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Abstract

While Large Language Models (LLMs) show great promise, their tendencies to
hallucinate pose significant risks in high-stakes domains like finance, especially
when used for regulatory reporting and decision-making. Existing hallucination
detection benchmarks fail to capture the complexities of financial benchmarks,
which require high numerical precision, nuanced understanding of the language
of finance, and ability to handle long-context documents. To address this, we
introduce PHANTOM, a novel benchmark dataset for evaluating hallucination de-
tection in long-context financial QA. Our approach first generates a seed dataset of
high-quality "query-answer-document (chunk)" triplets, with either hallucinated or
correct answers - that are validated by human annotators and subsequently expanded
to capture various context lengths and information placements. We demonstrate
how PHANTOM allows fair comparison of hallucination detection models and
provides insights into LLM performance, offering a valuable resource for improv-
ing hallucination detection in financial applications. Further, our benchmarking
results highlight the severe challenges out-of-the-box models face in detecting
real-world hallucinations on long context data, and establish some promising direc-
tions towards alleviating these challenges, by fine-tuning open-source LLMs using
PHANTOM.1

1 Introduction

Large Language Models(LLMs) have demonstrated remarkable capabilities across a wide range of
natural language tasks (Brown et al., 2020; Zhao et al., 2023; Gemini Team et al., 2023; Achiam et al.,
2023). The adoption of LLMs in specialized domain like finance presents exciting opportunities,
but also introduces the risk of hallucinations – outputs that are factually incorrect, inconsistent with
source or misleading (Huang et al., 2025; Ji et al., 2023; Zhang et al., 2023; Das et al., 2023). While
hallucinations can be problematic in any domain, their consequences in finance can be especially
damaging, given that common finance AI use cases involve interpreting and presenting important
financial data and documents. Although research on hallucination detection methods is growing, a
significant gap exists in evaluating these methods specifically on financial data (Kang and Liu, 2023).
Financial documents possess distinct characteristics, including high numerical precision requirements,
domain-specific terminology, and intricate relationships between data points. These characteristics
necessitate specialized evaluation benchmarks (Choi et al., 2025). The scarcity of benchmark datasets
specifically designed for evaluating hallucination detection methods within the financial domain
presents a significant obstacle to advancing research in this critical area (Kang and Liu, 2023).

1Dataset available at: huggingface.co/datasets/seyled/Phantom_Hallucination_Detection

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.
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Furthermore, financial documents are often characterized by their extensive length; for instance,
a typical 10-K filing can exceed 100,000 tokens and proprietary financial documents (like loan
agreements or merger agreements) can run into more than 100 pages (Reddy et al., 2024). Recent
studies have highlighted that LLM performance in Retrieval-Augmented Generation (RAG) and
long-context Question Answering (QA) is sensitive not only to the sheer length of the context but
also to the position of the relevant information within the context. LLMs often exhibit degraded
performance when relevant facts are buried deep within lengthy contexts, compared to when those
facts appear at the beginning or end, known as the ‘lost in the middle’ problem (Liu et al., 2024).
Existing hallucination benchmarks mostly focus on short-context scenarios, failing to address the
challenges LLMs face when processing the lengthy, dense documents typical in finance, such as
SEC filings (Lin et al., 2021). Critically, methods used to create existing long-context benchmarks
often rely on artificially concatenating unrelated documents, which fails to replicate the cohesive,
topic-specific nature of real-world financial long-context QA tasks, potentially leading to misleading
evaluation results.

To address these gaps, we introduce PHANTOM, a first of its kind benchmark dataset specifically
designed for evaluating hallucination detection methods in long-context QA within the finance
domain, using SEC filings as the primary data source. Our core contribution lies not only in the
dataset itself but also in the methodology used for its creation. We begin with generating a high-quality
‘seed’ dataset by first extracting random 500-token chunks (‘seed’ chunks) from diverse Securities
and Exchange Commission (SEC) filings and then using these as context to generate high-quality
"query-answer-document (chunk)" triplets, with either hallucinated or correct answers. The quality
of these triplets is partially validated by human annotators. A primary innovation of our work lies
in the systematic expansion of this seed dataset to create long context datasets with various context
length and information placement. Leveraging the validated seed dataset, we create extended context
versions with lengths of 2000, 5000, 10000, 20000, and 30000 tokens. For each context length,
we generate three distinct variations: one where the original 500-token seed chunk (containing the
information needed to answer the query) is placed at the beginning, one where it is placed in the
middle, and one where it is placed at the end of the extended context. This extension is achieved by
incorporating contiguous text from the original source SEC filing, preceding and/or succeeding the
seed chunk as required. This generation strategy provides several key advantages:

1. Efficiency and Validity Preservation: By reusing the validated queries and answers from the
seed dataset, we circumvent the need for additional costly human validation for the long-context
variations. The fundamental relationship between the query, the answer (both correct and halluci-
nated), and the necessary supporting text within the seed chunk remains constant.

2. Contextual Realism: Unlike synthetic approaches that use synthetic documents or concatenate
unrelated documents to achieve length, our method extends context within the original SEC filing
document. This ensures that the extended context maintains the natural flow, topic coherence, and
stylistic properties of real-world financial documents, presenting a more realistic challenge for
hallucination detection methods.

3. Controlled Experimental Design: Since the query, answer and label remain identical across all
derived samples (different lengths and positions) originating from the same seed sample, our
dataset enables fair and direct comparisons of model performance sensitivity to context length and
information placement.

PHANTOM provides a valuable resource for the research community to benchmark and improve
hallucination detection methods in the financial domain, particularly focusing on the challenges posed
by reasoning and information retrieval in emerging AI application domains, where hallucinations
can have significant impact on trust and reputation. Our dataset facilitates a detailed assessment of
hallucination detection methods across different context lengths and allows us to rigorously evaluate
the efficacy of attention mechanisms in mitigating information loss. This paper details the dataset
construction methodology and presents benchmark results of state-of-the-art open-weight and closed-
source LLMs on our datasets. This evaluation results have provided valuable insights into models’
hallucination detection capabilities and how well models maintain performance over different context
sizes and locations of relevant information. These comprehensive insights not only highlight current
weaknesses in models, but also demonstrate how the proposed datasets can be used to fine-tune LLMs
to address these weaknesses and lead to more efficient detection strategies.
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2 Related Work

Our work builds upon several existing efforts in evaluating systems using synthetic benchmarks.
HaluEval (Li et al., 2023) introduces a synthetically generated and human-annotated hallucination
evaluation benchmark covering QA, dialogue and summarization but focuses on short context and
general domain. HaluEval 2.0 (Li et al., 2024a) extended HaluEval with experiments that probe the
sources and mitigation of hallucination. It covers the financial domain but focuses on opinionated
QA without context. ARES (Saad-Falcon et al., 2024) fine-tunes judges to benchmark RAG systems
along the dimensions of context relevance, answer faithfulness, and answer relevance. In contrast
to our work, it requires an -albeit small- handcrafted dataset of human preference labels and is
not situated within the finance domain. In comparison, our work does not require human labeling
effort, which can be quite difficult to obtain in specialized domains, such as finance. RAGEval (Zhu
et al., 2024) leverages synthetic data generation for domain-specific datasets to assess RAG systems.
While the work assesses systems in finance, among others, its hallucination detection discussion
is single-focused on finding contradictory facts in an answer and lacks detail. This contrasts with
our benchmark, which offers a more nuanced and comprehensive evaluation of hallucination across
longer contexts and a broader range of error types.

AlphaFin (Li et al., 2024b) and FinMTEB (Tang and Yang, 2025) contribute important financial
benchmarks; however, they predominantly emphasize traditional financial analysis and retrieval
tasks and do not specifically investigate hallucination detection. Similarly, OmniEval (Wang et al.,
2024) has provided an synthetic framework/dataset for evaluating RAG systems in the financial
domain. Despite its comprehensive evaluation of RAG systems along multiple domains (including
hallucination), OmniEval does not consider the significant performance degradation over extended
context lengths. This is a critical shortcoming given the growing use of generative language models
where context size can heavily impact the model’s behavior.

Additionally, Hallusionbench (Guan et al., 2024) offers a sophisticated diagnostic suite for identifying
hallucinations in vision-language models. While Hallusionbench effectively dissects visual and
textual hallucination phenomena, its focus lies outside the financial QA paradigm and extended
context evaluation that our work addresses. Finally, another recent work presents a dataset and
method for detecting hallucinations in long contexts (Liu et al., 2025). However, their work is less
relevant to the financial domain due to two key limitations. First, their dataset does not incorporate the
specific linguistic and logical complexities inherent in financial documents which has a significantly
impact on the types of hallucinations that could occur. Second, the average context length in their
dataset (5,101 tokens) is considerably shorter than the extended context lengths (up to 30,000 tokens)
offered by PHANTOM, limiting its ability to assess the impact of very long financial documents on
hallucination detection performance.

We show that by benchmarking state-of-the-art open weight generative LLMs, our dataset can provide
valuable insights into how well a models can detect hallucinations, performance over varying context
sizes, and the effectiveness of attention mechanisms. This integrated approach distinguishes our work
as it encompasses broader evaluation metrics tailored for high-stakes financial decision-making that
have not been simultaneously explored in previous studies. To the best of our knowledge, we are the
first to present a dataset that combines all three areas of interest: hallucination detection, long context
and the financial domain.

3 Data Creation

Before detailing the generation process, it is important to clarify the specific type of hallucination
targeted by PHANTOM. Our focus is exclusively on source faithfulness. This concerns the model’s
ability to generate answers that are directly supported by and consistent with provided context. We
do not include extrinsic hallucination, which relates to whether an answer aligns with real-world
facts or external knowledge sources (Ji et al., 2023). In the context of financial open-book QA, the
source faithfulness of LLM answers is critical for several reasons. First, financial decisions often
rely on precise information extracted from specific documents or reports where linking conclusions
directly to the source material is important. Second, the financial domain is characterized by rapid
changes and nuanced interpretations, making it difficult to definitively assess the factuality of an
answer based on external knowledge alone. Focusing on source faithfulness allows us to create a
more controlled and reliable benchmark for evaluating LLMs in this critical area. Therefore, to avoid
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creating ambiguity, an answer is considered “not hallucination” if it is faithful to the given context,
and “hallucination” if it contradicts, misrepresents, or cannot be verified from the provided text,
irrespective of its external factuality. This focus directly informs our data generation strategy, which
centers on deriving both faithful and non-faithful answers relative to specific source context.

We selected the Securities and Exchange Commission (SEC) filings as our data source due to their
public availability, authoritative nature, and representativeness of real-world financial communication.
These documents offer diverse content and utilize nuanced, domain-specific language, providing a
rich and challenging foundation for evaluating hallucination detection methods. Specifically, we
sourced filings from the SEC’s EDGAR database, focusing on four of the most common filing types
to capture a range of financial reporting styles:

• Form 10-K (Annual Report): Comprehensive yearly overview (business, financial, risks).
• Form 8-K (Current Report): Time-sensitive reports on major corporate events.
• Form 497K (Mutual Fund Summary Prospectus): Key fund information for investors (objec-

tives, risks, fees).
• Form DEF 14A (Proxy Statement): Information for shareholder voting (governance, compensa-

tion).

This selection provides variation in structure, purpose, and linguistic complexity, ensuring PHAN-
TOM reflects realistic financial text diversity.

3.1 Seed Dataset Generation

The foundation of our benchmark is a seed dataset characterized by relatively short, focused contexts -
seed chunks of 500 tokens. To be more specific, we call each sample in our seed dataset a seed sample,
which contains a query, a 500-token seed chunk, an answer and a label. Our method provides a
practical approach to generating synthetic financial open-book question-answering datasets containing
subtle, yet realistic hallucinations. We used a Large language model (LLM) - Llama-3.3-70B-instruct
(Dubey et al., 2024) to generate the seed dataset, which then acts as a building block for creating
long-context datasets. The generation process of these seed samples is as follows:

1. Seed chunk extraction: From the SEC filing documents, we randomly extracted contiguous
text chunks as our seed chunks. Each seed chunk was targeted to be approximately 500 tokens
in length, using spaCy tokenizer (Honnibal and Montani, 2017). This length was chosen to be
substantial enough to contain meaningful information for question answering but concise enough
for efficient initial generation and validation.

2. Query generation: For each 500-token context chunk di, we employed Llama-3.3-70B-instruct,
to generate a relevant question qi whose answer could be directly and fully inferred from di.

3. Faithful answer generation. Given a query qi, along with the corresponding context (document
chunk) di, we instructed the LLM to provide a accurate, source faithful answer ai to qi based only
on di.

4. Hallucinated answer generation: Subsequently, for each sample xi = (qi, di, ai), we prompted
the same LLM to generate another answer a∗i that might seem reasonable given the general topic
but contradicts, misrepresents, or cannot be supported by di. This provides a new synthetic sample
x∗
i = (qi, di, a

∗
i ) with hallucination. During this step, the LLM receives explicit instructions

(with supporting examples2 taken from real-world hallucinations) to deliberately craft answers
containing subtle and difficult-to-detect hallucinations. This aims to mimic realistic LLM failure
modes where the model might draw on its own knowledge incorrectly or confabulate details.

5. Human validation: To ensure the reliability of the generated seed samples, a manual verification
process was employed. A subset (38.4%) of the generated samples was independently inspected
and validated by four domain experts. The validation focused on confirming the faithful answers
were accurately and fully supported by the context chunk, and that the hallucinated answers
were indeed incorrect or unverifiable based solely on the context chunk. Among the samples
manually validated, 98.6% of the samples were confirmed to be correct. This high accuracy
is likely attributable to the short context length (500 tokens) used for seed dataset generation,
2Details of examples needed to be omitted as they contain private client information.
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which falls well within the capabilities of state-of-the-art LLMs like Llama-3.3-70B-instruct.
Furthermore, almost all validated hallucinated answers were confirmed to contain information that
contradicted or was absent from the context chunk. This is not surprising given that the nature of
our approach for generating the hallucinations - we specifically instruct the LLM to write answers
that contain details that do not match or do not exist in the context chunk.

6. Label Assignment: Each validated sample yields two distinct data points for the benchmark:

• (Query qi, Context with length 500 token di, Ground Truth Answer ai, Label = “Not
Hallucination”)

• (Query qi, Context with length 500 token di, Hallucinated Answer a∗i , Label = “Hallucina-
tion”)

This process resulted in 3962 seed samples with 1981 unique queries across 4 filing types as data
source. The prompts used in the data generation process are shown in Appendix A.

3.2 Long-Context Dataset Generation

A primary contribution of our work is the systematic generation of long-context variations to study
potential performance degradation of hallucination detection methods related to context length and
information placement. This was achieved by extending the validated 500-token seed chunks using
the original source SEC filing documents. Instead of artificially concatenating unrelated documents,
our approach incorporates additional context around the seed chunk directly from the original filing
document, ensuring that the resulting contexts remain realistic and coherent.

1. Context expansion: For each seed sample (Query, Context with length 500 token, Ground Truth
Answer, Label), we identified the location of the 500-token chunk within its original, full SEC
filing. We then programmatically extracted contiguous text preceding and/or succeeding this seed
chunk from the source document to create longer contexts of target lengths: 2000, 5000, 10000,
20000 and 30000 tokens (approximated using the same tokenizer). Limiting the context length to
30,000 tokens strikes a balance between capturing the challenges of long-context processing in
financial documents and maintaining computational feasibility for model evaluation; furthermore,
30,000 tokens is sufficient to observe the performance decrease of hallucination detection methods
on long documents as shown in Section 4.

2. Positional variation: For each target length (L = 2000, 5000, 10000, 20000, 30000), we gener-
ated three versions by manipulating the position of the original 500-token seed chunk (which
contains the necessary information to answer the query) within the extended L-token context:

• Beginning: The 500-token seed chunk constitutes the first 500 tokens of the L-token context.
The remaining L− 500 tokens are contiguous text immediately following the seed chunk in
the original document.

• Middle: The 500-token seed chunk is centered within the L-token context. Approximately
(L− 500)/2 tokens preceding the chunk and (L− 500)/2 tokens succeeding the chunk are
extracted from the original document to form the L-token context.

• End: The 500-token seed chunk constitutes the final 500 tokens of the L-token context. The
preceding L − 500 tokens are contiguous text immediately before the seed chunk in the
original document.

3. Query and answer preservation: Crucially, the query, answer (both ground truth and halluci-
nated), and label associated with the seed sample are directly reused for all its derived long-context
variations. The validity of the query-answer relationship is preserved because the necessary
information (or lack thereof for hallucinations relative to the seed chunk) remains embedded
within the extended context, specifically within that preserved 500-token seed chunk.

This novel structured approach ensures that comparisons across different context lengths and infor-
mation positions are conducted using the same queries and answer candidates, providing a controlled
environment that allows for fair, apples-to-apples comparisons across various long-context retrieval
scenarios. Furthermore, by extending contexts with text from the original documents, we maintain
a high degree of ecological validity compared to methods involving document concatenation. The
reuse of validated seed samples significantly reduces the manual effort typically required for creating
the large-scale, long-context benchmarks.
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With the data generation methodology established, the subsequent sections transition towards un-
derstanding and utilizing the resulting benchmark. In Section 4.1, we delve into a content analysis
of PHANTOM, examining the financial topics covered and characterizing the type of hallucination
included in the dataset. Following this analysis, Section 4 demonstrates the practical application of
the dataset by presenting experimental results from benchmarking various hallucination detection
methods, and characterizing their robustness to increasing context lengths and varying information
placement.

4 Experiments

4.1 Content Analysis

Before delving into the experimental results we provide a fine-grained analysis of the PHANTOM
dataset, which we created using the methodology explained in the previous section. Our analysis
explores two themes, we first investigate what types of hallucinations are present in our dataset,
followed by the financial themes that the dataset covers. For an overview of our results refer to
Figure 1. For the purpose of reproducibility, we provide the details of prompts and methods in
Appendices A and C.

In line with our definition of hallucination as mentioned in Section 3, we identify three major classes
of hallucination types: Class 1 - The answer to the question contradicts the provided context. Class 2
- The answer to the question misrepresents the provided context. Class 3 - The answer to the question
cannot be verified from the provided context, irrespective of its external factuality.

0.8%

81.3%

17.9%

Class 1: Contradiction

Class 2: Misrepresentation

Class 3: Unverifiable Information

1(a) Distribution of hallucination types.

4.4%

12.3%

24.9%
9.8%

21.7%

26.6%

0.4%
Business Operations

Risk Management

Finance and Accounting

Regulatory Compliance

Investments and Securities

Corporate Governance

Economics and Markets

1(b) Distribution of financial themes in dataset.

Figure 1: Dataset content analysis.

For the purpose of classification we incorporate these definitions into an LLM prompt, which is
shown in Listing 1. Figure 1a shows the results on the dataset combining all filing types. We find that
the majority of the hallucinations (81.3%) are cases where the answer misrepresents the provided
context. This is expected as the model is instructed to create hallucinations that are “minor”, “subtle”
and “hard to catch”, according to our dataset generation prompt (Listing 6). Surprisingly, only a
very small amount (0.8%) of instances are classified as contradicting the context. The reason for this
might also stem from the fact that contradictions are less “subtle” or “hard to catch”. The final class
of hallucinations are questions that cannot be verified from the provided context (17.9%), which are
cases where the model makes up facts and scenarios.

Figure 1b presents the distribution of financial themes across the dataset. We find that the most
prominent categories are distributed among different filing types, e.g., “Finance and Accounting”
(24.9%) from 10-K filings, “Investments and Securities” (21.7%) from 8-K filings, “Corporate
Governance” (26.6%) from DEF 14A filings. Taking this into consideration, we argue that the dataset
exhibits a mixture of queries cutting across various topics of interest to financial users/applications,
which points to the utility of using different filing types in the dataset augmentation process.
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4.2 Evaluating Hallucination Detection Models

In our experimental evaluation, we aim to show the utility of PHANTOM to investigate important
research questions and benchmark hallucination detection abilities of various open-weight and
closed-source LLMs. All experiments were conducted on standardized hardware with consistent
hyper-parameter settings (Appendix D) and prompts (Appendix A) to ensure fair comparisons across
models.

We aim to answer the following research questions: RQ1) How do state-of-the-art open-weight models
compare against leading closed-source LLMs? RQ2) What are the performance trade-offs when
using smaller open-weight models with varying parameter sizes? RQ3) How do reasoning-focused
distillation or fine-tuning impact performance?

To answer these questions, we evaluate a diverse set of models. For open-weight models, we test
Llama-3.3-70B-Instruct (Dubey et al., 2024), the Qwen series (2.5 and 3) (Yang et al., 2024, 2025),
Microsoft’s Phi-4 (Abdin et al., 2024), and distilled models from the DeepSeek-R1-Distill series (Guo
et al., 2025). To benchmark against proprietary systems (RQ1), we include leading closed-source
models: Google’s Gemini series (Gemini Team et al., 2023, 2024; Google, 2024), and OpenAI’s
GPT-4o (Hurst et al., 2024) and o3-mini (OpenAI, 2025). The inclusion of different Qwen model
sizes allows us to analyze performance trade-offs (RQ2), while the DeepSeek-R1-Distill models and
the comparison between Qwen3’s ‘Instruct’ and ‘Thinking’ variants help us address RQ3.

Table 1 summarizes key performance metrics for all models on the seed dataset with 500 token
context size. Regarding RQ1, while Llama-3.3-70B-Instruct achieves the highest F1 score (0.916),
this result should be interpreted with caution. As this model was used to generate the seed dataset,
which may inflate its performance. More revealingly, top-performing medium-sized open-weight
models like Qwen3-30B-A3B-Thinking and Phi-4 outperform all tested closed-source models. This
leads to RQ2, we find a large performance drop for smaller models. Especially, the 7B variant of
Qwen-2.5 performs only slightly above random guess. Finally, for RQ3, the ‘Thinking’ variant of
Qwen3 outperforms its ‘Instruct’ counterpart, boosting the F1 score from 0.848 to 0.882, showing
the benefit of reasoning-focusing tuning. In contrast, the DeepSeek distillation models present a trade
off, they tend to show improvements on precision, but at a large cost of recall compared to their base
models.

Table 1: Hallucination detection performance of various open-weight and closed-source LLMs on
PHANTOM seed dataset.

Model Accuracy Precision Recall F1 Score
Llama-3.3-70B-Instruct 0.916 0.920 0.912 0.916
Qwen2.5-7B-Instruct 0.589 0.549 0.998 0.708
Qwen2.5-14B-Instruct 0.862 0.816 0.938 0.872
Qwen2.5-32B-Instruct 0.829 0.766 0.954 0.849
Qwen3-30B-A3B-Thinking 0.870 0.818 0.957 0.882
Qwen3-30B-A3B-Instruct 0.823 0.747 0.983 0.848
Phi-4 0.874 0.816 0.967 0.885
DeepSeek-R1-Distill-Qwen-7B 0.632 0.667 0.530 0.590
DeepSeek-R1-Distill-Qwen-14B 0.864 0.895 0.824 0.858
DeepSeek-R1-Distill-Qwen-32B 0.874 0.893 0.849 0.870
DeepSeek-R1-Distill-Llama-70B 0.867 0.926 0.799 0.858

Gemini-1.5-flash-002 0.855 0.804 0.940 0.867
Gemini-2.0-flash 0.882 0.938 0.818 0.874
o3-mini 0.838 0.925 0.734 0.818
GPT-4o 0.867 0.868 0.866 0.867

PHANTOM also enables us to investigate how models perform when given long contexts, a common
scenario in financial question answering. Figure 2 and Figure 3 present the Precision and Recall
for various open-weight and closed-source models, respectively, across different context lengths
(2000, 5000, 10000, 20000, and 30000 tokens) and varying positions of the relevant information
(‘Beginning’, ‘Middle’, ‘End’). Performance is averaged over 10-K and DEF 14A filing types, as
8-Ks and 497Ks are not long enough to generate contexts exceeding 20,000 tokens. We feature the
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most relevant models in the main text, and for completeness, results for all models are provided in
Appendixe E (Figure 4, 5, 6 and 7).

A discernible trend across nearly all models is the degradation of performance as the context length
increases, highlighting the inherent challenge of detecting hallucinations in extensive financial
documents. This trend, however, manifests differently between open-weight and closed-source
models. For the open-weight LLMs (Figure 2), this performance degradation is particularly severe.
We observe a sharp decline in performance as context length grows, with a near-total collapse in recall
for contexts larger than 20,000 tokens. In contrast, the closed-source models (Figure 3) demonstrate
greater resilience to long contexts. While they also experience a performance drop with increasing
context length, the degradation is far more graceful. This suggests that while nearly no model
is immune to the challenges of long-context reasoning, leading closed-source models provide a
substantial advantage in robustness. We believe that precisely quantifying this performance disparity
is a key contribution of this work. It not only highlights a significant weakness in current open-source
models but also underscores the utility of PHANTOM as a crucial tool for diagnosing such failures
and benchmarking progress in long-context detection tasks.

Further, we see evidence that the placement of relevant information also affects performance. Gen-
erally, models exhibit higher precision when the relevant information is located at the ‘Beginning’
of the context. In terms of recall the pictures is less clear as there is no obvious difference between
‘Beginning’, ‘Middle’ or ‘End’. We also find that distilling R1 into the Llama model has benefits for
hallucination detection in large contexts, as it improves both precision and recall up to 20,000 tokens.
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1Figure 2: Hallucination detection performance for long contexts. X-axis is the number of tokens.

5 Fine-tuning a Hallucination Detection Model

5.1 Model Training

To showcase how PHANTOM can be used to enhance the capabilities of hallucination detection,
we performed supervised fine-tuning (SFT) on the Qwen2.5-7B-Instruct model. The training data
was generated using the Llama-3.3-70B-instruct model on Form 8-K and Form 497K seed datasets.
Specifically, we prompted a Llama-3.3-70B-instruct model to generate reasoning chains and halluci-
nation labels for each 8-K and 497K seed sample. Since our dataset contains ground truth labels, we
employed rejection sampling, discarding any training data points where the generated label did not
align with the ground truth. The Qwen model was then fine-tuned using the SFTTrainer from the trl
(Transformer Reinforcement Learning) package (von Werra et al., 2020) on a next-token prediction
objective, training the model to learn the reasoning patterns and accurately predict the hallucination
label based on query, context and answer. The model was trained for 3 epochs with a sequence
length of 4,096 tokens. We utilized Parameter-Efficient Fine-Tuning (PEFT) with LoRA (Low-Rank
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Figure 3: Hallucination detection performance of closed-source models for long contexts. X-axis is
the number of tokens.

Adaptation) (Hu et al., 2022) to reduce computational costs and memory footprint during training,
while maintaining performance.

5.2 Model Evaluation

To assess the effectiveness of fine-tuning on PHANTOM and especially, to measure the fine-tuned
model’s ability to generalize to entirely unseen document types, the fine-tuned model, which we
call PHANTOM-Qwen2.5-7B-Instruct, is evaluated on the 10-K and DEF 14A datasets, while the
training process exclusively used data from 8-K and 497K filings. We note that our dataset’s structure
also allows for in-distribution evaluations, should researchers wish to split data within a single filing
type for training and testing.

We find that the model improves in terms of F1-score compared to the Qwen2.5-7B-Instruct base
model from 0.705 to 0.933 and 0.706 to 0.923 for 10-K and DEF 14 A, respectively. Compared to
our strongest model thus far, which is Llama-3.3-70B-Instruct, the finetuned model performs about
equally on 10-K, 0.932 versus 0.933; and improves on DEF 14A, 0.880 versus 0.923. We show the
full performance results comparing to all models in Table 7 in the appendix.

We are specifically interested in evaluating PHANTOM-Qwen2.5-7B-Instruct in long context sce-
narios. The top right plots of Figure 2 allow us to compare the finetuned model’s performance
to its base model and the two Llama 3.3 variants. We find PHANTOM-Qwen2.5-7B-Instruct to
improve over its base model on almost all data points on precision and recall. Substantial performance
improvements are observed especially for context sizes of 20k and above, even compared with most of
the closed-source models tested (Figure 3). We believe this to be promising evidence that finetuning
on a domain-specific dataset can help improve a model’s performance on long contexts as we find
PHANTOM-Qwen2.5-7B-Instruct to improve over the base model. We realize that these impressive
improvement ought to be validated on real-world hallucination examples from out of sample datasets.
We plan to do further investigations to better understand the model’s performance in this regard.
To shed further light on these improvements we conducted a qualitative analysis of the reasoning
traces of the base model and our fine-tuned version. We find that the improvement in recall for larger
contexts is mostly due to the base model missing out on nuanced hallucinations. We provide some
specific examples in Appendix F.

6 Limitations

While PHANTOM introduces a valuable benchmark for hallucination detection in financial long-
context QA, it’s important to acknowledge several limitations. Firstly, the dataset is generated using
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LLMs, specifically Llama-3.3-70B-instruct, for query, faithful answer, and hallucinated answer
creation. Although human validation is performed on a subset of the seed dataset, the synthetic
nature of the data generation process might introduce biases or patterns that do not fully reflect real-
world hallucination scenarios in financial documents. The types of hallucinations generated are also
influenced by the specific prompts and instructions given to the LLM, potentially limiting the diversity
of hallucination types captured in the dataset. In Section 4.1 we performed a thorough analysis of
hallucination types in the dataset, but as the theoretical number of types of hallucinations is unlimited,
it is possible that additional types exist that were not captured by our analysis. Secondly, the context
expansion method, while preserving topic coherence, relies on contiguous text from SEC filings. This
approach may not fully capture the complexities of information retrieval in scenarios where relevant
information is scattered across non-contiguous sections of a document or across multiple documents
in a multi-document RAG setting. Thus, when context is expanded, more relevant information can
be introduced that potentially can alter the resulting answer to a given question. Furthermore, the
dataset focuses exclusively on source faithfulness, not considering extrinsic hallucinations that relate
to alignment of answers with real-world facts or external knowledge sources, which are out of scope
of this work.

Finally, the benchmark primarily utilizes SEC filings, which, while being representative of real-world
financial documents, may not encompass the full spectrum of financial document types. Expanding
the dataset to include other document types, such as earnings call transcripts, loan agreements, and
merger agreements, could enhance its generalizability. Further, many financial documents incorporate
multimodal elements like charts, graphs, and images, which provide crucial information. Future
iterations of the benchmark should consider incorporating documents with multimodal contexts to
better reflect the complexities of real-world financial analysis.

7 Conclusion and Future Work

Mitigating the risks associated with LLM hallucination is crucial for deploying AI reliably in the
financial sector. In this paper, we introduce PHANTOM, a novel benchmark dataset specifically
constructed to evaluate capabilities of hallucination detection methods for financial long context
QA tasks. Our key contribution is the generation of a validated seed dataset along with systematic
variations across extensive context lengths (up to 30,000 tokens) and different placements of relevant
information. By leveraging contiguous text from original documents for realism and reusing validated
query-answer pairs, we enable controlled assessment of how context manipulation impacts the
difficulty of detecting hallucinations. Our benchmarking experiments (Section 4) demonstrate that
context length and information placement significantly affect the performance of current hallucination
detection strategies, highlighting the utility of PHANTOM for rigorously assessing these critical
capabilities. These findings suggest that current methods struggle with long contexts and varying
information placement. The observed performance trends revealed by PHANTOM have critical
implications for deploying LLMs in financial applications. Specifically, the sensitivity to context
length and information placement underscores the need for careful design of RAG systems in finance.
Strategies such as context re-ranking, summarization, and improved attention mechanisms are crucial
to mitigate the risk of hallucination and ensure the reliability of AI-driven financial decision-making.
Further research into these mitigation strategies, guided by benchmarks like PHANTOM, is essential
for responsible AI adoption in the financial domain.

This work opens several avenues for future research. Firstly, the dataset could be expanded by
incorporating a wider variety of financial document types (e.g. other SEC filing types, earnings
call transcript, loan agreements etc.) and documents with multimodel elements like charts, graphs,
and images. Secondly, PHANTOM serves as a crucial resource for developing and refining novel
hallucination detection techniques, particularly those optimized for long-context financial text. Further
research could involve analyzing why certain detection methods fail under specific long-context
conditions, potentially leading to more robust detector designs informed by common LLM failure
patterns in this domain. Ultimately, we hope PHANTOM will foster advancements in automated
faithfulness verification, contributing to the development of more reliable and trustworthy AI systems
for financial information processing.

10



References
Marah I Abdin, Jyoti Aneja, Harkirat S. Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,

Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat
Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa,
Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril
Zhang, and Yi Zhang. 2024. Phi-4 Technical Report. CoRR abs/2412.08905 (2024). https:
//doi.org/10.48550/ARXIV.2412.08905 arXiv:2412.08905

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. 2023. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774 (2023).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models
are few-shot learners. Advances in neural information processing systems 33 (2020), 1877–1901.

Chanyeol Choi, Jihoon Kwon, Jaeseon Ha, Hojun Choi, Chaewoon Kim, Yongjae Lee, Jy-yong
Sohn, and Alejandro Lopez-Lira. 2025. FinDER: Financial Dataset for Question Answering and
Evaluating Retrieval-Augmented Generation. arXiv preprint arXiv:2504.15800 (2025).

Souvik Das, Sougata Saha, and Rohini K Srihari. 2023. Diving deep into modes of fact hallucinations
in dialogue systems. arXiv preprint arXiv:2301.04449 (2023).

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail,
Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo
Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang,
Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua
Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak,
Ke Li, Kenneth Heafield, Kevin Stone, and et al. 2024. The Llama 3 Herd of Models. CoRR
abs/2407.21783 (2024).

Google Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. 2023. Gemini: a
family of highly capable multimodal models. arXiv preprint arXiv:2312.11805 (2023).

Google Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. 2024. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530 (2024).

Google. 2024. Introducing Gemini 2.0: our new AI model for the agentic era. https://blog.
google/technology/google-deepmind/google-gemini-ai-update-december-2024/

Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang
Chen, Furong Huang, Yaser Yacoob, Dinesh Manocha, and Tianyi Zhou. 2024. Hallusionbench:
An Advanced Diagnostic Suite for Entangled Language Hallucination and Visual Illusion in Large
Vision-Language Models. In CVPR. IEEE, 14375–14385.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948 (2025).

11

https://doi.org/10.48550/ARXIV.2412.08905
https://doi.org/10.48550/ARXIV.2412.08905
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/


Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural language understanding with Bloom
embeddings, convolutional neural networks and incremental parsing. (2017). To appear.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. 2022. Lora: Low-rank adaptation of large language models. ICLR 1, 2 (2022),
3.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2025. A survey on hallucination in large
language models: Principles, taxonomy, challenges, and open questions. ACM Transactions on
Information Systems 43, 2 (2025), 1–55.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ
Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. 2024. Gpt-4o system card. arXiv
preprint arXiv:2410.21276 (2024).

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of hallucination in natural language generation. ACM
computing surveys 55, 12 (2023), 1–38.

Haoqiang Kang and Xiao-Yang Liu. 2023. Deficiency of large language models in finance: An
empirical examination of hallucination. arXiv preprint arXiv:2311.15548 (2023).

Junyi Li, Jie Chen, Ruiyang Ren, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen.
2024a. The dawn after the dark: An empirical study on factuality hallucination in large language
models. arXiv preprint arXiv:2401.03205 (2024).

Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. 2023. Halueval:
A large-scale hallucination evaluation benchmark for large language models. arXiv preprint
arXiv:2305.11747 (2023).

Xiang Li, Zhenyu Li, Chen Shi, Yong Xu, Qing Du, Mingkui Tan, and Jun Huang. 2024b. Al-
phaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework. In
LREC/COLING. ELRA and ICCL, 773–783.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2021. Truthfulqa: Measuring how models mimic
human falsehoods. arXiv preprint arXiv:2109.07958 (2021).

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. 2024. Lost in the Middle: How Language Models Use Long Contexts. Trans. Assoc.
Comput. Linguistics 12 (2024), 157–173.

Siyi Liu, Kishaloy Halder, Zheng Qi, Wei Xiao, Nikolaos Pappas, Phu Mon Htut, Neha Anna John,
Yassine Benajiba, and Dan Roth. 2025. Towards long context hallucination detection. (2025).

OpenAI. 2025. OpenAI o3-mini System Card. https://cdn.openai.com/
o3-mini-system-card-feb10.pdf

Varshini Reddy, Rik Koncel-Kedziorski, Viet Dac Lai, Michael Krumdick, Charles Lovering, and
Chris Tanner. 2024. Docfinqa: A long-context financial reasoning dataset. arXiv preprint
arXiv:2401.06915 (2024).

Jon Saad-Falcon, Omar Khattab, Christopher Potts, and Matei Zaharia. 2024. ARES: An Automated
Evaluation Framework for Retrieval-Augmented Generation Systems. In NAACL-HLT. Association
for Computational Linguistics, 338–354.

Yixuan Tang and Yi Yang. 2025. FinMTEB: Finance Massive Text Embedding Benchmark. CoRR
abs/2502.10990 (2025).

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. 2020. TRL: Transformer
Reinforcement Learning. https://github.com/huggingface/trl.

Shuting Wang, Jiejun Tan, Zhicheng Dou, and Ji-Rong Wen. 2024. OmniEval: An Omnidirectional
and Automatic RAG Evaluation Benchmark in Financial Domain. CoRR abs/2412.13018 (2024).

12

https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://github.com/huggingface/trl


An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, et al. 2025. Qwen3 technical report. arXiv preprint arXiv:2505.09388
(2025).

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2 technical report. arXiv preprint
arXiv:2407.10671 (2024).

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
Yu Zhang, Yulong Chen, et al. 2023. Siren’s song in the AI ocean: a survey on hallucination in
large language models. arXiv preprint arXiv:2309.01219 (2023).

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey of large language models. arXiv
preprint arXiv:2303.18223 1, 2 (2023).

Kunlun Zhu, Yifan Luo, Dingling Xu, Ruobing Wang, Shi Yu, Shuo Wang, Yukun Yan, Zhenghao
Liu, Xu Han, Zhiyuan Liu, and Maosong Sun. 2024. RAGEval: Scenario Specific RAG Evaluation
Dataset Generation Framework. CoRR abs/2408.01262 (2024).

13



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction - that the paper introduces
PHANTOM as a novel financial dataset for benchmarking long-context hallucination detec-
tion methods, with specific features like varying context lengths and information positions -
accurately reflect the described contributions and scope.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work in Section 6.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The contribution of this paper is a dataset. The detailed steps taken to create
the dataset is described in Section 3. The dataset, data generation code and benchmark
code are provided at the following URL: https://huggingface.co/datasets/seyled/
Phantom_Hallucination_Detection.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes the paper provides the data and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided details of the hyperparameters and other information
pertaining to train/test data splits in Section 5 and Appendix D (Table 5 and 6).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the substantial computational expense involved, repeating the experi-
ments multiple times to quantify variability is not feasible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss information on compute resources in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and confirm that the
research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper proposes a novel hallucination detection benchmark for finance
domain, which potentially has an impact on preventing harms arising from incorrect or
misleading financial information. However, it does not have broader societal impact or
potential misuse scenarios.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The dataset proposed in this paper does not have potential misuse scenarios.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original papers that produced the existing models (LLMs) used in this
paper are cited. Also, this paper explicitly states that SEC filings are used as the primary
data source, which are publicly available documents. See Section 3 and Section 4.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: This paper proposes a new finance hallucination detection benchmark PHAN-
TOM. The detailed method for data generation and details about the dataset is documented
in Section 3.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The usage of LLMs as a component of the core methods is clearly described
in Section 3.
Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.
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A Prompts

This section contains the prompts that were used in our work.

Listing 1: Dataset Analysis: Hallucination Type Classification.
Your task is to investigate the following QUESTION, ANSWER and CONTEXT. We know the
ANSWER to be hallucinated. Your task is to determine what kind of hallucination it
is.

QUESTION:
{question}

ANSWER:
{answer}

CONTEXT:
{context}

You will classify the type of hallucination in any of the following three classes:
Class 1: The ANSWER to the QUESTION contradicts the provided CONTEXT.
Class 2: The ANSWER to the QUESTION misrepresents the provided CONTEXT.
Class 3: The ANSWER to the QUESTION cannot be verified from the provided CONTEXT,
irrespective of its external factuality.

Please output the class number only, without any additional text. Also, you need
to choose only one class.

Listing 2: Dataset Analysis: Extract financial categories.
You are designated as an assistant that identify and extract high-level categories
from list of questions.
You should avoid giving specific details and provide unique categories solely.
The List of Questions is a python list seperated by comma below.

Your output should only contain the following details:
1. List of high level topics generates.
2. Table containing the topics and number of questions belonging to that category.

List of Questions: {questions}

Listing 3: Dataset Analysis: Classify financial questions
Your task is to classify the question from one of the below list of categories:
Note that some questions may belong to multiple categories but assign them to the
most relevant category based on the content of the question.

Categories:
{categories}

Question: {question}
Your output should only include the category of the question.

Listing 4: Query Generation Prompt.
You are a financial analyst. You are asked to write 1 question that can be answered
by the information in the provided document chunk which is from 10-K filings.
***[START OF DOCUMENT CHUNK]
{chunk}
***[END OF DOCUMENT CHUNK]

Guidelines:
1. You are a financial analyst. Imagine you’re given a tool that you can ask
questions about a SEC filing so that it saves your time reading the document.
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Come up with a question that you want to ask. It needs to be financial
meaningful.
2. Try to avoid asking questions about small unmeaningful details in the SEC
filings. Come up with realistic questions that a financial analyst might care
about.
3. Make sure the question you generated can be answered with the information in
the document chunk and does not require any other knowledge or information.

You must return ONLY the question. Do not generate anything else other than the
question.

Listing 5: Ground Truth Answer Generation Prompt.
Answer the following question based on the information in the given document
chunk.
[QUESTION]
{query}
[DOCUMENT CHUNK]
{chunk}

Provide answer to the QUESTION only using information from the DOCUMENT CHUNK
provided. Make sure your answer is consistent with the information in the
document chunk.
You answer should only include information that is supported by the document
chunk.
If the document chunk does not contain enough information for you to answer the
question, output "Information is not available in the document."
You must output ONLY the answer. Do not generate anything else other than the
answer.

Listing 6: Synthetic Hallucination Creation Prompt.
Given a question, a correct answer and a reference document chunk, write a
HALLUCINATION ANSWER to the question.

[QUESTION]
{query}
[A CORRECT ANSWER]
{answer}
[DOCUMENT CHUNK]
***
{chunk}
***

[INSTUCTION]
- You’re given a CORRECT ANSWER to the QUESTION. The CORRECT ANSWER provided is

consistent with the information in the DOCUMENT CHUNK.
- This HALLUCINATION ANSWER you need to write is mostly correct, but contains

information that is not fully supported by the DOCUMENT CHUNK. The
unsupported content in the HALLUCINATION ANSWER is minor and subtle.

- Be creative with writing the HALLUCINATION ANSWER. You know the domain
terminology and jargon very well. Make it realistic sounding and hard to
catch even for a domain expert.

- For example, write an answer that is mostly correct, but contains a small detail
that does not match the context in the document chunk, or one part of the
answer talks about something that does not exist in the document chunk, or
one part of the answer is missing some details that causes the answer to be
misleading.

[EXAMPLES]
Here are some examples of HALLUCINATION ANSWERs that are hard to catch.

[EXAMPLE 1]
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[EXAMPLE 2]

[EXAMPLE 3]

[END OF EXAMPLES]

You must output ONLY the HALLUCINATION ANSWER. Don’t write anything other than the
HALLUCINATION ANSWER itself.

B Dataset Statistics

Table 2: Number of samples for seed dataset (500 context size) by filing type
Dataset Number of samples Positive Samples Negative Samples
10-K Filing 994 497 497
8-K Filing 986 493 493
497-K Filing 994 497 497
DEF-14A Filing 988 494 494

Table 3: Number of samples for long context dataset by filing type and position. Each dataset is
balanced i.e. equal distribution of positive and negative samples

Dataset Position 2k 5k 10k 20k 30k

10-K Filing
Beginning 984 896 892 886 850
Middle 980 904 896 882 846
End 982 896 892 882 846

DEF-14A Filing
Beginning 1000 996 980 840 654
Middle 1000 996 980 840 654
End 1000 996 980 840 654

C Complementary Information for Content Analysis

As large-scale analysis is prohibitively expensive due to the need for human labels, it is a common
practice to utilize LLMs to aid in this task. Thus, our main content analysis relies on an LLM to
classify each datapoint within the dataset according to its hallucination type or financial theme. For
analyses we utilize the Llama 3.3 70B instruct (Dubey et al., 2024) model, which is in line with our
model used for data generation.

We are especially interested in what types of questions are contained in the dataset in relation to the
financial themes they exhibit. For this we employ a two-step approach to discover these financial
themes: we first pass all questions in a dataset as a prompt to the model and ask it to come up
with a list of financial themes. Appendix A Listing 2 shows the prompt that we employed in this
process. After obtaining an initial list of themes, we manually prune the list by removing infrequent
and redundant categories. In the second round we individually classify each question in the dataset
into the selected categories. For this we again leveraged the LLM using the prompt presented in
Appendix A Listing 3. We randomly reorder the list of categories before sending them to the prompt.
Then, for each question, we execute three independent runs and use majority voting on the results to
determine its final category. This approach aims to improve robustness of the classification outcome.

D Hyperparameters

Table 4 lists the hyperparamters used in our finetuning experiment. Table 5 lists the hyperparamters
used when benchmarking the models. All experiments were executed on a cloud instance with the
properties listed in Table 6.
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Table 4: Hyperparameters used for finetuning Qwen2.5-7B-Instruct
Configuration Hyperparameter Value

LoraConfig

lora_alpha 128
lora_dropout 0
rank 64
task_type CAUSAL_LM
bias none

SFTConfig

max_length 4096
num_train_epochs 3
gradient_accumulation_steps 4
learning_rate 2e−4
optimizer adamw_8bit
weight_decay 0.01
lr_scheduler_type linear

Table 5: Hyperparameters used for generating seed dataset and benchmarking PHANTOM dataset.
Method Hyperparameter Value

Seed Dataset Generation

max_new_tokens 5000
top_p 0.9
top_k 50

Benchmarking PHANTOM Dataset

max_new_tokens 8000
temperature 0.7
top_p 0.8
repetition_penalty 1.05

E Complimentary Experimental Results

Table 7 lists the F1-score performance for each LLM on the PHANTOM dataset. The table lists
aggregate as well as individual performance scores over different filing type subsets. We list results
for our finetuned model (PHANTOM-Qwen2.5-7B-Instruct) for 10-K and DEF 14A only, as it was
trained on 8-K and 497-K datasets.

We also present the complete long-context experiment results for all evaluated models. Due to the
large number of models, the results are organized into four figures for clarity.

Figures 4 and 6 detail the performance of several open-weight models alongside their distilled
counterparts. This allows for a direct comparison of how knowledge distillation affects performance
on our benchmark across different models.

Figures 5 and 7 presents the results for a broader range of models, including closed-source models,
other state-of-the-art open-weight models and our fine-tuned model. For Phi-4, since it only supports
context window up to 16k tokens, we are not able to test it on datasets with 20k tokens and above.

F Example for Qwen2.5-7B-Instruct and PHANTOM-Qwen2.5-7B-Instruct

Figure 8 provides example outputs of Qwen2.5-7B-Instruct and PHANTOM-Qwen2.5-7B-Instruct
for comparison.
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Table 6: Details on compute instance used for experiments.
Property Value
GPU Count 8 GPUs
GPU Memory 640 GB
vCPU Count 208 vCPUs
VM Memory 1,872 GB

Table 7: Hallucination detection F1 score of various open-weight and closed-source LLMs on
PHANTOM seed dataset for each filing type

Model 10-K 8-K 497-K DEF 14A Mean F1 Score
Llama-3.3-70B-Instruct 0.932 0.933 0.917 0.880 0.916
Qwen2.5-7B-Instruct 0.705 0.708 0.714 0.706 0.708
Qwen2.5-14B-Instruct 0.897 0.896 0.868 0.828 0.872
Qwen2.5-32B-Instruct 0.865 0.888 0.828 0.815 0.849
Qwen3-30B-A3B-Thinking 0.909 0.920 0.861 0.836 0.882
Qwen3-30B-A3B-Instruct 0.881 0.865 0.837 0.811 0.848
Phi-4 0.900 0.924 0.865 0.851 0.885
DeepSeek-R1-Distill-Qwen-7B 0.627 0.613 0.550 0.568 0.590
DeepSeek-R1-Distill-Qwen-14B 0.891 0.872 0.867 0.800 0.858
DeepSeek-R1-Distill-Qwen-32B 0.885 0.891 0.865 0.839 0.870
DeepSeek-R1-Distill-Llama-70B 0.869 0.863 0.874 0.824 0.858

Gemini-1.5-flash-002 0.890 0.874 0.853 0.849 0.867
Gemini-2.0-flash 0.891 0.876 0.875 0.854 0.874
o3-mini 0.853 0.840 0.811 0.768 0.818
GPT-4o 0.914 0.895 0.855 0.804 0.867

PHANTOM-Qwen2.5-7B-Instruct 0.933 N/A N/A 0.923 N/A
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1Figure 4: Precision and recall on the long-context benchmark for base models (left column) and their
corresponding distilled versions (right column). The x-axis represents the context length in tokens.
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1Figure 5: Precision and recall on the long-context benchmark for various closed-source and open-
weight models. The x-axis represents the context length in tokens.
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Figure 6: Accuracy and F1 score on the long-context benchmark for base models (left column) and
their corresponding distilled versions (right column). The x-axis represents the context length in
tokens.
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Figure 7: Accuracy and F1 score on the long-context benchmark for various closed-source and
open-weight models. The x-axis represents the context length in tokens.
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Query: What is the total amount of gross proceeds the Company received from issuing and selling
Preferred Stock to Dye Cann II?

Answer: The Company received aggregate gross proceeds of $21,350,000 from issuing and selling
Preferred Stock to Dye Cann II, with the majority of the shares being issued in multiple tranches
between December 2020 and March 2021, and the proceeds were primarily used to drive business
growth and expansion, including potential investments in emerging markets.

Ground truth Label: hallucination

Qwen2.5-7B-Instruct Label:
not hallucination

Reasoning Trace:
REASONING:
- The CONTEXT states that "The Company issued
and sold to Dye Cann II 7,700 shares of Preferred
Stock on December 16, 2020, 1,450 shares of
Preferred Stock on December 18, 2020, 1,300
shares of Series Preferred Stock on December
22, 2020, 3,100 shares of Preferred Stock on
February 3, 2021, 1,300 shares of Preferred Stock
on February 25, 2021, 2,500 shares of Preferred
Stock on March 2, 2021 and 4,000 shares of
Preferred Stock on March 30, 2021. As a result,
the Company issued and sold an aggregate of
21,350 shares of Preferred Stock to Dye Cann II
for aggregate gross proceeds of $21,350,000.
- The answer correctly identifies and summarizes
the total gross proceeds from the sale of Preferred
Stock to Dye Cann II, which matches the CON-
TEXT exactly.
- There are no discrepancies or unsupported claims
in the ANSWER compared to the CONTEXT.
- The ANSWER is faithful to the CONTEXT and
does not introduce any new information or make
unsupported claims.

SCORE: PASS

PHANTOM Qwen2.5-7B-Instruct Label:
hallucination

Reasoning Trace:
{
"REASONING": [
"The ANSWER states that the Company received
aggregate gross proceeds of $21,350,000 from
issuing and selling Preferred Stock to Dye Cann II.
This information is supported by the CONTEXT,
which mentions that the Company issued and sold
7,700 shares of Preferred Stock to Dye Cann II for
aggregate gross proceeds of $21,350,000.",
"The ANSWER mentions that the majority of the
shares were issued in multiple tranches between
December 2020 and March 2021. The CONTEXT
supports this statement, detailing the specific dates
and amounts of shares issued to Dye Cann II.",
"The ANSWER suggests that the proceeds were
primarily used to drive business growth and
expansion, including potential investments in
emerging markets. The CONTEXT does not
explicitly state how the proceeds from the sale
of Preferred Stock to Dye Cann II were used.
Therefore, this part of the ANSWER introduces
information not present in the CONTEXT,
constituting a hallucination."],
"SCORE": "FAIL"
}

Figure 8: Comparsion of Reasoning trace for Qwen2.5-7B-Instruct and PHANTOM-Qwen2.5-7B-
Instruct model for 30k context size
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