns in the late optimization stages and
fail to scale to high-dimensional problems. Future works can explore alternative approaches to
randomization, but will need to contend with the peculiarities of the PINN setting in which matrix-
vector products with the kernel are very expensive. Moreover, our current analysis focuses on fixed
Nyström rank, leaving open questions about how sketch dimension and adaptive rank selection af-
fect performance across diverse tasks. Future work should also explore how to adaptively set the
hyperparameters of the ENGD-W and SPRING algorithms to yield fast, black-box optimizers.

10

Acknowledgments and Disclosure of Funding

M.Z. acknowledges support from an ETH Postdoctoral Fellowship for the project “Reliable, Effi-
cient, and Scalable Methods for Scientific Machine Learning”. G.G. acknowledges support from the
U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research,
Department of Energy Computational Science Graduate Fellowship under Award Number DE-
SC0023112. A.G-C thanks Jeffrey Ren for helpful observations on the optimizer’s norm-constraint
setting used in plot generation. Resources used in preparing this research were provided, in part, by
the Province of Ontario, the Government of Canada through CIFAR, and companies sponsoring the
Vector Institute.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibil-
ity for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer,
or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favor-
ing by the United States Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or any
agency thereof.

References
[1] Becca, F. and Sorella, S. Quantum Monte Carlo approaches for correlated systems. Cambridge

University Press, 2017.

[2] Bettencourt, J., Johnson, M. J., and Duvenaud, D. Taylor-mode automatic differentiation for
higher-order derivatives in JAX. In Program Transformations for ML Workshop at NeurIPS
2019, 2019. URL https://openreview.net/forum?id=SkxEF3FNPH.

[3] Carleo, G. and Troyer, M. Solving the quantum many-body problem with artificial neural
networks. Science, 355(6325):602–606, 2017.

[4] Chen, A. and Heyl, M. Efficient optimization of deep neural quantum states toward machine
precision. arXiv preprint arXiv:2302.01941, 2023.

[5] Dangel, F., Tatzel, L., and Hennig, P. ViViT: Curvature access through the generalized gauss-
newton’s low-rank structure. Transactions on Machine Learning Research (TMLR), 2022.

[6] Dangel, F., Müller, J., and Zeinhofer, M. Kronecker-factored approximate curvature for
physics-informed neural networks. arXiv preprint arXiv:2405.15603, 2024.

[7] Dissanayake, M. W. M. G. and Phan-Thien, N. Neural-network-based approximations for
solving partial differential equations. Communications in Numerical Methods in Engineering,
10(3):195–201, March 1994. ISSN 1099-0887. doi: 10.1002/cnm.1640100303. URL http:
//dx.doi.org/10.1002/cnm.1640100303.

[8] Epperly, E. N., Meier, M., and Nakatsukasa, Y. Fast randomized least-squares solvers can be
just as accurate and stable as classical direct solvers. arXiv preprint arXiv:2406.03468, 2024.

[9] Foulkes, W. M., Mitas, L., Needs, R., and Rajagopal, G. Quantum Monte Carlo simulations of
solids. Reviews of Modern Physics, 73(1):33, 2001.

[10] Frangella, Z., Tropp, J. A., and Udell, M. Randomized Nyström preconditioning. SIAM
Journal on Matrix Analysis and Applications, 44(2):718–752, 2023.

[11] Goldshlager, G., Abrahamsen, N., and Lin, L. A Kaczmarz-inspired approach to accelerate
the optimization of neural network wavefunctions. Journal of Computational Physics, 516:
113351, 2024.

[12] Goldshlager, G., Hu, J., and Lin, L. Worth their weight: Randomized and regularized block
Kaczmarz algorithms without preprocessing. arXiv preprint arXiv:2502.00882, 2025.

11

https://openreview.net/forum?id=SkxEF3FNPH
http://dx.doi.org/10.1002/cnm.1640100303
http://dx.doi.org/10.1002/cnm.1640100303

[13] Halko, N., Martinsson, P.-G., and Tropp, J. A. Finding structure with randomness: Proba-
bilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):
217–288, 2011.

[14] Hermann, J., Spencer, J., Choo, K., Mezzacapo, A., Foulkes, W. M. C., Pfau, D., Carleo, G.,
and Noé, F. Ab initio quantum chemistry with neural-network wavefunctions. Nature Reviews
Chemistry, 7(10):692–709, 2023.

[15] Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel: Convergence and generalization
in neural networks. In Advances on Neural Information Processing Systems, 2018.

[16] Jnini, A., Vella, F., and Zeinhofer, M. Gauss-Newton natural gradient descent for physics-
informed computational fluid dynamics. arXiv preprint arXiv:2402.10680, 2024.

[17] Kingma, D. and Ba, J. Adam: A method for stochastic optimization. In International Confer-
ence on Learning Representations, 2015.

[18] Kiyani, E., Shukla, K., Urbán, J. F., Darbon, J., and Karniadakis, G. E. Which optimizer works
best for physics-informed neural networks and Kolmogorov-Arnold networks?, 2025. URL
https://arxiv.org/abs/2501.16371.

[19] Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., and Mahoney, M. W. Characterizing
possible failure modes in physics-informed neural networks. Advances in neural information
processing systems, 34:26548–26560, 2021.

[20] Lagaris, I., Likas, A., and Fotiadis, D. Artificial neural networks for solving ordinary and par-
tial differential equations. IEEE Transactions on Neural Networks, 9(5):987–1000, 1998. ISSN
1045-9227. doi: 10.1109/72.712178. URL http://dx.doi.org/10.1109/72.712178.

[21] Li, X., Li, Z., and Chen, J. Ab initio calculation of real solids via neural network ansatz. Nature
Communications, 13(1):7895, 2022.

[22] Lin, J., Goldshlager, G., and Lin, L. Explicitly antisymmetrized neural network layers for
variational Monte Carlo simulation. Journal of Computational Physics, 474:111765, 2023.

[23] Martens, J. Deep learning via Hessian-free optimization. In International Conference on
Machine Learning (ICML), 2010.

[24] Martens, J. and Grosse, R. Optimizing neural networks with Kronecker-factored approximate
curvature. In International Conference on Machine Learning (ICML), 2015.

[25] Martinsson, P.-G. and Tropp, J. A. Randomized numerical linear algebra: Foundations and
algorithms. Acta Numerica, 29:403–572, 2020.

[26] Mckay, M. B., Kaur, A., Greif, C., and Wetton, B. Near-optimal sketchy natural gradients
for physics-informed neural networks. In Forty-second International Conference on Machine
Learning, 2025.

[27] Müller, J. and Zeinhofer, M. Achieving high accuracy with PINNs via energy natural gradient
descent. In International Conference on Machine Learning, pp. 25471–25485. PMLR, 2023.

[28] Müller, J. and Zeinhofer, M. Position: Optimization in SciML should employ the function
space geometry. In Forty-first International Conference on Machine Learning, 2024.

[29] Murray, R., Demmel, J., Mahoney, M. W., Erichson, N. B., Melnichenko, M., Malik, O. A.,
Grigori, L., Luszczek, P., Dereziński, M., Lopes, M. E., et al. Randomized numerical linear
algebra: A perspective on the field with an eye to software. arXiv preprint arXiv:2302.11474,
2023.

[30] Novak, R., Sohl-Dickstein, J., and Schoenholz, S. S. Fast finite width neural tangent kernel. In
International Conference on Machine Learning, pp. 17018–17044. PMLR, 2022.

[31] Pearlmutter, B. A. Fast exact multiplication by the Hessian. Neural Computation, 1994.

12

https://arxiv.org/abs/2501.16371
http://dx.doi.org/10.1109/72.712178

[32] Pfau, D., Spencer, J. S., Matthews, A. G., and Foulkes, W. M. C. Ab initio solution of the
many-electron Schrödinger equation with deep neural networks. Physical review research, 2
(3):033429, 2020.

[33] Raissi, M., Perdikaris, P., and Karniadakis, G. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial dif-
ferential equations. Journal of Computational Physics, 378:686–707, February 2019. ISSN
0021-9991. doi: 10.1016/j.jcp.2018.10.045. URL http://dx.doi.org/10.1016/j.jcp.
2018.10.045.

[34] Rathore, P., Lei, W., Frangella, Z., Lu, L., and Udell, M. Challenges in training PINNs: A loss
landscape perspective. arXiv preprint arXiv:2402.01868, 2024.

[35] Ren, Y. and Goldfarb, D. Efficient subsampled Gauss-Newton and natural gradient methods
for training neural networks. arXiv, 2019.

[36] Rende, R., Viteritti, L. L., Bardone, L., Becca, F., and Goldt, S. A simple linear algebra
identity to optimize large-scale neural network quantum states. Communications Physics, 7
(1):260, 2024.

[37] Rokhlin, V. and Tygert, M. A fast randomized algorithm for overdetermined linear least-
squares regression. Proceedings of the National Academy of Sciences, 105(36):13212–13217,
2008.

[38] Sarlos, T. Improved approximation algorithms for large matrices via random projections. In
2006 47th annual IEEE symposium on foundations of computer science (FOCS’06), pp. 143–
152. IEEE, 2006.

[39] Schätzle, Z., Szabó, P. B., Mezera, M., Hermann, J., and Noé, F. DeepQMC: An open-source
software suite for variational optimization of deep-learning molecular wave functions. The
Journal of Chemical Physics, 159(9), 2023.

[40] Schraudolph, N. N. Fast curvature matrix-vector products for second-order gradient descent.
Neural Computation, 2002.

[41] Singh, S. P. and Alistarh, D. Woodfisher: Efficient second-order approximation for neural net-
work compression. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

[42] Sorella, S. Generalized Lanczos algorithm for variational quantum Monte Carlo. Physical
Review B, 64(2):024512, 2001.

[43] Tatzel, L., Hennig, P., and Schneider, F. Late-phase second-order training. In Has it
Trained Yet? NeurIPS 2022 Workshop, 2022. URL https://openreview.net/forum?id=
C3hL1sbz5Vf.

[44] Wang, S., Teng, Y., and Perdikaris, P. Understanding and mitigating gradient flow pathologies
in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–
A3081, 2021.

[45] Wang, S., Yu, X., and Perdikaris, P. When and why PINNs fail to train: A neural tangent kernel
perspective. Journal of Computational Physics, 449:110768, 2022.

[46] Wang, S., Bhartari, A. K., Li, B., and Perdikaris, P. Gradient alignment in physics-informed
neural networks: A second-order optimization perspective, 2025. URL https://arxiv.
org/abs/2502.00604.

[47] Weights and Biases. Experiment tracking with weights and biases. https://www.wandb.
ai/, 2020. Software available from wandb.ai.

[48] Williams, C. and Seeger, M. Using the Nyström method to speed up kernel machines. Advances
in neural information processing systems, 13, 2000.

[49] Yang, M., Xu, D., Wen, Z., Chen, M., and Xu, P. Sketch-based empirical natural gradient
methods for deep learning. Journal of Scientific Computing, 92(3):94, 2022.

13

http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2018.10.045
https://openreview.net/forum?id=C3hL1sbz5Vf
https://openreview.net/forum?id=C3hL1sbz5Vf
https://arxiv.org/abs/2502.00604
https://arxiv.org/abs/2502.00604
https://www.wandb.ai/
https://www.wandb.ai/

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We list our contributions as bullet points in Section 1 and provide references
to the parts of the paper that present them.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a paragraph on limitations in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

14

Justification: We provide derivations for the proposed methods, but our work does not
present any rigorous mathematical statements.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a full description of the experimental protocol in Appendix A and
details for each individual experiment in the same appendix, including all hyper-parameter
search spaces and hyper-parameters of the best runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

15

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will open-source our implementations, as well as the code to fully repro-
duce all experiments and the original data presented in this work.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We list all the details in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We do not show any mean and standard deviations over different model ini-
tialization for training curves, however, we use a thorough tuning protocol to avoid artifacts
from insufficient hyperparameter tuning and conduct experiments with random searches to
ensure the consistency of our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the hardware in Section 3 and Appendix A. The total computa-
tion time can be inferred from the description of the tuning protocol in combination with
the assigned time budget per run.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the Code of Ethics and believe our submission aligns with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: We provide a collection of improvements for the accurate training of physics-
informed neural networks. This is a classical numerical problem in applied mathematics,
and we do not believe it has any immediate negative societal impact.

17

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not release any model or data, thus not applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our work does not use any existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

18

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: Our work does not release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

19

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our work does not make use of LLMs as a component in any way.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Experimental Details and Additional Results

A.1 Hyper-Parameter Tuning Protocol

We tune the following optimizer hyper-parameters and otherwise use the PyTorch default values:

• SGD: learning rate, momentum

• Adam: learning rate

• Hessian-free: type of curvature matrix (Hessian or GGN), damping, whether to adapt
damping over time (yes or no), maximum number of CG iterations

• ENGD: damping, factor of the exponential moving average applied to the Gramian, initial-
ization of the Gramian (zero or identity matrix)

• ENGD (Woodbury): damping, learning rate (when fixed)

• SPRING: damping, momentum, learning rate (when fixed)

• Randomized: damping, learning rate (when fixed), sketch size

We use random search from Weights & Biases to determine the hyper-parameters, where run is
executed in double precision and allowed to run for a given time budget, and we rank runs by the
final L2 error on a fixed evaluation data set. To compare, the hardware used was RTX 6000 GPUs
with 24 GiB of RAM. The first state consists of a relatively wide search space and limit to 50 runs.
The second stage is narrowed down to a smaller space based on the first stage, then re-run for
another 50 runs. We will release the details of all hyper-parameter search spaces, as well as the
hyper-parameters for the best runs in our implementation.

A.2 5d Poisson Equation

Setup We consider a five-dimensional Poisson equation −∆u(x) = π2
∑5

i=1 cos(πxi) on the
five-dimensional unit square x ∈ [0, 1]5 with cosine sum right-hand side and boundary conditions
u(x) =

∑5
i=1 cos(πxi) for x ∈ ∂[0, 1]5. We sample training batches of size NΩ = 3000, N∂Ω =

500 and evaluate the L2 error on a separate set of 30 000 data points using the known solution
u⋆(x) =

∑5
i=1 cos(πxi). All optimizers sample a new training batch each iteration, and each run

is limited to 7000s. We use an MLP five-layer architecture whose linear layers are Tanh-activated
except for the final one: 5 → 64 → 64 → 48 → 48 → 1 MLP with D = 10 065 trainable
parameters. ENGD-W and SPRING here make use of the inherited ENGD line search. Figure 7
visualizes the results.

Best run details The runs shown in Figure 7 correspond to the following hyper-parameters:

• SGD: learning rate: 2.895 360× 10−3, momentum: 3× 10−1

• Adam: learning rate: 2.808 451× 10−4

• Hessian-free: curvature matrix: GGN, initial damping: 1 × 10−1, constant damping: no,
maximum CG iterations: 350

• ENGD: damping: 1×10−8, exponential moving average: 0, initialize Gramian to identity:
yes

• ENGD-W: damping: 3.173 212× 10−12

• SPRING: damping: 2.086 287× 10−10; momentum: 3.115 42× 10−1

Search space details The runs shown in Figure 7 were determined to be the best via a search with
approximately 50 runs on the following search spaces which were obtained by refining an initially
wider search (U denotes a uniform, and LU a log-uniform distribution):

• SGD: learning rate: LU([1×10−3; 1×10−2]), momentum: U({0, 3×10−1, 6×10−1, 9×
10−1})

• Adam: learning rate: LU([1× 10−4; 5× 10−1])

21

100 101 102 103 104 105

Iteration

10−10

10−7

10−4

10−1

102

L
os

s

5d Poisson (D = 10065)

100 101 102 103 104 105

Iteration

L
2

er
ro

r

5d Poisson (D = 10065)

100 101 102 103 104

Time (s)

10−10

10−7

10−4

10−1

102

L
os

s

5d Poisson (D = 10065)

100 101 102 103 104

Time (s)

L
2

er
ro

r

5d Poisson (D = 10065)

SGD Adam ENGD Hessian-free ENGD (Woodbury) SPRING

Figure 7: Training loss and evaluation L2 error for learning the solution to a 5d Poisson equation
over time and steps.

• Hessian-free: curvature matrix: U({GGN}), initial damping: U({100, 50, 10, 5, 1, 5 ×
10−1, 1 × 10−1, 5 × 10−2}), constant damping: U({no}), maximum CG iterations:
U({100, 150, 200, 250, 300, 350})

• ENGD: damping: U({1×10−8, 1×10−9, 1×10−10, 1×10−11, 1×10−12, 0}), exponential
moving average: U({0, 3 × 10−1, 6 × 10−1, 9 × 10−1}), initialize Gramian to identity:
U({no, yes})

• ENGD-W: damping: LU([1× 10−7; 1])

• SPRING: damping: LU([1× 10−10; 1× 10−3]) momentum: U([0.0; 0.999])

A.2.1 Fixed learning rate

We repeat the previous experiments, now adding a search space of LU([1×10−1; 1×10−4]) for the
learning rate, see Figure 8. We note that this change meant adjusting the search space for SPRING’s
momentum to LU([0.8; 0.999]). We find that the best parameters are:

• ENGD-W: damping: 6.804 474× 10−8; learning rate: 5.2289× 10−2

• SPRING: damping: 6.811 585 × 10−10; momentum: 8.269 66 × 10−1; learning rate:
6.3502× 10−2

A.2.2 Large batches

We now repeat the experiment using batch sizes of 1000, 5000, and 10 000 with the line search, to
test the randomized approach, setting the sketch size to 10% of N . We can visualize the results in
Figure 9.

A.3 10d Poisson Equation with line search

Setup We consider a 10-dimensional Poisson equation −∆u(x) = 0 on the 10-dimensional unit
square x ∈ [0, 1]5 with zero right-hand side and harmonic mixed second order polynomial boundary
conditions u(x) =

∑d/2
i=1 x2i−1x2i for x ∈ ∂[0, 1]d. We sample training batches of size NΩ =

22

100 101 102 103

Iteration

10−8

10−3

102

107

L
os

s

5d Poisson (D = 10065)

100 101 102 103

Iteration

L
2

er
ro

r

5d Poisson (D = 10065)

101 102 103 104

Time (s)

10−8

10−3

102

107

L
os

s

5d Poisson (D = 10065)

101 102 103 104

Time (s)

L
2

er
ro

r

5d Poisson (D = 10065)

ENGD (Woodbury) SPRING

Figure 8: Training loss and evaluation L2 error for learning the solution to a 5d Poisson equation
over time and steps with fixed learning rate.

3000, N∂Ω = 1000 and evaluate the L2 error on a separate set of 30 000 data points using the known
solution u⋆(x) =

∑d/2
i=1 x2i−1x2i. Both optimizers sample a new training batch each iteration,

and each run is limited to 7000 s. We use a 10 → 256 → 256 → 128 → 128 → 1 MLP with
D = 118 145 MLP whose linear layers are Tanh-activated except for the final one. Given the poor
performance of SGD, Adam, and the Hessian-free, we no longer run them in this more complicated
problem. Furthermore, the traditional ENGD runs out of memory for networks of this size. Figure 11
visualizes the results.

Best run details The runs shown in Figure 11 correspond to the following hyper-parameters:

• ENGD-W: damping: 3.9× 10−7

• SPRING: damping: 1.7× 10−7 momentum: 9.053 28× 10−1

Search space details The runs shown in Figure 11 were determined to be the best via a random
search on the following search spaces which each optimizer given approximately the same total
computational time (U denotes a uniform, and LU a log-uniform distribution):

• ENGD-W: damping: LU([1× 10−7; 1])

• SPRING: damping: LU([1× 10−10; 1× 10−3]); momentum: LU([0.6; 0.999])

A.3.1 Fixed learning rate

We repeat the previous experiments, now adding a search space of LU([1 × 10−1; 1 × 10−4]) for
the learning rate, see Figure 12. We find that the best parameters are:

• ENGD-W: damping: 1.579× 10−5; learning rate: 8.7024× 10−2

• SPRING: damping: 4.98 × 10−5; momentum: 9.6764 × 10−1; learning rate: 6.034 67 ×
10−2

23

101 103 105

Iteration

10−7

10−2

L
os

s

N = 1000

100 101 102 103 104

Iteration

N = 5000

100 101 102 103

Iteration

N = 10000

101 103 105

Iteration

10−4

10−1

L
2

er
ro

r

N = 1000

100 101 102 103 104

Iteration

N = 5000

100 101 102 103

Iteration

N = 10000

100 101 102 103 104

Time [s]

10−7

10−2

L
os

s

N = 1000

100 101 102 103 104

Time [s]

N = 5000

100 101 102 103 104

Time [s]

N = 10000

100 101 102 103 104

Time [s]

10−4

10−1

L
2

er
ro

r

N = 1000

100 101 102 103 104

Time [s]

N = 5000

100 101 102 103 104

Time [s]

N = 10000

ENGD (Woodbury) ENGD (Nystrom) SPRING SPRING (Nystrom)

Figure 9: Training loss and evaluation L2 error for learning the solution of ENGD-W to a 5d Poisson
equation over time and steps with large batch sizes and randomization.

A.4 100-d Poisson Equation with line search

Setup Here, we consider a 100d Poisson equations −∆u(x) = f(x) with zero right-hand side
f(x) = 0, harmonic mixed second order polynomial boundary conditions u(x) =

∑d/2
i=1 x2i−1x2i

for x ∈ ∂[0, 1]d, and known solution u⋆(x) =
∑d/2

i=1 x2i−1x2i. We assign each run a budget of
10 000 s. We tune the optimizer-hyperparameters described in Appendix A.1 using random search.
We use a 100 → 768 → 768 → 512 → 512 → 1 MLP with D = 1325 057 MLP whose linear
layers are Tanh-activated except for the final one. This architecture is again too large for ENGD to
optimize. Figure 13 visualizes the results.

Best run details The runs shown in Figure 13 correspond to the following hyper-parameters:

• ENGD-W: damping: 4.7772× 10−3

• SPRING: damping: 3.0106× 10−2 momentum: 6.763 35× 10−1

Search space details The runs shown in Figure 13 were determined to be the best via a random
search on the following search spaces which each optimizer given approximately the same total
computational time (U denotes a uniform, and LU a log-uniform distribution):

• ENGD-W: damping: LU([1× 10−10; 1× 10−1])

• SPRING: damping: LU([1× 10−10; 1× 10−3]); momentum: LU([0.6; 0.999])

24

101 103 105

Iteration

10−5

101

107

L
os

s

N = 1000

100 101 102 103 104

Iteration

N = 5000

100 101 102 103

Iteration

N = 10000

101 103 105

Iteration

10−3

100

L
2

er
ro

r

N = 1000

100 101 102 103 104

Iteration

N = 5000

100 101 102 103

Iteration

N = 10000

100 101 102 103 104

Time [s]

10−5

101

107

L
os

s

N = 1000

100 101 102 103 104

Time [s]

N = 5000

100 101 102 103 104

Time [s]

N = 10000

100 101 102 103 104

Time [s]

10−3

100

L
2

er
ro

r

N = 1000

100 101 102 103 104

Time [s]

N = 5000

100 101 102 103 104

Time [s]

N = 10000

ENGD (Woodbury) ENGD (Nystrom) SPRING SPRING (Nystrom)

Figure 10: Training loss and evaluation L2 error for learning the solution to a 5d Poisson equation
over time and steps with large batch sized and fixed learning rate.

A.4.1 Fixed learning rate

We repeat the previous experiments, now adding a search space of LU([1 × 10−1; 1 × 10−4]) for
the learning rate, see Figure 12. We find that the best parameters are:

• ENGD-W: damping: 6.233× 10−7; learning rate: 9.118× 10−2

• SPRING: damping: 3.0116× 10−2; momentum: 9.8386× 10−1; learning rate: 9.2362×
10−2

A.4.2 Large batches

We now repeat the experiment using batch sizes of 1000, 5000, and 10 000 with the line search, in
order to test the randomized approach, setting the sketch size to 10% of N and fixed the learning
rate with the previously introduced search space. We can visualize the results in Figure 9.

A.5 4+1d Heat equation

Setup We consider a 4+1-dimensional heat equation ∂tu(t, x) − κ∆xu(t, x) = 0 with κ = 1
4 on

the four-dimensional unit square and unit time interval, x, t ∈ [0, 1]4 × [0, 1]. The equation has
spatial boundary conditions u(t, x) = exp(−t)

∑4
i=1 sin(2xi) for t, x ∈ [0, 1]×∂[0, 1]4 throughout

time, and initial value conditions u(0, x) =
∑4

i=1 sin(2xi) for x ∈ [0, 1]4. We sample training

25

100 101 102

Iteration

10−8

10−6

10−4

10−2

100

L
os

s

10d Poisson (D = 118145)

100 101 102

Iteration

L
2

er
ro

r

10d Poisson (D = 118145)

102 103

Time (s)

10−8

10−6

10−4

10−2

100

L
os

s

10d Poisson (D = 118145)

102 103

Time (s)

L
2

er
ro

r

10d Poisson (D = 118145)

ENGD (Woodbury) SPRING

Figure 11: Training loss and evaluation L2 error for learning the solution to a 10d Poisson equation
over time and steps.

100 101 102 103 104 105

Iteration

10−7

10−5

10−3

10−1

L
os

s

10d Poisson (D = 118145)

100 101 102 103 104 105

Iteration

L
2

er
ro

r

10d Poisson (D = 118145)

100 101 102 103 104

Time (s)

10−7

10−5

10−3

10−1

L
os

s

10d Poisson (D = 118145)

100 101 102 103 104

Time (s)

L
2

er
ro

r

10d Poisson (D = 118145)

ENGD (Woodbury) SPRING

Figure 12: Training loss and evaluation L2 error for learning the solution to a 10d Poisson equation
over time and steps with fixed learning rate.

batches of size NΩ = 3000, N∂Ω = 500 (N∂Ω/2 points for the initial value and spatial boundary
conditions each) and evaluate the L2-error on a separate set of 30000 data points using the known
solution u⋆(t, x) = exp(−t)

∑4
i=1 sin(2xi). We sample a new training batch each iteration. Each

26

100 101 102 103

Iteration

10−3

10−1

101

L
os

s

100d Poisson (D = 1325057)

100 101 102 103

Iteration

L
2

er
ro

r

100d Poisson (D = 1325057)

101 102 103 104

Time (s)

10−3

10−1

101

L
os

s

100d Poisson (D = 1325057)

101 102 103 104

Time (s)

L
2

er
ro

r

100d Poisson (D = 1325057)

ENGD (Woodbury) SPRING

Figure 13: Training loss and evaluation L2 error for learning the solution to high-dimensional Pois-
son equations over time and steps using random search.

100 101 102 103 104

Iteration

10−4

10−2

100

L
os

s

100d Poisson (D = 1325057)

100 101 102 103 104

Iteration

L
2

er
ro

r

100d Poisson (D = 1325057)

100 101 102 103 104

Time (s)

10−4

10−2

100

L
os

s

100d Poisson (D = 1325057)

100 101 102 103 104

Time (s)

L
2

er
ro

r

100d Poisson (D = 1325057)

ENGD (Woodbury) SPRING

Figure 14: Training loss and evaluation L2 error for learning the solution to a 100d Poisson equation
over time and steps with fixed learning rate.

run is limited to 3000 s. We use a five-layer MLP architecture whose linear layers are Tanh-activated
except for the final one: 5→ 256→ 256→ 128→ 128→ 1 with D = 116864 trainable weights.

Best run details The runs shown in Figure 16 correspond to the following hyper-parameters:

27

100 101 102 103 104

Iteration

10−3

100

L
os

s

N = 100

100 101 102 103

Iteration

N = 500

100 101 102 103

Iteration

N = 1000

100 101 102 103 104

Iteration

10−2

10−1

100

L
2

er
ro

r

N = 100

100 101 102 103

Iteration

N = 500

100 101 102 103

Iteration

N = 1000

100 101 102 103 104

Time [s]

10−3

100

L
os

s

N = 100

100 101 102 103 104

Time [s]

N = 500

100 101 102 103

Time [s]

N = 1000

100 101 102 103 104

Time [s]

10−2

10−1

100

L
2

er
ro

r

N = 100

100 101 102 103 104

Time [s]

N = 500

100 101 102 103

Time [s]

N = 1000

SPRING SPRING (Nystrom)

Figure 15: Training loss and evaluation L2 error for learning the solution to a 100d Poisson equation
over time and steps with large batch sized and fixed learning rate.

• ENGD-W: damping: 1.933 629× 10−7

• SPRING: damping: 1.081 840× 10−7, momentum: 8.500 992× 10−1

Search space details The runs shown in Figure 16 were determined to be the best via a random
search on the following search spaces which each optimizer given approximately the same total
computational time (U denotes a uniform, and LU a log-uniform distribution):

• ENGD-W: damping: LU([1× 10−10; 1× 10−1])

• SPRING: damping: LU([1× 10−10; 1× 10−3]); momentum: LU([0.6; 0.999])

A.5.1 Fixed learning rate

We repeat the previous experiments, now adding a search space of LU([1 × 10−1; 1 × 10−4]) for
the learning rate, see Figure 17. We find that the best parameters are:

• ENGD-W: damping: 1.139 970× 10−7, learning rate: 9.939 225× 10−2

• SPRING: damping: 2.081 775 × 10−7, momentum: 9.078 456 × 10−1, learning rate:
8.663 887× 10−2

28

100 101 102

Iteration

10−8

10−5

10−2

101

L
os

s

4d Heat (D = 116865)

100 101 102

Iteration

L
2

er
ro

r

4d Heat (D = 116865)

101 102 103

Time (s)

10−8

10−5

10−2

101

L
os

s

4d Heat (D = 116865)

101 102 103

Time (s)

L
2

er
ro

r

4d Heat (D = 116865)

ENGD (Woodbury) SPRING

Figure 16: Training loss and evaluation L2 error for learning the solution to the 4+1d Heat equations
over time and steps using random search.

100 101 102

Iteration

10−8

10−6

10−4

10−2

100

L
os

s

5d Heat (D = 117121)

100 101 102

Iteration

L
2

er
ro

r

5d Heat (D = 117121)

101 102 103

Time (s)

10−8

10−6

10−4

10−2

100

L
os

s

5d Heat (D = 117121)

101 102 103

Time (s)

L
2

er
ro

r

5d Heat (D = 117121)

ENGD (Woodbury) SPRING

Figure 17: Training loss and evaluation L2 error for learning the solution to a 4 + 1d Heat equation
over time and steps with fixed learning rate.

29

A.6 9+1d Fokker-Planck equation in logarithmic space

Setup For a given drift µ : [0, 1] × Rd → Rd and diffusion coefficient σ : [0, 1] → Rd×d, the
Fokker-Planck equation with initial probability density p0 is given by

∂tp+ ⟨∇, µp⟩ −
1

2
Tr(σσ⊤∇2p) = 0, p(0) = p0,

which is posed on [0, 1] × Rd. Note that p(·, t) is a probaility density on Rd for all t ∈ [0, 1]. We
transform the above equation into logarithmic space via q = log p. Then, q solves

∂tq + ⟨∇, µ⟩+ ⟨∇q, µ⟩ −
1

2
||σ⊤∇q||2 − 1

2
Tr(σσ⊤∇2q) = 0, q(0) = log p0,

For our experiment, we set µ = (t, x) = − 1
2x and σ =

√
2I ∈ Rd×d and replace the unbounded

domain by [0, 1] × [−5, 5]d. Finally, our solution q⋆ = log p⋆ where p⋆(t, x) ∼ N (0, exp(−t)I +
(1 − exp(−t))2I . Our loss includes the PDE residual and its initial conditions. We use a tanh-
activated five-layer MLP: 10→ 256→ 256→ 128→ 128→ 1 and use batch sizes of NΩ = 3000
and N∂Ω = 1000. Each run has an allocation time budget of 6000 s.

100 101 102

Iteration

10−3

10−1

101

103

L
os

s

9d Log-fokker-planck-isotropic (D = 118145)

100 101 102

Iteration

L
2

er
ro

r

9d Log-fokker-planck-isotropic (D = 118145)

102 103

Time (s)

10−3

10−1

101

103

L
os

s

9d Log-fokker-planck-isotropic (D = 118145)

102 103

Time (s)

L
2

er
ro

r

9d Log-fokker-planck-isotropic (D = 118145)

ENGD (Woodbury) SPRING

Figure 18: Training loss and evaluation L2 error for learning the solution to the 9 + 1d logarithmic
Fokker-Planck equation over time and steps using random search.

Best run details The runs shown in Figure 18 correspond to the following hyper-parameters:

• ENGD-W: damping: 1.558 395× 10−10

• SPRING: damping: 7.511 981× 10−2 momentum: 9.356 251× 10−1

Search space details The runs shown in Figure 18 were determined to be the best via a random
search on the following search spaces which each optimizer given approximately the same total
computational time (U denotes a uniform, and LU a log-uniform distribution):

• ENGD-W: damping: LU([1× 10−10; 1× 10−1])

• SPRING: damping: LU([1× 10−10; 1× 10−3]); momentum: LU([0.6; 0.999])

30

A.6.1 Fixed learning rate

We repeat the previous experiments, now adding a search space of LU([1 × 10−1; 1 × 10−4]) for
the learning rate, see Figure 19. We find that the best parameters are:

• ENGD-W: damping: 8.638 985× 10−4; learning rate: 6.029 401× 10−2

• SPRING: damping: 8.377 655 × 10−3; momentum: 9.760 086 × 10−1; learning rate:
4.473 188× 10−2

100 101 102 103

Iteration

10−4

10−2

100

102

L
os

s

9d Log-fokker-planck-isotropic (D = 118145)

100 101 102 103

Iteration

L
2

er
ro

r

9d Log-fokker-planck-isotropic (D = 118145)

100 101 102 103

Time (s)

10−4

10−2

100

102

L
os

s

9d Log-fokker-planck-isotropic (D = 118145)

100 101 102 103

Time (s)

L
2

er
ro

r

9d Log-fokker-planck-isotropic (D = 118145)

ENGD (Woodbury) SPRING

Figure 19: Training loss and evaluation L2 error for learning the solution to the 9 + 1d logarithmic
Fokker-Planck equation over time and steps with fixed learning rate.

B GPU-efficient Implementation Benchmarking

We compare the performance of the traditional Nyström approximation [10], and our GPU-efficient
proposal. Tests were performed on NVIDIA RTX 6000 GPUs (24 GiB RAM) with PyTorch’s built-
in timing routines, and the per-iteration execution time was averaged over 100 runs with 10 runs as
warm-up. We show here a scaling analysis for N = 5000 and constant regularizer µ = 1.0× 10−7,

Sketch size [% of N] Avg. Time [s] Peak Memory [MiB] Speedup [times]
20% 0.1321 vs. 0.0099 233.9 vs. 165.2 13.29
40% 0.6246 vs. 0.0253 395.4 vs. 234.6 24.70
60% 2.1137 vs. 0.0461 599.6 vs. 312.5 45.90
80% 4.7717 vs. 0.0725 856.8 vs. 395.0 65.41

Table 1: Nyström approximation performance. Comparison between the standard Nyström
method [10] and our GPU-efficient Nyström (boldfaced values). We report average runtime (s),
peak memory (MiB), and speedup (×, defined as standard/GPU-efficient) across sketch sizes (% of
N). Our method delivers substantial acceleration (≈13–65×) and consistently lower peak memory,
with both speedups and memory savings increasing with sketch size.

31

	Introduction
	Background
	Methods
	Experiments
	Conclusion
	Experimental Details and Additional Results
	Hyper-Parameter Tuning Protocol
	5d Poisson Equation
	Fixed learning rate
	Large batches

	10d Poisson Equation with line search
	Fixed learning rate

	100-d Poisson Equation with line search
	Fixed learning rate
	Large batches

	4+1d Heat equation
	Fixed learning rate

	9+1d Fokker-Planck equation in logarithmic space
	Fixed learning rate

	GPU-efficient Implementation Benchmarking

