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ABSTRACT

Reinforcement learning (RL) in high-dimensional continuous state and action
spaces often struggles with low learning efficiency and limited exploration scala-
bility. To address this, we introduce FOCUS, a novel model-based RL framework
that leverages the insight that effective policies often rely on dynamically focused,
sparse control. FOCUS learns preferences over action dimensions to facilitate more
targeted and efficient policy learning. It employs a hierarchical decision-making
strategy, in which a high-level policy generates binary prompts to activate control
units that have more impact on the task performance, while a low-level policy
produces actions conditioned on these prompts. To promote behavioral diversity
guided by different control-unit preferences, we integrate a diversity-driven ob-
jective into the model-based policy optimization process. FOCUS significantly
outperforms existing methods on multiple visual control tasks. Furthermore, it facil-
itates the integration of prior knowledge about the importance of action dimensions,
making it particularly effective for complex, high-dimensional tasks.

1 INTRODUCTION

Model-based reinforcement learning (MBRL) provides a promising framework for decision-making
tasks with high-dimensional observations by modeling environment dynamics (Hafner et al., 2020;
2025). However, its scalability is limited in high-dimensional action spaces, where exploration and
policy optimization tend to become inefficient and unstable. In many real-world domains, such as
humanoid locomotion, power grid control, and multi-agent collaboration, although the action spaces
are high-dimensional, only a sparse subset of dimensions may be crucial for effective decision-making
at each step. This insight highlights the need for mechanisms that can selectively attend to key control
dimensions during learning, enabling more efficient and focused policy optimization.

A natural approach to mitigating the challenges of high-dimensional action spaces is to exploit
their underlying structure. In particular, biasing policy learning toward more informative action
dimensions can substantially reduce search complexity and improve efficiency. Several prior methods
have explored this direction by introducing hierarchical or factorized action representations. However,
many of these approaches rely on discrete action assumptions (Saito et al., 2024; Chen et al., 2019;
Kumar et al., 2017) or predefined base-action set into which the original high-dimensional actions
are decomposed (Kim & Dean, 2002; Geißer et al., 2020; Pierrot et al., 2021), thereby limiting their
scalability to general continuous control tasks.

To address the under-explored problem of jointly handling high-dimensional visual observations
and high-dimensional continuous action spaces, we propose FOCUS, a scalable MBRL framework.
This setting presents unique challenges, including increased sample complexity and the difficulty of
learning effective policies in expansive state-action spaces. Unlike existing MBRL methods (Hafner
et al., 2025; Hansen et al., 2023) that treat all action dimensions uniformly, as shown in Figure 1, FO-
CUS introduces a control-unit preference learning mechanism that automatically identifies promising
action subspaces and adaptively steers behavior learning toward them, enabling more efficient and
focused behavior optimization and exploration.

Specifically, FOCUS represents control-unit preferences using learnable Bernoulli distributions
over all action dimensions. The agent presents a hierarchical decision-making strategy: (i) A
high-level preference policy predicts sampling probabilities and generates binary preference codes
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Figure 1: FOCUS solves high-dimensional continuous control tasks. The key idea is to improve
policy optimization and exploration efficiency via a control-unit preference learning mechanism that
adaptively selects and optimizes a dynamic subset of action dimensions.

(the “preference prompt”) over all control units; (ii) a low-level interaction policy, conditioned on
this prompt, specializes in the selected action subspaces. Both policies are jointly optimized to
maximize expected returns over imagined state rollouts produced by the world model. To encourage
model-based exploration and alignment between decision layers, we introduce a diversity-driven
policy optimization objective that maximizes behavioral discrepancies across different control-unit
preferences.

Once trained, the agent leverages both policies for real-environment interaction by performing
preference-based Monte Carlo planning, which reduces possible control-unit sampling bias and
significantly improves the decision quality. An additional benefit of our approach is that, when prior
knowledge about action dimension priorities is available, it can seamlessly incorporate such inductive
biases into the high-level policy.

Experiments on visual control benchmarks with high-dimensional action spaces, i.e., DeepMind Con-
trol (Tassa et al., 2018) and MyoSuite (Caggiano et al., 2022), demonstrate that FOCUS outperforms
strong model-based and model-free RL approaches in both learning efficiency and final performance.

In summary, the main contributions of this work are as follows:

• We present a unified framework for high-dimensional MBRL. It improves existing MBRL methods
for efficient learning in large action spaces. Our method dynamically prioritizes promising control
units for optimization and planning by modeling the importance of individual action dimensions.

• To enable the interaction policy to respond to varying control-unit preferences, we propose diversity-
driven model-based policy learning, which leverages a world model to imagine and evaluate
trajectories under diverse preference samplings.

• As an additional contribution, we introduce a preference-based sequential Monte Carlo planning
algorithm, which delivers higher computational efficiency and decision quality than CEM-based
planning approaches in high-dimensional RL, including TD-MPC2 (Hansen et al., 2023).
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2 PROBLEM FORMULATION

Our work targets high-dimensional continuous visual control tasks, where both the observation
and action spaces are large and complex, posing significant challenges for efficient learning and
exploration. Formally, we formulate the problem as a Partially Observable Markov Decision Process
(POMDP), defined by a 5-tuple (O,A,R, T , γ), where: O is the high-dimensional visual observation
space, A is the high-dimensional continuous action space, R is the reward function, T is the state
transition dynamics, and γ is the discount factor. In particular, we assume the action space is
structured as a Cartesian product of d continuous subspaces:

A = A(1) ×A(2) × ...×A(d), with A(i) ⊂ R. (1)

An action at time step t is thus represented as a d-dimensional vector
[
a
(1)
t , a

(2)
t , . . . , a

(d)
t

]
, where

each a(i)t ∈ A(i) is referred to as the i-th sub-action. The objective is to learn a policy π : O → A,
that maximizes the expected discounted cumulative return E

[∑T
t=1 γ

t−1rt

]
.

Challenges. The entanglement of high-dimensional visual observations and high-dimensional
continuous actions presents unique and under-explored challenges. Specifically, the state space
induced by visual inputs (e.g., raw images) is often noisy, redundant, and partially observable,
requiring agents to infer latent dynamics over time. Meanwhile, large continuous action spaces lead
to exponentially increasing possibilities for control decisions. Their intersection leads to an expansive
and entangled state-action space, making exploration inefficient and value estimation difficult. As a
result, existing RL methods often struggle with sample efficiency and generalization in such settings.

3 METHOD

3.1 OVERVIEW OF FOCUS

To tackle the challenges described above, we propose an MBRL method guided by learned control-
unit preferences. The overall training and environment interaction pipeline consists of three stages:

(i) World model learning: We first train a world model to predict latent state transitions and reward
signals from observation-action-reward tuples. We use DreamerV3 (Hafner et al., 2025) as the
backbone for world modeling. Detailed model specifications are provided in the appendix.

(ii) Diversity-driven model-based policy learning: As shown in Algorithm 1, over future trajectory
rollouts (i.e., latent state imaginations) generated by the world model, FOCUS constructs a
hierarchical policy learning architecture. At its core is a high-level decision-making module
that outputs a preference distribution over all control units1. At each imagination step, the
high-level policy samples a binary control-unit preference from Bernoulli distributions (termed
a “preference prompt”). This prompt selects a sparse subset of control units, guiding the
low-level policy network to generate specific behaviors within the original high-dimensional
action space. The high-level preference policy and the low-level interaction policy are jointly
optimized to maximize expected returns over the imagination horizon. Furthermore, we
encourage behavioral diversity across different preference prompts, promoting more effective
exploration and stronger alignment between hierarchical decisions.

(iii) Preference-based Monte Carlo planning: During environment interaction, the agent samples
multiple candidate preference prompts. For each prompt, it performs multi-step Monte Carlo
planning to generate potential future trajectories. The final action is then selected from these
candidates based on trajectory weights computed from their cumulative advantage estimates.

3.2 CONTROL-UNIT PREFERENCE SAMPLING

Our approach is motivated by the observation that high-dimensional control tasks often exhibit inher-
ent sparsity—at any given time, some control units more significantly contribute to task performance
than others. For example, in the HumanoidStand task, the agent begins by pushing itself upward

1Each control unit corresponds to a subset of action dimensions for a specific functional component (e.g., a
joint in a humanoid robot), potentially spanning multiple dimensions to reflect its degrees of freedom.

3
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Algorithm 1: Full training algorithm of FOCUS, with Diversity-driven model-based policy
learning, and Preference-based SMC Planning

1 Initialize: world model θ, hierarchical actor {ϕ1, ϕ2}; critic ψ, replay buffer B with random episodes.
2 while not converged do
3 for update step c = 1 . . . C do
4 // World model learning

5 Draw data sequences {(ot, at, rt)}Tt=1 ∼ B.
6 Update the dynamics model pθ and reward model rθ using DreamerV3 world model objectives.
7 // Diversity-driven model-based policy learning
8 Draw a random observation o1 ∼ B.
9 for time step t = 1 . . . H − 1 do

10 Sample Nc control-unit preference promts {ut,n}Ncn=1 ∼ πϕ1(st).
11 Generate {at,n ∼ πϕ2(st,ut,n)}

Nc
n=1.

12 Predict {st+1,n ∼ pθ(st, at,n)}Ncn=1 and {rt,n ∼ rθ(st+1,n)}Ncn=1.
13 Compute Ldiv

t and Lcst
t over {at,n}Ncn=1 according to Eq. equation 3 and Eq. equation 4.

14 Select st+1,n with the highest vψ(st+1,n) as st+1.
15 end
16 Update πϕ1 , πϕ2 and vψ using Eq. equation 5.
17 end
18 // Environment interaction with sequential Monte Carlo planning
19 o1 ← env.reset( )
20 for time step t = 1 . . . T do
21 Compute posterior state st ∼ qθ(ot).
22 Sample Np preference promts {un}Npn=1 ∼ πϕ1(· | st).
23 Initialize Np planning trajectories {τn}Npn=1 starting from {ŝt,n}Npn=1 = st.
24 Initialize importance weights for planning trajectories {wn = 1}Npn=1.
25 for planning steps h = 0 . . . L− 1 do
26 Generate {ât+h,n ∼ πϕ2(ŝt+h,n, un)}

Np
n=1.

27 Predict {ŝt+h+1,n ∼ pθ(ŝt+h,n, ât+h,n)}Npn=1 and {r̂t+h,n ∼ pθ(ŝt+h+1,n)}Npn=1.
28 Compute step-wise advantages {At+h,n = r̂t+h,n + γvψ(ŝt+h+1,n)− vψ(ŝt+h,n)}Npn=1.
29 Update weights {wt+h+1,n = wt+h,n · exp(At+h,n)}Npn=1.
30 end
31 Sample τn from a categorical distribution based on weights {wt+L,n}Npn=1.
32 Select the first action ât,n in τn as at.
33 rt, ot+1 ← env.step(at)
34 end
35 Add experience to the replay buffer B ← B ∪ {(ot, at, rt)Tt=1}.
36 end

from the ground using support from its legs and arms. In such moments, joints such as the ankles
and wrists play a dominant role, while many other action dimensions contribute minimally. This
observation suggests that exploration can be made more efficient by selectively attending to a small
subset of all control units. Accordingly, we introduce a high-level policy πϕ1

that takes latent states as
inputs and generates a binary prompt ut ∈ Rd, where u(i)

t = 1 indicates that the i-th action dimension
is currently important and should be prioritized. This design leads to a hierarchical policy structure,
where the target policy πϕ2

is conditioned on both the latent state and the preference prompt:

Preference policy: ut ∼ πϕ1(st), Interaction policy: at ∼ πϕ2(ut, st), (2)

where ut is sampled from d independent Bernoulli distributions whose parameters are jointly predicted
by the high-level policy πϕ1

, enabling the modeling of correlations across all control units. Intuitively,
we expect the target policy πϕ2

to adapt its behavior based on the high-level guidance ut, enabling
more focused and effective exploration within the subspace of prioritized action dimensions.

4
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3.3 DIVERSITY-DRIVEN MODEL-BASED POLICY LEARNING

To promote an efficient exploration of potential policies guided by diverse control-unit activations, we
introduce a focused policy optimization approach within a model-based behavior learning framework,
as shown in Figure 1. We first learn a world model parameterized by θ, which includes an encoder
pθ(st | ot), a latent transition model pθ(st+1 | st, at), and a reward predictor rθ(st). Given an initial
latent state encoded from a random observation in the replay buffer, FOCUS samples a preference
prompt ut, and generates an preference-conditioned action at based on the current rollout state ŝt.
The action at is then used to update the imagination trajectory via the world model. The hierarchical
policy πϕ1,2 and the value model vψ are optimized over imagined trajectories of length H .

However, directly maximizing the expected value function, as in Dreamer-style objectives, is insuffi-
cient for inducing low-level behaviors that are responsive to high-level preferences. Without further
regularization, the actor may fail to interpret and follow the high-level guidance effectively. To address
this, we design a diversity-driven learning objective. The key idea is that the low-level actor should
produce diverse behaviors for control units selected by different preference prompts, while main-
taining consistent behaviors for those not selected. Specifically, we sample Nc preference prompts
{ut,n}Ncn=1 from πϕ1

(st), and and generate corresponding action vectors {at,n}Ncn=1. Each action is
decomposed as at,n = [a

(1)
t,n, . . . , a

(d)
t,n] along d dimensions. We first define a diversity-promoting loss

to encourage the low-level policy to respond distinctly to different preference selections:

Ldiv
t =

d∑
i=1

[
−

Nc∑
n=1

I(u(i)
n = 1)

Nc∑
k=1

I(u(i)
k = 0) ·KL

[
π(a(i)n | s,un) ∥ sg(π(a

(i)
k | s,uk))

]]
, (3)

where I(·) is the indicator function, sg(·) denotes stop-gradient, and we ignore the time step index
for clarity. Meanwhile, we introduce a consistency loss to penalize divergence among actions on the
same dimensions not selected by the preference prompt:

Lcst
t =

d∑
j=1

[
Nc∑
n=1

I(u(j)
n = 0)

Nc∑
k=1

I(u(j)
k = 0) ·KL

[
p(a(j)n | s,un) ∥ sg(p(a

(j)
k | s,uk))]

]]
. (4)

Together, these losses impose a contrastive structure in the high-dimensional action space, enhancing
exploration and ensuring better alignment between low- and high-level policies. Importantly, we do
not stop the gradient at un in the above regularization terms. Instead, we allow πϕ1 to be co-optimized
with πϕ2 . This design further promotes exploration, as Ldiv

t rewards diverse control-unit activations
and prevents the high-level policy from collapsing to identical but biased activation vectors.

For the sake of computational efficiency, as shown in Alogrithm 1, we choose st+1,n ∼ pθ(st, at,n)
with the highest predicted value vψ(st+1,n) as st+1 among multiple candidates at each imagination
step. In practice, we compute the diversity-driven objectives only at the first step of imagination.
Despite this simplification, we observe a significant performance gain over versions without diversity-
driven regularization, while incurring almost no additional training overhead.

Finally, the full objective is defined as follows, where the actor uses value backpropagation through
dynamics as in DreamerV3 for better continuous control, and the critic uses a λ-return target:

Actor: L(ϕ1, ϕ2) = Epψ,pθ

[
H−1∑
t=1

[
Ldiv
t + Lcst

t − V λt − ηH (at | ŝt, sg(ut))
]]
,

Critic: L(ψ) = Epϕ1 ,pϕ2 ,pθ

[
H−1∑
t=1

1

2
(vψ(ŝt)− sg(V λt ))

2

]
,

(5)

where the entropy term H(·) further encourages exploration conditioned on preference prompts.
Notably, both levels of policies are jointly optimized towards maximizing the imagined values.

3.4 PREFERENCE-BASED MONTE CARLO PLANNING

The hierarchical policy involves two sources of stochasticity—from both the high-level preference
sampling and the low-level action generation—which may increase variance during real-environment

5
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b. Humanoid Standa. Humanoid Walk c. Dog Walk d. Dog Trot

Figure 2: Results on DeepMind Control Suite. All results are averaged over three training seeds.

interaction. To mitigate this, we develop an online planning scheme that efficiently reasons over
multiple future state-action trajectories, each conditioned on a different control-unit preference
prompt. We term this method preference-based Monte Carlo planning, a modified form of sequential
Monte Carlo planning (Piché et al., 2018) designed for high-dimensional action spaces.

As shown in Algorithm 1, at each interaction step, we sample Np preference prompts {un}Npn=1 based
on the current state st, and initialize Np planning trajectories with uniform weights wn = 1. At
each planning step t+ h, we reuse un to sample low-level actions ât+h,n ∼ πϕ2

(ŝt+h,n,un). This
contrasts with model-based policy learning, where un is typically re-sampled at each imagination
step. Instead, we preserve temporal consistency in the sampled control-unit prompts during planning.
We then use the learned dynamics pθ to rollout future states st+h:t+L,n. We evaluate these candidate
trajectories via advantage estimation and update their weights accordingly:

At+h,n = r̂t+h,n + γvψ(ŝt+h+1,n)− vψ(ŝt+h,n), wt+h+1,n = wt+h,n · exp(At+h,n). (6)

At the end of the planning horizon, we sample one trajectory from the categorical distribution defined
by {wt+L,n}Npn=1 and execute its first action in the environment.

Empirically, this approach significantly outperforms prior sample-based planning methods (e.g.,
MPPI in TD-MPC2 (Hansen et al., 2023)) in both computational efficiency and decision quality.
Unlike MPPI, our method avoids online policy refitting, making it more suitable for high-dimensional
control tasks.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We conduct experiments on two RL environments with visual inputs, namely DeepMind Control
Suite (Tassa et al., 2018) and MyoSuite (Caggiano et al., 2022). We present empirical results on seven
tasks from these environments with high-dimensional continuous action spaces. Detailed information
on the selected tasks with their action space sizes is provided in Appendix A.

We compare FOCUS with: (1) DreamerV3 (Hafner et al., 2025), a strong model-based RL method in
high-dimensional observation space; (2) TD-MPC2 (Hansen et al., 2023), a decoder-free model-based
RL baseline that employs the CEM-based planning method. (3) DrQv2 (Yarats et al., 2021a), a data
augmentation-based visual RL approach; and (4) Director (Hafner et al., 2022), another hierarchical
MBRL method that conditions low-level policy on goals generated by the high-level autoencoder. All
models are trained under a fixed environment interaction budget. For two tasks in the Humanoid
suite, each model is trained for 8M frames, and for the Dog suite, 6M frames. Tasks in MyoSuite
allow interactions for 1M frames. Average episode returns are computed over 10 episodes per seed.

4.2 DOMAIN #1: DEEPMIND CONTROL SUITE

As shown in Figure 2, FOCUS consistently outperforms baseline methods across all four tasks.
Notably, it achieves a substantial improvement over DreamerV3 in HumanoidWalk. In both
Humanoid tasks, the learning curves show a prolonged warm-up phase before meaningful improve-
ment, reflecting the challenge of locating sparse high-reward regions within large decision spaces.
Compared with DreamerV3, our model exhibits an earlier performance rise, demonstrating its ability
to reduce sample complexity and efficiently explore targeted reward regions. In Dog tasks, rewards
are less sparse than in Humanoid tasks, and DreamerV3 is already capable of sampling high-reward

6
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a. Key Turn Hard b. Pen Twirl Hard c. Pose Hard

Figure 3: Results on the MyoSuite hard tasks. Episode returns are averaged over 10 episodes per
seed, for a total of 30 runs. FOCUS outperforms all baselines across every task.

FOCUS

w/o high-level

w/o diversity

w/o planning
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Figure 4: Ablation studies. Left: Effect of each model component (Task: KeyTurnHard). Right:
Effect of planning horizon h and candidate trajectories Np in our planner (Task: HumanoidWalk).

regions. This is reflected in its steadily increasing learning curves, suggesting that despite the larger
number of action dimensions, the high-reward regions in the action space are sufficiently large for
agents with random policies to sample with reasonable probability. In this setting, exploration is not
the primary bottleneck, which limits potential performance gains. For TD-MPC2, it fails to achieve
meaningful progress on humanoid tasks, highlighting its difficulty in effectively exploring the
vast search space, particularly under high-dimensional visual input. The comparison with Director
highlights the impact of the diversity-driven objective: while both methods employ hierarchical
policies, FOCUS explicitly prioritizes subsets of the action space, resulting in higher exploration
efficiency. We showcase the policy evaluation of FOCUS, DreamerV3 and Director in Figure 5a,
with full results in Appendix B.1. As illustrated, the policy obtained by FOCUS adjusts humanoid’s
posture in fewer time steps to start walking (t = 50), meanwhile maintaining its control more stable
than DreamerV3 which falls to the ground (t = 200) after standing up. Additionally, DrQv2 requires
roughly 4M environment steps before its learning curve begins to rise, suggesting that augmenting
failing episodes early has little effect on sample efficiency.
Further results. We compare the planning efficiency of FOCUS with TD-MPC2 in Appendix B.2,
and assess its generalizability on tasks with low-dimensional action spaces in Appendix B.4.

4.3 DOMAIN #2: MYOSUITE

Performance results on MyoSuite are shown in Figure 3. FOCUS outperforms all baselines on
KeyTurnHard and PenTwirlHard. On KeyTurnHard, it improves over DreamerV3, demon-
strating higher efficiency in exploring high-reward regions within the same environment step bud-
get On PenTwirlHard, FOCUS successfully discovers sharply peaked reward regions, whereas
other baselines struggle in flatter areas; DreamerV3 fails to solve this task. The integration of
the diversity-promoting loss Ldivt and consistency loss Lcstt systematically biases sampling toward
high-reward regions, enabling efficient policy learning and sustained performance gains All methods
face challenges on PoseHard, though FOCUS achieves slightly better results, thanks in part to Lcstt
preventing overfitting as discussed in Section 3.3.

4.4 ABLATION STUDIES AND HYPERPARAMETER ANALYSES

We validate the proposed modules on KeyTurnHard in MyoSuite, considering three variants of
our method: (1) FOCUS without πϕ1

, reducing it to a DreamerV3 agent planning in the original
high-dimensional action space; (2) FOCUS without Ldivt and Lcstt ; and (3) FOCUS without planning.
These variants are compared with the full FOCUS and DreamerV3 to assess the contribution of each

7
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t=0 t=50 t=100 t=200

Director

DreamerV3

FOCUS

(a) (b)
Figure 5: (a) Visualization of the learned policy for HumanoidWalk. FOCUS features more efficient
and stable policy learning. (b) Ablation on substituting CEM for SMC planning in HumanoidWalk.
Our design demonstrates more efficiency in exploring high-dimensional action space.

component. As shown in Figure 4, FOCUS consistently outperforms all other variants, demonstrating
that each component contributes to its success. The variant without the high-level policy πϕ1

is
equivalent to DreamerV3 with the addition of a Sequential Monte Carlo planner during online
interaction, yet it performs worse than DreamerV3. We attribute this to the vulnerability of direct
planning in the original high-dimensional action space, whereas FOCUS plans in the high-level
space, providing more effective guidance. Furthermore, both the diversity loss and the planning
algorithm are crucial contributors to FOCUS’s performance. We also examine different variants
across planning horizons h and number of candidate trajectories Np, highlighting the h = 3 and
Np = 32 setting. Although increasing Np substantially raises the computational cost, it does not
guarantee consistent improvements in policy performance. Additionally, we compare FOCUS to its
Cross Entropy Method(CEM)-based variant in Figure 5b. As illustrated, SMC enables faster and
more effective learning compared to CEM. we argue that prior sample-based planning methods like
CEM which requires online refitting of policy distribution, are not sufficiently capable of modeling
target distributions in a high-dimensional action space and thus limiting its effectiveness.

4.5 VISUALIZATION OF LEARNED CONTROL-UNIT PREFERENCES

We visualize the preference prompts sampled on HumanoidStand in Figure 6, using the model
trained immediately after the rising point (i.e., after 3M environment steps) and recording preference
prompts over a single episode. This visualization serves two purposes: (1) to illustrate the temporal
evolution of control preferences as the agent attempts to stand, and (2) to qualitatively assess whether
the learned preference policy captures meaningful, structured sparsity across action dimensions.
From the sampled preference prompts, we observe distinct patterns in certain control units that are
consistently activated during critical stabilization moments. These results support the hypothesis that
FOCUS exploits structured sparsity to focus exploration on behaviorally relevant subspaces, aligning
with our goal of reducing exploration overhead in high-dimensional control tasks.

5 RELATED WORK

Model-based RL. Model-based RL (Ha & Schmidhuber, 2018; Hafner et al., 2025; Hansen et al.,
2023; Moerland et al., 2023) shows great potential in addressing the data efficiency issue compared
to model-free methods (Yarats et al., 2021b; Kostrikov et al., 2021; Laskin et al., 2020), particularly
in online learning. By leveraging a learned world model, these methods enable efficient policy
optimization through planning (Nguyen et al., 2021; Zhao et al., 2021; Hansen et al., 2023) or Q-
learning (Hafner et al., 2020; Wang et al., 2022). However, in high-dimensional observation and action
spaces, world models struggle to identify sparse high-reward regions due to their uniform treatment
of all action dimensions. This limitation burdens the learning process, as undirected exploration in
vast action spaces leads to inefficiency. FOCUS addresses this challenge by adaptively selecting a
control unit, thereby guiding policy exploration and optimization within a reduced subspace.
Hierarchical RL. Prior studies in hierarchical structured action space (Kumar et al., 2017; Chen
et al., 2019; Tang & Agrawal, 2020; Saito et al., 2024) usually assume a multi-stage policy that divides
the searching space into smaller parts. However, this structure is mostly restricted to tasks with
discrete action spaces and requires additional discretization when confronted with continuous ones.
Hierarchical policy learning in behavior learning (Pateria et al., 2021) has been used to enable efficient
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Preference Samples

Selected Preference Prompts
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Top-8 Preferenced Joints
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Right Shoulder

Right Ankle
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Figure 6: Visualization of learnt preference prompts. These results suggest that FOCUS effectively
leverages structured sparsity to focus exploration on task-relevant subspaces, aligning with our goal
of reducing exploration overhead in high-dimensional control.

long-horizon reasoning by generating temporal abstractions through high-level policy (Vezhnevets
et al., 2017; Gumbsch et al., 2024; Gürtler et al., 2021). Director (Hafner et al., 2022) is a model-based
method featuring a hierarchical policy structure that generates a goal with a high-level autoencoder
first. Yet in our work, we have made use of the hierarchical structure to model the sparsity nature
of the high-dimensional action space, thus reducing the searching space to a single control unit and
guiding the exploration in a high-dimensional continuous action space.
RL with high-dimensional action space. Despite the hierarchical structure mentioned above, simi-
lar structure-exploiting methods have been proposed, faced with challenges in high-dimensional action
space, among which RL in factored action space (Osband & Van Roy, 2014) serves as a favorable
direction. These methods make use of the loose-coupling action space and decompose the original
MDP into several sub-questions and prove especially efficient in multi-agent settings (Guestrin et al.,
2001; Mahajan et al., 2021; Peng et al., 2021). The limitation lies in the strong assumption that access
to a pre-defined base-action set into which the original high-dimensional action could be decomposed
is granted, demonstrating limited efficacy in single-object control tasks such as humanoid. Addition-
ally, learning-based structure discovery methods (Tavakoli et al., 2017; 2018; Van de Wiele et al.,
2020) are similar in spirit to our approach, as they model each action dimension with separate actors.
However, this design introduces computational overhead and scalability challenges, and often ignores
interdependencies between action dimensions, which can lead to instability during training.

6 CONCLUSIONS AND LIMITATIONS

In this paper, we introduced FOCUS, a novel approach for high-dimensional model-based rein-
forcement learning (MBRL) that addresses the challenges of learning and exploration efficiency
in large action spaces. FOCUS leverages a hierarchical policy structure, where a high-level policy
learns to generate sparse control-unit activations, identifying key action dimensions at each decision
point; while a low-level policy operates within these preferred subspaces to optimize behavior using
imagined rollouts from a world model. Our empirical results showed that FOCUS consistently
outperforms baselines on high-dimensional control tasks while maintaining high learning efficiency.

Despite its strong performance, FOCUS also has certain limitations. First, the effectiveness of the
learned preference prompts closely tied to the quality of the world model, as inaccuracies in imagined
rollouts can lead to suboptimal high-level guidance. Second, the hierarchical decision-making
mechanism introduces extra parameters and training complexity. Exploring effective preference
representations can be a promising direction for future work.
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ETHICS STATEMENT

This work proposes an RL framework focusing on dealing with high-dimensional action spaces. The
research does not involve human subjects, sensitive personal data, or any newly collected datasets.
All experiments were conducted within simulated environments, ensuring that no privacy or security
concerns are introduced.

Our study does not directly present harmful applications. The contributions are methodological
and algorithmic in nature, aiming to deepen the understanding of efficient policy learning in high-
dimensional spaces. We have carefully read and followed the Code of Ethics, and are committed to
principles of research integrity. No conflicts of interest or external sponsorship had influence on this
work.

REPRODUCIBILITY STATEMENT

This work proposes a novel model, FOCUS, to deal with RL in tasks with high-dimensional observa-
tion and action input. To facilitate reproducibility, we provide the complete implementation code as
part of the supplementary materials. Detailed descriptions of the model is included in Section 3.2,
Section 3.3 and the planning algorithm is included in Section 3.4. We also describe the detailed
experimental settings in Section 4.1 and Appendix A.
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APPENDIX

The technical appendix includes:

• Sec. A: An overview of the action space sizes for all visual control tasks used in our experiments.

• Sec. B: Additional quantitative and qualitative results, including:

– Sec. B.1: Visualization of policy evaluations.
– Sec. B.2: Comparison of the planning efficiency per environment interaction step with TD-

MPC2, which is based on MPPI planning.
– Sec. B.3: Visualizations of the learned action-dimensional preferences, demonstrating that the

high-level policy generates focused and interpretable control-unit prompts.
– Sec. B.4: Additional results of FOCUS on low-dimensional tasks, highlighting its versatility

across diverse visual control settings.

• Sec. C: A detailed description of the world model architecture and its associated learning objectives.

• Sec. D: The description of LLM usage in this work.

A SUMMARY OF EXPERIMENTAL ENVIRONMENTS

Table 1 summarizes the environmental setups in the DeepMind Control and MyoSuite benchmarks.
While FOCUS is designed to tackle high-dimensional problems with large action spaces, its results
on low-dimensional tasks highlight broad applicability.

Table 1: Overview of action space dimensions for all continuous control tasks in our experiments.

Environment Tasks Action Space Size (Rd)

High-dimensional DMC

Humanoid Stand 21
Humanoid Walk 21

Dog Walk 38
Dog Trot 38

MyoSuite
Key Turn Hard 39
Pen Twirl Hard 39

Pose Hard 39

Low-dimensional DMC
Walker Walk 6
Cheetah Run 6

Quadruped Walk 12

B ADDITIONAL QUANTITATIVE AND QUALITATIVE RESULTS

B.1 VISUAL EVALUATION OF LEARNT POLICIES

We evaluate trained policies of different models on the DMC and Myosuite tasks and visualize episode
frames for comparison. The full results on HumanoidWalk, DogTrot and KeyTurnHard are
presented in Figure 7, Figure 8 and Figure 9 respectively.

B.2 PLANNING EFFICIENCY COMPARISON WITH TD-MPC2

We compare the planning efficiency of FOCUS and TD-MPC2 in Figure 10, measuring the time
consumed from receiving an observation to producing an action. The experiments were conducted
on a system equipped with an NVIDIA RTX 4090 GPU and a dual-socket Intel Xeon Gold 6240C
CPU at 2.60GHz. For a fair comparison, both compared models are implemented in PyTorch 2.4.1,
whereas the proposed FOCUS is implemented in JAX for the main text and all other experiments.

Although both methods rely on online planning, TD-MPC2 uses the Model Predictive Path Integral
(MPPI) algorithm which is generally more computationally intensive than the proposed Sequential
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Figure 7: Policy evaluation on the HumanoidWalk task.
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Figure 8: Policy evaluation on the DogTrot task.

Monte Carlo (SMC) planning employed in FOCUS. As shown, FOCUS achieves significantly lower
latency than TD-MPC2, with a notably smaller increase in latency across varying planning horizons.
This also highlights the scalability of FOCUS for long-horizon tasks.

B.3 VISUALIZATION OF LEARNED HIGH-LEVEL PREFERENCES

We visualize the preference prompts sampled by the learned high-level policy in Figure 11, and
present the full visualization video in supplementary materials. The results show that our hierarchical
policy can selectively prioritize action dimensions corresponding to key joints, such as the legs and
arms in the humanoid tasks.

For instance, in the second row in Figure 11, the policy focuses on the left knee and the x-actuator
at the right ankle to support the stand-up motion. A closer look at joint control axes reveals that
the selected x-actuator at the right ankle is oriented vertically to the ground, making it particularly
effective for initiating a standing-up behavior. In the third row, upon detecting that the right lower leg
requires adjustment, the policy prioritizes control of the right knee joint to enable stable locomotion.
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Figure 9: Policy evaluation on the KeyTurnHard task.
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Figure 10: Time per interaction step to compare the efficiency of different planning algorithms.

B.4 APPLICABILITY TO LOW-DIMENSIONAL TASKS

A key concern regarding the proposed FOCUS is whether the high-level preference policy might
hinder sufficient exploration in environments with small action spaces. To examine this, we evaluate
FOCUS on four tasks from the DeepMind Control Suite characterized by low-dimensional action
spaces: Walker Walk, Cheetah Run, and Quadruped Walk, while additional task details
can be found in Table 1. As shown in Table 2, FOCUS achieves performance comparable to
DreamerV3 across these low-dimensional control tasks, demonstrating its robustness and broad
applicability.

C WORLD MODEL DETAILS

The DreamerV3 world model is implemented as a recurrent state-space model (RSSM), which
maintains a deterministic hidden state ht and a stochastic latent variable zt to encode observations
and predict future states. In our main text, we denote the concatenated feature st = [ht, zt] as the
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DreamerV3

FOCUS

VS.

Figure 11: Visualization of learned action-dimensional preferences. Red bars indicate the action
dimensions selected by the high-level policy. Please refer to our supplementary video for details.

Table 2: Episode return on low-dimensional DMC tasks. The comparable performance to DreamerV3
highlights the applicability of FOCUS across diverse continuous visual control setups.

Method Walker Walk Cheetah Run Quadruped Walk Average

FOCUS 973.3±13.5 910.1±61.44 953.0±8.33 945.5
DreamerV3 966.4±21.19 901.9±26.2 943.4±29.1 937.2
TD-MPC2 332.9±31.9 202.7±2.3 162.2±49.7 232.6

overall state representation. The world model can be formulated as follows:
Sequence model: ht = fϕ(ht−1, zt−1, at−1),

Encoder: zt ∼ qϕ(zt | ht, xt),
Dynamics predictor: ẑt ∼ pϕ(ẑt | ht),

Reward predictor: r̂t = rϕ(ht, zt),

Continue predictor: ĉt = cϕ(ht, zt),

Decoder: x̂t = gϕ(ht, zt),

(7)
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where fϕ is the recurrent transition function modeled by a GRU. qϕ and pϕ are implemented with
MLPs. We use another MLP with separate heads rϕ and cϕ to predict the reward rt and the episode
continuation flag ct, respectively. We use a CNN decoder to reconstruct the observation xt.

The world model is trained by minimizing a variational objective that combines reconstruction losses
with KL regularization. In particular, the total loss is written as:

L(ϕ) = Eτ∼B

[
T∑
t=1

(
Lpred
t + Ldyn

t + Lrep
t

)]
,

Lpred
t =− ln pϕ(xt | ht, zt)− ln pϕ(rt | ht, zt)− ln pϕ(ct | ht, zt),
Ldyn
t = KL (sg(qϕ(zt | ht, xt)) ∥ pϕ(ẑt | ht)) ,

Lrep
t = KL (pϕ(ẑt | ht) ∥ sg(qϕ(zt | ht, xt))) .

(8)

where Lpred
t is a self-supervised loss that reconstructs xt and predicts the reward rt and terminal

signal ct; Ldyn
t is a KL divergence aligning the prior pϕ(ẑt | ht) to the posterior qϕ(zt | ht, xt); and

Lrep
t is a reverse KL that regularizes the latent representations.

D USE OF LLMS

Large language models (LLMs) were used exclusively for language editing, including grammar
correction and sentence polishing. They were not used for developing ideas, designing methods,
conducting experiments, or interpreting results. Specifically, we provided prompts such as "Help
polish this sentence to improve clarity and fluency in an academic writing style.", "Rewrite this
sentence in a different expression", or "What is the alternative word for xxx". The output was then
evaluated and further edited to stay close to this paper’s writing style.
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