

000 001 S²MAM: SEMI-SUPERVISED META ADDITIVE MODEL 002 FOR ROBUST ESTIMATION AND VARIABLE SELECTION 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

011 Semi-supervised learning with manifold regularization is a classical family for
012 learning from both labeled and unlabeled data jointly, where the key requirement
013 is that the support of the unknown marginal distribution possesses the geometric
014 structure of a Riemannian manifold. Typically, the Laplace-Beltrami operator-
015 based manifold regularization can be approximated empirically by the Laplacian
016 regularization associated with the entire training data and its corresponding graph
017 Laplacian matrix. However, the graph Laplacian matrix depends heavily on the
018 pre-specifying similarity metric and may result in inappropriate penalties when
019 facing redundant and noisy input variables. To address the above issues, this paper
020 proposes a new *Semi-Supervised Meta Additive Model* (S²MAM) based on a bilevel
021 optimization scheme, which automatically identifies informative variables, updates
022 the similarity matrix, and achieves interpretable predictions simultaneously. Theore-
023tical guarantees are provided for S²MAM, including the computing convergence
024 and the statistical generalization bound. Experimental assessments on synthetic
025 and real-world datasets validate the robustness and interpretability of the proposed
026 approach.

027 028 1 INTRODUCTION

030 Manifold regularization provides an elegant and practical framework for developing semi-supervised
031 learning (SSL) models by utilizing a large amount of unlabeled data in conjunction with limited
032 labeled data (Belkin & Niyogi, 2004; Belkin et al., 2005; 2006; Geng et al., 2012; Van Engelen
033 & Hoos, 2020; Yao & Xia, 2025). The key assumption of manifold regularization is that the
034 support of the intrinsic marginal distribution has the geometric structure of a Riemannian manifold
035 (Belkin & Niyogi, 2004; Belkin et al., 2006; Johnson & Zhang, 2007; 2008)). Usually, the Laplace-
036 Beltrami operator-based manifold regularization can be approximated empirically by the Laplacian
037 regularization associated with the whole training data and the corresponding similarity (adjacent)
038 matrix (Belkin & Niyogi, 2004; Belkin et al., 2006; Roweis & Saul, 2000), where the similarity
039 matrix is constructed by the principles of Gaussian fields and harmonic functions (Zhu et al., 2003b)
040 or the local and global consistency (Zhou et al., 2003). Typical manifold regularization schemes
041 include Laplacian regularized least squares (LapRLS) and Laplacian regularized support vector
042 machine (LapSVM) (Belkin et al., 2006). Moreover, Nie et al. (2010) considered a flexible manifold
043 embedding for semi-supervised dimension reduction, and Qiu et al. (2018) further developed an
044 accelerated version (called fast flexible manifold embedding (f-FME)) by reconstructing a smaller
045 adjacency matrix with low-rank and sparse constraints.

046 Despite rapid progress, it is still scarce to validate the intrinsic manifold assumption (Belkin & Niyogi,
047 2004; Belkin et al., 2006; Johnson & Zhang, 2007; 2008; Li et al., 2024) for different types of data,
048 e.g., data with redundant or even noisy variables. Moreover, the investigation for the robustness and
049 interpretability of manifold regularization is far below its empirical applications only concerning the
050 prediction accuracy. The existing manifold regularization models require the similarity matrices to be
051 pre-specified before the semi-supervised training procedures, where the adaptivity and robustness
052 of manifold learning are largely unexplored. For real applications, they unavoidably involve some
053 abundant irrelevant and even noisy variables, and the pre-specified similarity metric associated with
all the variables can not reflect the true adjacent relations properly. The uninformative and noisy
variables often result in a significant deviation in estimating the manifold structure, which seriously

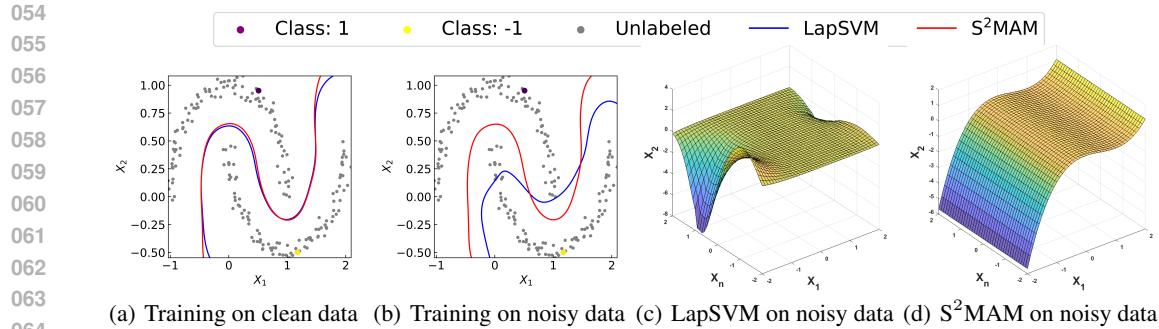
(a) Training on clean data (b) Training on noisy data (c) LapSVM on noisy data (d) S^2MAM on noisy data

Figure 1: Toy examples on the impact of noisy variables in the moon dataset for LapSVM and our S^2MAM . (a) and (b) show the 2D prediction curves w.r.t the original input X_1 and X_2 , where LapSVM is sensitive to feature corruptions X_n . (c) and (d) present the 3D decision surfaces on corrupted data, where S^2MAM is robust against the varying noisy variable X_n . Clean moon dataset contains inputs, X_1 and X_2 . The corrupted data involves another noisy variable $X_n \in \mathcal{N}(100, 100)$. The used moon dataset contains 99 unlabeled points and only one labeled point for each class. Please refer to *Appendix C.5* for detailed descriptions.

degrades the prediction capability of manifold regularization methods. As illustrated in Figure 1, the clean unlabeled data are beneficial to better fit the decision curve, while the randomly added noisy variables obviously hurt the performance of LapSVM (See *Appendix C.5* for detailed illustrations). The primary reason for the degraded performance is the computational bias in the similarity matrix, which directly affects the entire set of input variables (Nie et al., 2019; 2021). This motivates the following open questions:

“How to alleviate the impact of redundant and even noisy variables on SSL models with manifold regularization? How to design a new manifold regularization scheme enjoying the robustness, interpretability, and prediction effectiveness simultaneously?”

Intuitively, we can address the above questions using a two-stage framework, i.e., selecting the informative variables first (e.g., via Lasso (Tibshirani, 1994), SpAM (Ravikumar et al., 2009)) and then implementing manifold regularization approaches with the refined input variables. However, this variable selection strategy is independent of the intrinsic manifold structure, and its accuracy cannot be guaranteed due to the scarcity of labeled data. Inspired by meta-learning for coresset selection (Borsos et al., 2020; Zhou et al., 2022), this paper considers assigning masks to all input variables for both labeled and unlabeled data, retaining only those truly informative variables for modeling and constructing the similarity matrix.

Nevertheless, there are several challenges along this way: 1) It is NP-hard to learn the discrete mask variables taking values in $\{0, 1\}$ directly. 2) The bilevel optimization usually needs the computation on Hessian and Jacobian matrices, which leads to a heavy computation burden. 3) Most kernel-based manifold regularization models construct the Gram matrix based on sample distance, which lacks the result’s interpretability, e.g., screening the key variables associated with the response.

1.1 CONTRIBUTION

To address the aforementioned challenges, we incorporate the meta-learning strategy and sparse additive models into a manifold-regularized SSL framework, and formulate a new *Semi-Supervised Meta Additive Model* (S^2MAM) to enable automatic variable masking and sparse approximation for high-dimensional inputs, even in the presence of noisy variables.

The core technique involves updating the decision function and similarity matrix simultaneously, using proper masks on input variables. The masks of S^2MAM are learned through a probabilistic meta-strategy. Moreover, an efficient implementation is employed here to solve the bilevel optimization problem, which avoids the heavy computing burden on the implicit hypergradient calculation (Pedregosa, 2016), Neumann series, and some variants with Hessian-vector or Jacobian-vector products (Ghadimi & Wang, 2018; Lorraine et al., 2020; Liu et al., 2022a).

The main contributions of this paper are summarized below:

108 Table 1: Properties of our S²MAM and related models where "SSL" stands for semi-supervised learning. (✓ =
 109 enjoying the given information, and × = not available for the information).

Learning Task	SpAM	LapRLS	f-FME	AWSSL	RER	SemiReward	PBCS	S ² MAM (ours)
Optimization Framework	Supervised 1-level	SSL 1-level	SSL 1-level	SSL 1-level	SSL 1-level	Supervised 1-level	Supervised Bilevel	SSL Bilevel
Interpretability	✓	×	×	×	×	×	×	✓
Variable Selection	✓	×	✓	✓	✓	×	×	✓
Noisy Variable Robustness	×	×	×	✓	✓	✓	×	✓
Convergence Analysis	×	×	×	×	×	×	✓	✓
Generalization Analysis	✓	×	×	×	×	×	×	✓
Computation Complexity Analysis	×	×	×	×	×	×	×	✓

- *New statistical modeling.* To the best of our knowledge, our S²MAM is the first meta-learning method for manifold-regularized additive models, where a novel bilevel optimization scheme is formulated to achieve robust estimation and data-driven automatic variable selection simultaneously. By assigning flexible masks to individual variables, the proposed S²MAM is capable of reducing the impact of noisy variables on SSL tasks.
- *Computing and Theoretical Supports.* An efficient probabilistic bilevel optimization is developed to additionally learn the discrete masks, utilizing both policy gradient estimation and the projection operation. This computational algorithm alleviates the computational burden of the discrete bilevel optimization framework and provides theoretical guarantees of convergence in optimization. Additionally, we establish the upper bounds of excess risk for the baseline model of S²MAM, which implies that the proposed approach can achieve polynomial decay in generalization error.
- *Empirical competitiveness.* Empirical results on several synthetic and real-world benchmarks demonstrate that the proposed S²MAM can identify truly informative variables and achieve robust prediction even in the presence of redundant and noisy input variables.

1.2 COMPARISONS WITH THE RELATED WORKS

136 *Semi-supervised dimensionality reduction.* Recently, some efforts were made towards constructing
 137 a flexible similarity matrix against feature corruptions for SSL with manifold regularization (Chen
 138 et al., 2018; Nie et al., 2019; Bao et al., 2024). By rescaling the regression coefficients as variable
 139 weights, Chen et al. (2018) developed an efficient SSL method to identify important variables, known
 140 as rescaled linear square regression. Another weighting approach in (Nie et al., 2019) is called
 141 auto-weighting semi-supervised learning (AWSSL), which adaptively assigns continuous weights on
 142 variables to update the similarity matrix. After the dimension reduction process, a specific classifier is
 143 employed for downstream tasks. A robust graph learning (RGL) method (Kang et al., 2020) combined
 144 label ranking regression and label propagation into a unified framework for weight graph construction
 145 and semi-supervised learning. Semi-supervised adaptive local embedding learning (SALE) (Nie
 146 et al., 2021) adaptively constructs two affinity graphs (based on labeled data and all embedding
 147 samples) separately to explore the local and global structures. Bao et al. (2024) proposes an efficient
 148 model, robust embedding regression (RER), integrating the low-rank representation and Laplacian
 149 regularization. Unlike these works, this paper considers the automatic assignment of discrete masks
 150 (0/1) to input features (variables) for screening the truly active variables.

151 *Sparse additive models.* Additive models (Stone, 1985; Hastie & Tibshirani, 1990), as natural
 152 nonparametric extensions of linear models, have been burgeoning in high-dimensional data analysis
 153 due to their attractive properties, i.e., overcoming the curse of dimensionality, the flexibility of
 154 function approximation, and the ability of variable selection (Meier et al., 2009; Christmann & Hable,
 155 2012; Yuan & Zhou, 2016; Chen et al., 2020). In recent years, many sparse additive models have
 156 been proposed from various theoretical or empirical motivations, see e.g., (Lv et al., 2018; Haris
 157 et al., 2022; Bouchiat et al., 2024; Duong et al., 2024). Naturally, the paradigm of additive models
 158 can be applied to semi-supervised learning settings. As far as we know, there are only three papers
 159 that touched on this topic (Culp & Michailidis, 2008; Culp et al., 2009; Culp, 2011). However,
 160 not all of them consider the robustness of manifold learning against noisy variables and ignore
 161 data-driven variable structure discovery. These stringent restrictions on the predefined similarity
 162 matrix and variable structure may result in a severe degradation of existing models under complex
 163 noise conditions.

162 *Meta learning for sample/variable selection.* The meta-based masking policy was developed in
 163 (Borsos et al., 2020), where a bilevel neural network is designed for automatic supervised cores
 164 et selection. Furthermore, its improved version with probabilistic bilevel optimization is proposed for
 165 supervised classification (Zhou et al., 2022), especially for corrupted and imbalanced data. Indeed,
 166 Zhou et al. (2022) also provides an example of variable selection, while it is limited to the supervised
 167 learning case and doesn't concern the impact of noisy variables. To the best of our knowledge, there
 168 has been no any endeavor before to explore the meta-based masking policy for semi-supervised
 169 additive models.

170 To better highlight the novelty of our S²MAM, we summarize its properties in Table 1 compared
 171 with several related state-of-the-art models, including sparse additive models (SpAM) (Ravikumar
 172 et al., 2009)), LapRLS (Belkin et al., 2006)), fast flexible manifold embedding (f-FME) (Qiu et al.,
 173 2018), auto-weighting semi-supervised learning (AWSSL) (Nie et al., 2019), RER (Bao et al., 2024)
 174 SemiReward (Li et al., 2024) and the probabilistic bilevel cores selection (PBCS) (Zhou et al.,
 175 2022). Table 1 shows that the proposed S²MAM enjoys desirable properties, including variable
 176 selection, robust estimation, and computational guarantees.

2 SEMI-SUPERVISED ADDITIVE MODELS

180 This section first introduces a manifold-regularized semi-supervised additive model (Culp, 2011) as
 181 the basic model and then formulates the S²MAM under the discrete bilevel optimization framework.
 182 Furthermore, a probabilistic bilevel scheme solves the NP-hard discrete optimization problem.

2.1 REVISITING MANIFOLD REGULARIZED SPARSE ADDITIVE MODEL

185 Let $\mathcal{X} = \{\mathcal{X}^{(1)}, \dots, \mathcal{X}^{(p)}\} \in \mathbb{R}^p$ be a compact input space and the output space $\mathcal{Y} \in \mathbb{R}$. Denote ρ
 186 as the joint distribution on $\mathcal{X} \times \mathcal{Y}$, and $\rho_{\mathcal{X}}$ as the marginal distribution with respect to \mathcal{X} induced
 187 by ρ . The training set $\mathbf{z} = \{\mathbf{z}_l, \mathbf{z}_u\}$ involves the labeled set $\mathbf{z}_l = \{(x_i, y_i)\}_{i=1}^l$ and the unlabeled
 188 set $\mathbf{z}_u = \{x_i\}_{i=l+1}^{l+u}$, where each input $x_i = (x_i^{(1)}, \dots, x_i^{(p)})^T \in \mathbb{R}^p$ with $x_i^{(j)} \in \mathcal{X}^{(j)}$ and output
 189 $y_i \in \mathbb{R}$. The hypothesis space of additive models can be formulated as $\mathcal{F} = \{f : f(x) = \sum_{j=1}^p f^{(j)}(x^{(j)}), f^{(j)} \in \mathcal{F}^{(j)}\}$, where $x^{(j)} \in \mathcal{X}^{(j)}$ and $\mathcal{F}^{(j)}$ is the component function space on
 190 $\mathcal{X}^{(j)}$ (Ravikumar et al., 2009). Typical candidates of additive hypothesis space include the basis
 191 expansion space (Meier et al., 2009; Ravikumar et al., 2009), the reproducing kernel Hilbert space
 192 (RKHS) (Raskutti et al., 2012), and the network-based space (Agarwal et al., 2021; Yang et al., 2020).

195 This paper chooses $\mathcal{H}_{K^{(j)}}$ to form the additive hypothesis space, where $\mathcal{H}_{K^{(j)}}$ is the RKHS associated
 196 with Mercer kernel $K^{(j)}$ defined on $\mathcal{X}^{(j)} \times \mathcal{X}^{(j)}$, $j \in \{1, \dots, p\}$. Equipped by component function
 197 $f^{(j)} : \mathcal{X}^{(j)} \rightarrow \mathbb{R}$, $j \in \{1, \dots, p\}$, the additive hypothesis space can be further defined as $\mathcal{H} = \left\{ f = \sum_{j=1}^p f^{(j)} : f^{(j)} \in \mathcal{H}_{K^{(j)}}, 1 \leq j \leq p \right\}$ with $\|f\|_K^2 = \inf \left\{ \sum_{j=1}^p \|f^{(j)}\|_{K^{(j)}}^2 : f = \sum_{j=1}^p f^{(j)} \right\}$.
 198 Indeed, \mathcal{H} is an RKHS associated with kernel $K = \sum_{j=1}^p K^{(j)}$ (Christmann & Zhou, 2016). Due to
 199 the Representer Theorem of RKHS (Smola & Schölkopf, 1998), the prediction function of supervised
 200 additive models in RKHS often enjoys a parameterized representation (Yuan & Zhou, 2016)

$$204 \quad f(\cdot) = \sum_{j=1}^p \sum_{i=1}^l \alpha_i^{(j)} K_i^{(j)}(x_i^{(j)}, \cdot). \quad (1)$$

207 Given a predictor $f : \mathcal{X} \rightarrow \mathbb{R}$, denote $\mathbf{f} = (f(x_1), \dots, f(x_{l+u}))^T$ as the prediction vector associated
 208 with the labeled data \mathbf{z}_l and the unlabeled data \mathbf{z}_u . Let $\lambda_1, \lambda_2 > 0$ be the regularization coefficients
 209 and let τ_j be the positive weight to different input variables for $j = 1, \dots, p$. Then, the additive
 210 model for regularized Laplacian regression can be formulated as

$$212 \quad f_{\mathbf{z}} = \arg \min_{f \in \mathcal{H}} \left\{ \mathcal{E}_{\mathbf{z}}(f) + \lambda_1 \Omega_{\mathbf{z}}(f) + \frac{\lambda_2}{(l+u)^2} \mathbf{f}^T \mathbf{L} \mathbf{f} \right\}, \quad (2)$$

214 where empirical risk $\mathcal{E}_{\mathbf{z}}(f) = \frac{1}{l} \sum_{i=1}^l (y_i - f(x_i))^2$, the sparse regularization $\Omega_{\mathbf{z}}(f)$ is formulated by
 215 $\inf_{\alpha^{(j)}} \left\{ \sum_{j=1}^p \tau_j \|\alpha^{(j)}\|_2 : f = \sum_{j=1}^p \sum_{i=1}^l \alpha_i^{(j)} K_i^{(j)}(x_i^{(j)}, \cdot) \right\}$, and the term $\mathbf{f}^T \mathbf{L} \mathbf{f}$ is the manifold

regularization (Belkin & Niyogi, 2004; Culp, 2011). Here, $\mathbf{L} = \mathbf{D} - \mathbf{W}$ is the graph Laplacian, and diagonal matrix \mathbf{D} satisfies $D_{ii} = \sum_{j=1}^{l+u} W_{ij}$ and W_{ij} is the adjacent weight for inputs x_i and x_j , e.g., $W_{ij} = \exp\{-\|x_i - x_j\|_2^2/\mu^2\}$ with bandwidth μ .

Remark 1 If the j -th variable is not truly informative, $\boldsymbol{\alpha}_{\mathbf{z}}^{(j)} = (\alpha_{\mathbf{z},1}^{(j)}, \dots, \alpha_{\mathbf{z},l+u}^{(j)})^T \in \mathbb{R}^{l+u}$ is expected to satisfy $\|\boldsymbol{\alpha}_{\mathbf{z}}^{(j)}\|_2 = \sqrt{\sum_{i=1}^{l+u} |\alpha_{\mathbf{z},i}^{(j)}|^2} = 0$. Thus, $\ell_{2,1}$ -regularizer is employed as the penalty.

Obviously, noisy input variables may bring an inappropriate similarity matrix \mathbf{W} . Naturally, it is necessary to improve the robustness of (2) against noisy variables by replacing the pre-specified similarity measure (i.e., \mathbf{W}, \mathbf{L}) in manifold regularization with an adaptive masking strategy.

2.2 DISCRETE BILEVEL FRAMEWORK FOR S²MAM

To mitigate the negative impact of noisy variables on Laplacian regularization in (2), we introduce a bilevel optimization framework for automatically learning variable masks. In particular, both the decision function f and Laplacian matrix \mathbf{L} are updated by the learned masks.

Denote $\ell(\cdot)$ as the loss function, $f(x; \boldsymbol{\alpha})$ as a decision function in RKHS \mathcal{H} with spanning parameter $\boldsymbol{\alpha}$ and the mask $\mathbf{m} \in \{0, 1\}^p$ as a binary vector, where $m_i = 1$ implies i -th variable is selected as the informative one and otherwise ignored. **α denotes the coefficient parameter of the additive model.** The bilevel framework for directly learning the discrete masks is formulated as follows.

Upper Level: Given the meta dataset $D_{meta} = \{(x_i, y_i)\}_{i=1}^l$, we formulate the discrete optimization

$$\min_{\mathbf{m} \in \tilde{\mathcal{C}}} \mathcal{L}(\hat{\boldsymbol{\alpha}}(\mathbf{m})) = \frac{1}{l} \sum_{i=1}^l \ell(f(x_i; \hat{\boldsymbol{\alpha}}(\mathbf{m})), y_i), \quad (3)$$

where the mask \mathbf{m} is the learnable parameter in the upper level, $\boldsymbol{\alpha}$ is the parameter of the decision function in the lower level depending on \mathbf{m} , and $\tilde{\mathcal{C}} = \{\mathbf{m} : m_i \in \{0, 1\}, \|\mathbf{m}\|_0 \leq C, i = 1, 2, \dots, p\}$ is the feasible region of \mathbf{m} with the size of selected variables C .

Lower Level: Based on the whole training set D_{total} involving D_{meta} and unlabeled samples $\{x_i\}_{i=l+1}^{l+u}$, the predictor of lower level optimization problem is

$$\hat{f}(x) = \sum_{j=1}^p \hat{f}^{(j)}(m_j x^{(j)}) = \sum_{j=1}^p \sum_{i=1}^l \alpha_i^{(j)} K_i^{(j)}(m_j x_i^{(j)}, m_j x^{(j)}), \quad (4)$$

where $\hat{\boldsymbol{\alpha}} = \arg \min_{\boldsymbol{\alpha} \in \mathbb{R}^{(l+u) \times p}} \mathcal{R}(\boldsymbol{\alpha}; \mathbf{m}; \mathbf{L})$, with risk $\mathcal{R}(\boldsymbol{\alpha}; \mathbf{m}; \mathbf{L}) = \frac{1}{l} \sum_{i=1}^l \ell(f(x_i \odot \mathbf{m}; \boldsymbol{\alpha}), y_i) + \lambda_1 \sum_{j=1}^p \tau_j \|\boldsymbol{\alpha}^{(j)}\|_2 + \frac{\lambda_2}{(l+u)^2} \mathbf{f}^T \mathbf{L} \mathbf{f}$.

Different from (2), the Laplacian matrix \mathbf{L} is computed based on the masked similarity matrix \mathbf{W} with measure function $\mathcal{W}(\cdot, \cdot)$ and element $W_{ij} = \mathcal{W}(x_i \odot \mathbf{m}, x_j \odot \mathbf{m})$, $i, j \in \{1, 2, \dots, l+u\}$.

Usually, it is intractable to solve the above discrete bilevel problem directly. Fortunately, we can formulate its continuous probabilistic form with the help of policy gradient estimation (Zhou et al., 2022), and develop an efficient gradient-based optimization algorithm in the following section.

2.3 PROBABILISTIC BILEVEL FRAMEWORK FOR S²MAM

It is popular to transform the discrete tuning parameter space into the continuous probability space for bilevel optimization (Zhao et al., 2023; Zhou et al., 2022). For simplicity, m_i can be considered as a Bernoulli random variable $m_i \sim \text{Bern}(s_i)$, where $s_i \in [0, 1]$ represents the probability of $m_i = 1$. Denote the domain on probability variable $\mathbf{s} = (s_1, \dots, s_p) \in \mathbb{R}^p$ as

$$\mathcal{C} = \{\mathbf{s} : 0 \preceq s_i \preceq 1, \|\mathbf{s}\|_1 \leq C, i = 1, 2, \dots, p\}. \quad (5)$$

The discrete bilevel optimization in Section 2.2 can be relaxed into the following expected form

$$\min_{\mathbf{s} \in \mathcal{C}} \Phi(\mathbf{s}) = \mathbb{E}_{p(\mathbf{m}|\mathbf{s})} \mathcal{L}(\boldsymbol{\alpha}^*(\mathbf{m})), \text{ s.t. } \boldsymbol{\alpha}^*(\mathbf{m}) \in \arg \min_{\boldsymbol{\alpha} \in \mathbb{R}^{(l+u) \times p}} \mathcal{R}(\boldsymbol{\alpha}; \mathbf{m}; \mathbf{L}). \quad (6)$$

270 **Remark 2** Under the independent assumption on variable m_i , we can derive its distribution $p(\mathbf{m} | \mathbf{s}) = \prod_{i=1}^p (s_i)^{m_i} (1 - s_i)^{1-m_i}$. Since $\mathbb{E}_{\mathbf{m} \sim p(\mathbf{m} | \mathbf{s})} \|\mathbf{m}\|_0 = \sum_{i=1}^p s_i$, the original domain $\tilde{\mathcal{C}} = \{\mathbf{m} : m_i \in \{0, 1\}, \|\mathbf{m}\|_0 \leq C, i = 1, 2, \dots, p\}$ is transformed into \mathcal{C} on probability \mathbf{s} . Relaxing the independence condition on m_i is also meaningful in realistic scenarios in further research.

275 2.4 COMPUTING ALGORITHM OF S²MAM

277 Initialize the decision parameter $\boldsymbol{\alpha}^0 = \mathbf{0}$, mask $\mathbf{m}^0 = \mathbf{1}$, probability $\mathbf{s}^0 = \frac{C}{p} \cdot \mathbf{1}$ and select Laplacian
278 matrix associated with original (x_1, \dots, x_{l+u}) as \mathbf{L}^0 . Before each iteration, a sample batch \mathcal{B} is
279 selected from the whole training set. The computing steps of probabilistic S²MAM are summarized
280 in Algorithm 1. The procedures for solving (6) at the t -th iteration contain:

281 **Step 1: Computing $\boldsymbol{\alpha}^t$ with \mathbf{m}^{t-1} and \mathbf{L}^{t-1}** , where $\boldsymbol{\alpha}^t = \arg \min_{\boldsymbol{\alpha} \in \mathbb{R}^{(l+u) \times p}} \mathcal{R}(\boldsymbol{\alpha}^{t-1}; \mathbf{m}^{t-1}; \mathbf{L}^{t-1})$, with
282 $\mathcal{R}(\boldsymbol{\alpha}^{t-1}; \mathbf{m}^{t-1}; \mathbf{L}^{t-1})$. The computing algorithm for Step 1, based on the alternating direction
283 method of multipliers, is presented in Appendix H.4.

285 **Step 2: Computing \mathbf{s}^t and \mathbf{m}^t with $\boldsymbol{\alpha}^t$** . From the probabilistic S²MAM in (6), the learning target
286 changes from the discrete masks \mathbf{m} into the continuous probability \mathbf{s} , which is updated by the
287 policy gradient estimator (Zhou et al., 2022) as $\nabla_{\mathbf{s}} \Phi(\mathbf{s}) = \mathbb{E}_{p(\mathbf{m} | \mathbf{s})} \mathcal{L}(\boldsymbol{\alpha}^*(\mathbf{m})) \nabla_{\mathbf{s}} \ln p(\mathbf{m} | \mathbf{s})$. This
288 computing procedure provides unbiased gradient estimation without a heavy computational burden
289 on the inverse of the Hessian matrix or implicit differentiation.

290 Denote η^t as the step size for updating the upper level parameter \mathbf{s} at the t -th step. Given $\boldsymbol{\alpha}^t$, \mathbf{s} can
291 be updated by the projected stochastic gradient descent below

$$293 \mathbf{s}^t \leftarrow \mathcal{P}_{\mathcal{C}}(\mathbf{s}^{t-1} - \eta^t \mathcal{L}(\boldsymbol{\alpha}^t) \nabla_{\mathbf{s}} \ln p(\mathbf{m}^{t-1} | \mathbf{s}^{t-1})), \quad (7)$$

294 where the projection $\mathcal{P}_{\mathcal{C}}(\mathbf{s})$ from \mathbf{s} to the domain \mathcal{C} is summarized in Algorithm 2 in Appendix
295 H.2. Then, $\mathbf{m}^t = (m_1^t, \dots, m_p^t) \in \mathbb{R}^p$ follows from Bernoulli distribution, where $m_i^t \sim \text{Bern}(s_i^t)$.
296 Appendix H.1 proves the closed-form solution in the projection computation.

297 **Step 3: Updating Laplacian matrix \mathbf{L}^t with \mathbf{m}^t**

$$299 \mathbf{L}^t = \mathbf{D}^t - \mathbf{W}^t, \quad (8)$$

300 where the diagonal matrix $\mathbf{D}^t \in \mathbb{R}^{(l+u) \times (l+u)}$ satisfies $D_{ii}^t = \sum_{j=1}^{l+u} W_{ij}$, and $W_{ij} = \exp\{-\|x_i \odot\$
301 $\mathbf{m}^t - x_j \odot \mathbf{m}^t\|_2^2 / \mu^2\}$ with the bandwidth parameter $\mu > 0$. The metric W_{ij} evaluates the similarity
302 between samples x_i and x_j that share the same mask \mathbf{m}^t . Finally, we obtain the decision function in
303 (4) with coefficient $\boldsymbol{\alpha}$ and mask \mathbf{m} .

304 To mitigate the quadratic cost of the graph Laplacian and probabilistic mask optimization on high-
305 dimensional or large-size datasets, we've adopted two efficient strategies for acceleration, including
306 preprocessing high-dimensional inputs (e.g., large images) via a pretrained CNN to extract a low-
307 dimensional embedding, and replacing exact kernel evaluations with Random Fourier Features (RFF),
308 which reduces complexity from $\mathcal{O}((l+u)^2)$ to $\mathcal{O}((l+u)D)$ where $D \ll l+u$.

310 3 THEORETICAL ASSESSMENTS

312 For the proposed S²MAM, this section presents its computational convergence and generalization
313 analysis for the basic model (2) in Section 2.1. All proofs are left in Appendices F&G.

315 3.1 COMPUTING CONVERGENCE ANALYSIS

317 We now establish the theoretical guarantee of optimization convergence for the policy gradient
318 estimation in Step 2. The following assumption has been widely used to characterize the conver-
319 gence behavior of projection operation algorithms (Pedregosa, 2016; Zhou et al., 2022) and bilevel
320 optimization with sample batches (Shu et al., 2023).

322 **Assumption 1** Denote $\mathcal{L}_{\mathcal{B}}$ as the loss on selected batch \mathcal{B} . Assume that $\Phi(\mathbf{s})$ is L -smooth,
323 constant $\sigma > 0$, there hold $\mathbb{E}[\mathcal{L}_{\mathcal{B}}(\boldsymbol{\alpha}^*(\mathbf{m})) \nabla_{\mathbf{s}} \ln p(\mathbf{m} | \mathbf{s}^t) - \nabla_{\mathbf{s}} \Phi(\mathbf{s}^t)] = 0$, and
 $\mathbb{E} \|\mathcal{L}_{\mathcal{B}}(\boldsymbol{\alpha}^*(\mathbf{m})) \nabla_{\mathbf{s}} \ln p(\mathbf{m} | \mathbf{s}^t) - \nabla_{\mathbf{s}} \Phi(\mathbf{s}^t)\|^2 \leq \sigma^2$.

324 **Theorem 1** At the t -th iteration, let the step size $\eta^t = \frac{c}{\sqrt{t}} \leq \frac{1}{L}$ for some constant $c > 0$, and denote
 325 the gradient mapping $\mathcal{G}^t = \frac{1}{\eta^t} (s^t - \mathcal{P}_C(s^t - \eta^t \nabla_s \Phi(s^t)))$. Under Assumption 1, there holds
 326

$$327 \min_{1 \leq t \leq T} \mathbb{E} \|\mathcal{G}^t\|^2 \lesssim \mathcal{O}\left(T^{-\frac{1}{2}}\right).$$

330 **Remark 3** Indeed, Zhou et al. (2022) demonstrates that the average gradient $\frac{1}{T} \sum_{t=1}^T \mathbb{E} \|\mathcal{G}^t\|^2$ of
 331 the policy gradient estimation converges to a small constant as $T \rightarrow \infty$. With the help of refined step
 332 size $\eta^t = \frac{c}{\sqrt{t}}$, our results in Theorem 1 shows better convergence property w.r.t. T . The empirical
 333 and theoretical analysis of algorithmic computation complexity is left in Appendix E & H.5.

334 **3.2 GENERALIZATION ERROR ANALYSIS**

335 The expected risk of $f : \mathcal{X} \rightarrow \mathcal{Y}$, w.r.t. $\mathcal{E}_z(f)$ in (2), is measured by $\mathcal{E}(f) = \int_{\mathcal{X} \times \mathcal{Y}} (f(x) -$
 336 $y)^2 d\rho(x, y)$. It is well known that $f_\rho = \int_{\mathcal{Y}} y d\rho(y | \cdot)$ is the minimizer of $\mathcal{E}(f)$ over all measurable
 337 functions, where $\rho(y | x)$ denotes the conditional distribution of y for given x . This work describes
 338 how fast f_z defined in (2) approximates f_ρ as the sample size increases. To the best of our knowledge,
 339 this is the first theoretical endeavor to analyze the generalization behavior of semi-supervised additive
 340 models.

341 Before presenting our results, we recall some necessary assumptions and definitions involved here,
 342 which have been widely used in bounding the excess risk for supervised learning algorithms (Shi
 343 et al., 2011; Shi, 2013; Christmann & Zhou, 2016; Wang et al., 2023; Deng et al., 2023) and SSL
 344 models (Belkin et al., 2006; Liu & Chen, 2018; Chen et al., 2018).

345 **Assumption 2** (Christmann & Zhou (2016)) For any $x \in \mathcal{X}$, there exists some $M \geq 0$ such that
 346 $\rho(\cdot | x)$ is almost everywhere supported on $[-M, M]$. Assume $f_\rho = \sum_{j=1}^p f_\rho^{(j)}$ with $0 < r \leq \frac{1}{2}$ and
 347 $f_\rho^{(j)} = L_{K^{(j)}}^r(g_j^*)$ with some $g_j^* \in L_2(\rho(\mathcal{X}^{(j)}))$ for any $j \in \{1, \dots, p\}$, where $L_2(\rho(\mathcal{X}^{(j)}))$ is the
 348 square-integrable space on $\mathcal{X}^{(j)}$ and $L_{K^{(j)}}^r$ is r -power of integral operator $L_{K^{(j)}} : L_2(\rho(\mathcal{X}^{(j)})) \rightarrow$
 349 $L_2(\rho(\mathcal{X}^{(j)}))$ associated with kernel $K^{(j)}$.

350 **Assumption 3** Each entry of similarity matrix \mathbf{W} satisfies $0 \leq W_{ij} \leq w$ for a positive constant w .

351 **Assumption 4** Let C^v be a v -times continuously differentiable function set. Assume that $K^{(j)} \in$
 352 $C^v(\mathcal{X}^{(j)} \times \mathcal{X}^{(j)})$, $j \in \{1, \dots, p\}$.

353 Define $\pi(f)(x) = \max\{\min\{f(x), M\}, -M\}$, $\forall f \in \mathcal{H}$, as truncated output under Assumption 2.
 354 This truncated operator has been used extensively for error analysis of learning algorithms, see e.g.,
 355 (Steinwart et al., 2009; Shi et al., 2019). Since $\mathcal{E}(\pi(f)) \leq \mathcal{E}(f)$ for any $f \in \mathcal{H}$, here we state the
 356 upper bound of $\mathcal{E}(\pi(f_z)) - \mathcal{E}(f_\rho)$ to get a tighter generalization characterization for the manifold
 357 regularized additive model in (2).

358 **Theorem 2** Let $\lambda_1 = (l+u)^{-\Delta}$, $\lambda_2 = \lambda_1^{1-r}$ for some $\Delta > 0$ and $0 < r \leq 1/2$. Under Assumptions
 359 2-4, for any $0 < \delta < 1/2$, there holds

$$360 \mathcal{E}(\pi(f_z)) - \mathcal{E}(f_\rho) \lesssim \log\left(\frac{8}{\delta}\right) \left(\mathcal{O}((l+u)^{-\Theta}) + \mathcal{O}(l^{-1/2}) \right),$$

361 with confidence at least $1 - 2\delta$, where $\Theta = \min\{\Delta r, 1 + \Delta(r-1), \Delta(5r/2 - 3/2) + 1/2, 2/(2 +$
 362 $\zeta), 3/2 - \Delta r, 1/2\}$ with $\zeta = \begin{cases} \frac{2}{1+2v}, & v \in (0, 1] \\ \frac{2}{1+v}, & v \in (1, 3/2] \\ \frac{1}{v}, & v \in (3/2, \infty) \end{cases}$.

363 **Remark 4** Theorem 2 guarantees the learning rate $\mathcal{O}(1/\sqrt{l})$ as setting $\Delta = 1$, $r = 1/2$, $v \rightarrow \infty$
 364 and $u \geq l^2$, which interprets the role of unlabeled sample size u . Besides the additional advantage of
 365 the interpretability of input variables, the basic model (2) of S^2MAM also achieves the polynomial
 366 decay rate of excess risk, which is comparable with supervised (Christmann & Zhou, 2016; Wang
 367 et al., 2023) and SSL models (Cao & Chen, 2012; Liu & Chen, 2018).

378 Table 2: Average Accuracy \pm standard deviation (%) on synthetic additive data for classification with fixed label
 379 percentages in each class ($r = 5\%$), uninformative variable (p_u) and noisy variable numbers (p_n).

381 Model	382 $r = 5\%, p_u = p_n = 0$		383 $r = 5\%, p_u = 10, p_n = 0$		384 $r = 5\%, p_u = 0, p_n = 10$		385 $r = 5\%, p_u = p_n = 10$	
	386 Unlabeled	387 Test	388 Unlabeled	389 Test	390 Unlabeled	391 Test	392 Unlabeled	393 Test
ℓ_1 -SVM	-	83.914 \pm 6.410	-	62.713 \pm 6.098	-	62.261 \pm 6.550	-	54.791 \pm 6.951
SpAM	-	84.150 \pm 6.104	-	65.091 \pm 5.917	-	64.814 \pm 6.039	-	54.413 \pm 6.295
CSAM	-	86.597 \pm 5.424	-	69.717 \pm 5.101	-	65.178 \pm 5.255	-	61.980 \pm 5.701
TSpAM	-	86.993 \pm 5.340	-	71.044 \pm 5.079	-	67.340 \pm 4.959	-	63.145 \pm 5.130
LapSVM	88.814 \pm 5.398	88.850 \pm 5.269	59.992 \pm 5.259	60.325 \pm 5.184	55.630 \pm 8.213	55.957 \pm 8.292	55.137 \pm 8.414	55.203 \pm 8.496
f-FME	89.141 \pm 3.172	89.305 \pm 3.359	64.495 \pm 4.033	64.611 \pm 4.208	59.671 \pm 6.473	59.801 \pm 6.655	59.311 \pm 6.602	59.407 \pm 6.659
AWSSL	91.259 \pm 2.871	90.211 \pm 3.077	83.691 \pm 3.423	83.950 \pm 3.519	73.701 \pm 4.105	73.859 \pm 4.322	72.255 \pm 4.211	72.370 \pm 4.428
RGL	90.422 \pm 2.909	90.026 \pm 3.477	84.065 \pm 4.501	84.879 \pm 4.711	77.726 \pm 4.591	78.041 \pm 4.510	75.155 \pm 4.965	75.413 \pm 4.708
SALE	89.717 \pm 2.811	90.149 \pm 2.665	85.742 \pm 4.132	85.971 \pm 4.018	79.071 \pm 4.709	79.844 \pm 4.277	77.201 \pm 4.697	77.891 \pm 4.431
SSNP	90.492 \pm 3.059	89.871 \pm 3.218	86.130 \pm 3.922	85.908 \pm 4.105	78.250 \pm 4.294	78.062 \pm 4.133	77.462 \pm 4.412	77.601 \pm 5.513
RER	89.416 \pm 3.407	89.930 \pm 3.622	85.195 \pm 3.642	85.870 \pm 3.703	80.933 \pm 4.016	81.049 \pm 4.055	78.981 \pm 4.302	79.112 \pm 4.517
S^2 MAM (ours)	89.979 \pm 3.255	90.309 \pm 3.409	85.517 \pm 3.481	86.015 \pm 3.575	81.702 \pm 3.897	81.855 \pm 4.055	80.012 \pm 4.177	80.112 \pm 4.370

391 4 EXPERIMENTAL EVALUATIONS

393 This section validates the effectiveness of S^2 MAM on simulated and real-world data. All experiments
 394 are implemented in Python on RTX 3060 GPU and Intel Core i7 with 32 GB of memory. Due to
 395 space limitations, experiments on more synthetic, UCI and image datasets are left in *Appendices C-E*.
 396

397 4.1 BASELINES AND PARAMETER SELECTION

399 **Baselines and Criterion:** For classification, the competitors include ℓ_1 -SVM (Zhu et al., 2003a),
 400 SpAM (with logistic loss) (Ravikumar et al., 2009), LapSVM (Belkin et al., 2006), f-FME (Qiu et al.,
 401 2018), AWSSL (Nie et al., 2019), RGL (Kang et al., 2020), SALE (Nie et al., 2021), RER (Bao et al.,
 402 2024), SemiReward (Li et al., 2024), Correntropy-based Sparse Additive Machine (CSAM) (Yuan
 403 et al., 2023), Tilted Sparse Additive Model (TSpAM) (Wang et al., 2023) and semi-supervised neural
 404 processes (SSNP) (Wang et al., 2022a). S^2 MAM is equipped with the logistic loss. Similarity measure
 405 $W_{ij} = \exp\{-\|x_i - x_j\|_2^2/\mu^2\}$ and accuracy criterion are exploited. For the regression tasks, we
 406 compare the proposed S^2 MAM with sparse supervised models (Lasso (Tibshirani, 1994) and SpAM
 407 (Ravikumar et al., 2009)), Deep Analytic Networks (DAN) (Dinh & Ho, 2020), LapRLS (Belkin
 408 et al., 2006), co-training regressor (COREG) (Lu et al., 2023) and deep SSL methods, including the
 409 variational autoencoder (VAE) (Cemgil et al., 2020) and the semi-supervised deep kernel learning
 410 (SSDKL (Jean et al., 2018) and pseudo-label filtering (PLF (Jo et al., 2024). For simplicity, the
 411 squared loss is selected as the loss function for SpAM and S^2 MAM. The supervised methods are
 412 trained with merely labeled data. The mean squared error (MSE) is used as the criterion. Partial
 413 results are included in the Appendix, as SemiReward and PLF are primarily designed for image tasks.

414 **Hyperparameters:** For fairness, the penalty coefficients are tuned across $[10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}]$
 415 via leave-one-out cross-validation, which are shared for all regularized approaches. Let $\tau_j = 1$ for all
 416 $j \in [1, 2, \dots, p]$ for additive baselines (Wang et al., 2023). The bandwidth μ for similarity measure
 417 is selected within $[10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1]$. We repeat each experiment 100 times and report
 418 the average accuracy as well as the standard deviation under different data settings. The selection
 419 of informative feature size C is stated in Remark 6. The parameters for other methods were set
 420 according to the corresponding references.

421 **Benchmarks:** As stated in *Appendix B.1*, 4 synthetic, 8 UCI and 4 real-world datasets are utilized
 422 in the experiments, including the high-dimensional Alzheimer’s Disease Neuroimaging Initiative
 423 (ADNI) clinical records, COIL-20 image, CelebA-HQ images (Lee et al., 2020), and AgeDB images
 424 (Moschoglou et al., 2017). To evaluate the robustness of S^2 MAM, p_u uninformative variables in
 425 $\mathcal{N}(0, 1)$ and p_n noisy variables in $\mathcal{N}(100, 100)$ are designed as corruptions (Bao et al., 2024). Due
 426 to space limitations, empirical results on more datasets with interpretable visualizations are left
 427 in *Appendices C-E*. Notably, Table 12 verifies the efficiency when employing the random Fourier
 428 transformation (Rahimi & Recht, 2007; Wang et al., 2023) for accelerating the training process.

429 4.2 EXPERIMENTS ON SYNTHETIC DATA

430 Following the experimental design in (Chen et al., 2020; Wang et al., 2023), we consider the
 431 following additive discriminant function $f^*(x_i) = (x_i^{(1)} - 0.5)^2 + (x_i^{(2)} - 0.5)^2 - 0.08$, where

432 Table 3: Average MSE \pm standard deviation of 10 repeated experiments on ADNI datasets with different label
 433 percentages (r) and noisy variable numbers (p_n). Notably, noisy features are drawn from $\mathcal{N}(100, 100)$. The
 434 upper and lower tables refer to prediction results on "Fluency" and "ADAS" cognitive scores of ADNI.

436 Model	437 $r = 20\%, p_n = 0$		438 $r = 20\%, p_n = 10$		439 $r = 50\%, p_n = 0$		440 $r = 50\%, p_n = 10$	
	441 Unlabeled	442 Test	443 Unlabeled	444 Test	445 Unlabeled	446 Test	447 Unlabeled	448 Test
Lasso	-	0.941 ± 0.281	-	1.359 ± 0.733	-	0.668 ± 0.124	-	0.833 ± 0.474
SpAM	-	0.831 ± 0.228	-	1.266 ± 0.646	-	0.589 ± 0.110	-	0.732 ± 0.417
DAN	-	0.794 ± 0.197	-	1.210 ± 0.611	-	0.637 ± 0.105	-	0.793 ± 0.373
LapRLS	0.915 ± 0.301	0.932 ± 0.313	1.478 ± 0.812	1.617 ± 0.834	0.823 ± 0.215	0.838 ± 0.224	1.142 ± 0.511	1.167 ± 0.525
VAE	0.743 ± 0.324	0.754 ± 0.330	0.812 ± 0.397	0.825 ± 0.411	0.474 ± 0.115	0.493 ± 0.123	0.526 ± 0.226	0.541 ± 0.241
COREG	0.748 ± 0.308	0.761 ± 0.316	0.984 ± 0.423	1.020 ± 0.434	0.527 ± 0.276	0.546 ± 0.283	0.513 ± 0.384	0.531 ± 0.393
SSDLK	0.721 ± 0.321	0.739 ± 0.337	0.848 ± 0.446	0.867 ± 0.462	0.442 ± 0.271	0.454 ± 0.279	0.524 ± 0.391	0.547 ± 0.403
RER	0.780 ± 0.184	0.794 ± 0.201	0.807 ± 0.249	0.821 ± 0.266	0.437 ± 0.142	0.448 ± 0.157	0.477 ± 0.225	0.496 ± 0.249
S^2MAM (ours)	0.730 ± 0.133	0.747 ± 0.147	0.786 ± 0.214	0.804 ± 0.228	0.423 ± 0.119	0.430 ± 0.130	0.464 ± 0.196	0.483 ± 0.205
Lasso	-	1.179 ± 0.376	-	1.469 ± 0.817	-	0.824 ± 0.255	-	0.961 ± 0.511
SpAM	-	1.250 ± 0.335	-	1.545 ± 0.748	-	0.831 ± 0.217	-	1.017 ± 0.470
DAN	-	1.470 ± 0.346	-	1.844 ± 0.773	-	0.962 ± 0.230	-	1.672 ± 0.515
LapRLS	1.075 ± 0.416	0.973 ± 0.423	1.813 ± 0.934	1.706 ± 0.945	0.944 ± 0.290	0.898 ± 0.296	1.379 ± 0.532	1.409 ± 0.544
VAE	0.816 ± 0.399	0.808 ± 0.418	1.089 ± 0.553	0.924 ± 0.571	0.642 ± 0.253	0.633 ± 0.261	0.794 ± 0.509	0.760 ± 0.521
COREG	0.766 ± 0.374	0.748 ± 0.386	0.968 ± 0.515	0.735 ± 0.528	0.619 ± 0.277	0.625 ± 0.285	0.762 ± 0.452	0.736 ± 0.467
SSDLK	0.818 ± 0.383	0.794 ± 0.396	0.941 ± 0.532	0.920 ± 0.541	0.617 ± 0.282	0.605 ± 0.269	0.772 ± 0.473	0.730 ± 0.481
RER	0.782 ± 0.265	0.801 ± 0.273	0.828 ± 0.351	0.817 ± 0.358	0.624 ± 0.228	0.618 ± 0.208	0.680 ± 0.272	0.698 ± 0.287
S^2MAM (ours)	0.771 ± 0.241	0.783 ± 0.255	0.816 ± 0.321	0.801 ± 0.330	0.614 ± 0.204	0.609 ± 0.192	0.663 ± 0.251	0.681 ± 0.266

449 Table 4: Extended experiments with average accuracy, standard deviation (SD), and training time cost (minutes)
 450 on COIL-20 image data. Merely 30% samples in the training set are labeled.

451 Models	ℓ_1 -SVM	SpAM	CSAM	TSpAM	LapSVM	f-FME	AWSSL	RGL	SALE	SSNP	RER	SemiReward	S^2MAM
452 Accuracy	67.329	69.917	73.577	72.230	81.092	85.518	86.821	83.416	87.235	83.370	85.219	87.518	88.211
453 SD	0.583	0.709	0.622	0.616	0.417	0.408	0.430	0.527	0.616	0.429	0.452	0.397	0.427
454 Time Cost	0.2	0.9	2.3	2.5	0.6	1.5	2.7	3.1	2.2	4.1	1.8	7.4	2.4

455 $x_i^{(j)} = (W_{ij} + U_i)/2$. W_{ij} and U_i are independently from $U(0, 1)$ for $i = 1, \dots, 200$, $j = 1, \dots, 100$. The category label satisfies $y_i = 0$ when $f(x_i) \leq 0$ and 1 otherwise. After equally
 456 dividing the entire dataset into training and testing sets, 5% samples for each class from the training
 457 set are randomly selected as the labeled set. As present in Table 2, both irrelevant and noisy features
 458 are harmful. Fortunately, even with irrelevant and noisy information, S^2MAM still exhibits superior
 459 prediction accuracy and stronger stability with the smallest variance compared to its supervised
 460 or semi-supervised competitors. Moreover, the extended visualization results in Figure 9 help to
 461 demonstrate the interpretability of S^2MAM more effectively.

4.3 EXPERIMENTS ON ADNI AND COIL DATASETS

466 As for the ADNI data, the records of "Fluency" and "ADAS" cognitive scores involving 326 features
 467 are selected as the identification targets. Table 3 demonstrates that S^2MAM enjoys competitive
 468 performance and even stronger robustness against variable corruptions compared to the other baselines,
 469 e.g., average 0.119 lower MSE on "ADAS" score with 20% labeled samples and 10 noisy features.

470 The following experiments are conducted for classifying the 12th and 13th objects in the COIL-20
 471 image data. Inspired by some supervised (Su et al., 2023) and semi-supervised works (Qiu et al.,
 472 2018; Kang et al., 2020; Bao et al., 2024; Nie et al., 2019; 2021), a practical approach for dealing with
 473 high-dimensional data like COIL images is to extract the variable vectors first. As stated in *Appendix E*,
 474 a CNN is utilized to learn the vectors for each image, which realizes a rough dimensional reduction.
 475 However, this may not remove those irrelevant or even noisy variables (Nie et al., 2019; 2021). From
 476 the results in Table 4 above, S^2MAM provides competitive and robust prediction performance. See
 477 Tables 12-18 for results on noisy COIL, CelebA-HQ and AgeDB images with pixel-level corruptions.

5 CONCLUSION

481 This paper proposes a semi-supervised meta additive model, called S^2MAM , to enhance the robustness
 482 and interpretability of manifold regularization (Belkin et al., 2006) in settings with redundant and
 483 noisy input variables. Compared with existing SSL models with manifold regularization (Nie et al.,
 484 2019; Bao et al., 2024) and deep SSL models (Li et al., 2024; Jo et al., 2024), the proposed approach
 485 is capable of achieving variable selection, interpretability, and robust estimation simultaneously.
 Theoretical and empirical evaluations verify its superiority over some state-of-the-art learning models.

486 ETHICS STATEMENTS
487488 This research does not raise any ethical concerns. The study exclusively involved the analysis of
489 publicly available data sets and published literature, which did not contain any personally identifiable
490 information. No human participants, animals, or sensitive data were involved in this research. All
491 sources are properly cited in accordance with academic standards. The authors confirm that this work
492 was conducted in accordance with the principles of academic integrity and research ethics.494 REPRODUCIBILITY STATEMENT
495496 We ensure full reproducibility by publicly releasing relevant materials, code, and data resources. All
497 results were generated using fixed computational resources detailed in Section 4 and Appendices B-E.
498 This enables independent verification of the findings of this research.500 REFERENCES
501502 Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Caruana,
503 and Geoffrey E Hinton. Neural additive models: Interpretable machine learning with neural nets.
504 *Advances in Neural Information Processing Systems (NeurIPS)*, 34:4699–4711, 2021.505 David Azriel, Lawrence D Brown, Michael Sklar, Richard Berk, Andreas Buja, and Linda Zhao.
506 Semi-supervised linear regression. *Journal of the American Statistical Association*, 117(540):
507 2238–2251, 2022.509 Jiaqi Bao, Mineichi Kudo, Keigo Kimura, and Lu Sun. Robust embedding regression for semi-
510 supervised learning. *Pattern Recognition*, 145:109894, 2024.511 Heinz H Bauschke, Sarah M Moffat, and Xianfu Wang. Firmly nonexpansive mappings and maximally
512 monotone operators: correspondence and duality. *Set-Valued and Variational Analysis*, 20:131–
513 153, 2012.515 Mikhail Belkin and Partha Niyogi. Semi-supervised learning on riemannian manifolds. *Machine
516 Learning*, 56:209–239, 2004.517 Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric frame-
518 work for learning from labeled and unlabeled examples. *Journal of Machine Learning Research*, 7
519 (11), 2006.521 Misha Belkin, Partha Niyogi, and Vikas Sindhwani. On manifold regularization. In *International
522 Workshop on Artificial Intelligence and Statistics (AISTAT)*, pp. 17–24. PMLR, 2005.523 Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for continual
524 learning and streaming. *Advances in Neural Information Processing Systems (NeurIPS)*, 33:
525 14879–14890, 2020.527 Kouroche Bouchiat, Alexander Immer, Hugo Yèche, Gunnar Rätsch, and Vincent Fortuin. Improving
528 neural additive models with bayesian principles. 2024.529 Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimization
530 and statistical learning via the alternating direction method of multipliers. *Foundations and
531 Trends® in Machine learning*, 3(1):1–122, 2011.533 Ying Cao and Di-Rong Chen. Consistency of regularized spectral clustering. *Applied and
534 Computational Harmonic Analysis*, 30(3):319–336, 2011.535 Ying Cao and DiRong Chen. Generalization errors of laplacian regularized least squares regression.
536 *Science China Mathematics*, 55:1859–1868, 2012.538 Taylan Cemgil, Sumedh Ghaisas, Krishnamurthy Dvijotham, Sven Gowal, and Pushmeet Kohli. The
539 autoencoding variational autoencoder. *Advances in Neural Information Processing Systems*, 33:
15077–15087, 2020.

540 Hong Chen, Yingjie Wang, Feng Zheng, Cheng Deng, and Heng Huang. Sparse modal additive
 541 model. *IEEE Transactions on Neural Networks and Learning Systems*, 2020.

542

543 Xiaojun Chen, Guowen Yuan, Feiping Nie, and Zhong Ming. Semi-supervised feature selection via
 544 sparse rescaled linear square regression. *IEEE Transactions on Knowledge and Data Engineering*,
 545 32(1):165–176, 2018.

546

547 Xiuyuan Cheng and Hau-Tieng Wu. Convergence of graph laplacian with knn self-tuned kernels.
 548 *Information and Inference: A Journal of the IMA*, 11(3):889–957, 2022.

549

550 Michael Chichignoud, Johannes Lederer, and Martin J Wainwright. A practical scheme and fast
 551 algorithm to tune the lasso with optimality guarantees. *Journal of Machine Learning Research*, 17
 552 (229):1–20, 2016.

553

554 Andreas Christmann and Robert Hable. Consistency of support vector machines using additive
 555 kernels for additive models. *Computational Statistics and Data Analysis*, 56(4):854–873, 2012.

556

557 Andreas Christmann and Ding-Xuan Zhou. Learning rates for the risk of kernel-based quantile
 558 regression estimators in additive models. *Analysis and Applications*, 14(03):449–477, 2016.

559

560 Tianshu Chu, Dachuan Xu, Wei Yao, and Jin Zhang. Spaba: A single-loop and probabilistic stochastic
 561 bilevel algorithm achieving optimal sample complexity. *arXiv preprint arXiv:2405.18777*, 2024.

562

563 Mark Culp. On propagated scoring for semisupervised additive models. *Journal of the American
 564 Statistical Association*, 106(493):248–259, 2011.

565

566 Mark Culp and George Michailidis. An iterative algorithm for extending learners to a semi-supervised
 567 setting. *Journal of Computational and Graphical Statistics*, 17(3):545–571, 2008.

568

569 Mark Culp, George Michailidis, and Kjell Johnson. On multi-view learning with additive models.
 570 *The Annals of Applied Statistics*, 3(1):292 – 318, 2009.

571

572 Arnak S Dalalyan, Mohamed Hebiri, and Johannes Lederer. On the prediction performance of the
 573 lasso. *Bernoulli*, 23(1):552–581, 2017.

574

575 Siyi Deng, Yang Ning, Jiwei Zhao, and Heping Zhang. Optimal and safe estimation for high-
 576 dimensional semi-supervised learning. *Journal of the American Statistical Association*, pp. 1–23,
 577 2023.

578

579 Vu C Dinh and Lam S Ho. Consistent feature selection for analytic deep neural networks. *Advances
 580 in Neural Information Processing Systems*, 33:2420–2431, 2020.

581

582 Viet Duong, Qiong Wu, Zhengyi Zhou, Hongjue Zhao, Chenxiang Luo, Eric Zavesky, Huaxiu Yao,
 583 and Huajie Shao. Cat: Interpretable concept-based taylor additive models. In *Proceedings of the
 584 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 723–734, 2024.

585

586 Yunlong Feng. New insights into learning with correntropy-based regression. *Neural Computation*,
 587 33(1):157–173, 2021.

588

589 Yunlong Feng and Qiang Wu. A statistical learning assessment of huber regression. *Journal of
 590 Approximation Theory*, 273:105660, 2022.

591

592 Jerome H Friedman. Regularized discriminant analysis. *Journal of the American statistical
 593 association*, 84(405):165–175, 1989.

594

595 Jerome H Friedman. Multivariate adaptive regression splines. *The Annals of Statistics*, 19(1):1–67,
 596 1991.

597

598 Bo Geng, Dacheng Tao, Chao Xu, Linjun Yang, and Xian-Sheng Hua. Ensemble manifold regu-
 599 larization. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 34(6):1227–1233,
 600 2012.

601

602 Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. *arXiv preprint
 603 arXiv:1802.02246*, 2018.

594 Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. When do neural
 595 networks outperform kernel methods? *Advances in Neural Information Processing Systems*, 33:
 596 14820–14830, 2020.

597 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 598 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in Neural Information
 599 Processing Systems (NeurIPS)*, 27, 2014.

600 Zheng Chu Guo and Ding Xuan Zhou. Concentration estimates for learning with unbounded sampling.
 601 *Advances in Computational Mathematics*, 38(1):207–223, 2013.

602 Asad Haris, Noah Simon, and Ali Shojaie. Generalized sparse additive models. *The Journal of
 603 Machine Learning Research*, 23(1):3035–3090, 2022.

604 Trevor Hastie, Robert Tibshirani, Jerome Friedman, et al. The elements of statistical learning, 2009.

605 Trevor J. Hastie and Robert J. Tibshirani. *Generalized additive models*. London: Chapman and Hall,
 606 1990.

607 Neal Jean, Sang Michael Xie, and Stefano Ermon. Semi-supervised deep kernel learning: Regression
 608 with unlabeled data by minimizing predictive variance. *Advances in Neural Information Processing
 609 Systems (NeurIPS)*, 31, 2018.

610 Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced
 611 design. In *International Conference on Machine Learning (ICML)*, pp. 4882–4892, 2021.

612 Yongwon Jo, Hyungu Kahng, and Seoung Bum Kim. Deep semi-supervised regression via pseudo-
 613 label filtering and calibration. *Applied Soft Computing*, 161:111670, 2024.

614 Rie Johnson and Tong Zhang. On the effectiveness of laplacian normalization for graph semi-
 615 supervised learning. *Journal of Machine Learning Research*, 8(7), 2007.

616 Rie Johnson and Tong Zhang. Graph-based semi-supervised learning and spectral kernel design.
 617 *IEEE Transactions on Information Theory*, 54(1):275–288, 2008.

618 Zhao Kang, Haiqi Pan, Steven CH Hoi, and Zenglin Xu. Robust graph learning from noisy data.
 619 *IEEE Transactions on Cybernetics*, 50(5):1833–1843, 2020.

620 Avisek Lahiri, Biswajit Paria, and Prabir Kumar Biswas. Forward stagewise additive model for
 621 collaborative multiview boosting. *IEEE Transactions on Neural Networks and Learning Systems*,
 622 29(2):470–485, 2016.

623 Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. Maskgan: Towards diverse and interactive
 624 facial image manipulation. In *Proceedings of the IEEE/CVF conference on computer vision and
 625 pattern recognition*, pp. 5549–5558, 2020.

626 Siyuan Li, Weiyang Jin, Zedong Wang, Fang Wu, Zicheng Liu, Cheng Tan, and Stan Z Li. Semire-
 627 ward: A general reward model for semi-supervised learning. In *12th International Conference on
 628 Learning Representations, ICLR 2024*, 2024.

629 Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. Bome! bilevel optimization made easy:
 630 A simple first-order approach. In *Advances in Neural Information Processing Systems (NeurIPS)*,
 631 pp. 17248–17262, 2022a.

632 Chao Liu and Di-Rong Chen. Generalization error bound of semi-supervised learning with ℓ_1
 633 regularization in sum space. *Neurocomputing*, 275:1793–1800, 2018.

634 Wei Liu, Jiasheng Fu, Yanchun Liang, Mengchen Cao, and Xiaosong Han. A well-overflow prediction
 635 algorithm based on semi-supervised learning. *Energies*, 15(12):4324, 2022b.

636 Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters
 637 by implicit differentiation. In *International conference on Artificial Intelligence and Statistics
 638 (AISTAT)*, pp. 1540–1552. PMLR, 2020.

648 Xiangkui Lu, Jun Wu, Junheng Huang, Fangyuan Luo, and Jianbo Yuan. Co-training-teaching:
 649 A robust semi-supervised framework for review-aware rating regression. *ACM Transactions on*
 650 *Knowledge Discovery from Data*, 18(2):1–16, 2023.

651 Shaogao Lv, Huazhen Lin, Heng Lian, and Jian Huang. Oracle inequalities for sparse additive
 652 quantile regression in reproducing kernel hilbert space. *The Annals of Statistics*, 46(2):781–813,
 653 2018.

654 Xiaoyi Mai and Romain Couillet. Consistent semi-supervised graph regularization for high dimen-
 655 sional data. *Journal of Machine Learning Research*, 22(94):1–48, 2021.

656 Lukas Meier, Sara Van De Geer, and Peter Buhlmann. High-dimensional additive modeling. *The*
 657 *Annals of Statistics*, 37(6B):3779–3821, 2009.

658 Zhaoshi Meng, Brian Eriksson, and Al Hero. Learning latent variable gaussian graphical models. In
 659 *International Conference on Machine Learning*, pp. 1269–1277. PMLR, 2014.

660 Stylianos Moschoglou, Athanasios Papaioannou, Christos Sagonas, Jiankang Deng, Irene Kotsia, and
 661 Stefanos Zafeiriou. Agedb: the first manually collected, in-the-wild age database. In *proceedings*
 662 of the IEEE conference on computer vision and pattern recognition workshops, pp. 51–59, 2017.

663 Sayan Mukherjee, Ding-Xuan Zhou, and John Shawe-Taylor. Learning coordinate covariances via
 664 gradients. *Journal of Machine Learning Research*, 7(3), 2006.

665 Feiping Nie, Dong Xu, Ivor Wai-Hung Tsang, and Changshui Zhang. Flexible manifold embedding:
 666 A framework for semi-supervised and unsupervised dimension reduction. *IEEE Transactions on*
 667 *Image Processing*, 19(7):1921–1932, 2010.

668 Feiping Nie, Shaojun Shi, and Xuelong Li. Semi-supervised learning with auto-weighting feature
 669 and adaptive graph. *IEEE Transactions on Knowledge and Data Engineering*, 32(6):1167–1178,
 670 2019.

671 Feiping Nie, Zheng Wang, Rong Wang, and Xuelong Li. Adaptive local embedding learning for semi-
 672 supervised dimensionality reduction. *IEEE Transactions on Knowledge and Data Engineering*, 34
 673 (10):4609–4621, 2021.

674 Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In *International*
 675 *Conference on Machine Learning (ICML)*, pp. 737–746. PMLR, 2016.

676 Suo Qiu, Feiping Nie, Xiangmin Xu, Chunmei Qing, and Dong Xu. Accelerating flexible manifold
 677 embedding for scalable semi-supervised learning. *IEEE Transactions on Circuits and Systems for*
 678 *Video Technology*, 29(9):2786–2795, 2018.

679 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. *Advances in*
 680 *Neural Information Processing Systems (NeurIPS)*, 20, 2007.

681 Garvesh Raskutti, Martin J. Wainwright, and B Yu. Minimax-optimal rates for sparse additive
 682 models over kernel classes via convex programming. *Journal of Machine Learning Research*, 13
 683 (2):389–427, 2012.

684 Pradeep Ravikumar, Han Liu, John Lafferty, and Larry Wasserman. SpAM: sparse additive models.
 685 *Journal of the Royal Statistical Society: Series B*, 71:1009–1030, 2009.

686 Zhongzheng Ren, Raymond Yeh, and Alexander Schwing. Not all unlabeled data are equal: Learning
 687 to weight data in semi-supervised learning. *Advances in Neural Information Processing Systems*,
 688 33:21786–21797, 2020.

689 Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding.
 690 *Science*, 290(5500):2323–2326, 2000.

691 Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use
 692 interpretable models instead. *Nature machine intelligence*, 1(5):206–215, 2019.

693 Lei Shi. Learning theory estimates for coefficient-based regularized regression. *Applied and*
 694 *Computational Harmonic Analysis*, 34(2):252–265, 2013.

702 Lei Shi, Yun Long Feng, and Ding Xuan Zhou. Concentration estimates for learning with ℓ_1 -
 703 regularizer and data dependent hypothesis spaces. *Applied and Computational Harmonic Analysis*,
 704 31(2):286–302, 2011.

705

706 Lei Shi, Xiaolin Huang, Yunlong Feng, and Johan A.K. Suykens. Sparse kernel regression with
 707 coefficient-based ℓ_q -regularization. *Journal of Machine Learning Research*, 20(161):1–44, 2019.

708

709 Jun Shu, Xiang Yuan, Deyu Meng, and Zongben Xu. Cmw-net: Learning a class-aware sample
 710 weighting mapping for robust deep learning. *IEEE Transactions on Pattern Analysis and Machine*

711 *Intelligence*, pp. 1–17, 2023.

712

713 Steve Smale and Ding-Xuan Zhou. Learning theory estimates via integral operators and their
 approximations. *Constructive Approximation*, 26(2):153–172, 2007.

714

715 Alexander J Smola and Bernhard Schölkopf. *Learning with kernels*, volume 4. Citeseer, 1998.

716

717 Ingo Steinwart and Andreas Christmann. *Support Vector Machines*. Springer Science and Business
 Media, 2008.

718

719 Ingo Steinwart, Don Hush, and Clint Scovel. Optimal rates for regularized least squares regression.
 720 In *Annual Conference on Learning Theory (COLT)*, 2009.

721

722 Charles J. Stone. Additive regression and other nonparametric models. *The Annals of Statistics*, 13
 (2):689–705, 1985.

723

724 Han Su, Panxu Yuan, Qingyang Sun, Mengxi Yi, and Gaorong Li. Stab-gknock: Controlled variable
 725 selection for partially linear models using generalized knockoffs. *arXiv preprint arXiv:2311.15982*,
 726 2023.

727

728 Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical
 Society, Series B*, 73(3):267–288, 1994.

729

730 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine
 learning research*, 9(11), 2008.

731

732 Jesper E Van Engelen and Holger H Hoos. A survey on semi-supervised learning. *Machine Learning*,
 109(2):373–440, 2020.

733

734 Jianfeng Wang, Thomas Lukasiewicz, Daniela Massiceti, Xiaolin Hu, Vladimir Pavlovic, and
 735 Alexandros Neophytou. Np-match: When neural processes meet semi-supervised learning. In
 736 *International Conference on Machine Learning*, pp. 22919–22934. PMLR, 2022a.

737

738 Junxiang Wang and Liang Zhao. Convergence and applications of admm on the multi-convex
 739 problems. In *Pacific-Asia Conference on Knowledge Discovery and Data Mining*, pp. 30–43.
 740 Springer, 2022.

741

742 Yingjie Wang, Xin Tang, Hong Chen, Tianjiao Yuan, Yanhong Chen, and Han Li. Sparse additive
 743 machine with pinball loss. *Neurocomputing*, 439:281–293, 2021.

744

745 Yingjie Wang, Xianrui Zhong, Fengxiang He, Hong Chen, and Dacheng Tao. Huber additive models
 746 for non-stationary time series analysis. In *International Conference on Learning Representations
 (ICLR)*, 2022b.

747

748 Yingjie Wang, Hong Chen, Weifeng Liu, Fengxiang He, Teliang Gong, Youcheng Fu, and Dacheng
 749 Tao. Tilted sparse additive models. In *International Conference on Machine Learning (ICML)*,
 750 2023.

751

752 Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative feature learning approach
 753 for deep face recognition. In *European conference on computer vision*, pp. 499–515. Springer,
 2016.

754

755 Qiang Wu, Yiming Ying, and Ding-Xuan Zhou. Multi-kernel regularized classifiers. *Biometrika*, 23:
 108–134, 2007.

756 Quan Xiao, Han Shen, Wotao Yin, and Tianyi Chen. Alternating projected sgd for equality-constrained
 757 bilevel optimization. In *International Conference on Artificial Intelligence and Statistics*, pp. 987–
 758 1023. PMLR, 2023.

759

760 Zebin Yang, Aijun Zhang, and Agus Sudjianto. Gami-net: An explainable neural network based on
 761 generalized additive models with structured interactions. [arXiv:2003.07132](https://arxiv.org/abs/2003.07132), 2020.

762

763 Zhigang Yao and Yuqing Xia. Manifold fitting under unbounded noise. *Journal of Machine Learning
 Research*, 26(45):1–55, 2025.

764

765 Zhigang Yao, Jiaji Su, and Shing-Tung Yau. Manifold fitting with cyclegan. *Proceedings of the
 National Academy of Sciences*, 121(5):e2311436121, 2024.

766

767 Ming Yuan and Ding Xuan Zhou. Minimax optimal rates of estimation in high dimensional additive
 768 models. *The Annals of Statistics*, 44(6):2564–2593, 2016.

769

770 Peipei Yuan, Xinge You, Hong Chen, Yingjie Wang, Qinmu Peng, and Bin Zou. Sparse additive
 771 machine with the correntropy-induced loss. *IEEE Transactions on Neural Networks and Learning
 Systems*, pp. 1–15, 2023.

772

773 Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and Takahiro
 774 Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling.
 775 *Advances in neural information processing systems*, 34:18408–18419, 2021.

776

777 Yihua Zhang, Prashant Khanduri, Ioannis Tsaknakis, Yuguang Yao, Mingyi Hong, and Sijia Liu.
 778 An introduction to bilevel optimization: Foundations and applications in signal processing and
 779 machine learning. *IEEE Signal Processing Magazine*, 41(1):38–59, 2024.

780

781 Qian Zhao, Jun Shu, Xiang Yuan, Ziming Liu, and Deyu Meng. A probabilistic formulation for meta-
 782 weight-net. *IEEE Transactions on Neural Networks and Learning Systems*, 34(3):1194–1208,
 783 2023.

784

785 Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf. Learning
 786 with local and global consistency. *Advances in Neural Information Processing Systems (NeurIPS)*,
 787 16, 2003.

788

789 Xiao Zhou, Renjie Pi, Weizhong Zhang, Yong Lin, Zonghao Chen, and Tong Zhang. Probabilistic
 790 bilevel coreset selection. In *International Conference on Machine Learning (ICML)*, pp. 27287–
 791 27302, 2022.

792

793 Ji Zhu, Saharon Rosset, Robert Tibshirani, and Trevor Hastie. 1-norm support vector machines.
 794 *Advances in Neural Information Processing Systems (NeurIPS)*, 16, 2003a.

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810	CONTENT OF THIS PAPER	
811		
812		
813	1 Introduction	1
814	1.1 Contribution	2
815	1.2 Comparisons with the Related Works	3
816		
817		
818	2 Semi-supervised Additive Models	4
819	2.1 Revisiting Manifold Regularized Sparse Additive Model	4
820	2.2 Discrete Bilevel Framework for S ² MAM	5
821	2.3 Probabilistic Bilevel Framework for S ² MAM	5
822	2.4 Computing Algorithm of S ² MAM	6
823		
824		
825		
826	3 Theoretical Assessments	6
827	3.1 Computing Convergence Analysis	6
828	3.2 Generalization Error Analysis	7
829		
830		
831	4 Experimental Evaluations	8
832	4.1 Baselines and Parameter Selection	8
833	4.2 Experiments on Synthetic Data	8
834	4.3 Experiments on ADNI and COIL Datasets	9
835		
836		
837		
838	5 Conclusion	9
839		
840	A Notations	18
841		
842	B Descriptions for Benchmarks and Baselines	18
843	B.1 Data Description	18
844	B.2 Baselines & Parameter Settings	20
845	B.2.1 Regression Tasks	20
846	B.2.2 Classification Tasks	21
847	B.2.3 Algorithm and Parameter Settings	22
848		
849		
850		
851		
852	C Additional Experiments on Synthetic Data	23
853	C.1 Experiments on Synthetic Data	23
854	C.2 Ablation Analysis	24
855	C.3 Empirical Validation on Sensitivity & Convergence	25
856	C.3.1 Impact of the number of labeled samples	25
857	C.3.2 Impact of regularization coefficients and Gaussian kernel bandwidth	26
858	C.3.3 Impact of selected core size C	27
859	C.3.4 Convergence of upper level problem	27
860		
861		
862		
863		
864	C.4 Interpretability and Visualization	28

864	C.5 Explanation for Toy Example in Figure 1	29
865		
866		
867	D Additional Experiments on UCI dataset	29
868	D.1 Visualized Learning Dynamic Process of S ² MAM	31
869		
870		
871	E Extension to Image Data	31
872	E.1 Pretraining CNN for Feature Extraction	31
873	E.1.1 Details on CNN Structure and Pretraining	32
874	E.1.2 Empirical Validation on the Impact of CNN Preprocess on S ² MAM	32
875	E.2 Time Cost Analysis on Images	32
876	E.3 Comparisons to deep SSL baselines with pixel corruptions	33
877	E.4 Tuning-free Training for Faster Implementation	34
878	E.5 Extensions to Non-convex Tasks	35
879		
880		
881		
882		
883	F Generalization Error Analysis (Proof of Theorem 2)	35
884	F.1 Error Decomposition	35
885	F.2 Bounding Regularization Error $\mathcal{D}(\lambda)$	38
886	F.3 Bounding Sample Error $\mathcal{S}(\mathbf{z}, \lambda)$	40
887	F.3.1 Bounding $\mathcal{S}_1(\mathbf{z}, \lambda)$ in equation 22	41
888	F.3.2 Bounding $\mathcal{S}_2(\mathbf{z}, \lambda)$ in equation 23	42
889	F.4 Bounding Hypothesis Error $\mathcal{H}(\mathbf{z}, \lambda)$	43
890	F.5 Bounding Manifold Error $\mathcal{M}(\mathbf{z}, \lambda)$	45
891	F.6 Proof of Theorem 2	47
892		
893		
894		
895		
896		
897	G Convergence Analysis (Proof of Theorem 1)	48
898		
899	H Optimization Details	50
900	H.1 Discrete Masks \mathbf{m} to Continuous Probability \mathbf{s}	50
901	H.2 Project Optimization from probability \mathbf{s} to domain \mathbf{C}	51
902	H.3 Optimization for upper-level problem	51
903	H.4 Optimization for lower-level problem	52
904	H.5 Analysis on Computation Complexity	53
905		
906		
907		
908		
909	I Impact, Challenges, and Limitations	53
910	I.1 Impact Statement	53
911	I.2 Novelty and Difference to Related Work	53
912	I.2.1 Motivation and Algorithmic Design	53
913	I.3 Core Technical Challenges in Algorithm Design	54
914	I.4 Theoretical Challenges and New Techniques	54
915	I.5 Limitations and Discussions	55
916		
917		

918
919
920
921
922
923
924
925
926
927

Appendix

921

A NOTATIONS

923
Some used notations are summarized in Table 5.924
925
Table 5: Notations

Notations	Descriptions
p	the dimension of the input
\mathcal{X}, \mathcal{Y}	the input space $\mathcal{X} = \{\mathcal{X}^{(1)}, \dots, \mathcal{X}^{(p)}\} \in \mathbb{R}^p$ and the output space $\mathcal{Y} \subset \mathbb{R}$, respectively
ρ	the jointed distribution on $\mathcal{X} \times \mathcal{Y}$
$\rho_{\mathcal{X}}$	the marginal distribution with respect to \mathcal{X} induced by ρ
l/u	the number of labeled / unlabeled samples
$x_i; y_i$	input $x_i = (x_i^{(1)}, \dots, x_i^{(p)})^T \in \mathbb{R}^p$ with $x_i^{(j)} \in \mathcal{X}^{(j)}$; output $y_i \in \mathcal{Y}$
$\mathbf{z}_l; \mathbf{z}_u$	the labeled dataset $\mathbf{z}_l = \{(x_i, y_i)\}_{i=1}^l$; the unlabeled dataset $\mathbf{z}_u = \{x_i\}_{i=l+1}^{l+u}$
\mathcal{H}	the hypothesis space $\mathcal{H} = \left\{ f = \sum_{j=1}^p f^{(j)} : f^{(j)} \in \mathcal{H}_{K^{(j)}}, 1 \leq j \leq p \right\}$
$\mathcal{H}_{K^{(j)}}$	the RKHS associated with Mercer kernel $K^{(j)}$ defined on $\mathcal{X}^{(j)} \times \mathcal{X}^{(j)}$, $j \in \{1, \dots, p\}$
$L_{K^{(j)}}$	integral operator $L_{K^{(j)}} : L_2(\rho(\mathcal{X}^{(j)})) \rightarrow L_2(\rho(\mathcal{X}^{(j)}))$ based on the square-integrable space L_2
$L_{K^{(j)}}^r$	the r -power of $L_{K^{(j)}}$ associated with feature $\mathcal{X}^{(j)}$ and kernel $K^{(j)}$
$f(\cdot)$	the prediction function of supervised additive models in RKHS where
	$f(\cdot) = \sum_{j=1}^p \sum_{i=1}^l \alpha_i^{(j)} K_i^{(j)}(x_i^{(j)}, \cdot)$
f^*	the ground truth function
\mathbf{f}	the prediction vector $\mathbf{f} = (f(x_1), \dots, f(x_{l+u}))^T$, associated with \mathbf{z}_l and \mathbf{z}_u
$f_{\mathbf{z}}$	the empirical decision function of manifold regularized additive model
τ_j	the weight of j -th variable
α	the coefficient of the lower level additive model
\mathbf{W}	the similarity matrix for SSL tasks
$\mathbf{D}; \mathbf{L}$	the diagonal matrix $D_{ii} = \sum_{j=1}^{l+u} W_{ij}$; the graph Laplacian $\mathbf{L} = \mathbf{D} - \mathbf{W}$
\mathbf{m}	the variable mask vector $\mathbf{m} \in \{0, 1\}^p$
\mathbf{s}	the vector $\mathbf{s} = (s_1, \dots, s_p)$ where s_i stands for the probability of $m_i = 1$

951
952

B DESCRIPTIONS FOR BENCHMARKS AND BASELINES

953
954
955
In this paper, we select 4 synthetic datasets and 12 real-world datasets for our experiments. Indeed,
956
these datasets have been widely used for validating additive models (Ravikumar et al., 2009; Lahiri
957
et al., 2016; Chen et al., 2020; Wang et al., 2023) or semi-supervised learning models (Jean et al.,
958
2018; Qiu et al., 2018; Nie et al., 2019; 2021; Bao et al., 2024). We briefly summarize the datasets
959
used and some learning methods for baselines as follows.960
961

B.1 DATA DESCRIPTION

962
963
Denote N and p ($p = p^* + p_u + p_n$) as the total number of samples and the dimensions in each
964
dataset, where the training set involves l labeled data and u unlabeled data, and the remaining samples
965
are left for testing. We generate p_u uninformative variables and p_n noisy variables, which are added
966
into the truly informative variables p^* from all samples within the dataset (including the training and
967
testing sets).968
The 16 datasets used in this paper include:969
970
971
• (1) Friedman data for regression. The corresponding generation function is provided in
the experiment section, which involves 200 samples, $p^* = 5$ true informative features,
and $p_u = 95$ uninformative features following $\mathcal{N}(0, 1)$. And $p_n = 10$ noisy features in

972
973
974
 $\mathcal{N}(100, 100)$ are also considered to highlight the robustness better. Denote ϵ as the Gaussian
noise $\mathcal{N}(0, 1)$, the output y is generated by

975
976
$$f(X) = 10 \sin(\pi X^{(1)} X^{(2)}) + 20 (X^{(3)} - 0.5)^2 + 10X^{(4)} + 5X^{(5)} + \epsilon.$$

977
978
979
• (2) Synthetic additive data for regression. It involves $N = 200$ samples, $p^* = 8$ true
informative features, and $p_u = 92$ uninformative features. We also consider adding $p_n = 10$
noisy features following $\mathcal{N}(100, 100)$ into the whole dataset,

980
981
982
$$Y = f^*(X) + \epsilon = \sum_{j=1}^8 f^{(j)}(X^{(j)}) + \epsilon, \quad (9)$$

983
984
985
986
987
988
where $f^{(1)}(u) = -2 \sin(2u)$, $f^{(2)}(u) = 8u^2$, $f^{(3)}(u) = \frac{7 \sin u}{2 - \sin u}$, $f^{(4)}(u) =$
 $6e^{-u}$, $f^{(5)}(u) = u^3 + \frac{3}{2}(u - 1)^2$, $f^{(6)}(u) = 5u$, $f^{(7)}(u) =$
 $10 \sin(e^{-u/2})$, $f^{(8)}(u) = -10\tilde{\phi}(u, \frac{1}{2}, \frac{4}{5}u^2)$. Notably, to validate the additive
models on testing sets, the Gram matrices or new splined features for the testing sets must be
generated.

989
990
991
• (3) Synthetic additive data for classification. It involves $N = 200$ samples, $p^* = 2$
informative features, $p_u = 98$ uninformative redundant features following $\mathcal{N}(0, 1)$ and
 $p_n = 10$ noisy features following $\mathcal{N}(100, 100)$, and the output

992
993
$$f^*(x_i) = (x_i^{(1)} - 0.5)^2 + (x_i^{(2)} - 0.5)^2 - 0.08,$$

994
995
996
997
where $x_i^{(j)} = (W_{ij} + U_i)/2$. W_{ij} and U_i are independently from $U(0, 1)$ for $i = 1, \dots, 200$,
 $j = 1, \dots, 100$. The label satisfies $y_i = 0$ when $f(x_i) \leq 0$ and 1 otherwise. This synthetic
data for classification has been widely used in some existing research for evaluating the
performance of additive models (Chen et al., 2020; Wang et al., 2023)

998
999
1000
1001
• (4) Synthetic Moon data for classification. It involves two classes with a total of 200 samples,
 $p^* = 2$ informative features, p_u = uninformative, redundant features, and p_n = additional,
noisy features. This data has been widely used for estimating the model's capability for
correctly identifying different categories (Qiu et al., 2018; Nie et al., 2019; 2021).
1002
1003
1004
• (5) Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset for regression. To better
highlight the robustness in real-world applications, the ADNI (<https://adni.loni.usc.edu/>)
dataset (795 instances, $p = 326$) is also considered.
1005
1006
1007
1008
• Four datasets from the UCI repository for regression.

1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
(6) Buzz prediction on the Twitter dataset for regression. It involves a total of 38,393
samples, $p^* = 77$ original features, and additional $p_n = 10$ noisy features. This dataset helps
to predict the mean number of active discussions.

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
180100
180101
180102
180103
180104
180105
180106
180107
180108
180109
180110
180111
180112
180113
180114
180115
180116
180117
180118
180119
180120
180121
180122
180123
180124
180125
180126
180127
180128
180129
180130
180131
180132
180133
180134
180135
180136
180137
180138
180139
180140
180141
180142
180143
180144
180145
180146
180147
180148
180149
180150
180151
180152
180153
180154
180155
180156
180157
180158
180159
180160
180161
180162
180163
180164
180165
180166
180167
180168
180169
180170
180171
180172
180173
180174
180175
180176
180177
180178
180179
180180
180181
180182
180183
180184
180185
180186
180187
180188
180189
180190
180191
180192
180193
180194
180195
180196
180197
180198
180199
180200
180201
180202
180203
180204
180205
180206
180207
180208
180209
180210
180211
180212
180213
180214
180215
180216
180217
180218
180219
180220
180221
180222
180223
180224
180225
180226
180227
180228
180229
180230
180231
180232
180233
180234
180235
180236
180237
180238
180239
180240
180241
180242
180243
180244
180245
180246
180247
180248
180249
180250
180251
180252
180253
180254
180255
180256
180257
180258
180259
180260
180261
180262
180263
180264
180265
180266
180267
180268
180269
180270
180271
180272
180273
180274
180275
180276
180277
180278
180279
180280
180281
180282
180283
180284
180285
180286
180287
180288
180289
180290
180291
180292
180293
180294
180295
180296
180297
180298
180299
180300
180301
180302
180303
180304
180305
180306
180307
180308
180309
180310
180311
180312
180313
180314
180315
180316
180317
180318
180319
180320
180321
180322
180323
180324
180325
180326
180327
180328
180329
180330
180331
180332
180333
180334
180335
180336
180337
180338
180339
180340
180341
180342
180343
180344
180345
180346
180347
180348
180349
180350
180351
180352
180353
180354
180355
180356
180357
180358
180359
180360
180361
180362
180363
180364
180365
180366
180367
180368
180369
180370
180371
180372
180373
180374
180375
180376
180377
180378
180379
180380
180381
180382
180383
180384
180385
180386
180387
180388
180389
180390
180391
180392
180393
180394
180395
180396
180397
180398
180399
180400
180401
180402
180403
180404
180405
180406
180407
180408
180409
180410
180411
180412
180413
180414
180415
180416
180417
180418
180419
180420
180421
180422
180423
180424
180425
180426
180427
180428
180429
180430
180431
180432
180433
180434
180435
180436
180437
180438
180439
180440
180441
180442
180443
180444
180445
180446
180447
180448
180449
180450
180451
180452
180453
180454
180455
180456
180457
180458
180459
180460
180461
180462
180463
180464
180465
180466
180467
180468
180469
180470
180471
180472
180473
180474
180475
180476
180477
180478
180479
180480
180481
180482
180483
180484
180485
180486
180487
180488
180489
180490
180491
180492
180493
180494
180495
180496
180497
180498
180499
180500
180501
180502
180503
180504
180505
180506
180507
180508
180509
180510
180511
180512
180513
180514
180515
180516
180517
180518
180519
180520
180521
180522
180523
180524
180525
180526
180527
180528
180529
180530
180531
180532
180533
180534
180535
180536
180537
180538
180539
180540
180541
180542
180543
180544
180545
180546
180547
180548
180549
180550
180551
180552
180553
180554
180555
180556
180557
180558
180559
180560
180561
180562
180563
180564
180565
180566
180567
180568
180569
180570
180571
180572
180573
180574
180575
180576
180577
180578
180579
180580
180581
180582
180583
180584
180585
180586
180587
180588
180589
180590
180591
180592

1026 (13) Statlog (Heart) dataset for classification. It involves $N = 270$ instances with $p^* = 13$
 1027 input features. Noisy features are further added for comparison.
 1028

- 1029 • Three image datasets for classification or regression.
 1030 (14) The image data from the COIL20 image library, which initially contains 20 objects,
 1031 is used for classification. For simplicity, the 12th and 13th digits are selected, where there
 1032 are $N = 72$ instances for each digit and $p^* = 16384$ original features (gray images with a
 1033 size of 128×128). This dataset has been used for evaluating the prediction performance of
 1034 semi-supervised learning models on feature reduction (Nie et al., 2019; 2021).
 1035 (15) CelebA-HQ images, which were initially derived from the original CelebA, are used
 1036 for classification. For simplicity, the 12th and 13th digits are selected, where there are
 1037 $N = 30,000$ instances for each digit and $p^* = 262,144$ original features (with a size of
 1038 512×512).
 1039 (16) AgeDB is a specialized facial image dataset that comprises over $N = 16,000$ high-
 1040 quality facial images of 568 distinct subjects, with each subject represented across a signifi-
 1041 cant age span (averaging 13.0 years between the youngest and oldest images per identity).
 1042 All photos are standardized to a uniform resolution of 224×224 pixels ($p^* = 50,176$),
 1043 ensuring consistency for model training and evaluation.

1044 The above real-world datasets have undergone preliminary data cleaning, where those entries with
 1045 empty values are filled with mean values, or even removed when significant features are missing
 1046 (ratio of missing features $\geq 20\%$).

1047 B.2 BASELINES & PARAMETER SETTINGS

1049 B.2.1 REGRESSION TASKS

1051 The baselines for regression tasks include:

- 1053 • (1) Lasso (Tibshirani, 1994), is a type of supervised linear regression model that is used for
 1054 variable selection with sparsity-induced regularization. The regularization parameter λ is
 1055 tuned across $[10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1]$.
 1056 • (2) SpAM (Ravikumar et al., 2009), is an additive supervised nonparametric model for
 1057 high-dimensional nonparametric regression and classification tasks. The regularization
 1058 parameter λ is tuned across $[10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1]$.
 1059 • (3) DAN (Dinh & Ho, 2020) is designed to identify a subset of relevant features in deep
 1060 learning models. The core technology employs the adaptive group Lasso selection procedure,
 1061 with group Lasso serving as the base estimator, which has been demonstrated to be selection-
 1062 consistent for a broad class of networks.
 1063 • (4) LapRLS (Belkin et al., 2006), learns a semi-supervised linear model using the labeled
 1064 data by minimizing a regularized least squares objective function. The regularization term
 1065 incorporates the graph Laplacian matrix, which captures the assumption of smoothness,
 1066 where similar points are expected to have similar labels. The regularization parameters λ_1
 1067 and λ_2 are both tuned across $[10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1]$.
 1068 • (5) Variational autoencoder (VAE) (Goodfellow et al., 2014), is designed as a semi-
 1069 supervised generative model by first learning an unsupervised embedding of the data and
 1070 then using the embeddings as input to a supervised multilayer perceptron.
 1071 • (6) Co-training regressor (COREG) (Lu et al., 2023), is a co-training algorithm for regression
 1072 tasks that uses two k -NN regressors with different distance metrics. During the training
 1073 process, each regressor generates labels for the other.
 1074 • (7) Semi-supervised deep kernel learning (SSDKL) (Jean et al., 2018), is a semi-supervised
 1075 regression model based on minimizing predictive variance in the posterior regularization
 1076 framework. It combines the hierarchical learning of networks with the probabilistic modeling
 1077 capabilities of Gaussian processes.
 1078 • (8) Pseudo-label filtering (PLF) (Jo et al., 2024) is a novel semi-supervised regression
 1079 framework for extending SSL methodologies beyond classification tasks. It first filters
 unreliable pseudo-labels through uncertainty estimation and then refines the remaining

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

pseudo-labels through similarity-based information propagation from labeled to unlabeled examples.

- (9) SemiReward (Li et al., 2024) is a general and pluggable reward framework designed for semi-supervised learning that evaluates and selects high-quality pseudo-labels to enhance both performance and convergence speeds of self-training techniques. SemiReward implements an efficient two-stage training pipeline assisted by a generator network and a lightweight rewarder network.

For fairness, a network with a $[d - 100 - 50 - 50 - 2]$ structure is employed here for the downstream regression task. Following (Jean et al., 2018), the same base network is shared for all deep semi-supervised models, including VAE and SSDKL. The learning rates for the neural network and the Gaussian process are 10^{-3} and 10^{-1} , respectively. The training process of VAE, COREG, and SSDKL follows the settings in (Jean et al., 2018). Besides, the bandwidth μ for the Gaussian similarity function ($W_{ij} = \exp\{-\|x_i - x_j\|_2^2/\mu^2\}$) is also tuned across $[10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1]$ for all SSL methods for computing the similarity and Laplacian matrices. Notice that the similarity matrix for S²MAM is calculated by $W_{ij} = \exp\{-\|x_i \odot \mathbf{m} - x_j \odot \mathbf{m}\|_2^2/\mu^2\}$ with learned mask \mathbf{m} , $i, j \in \{1, 2, \dots, l+u\}$. In practice, the proportion of labeled points in a single batch is consistent with the settings in the whole training set to avoid empty labeled sets or inconsistency among each batch.

Notably, both PLF and SemiReward are designed with specific modules, such as generative networks, for processing images. Thus, they are adopted in the experiments on COIL-20, CelebA-HQ, and AgeDB images in this paper, rather than the synthetic tubular data or the UCI datasets.

B.2.2 CLASSIFICATION TASKS

The baselines for classification tasks include:

- (10) ℓ_1 -SVM (Zhu et al., 2003a), is a supervised classification model with ℓ_1 sparse regularization based on the classical SVM. The regularization parameter λ is tuned across $[10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1]$.
- (11) SpAM (induced by logistic loss) (Ravikumar et al., 2009), is equipped with logistic loss for classification, which has been introduced above. Its regularization parameter λ is tuned across $[10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1]$.
- (12) LapSVM (Belkin et al., 2006), utilizes the concept of the graph Laplacian, which captures the underlying manifold structure of the data. The objective of LapSVM is to find a decision boundary that not only separates the labeled data accurately but also respects the smoothness assumption captured by the graph Laplacian. The regularization parameters λ_1 and λ_2 are both tuned across $[10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1]$.
- (13) f-FME (Qiu et al., 2018) is an improved version of classical flexible manifold embedding (FME) that employs additional anchor graphs to reduce the time cost and computational burden of FME.
- (14) AWSSL (Nie et al., 2019), is a semi-supervised learning model that constructs an adaptive graph for propagating label information and using special strategies for ranking the importance of variables. An auto-weighting matrix is learned to select informative variables from both labeled and unlabeled data.
- (15) RGL (Kang et al., 2020) constructs a graph from the pristine data derived from restored technology, subsequently utilizing this resilient graph to improve the performance of semi-supervised classification tasks.
- (16) SALE (Nie et al., 2021) merges the processes of adaptive graph formation and label dissemination into a singular optimization framework, simultaneously developing an automatic weighting matrix that discerns and emphasizes significant variables across the entire dataset.
- (17) CSAM (Yuan et al., 2023) utilizes a robust error metric based on the statistical correntropy measure, which yields a robust additive model for classification with noisy labels.
- (18) TSpAM (Wang et al., 2023) constructs a robust additive model based on the tilted empirical risk. It's capable of robust estimation and imbalanced classification. Notably, an efficient random Fourier features approach is used to accelerate the kernel-based computation.

1134
1135 **Algorithm 1:** Computing Procedure for S²MAM
1136 **Input:** Labeled data $\mathbf{z}_l = \{(x_i, y_i)\}_{i=1}^l$, unlabeled data $\mathbf{z}_u = \{x_i\}_{i=l+1}^{l+u}$, step size η^t , core size
1137 $C, \mathbf{1} = (1, \dots, 1) \in \mathbb{R}^p$.
1138 **Initialization:** $\alpha^0, \mathbf{s}^0 = \frac{C}{p} \cdot \mathbf{1}, \mathbf{m}^0, \mathbf{L}^0$.
1139 **for** $t = 1$ to T **do**
1140 1) Update α^t based on Step 1 with \mathbf{z}_l & \mathbf{z}_u
1141 2) Update \mathbf{s}^t based on Step 2 with \mathbf{z}_l
1142 3) Update \mathbf{m}^t sampled from $p(\mathbf{m}|\mathbf{s}^t)$
1143 4) Update \mathbf{L}^t based on Step 3 with \mathbf{z}_l & \mathbf{z}_u
1144 **end for**
1145 **Output:** Decision function \hat{f} .

1146
1147
1148
1149 • (19) SSNP (Wang et al., 2022a) integrates neural processes with semi-supervised learning
1150 for image classification tasks. The innovation lies in adapting NPs, a probabilistic model
1151 that approximates Gaussian Processes, to the SSL framework. The CNN structure is slightly
1152 modified to satisfy 1D value-based inputs.
1153
1154 • (20) Robust Embedding Regression (RER) (Bao et al., 2024) is a novel semi-supervised
1155 learning approach that addresses the performance degradation of existing methods when
1156 confronted with noisy and redundant data. RER adaptively constructs weighted graphs, in-
1157 corporating low-rank representation to reduce noise and redundancy, and applies appropriate
1158 norm constraints for feature selection and improved model stability.
1159
1160 • (21 / 9) SemiReward (Li et al., 2024) is also capable of regression estimation on image data
1161 (e.g., AgeDB images). Please refer to the regression baseline (9) for a detailed description.
1162
1163

B.2.3 ALGORITHM AND PARAMETER SETTINGS

1164 Before introducing the detailed parameter settings, we first present Algorithm 1, which summarizes the
1165 computational process of our S²MAM. For simplicity, the parameter $\tau_j = 1$ for all $j \in \{1, 2, \dots, p\}$.
1166 The regularization parameters for regularized models are all tuned across $[10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1]$.
1167 As introduced in (Qiu et al., 2018; Nie et al., 2021; Bao et al., 2024), the 1-nearest neighbor
1168 (1NN) classifier with Euclidean distance is recommended for evaluating classification accuracy after
1169 dimension reduction. The number of selected variables, C , is shared for S²MAM and those baselines
1170 used for dimension reduction.

1171 To avoid singular solutions or unfair comparisons, each experiment has been repeated 20 times, and
1172 the similarity (weight) graph is constructed following (Nie et al., 2019; 2021; Bao et al., 2024) for
1173 those baselines with the Laplacian matrix. Each dataset is divided into training and testing sets with
1174 a ratio of 1 : 1. Then we select l samples from each class as the labeled set, and the remaining
1175 training samples are considered the unlabeled set. Every semi-supervised method that employs
1176 two regularization coefficients is evaluated on the grid $(\lambda_1, \lambda_2) \in \{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1\}$.
1177 Supervised baselines with a single penalty (Lasso, ℓ_1 -SVM, SpAM, TSpAM) search the coefficient
1178 in $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1\}$, which also aligns with the settings in their publications (SpAM,
1179 TSpAM). The 1-nearest neighbor classifier with Euclidean distance is employed in f-FME and
1180 AWSSL. **Furthermore, τ within regularization was utilized to provide flexibility in assigning different**
1181 **weights to variables based on prior knowledge or importance.**

1182 The leave-one-out cross-validation strategy is utilized for parameter tuning, given the rarity of labeled
1183 samples. Fortunately, the leave-one-out cross-validation is utilized due to limited labeled data, which
1184 does not require a separate validation set and may not be heavily dependent on specific validation
1185 sets (Hastie et al., 2009). The rest parameters for the other methods were set according to their
1186 corresponding references.

1188 Table 6: Average MSE \pm standard deviation on synthetic regression data with different label percentages (r) and
1189 noisy variable numbers (p_n). The upper and lower tables show the results on the Friedman data and the additive
1190 data. Notably, some deep SSL approaches provide better prediction performance under clean scenarios, i.e.,
1191 when the number of noisy variables $p_n = 0$.

Model	r = 5%, $p_n = 0$		r = 5%, $p_n = 10$		r = 10%, $p_n = 0$		r = 10%, $p_n = 10$	
	Unlabeled	Test	Unlabeled	Test	Unlabeled	Test	Unlabeled	Test
Lasso	-	15.579 \pm 12.396	-	22.135 \pm 14.442	-	8.684 \pm 2.393	-	15.636 \pm 7.785
SpAM	-	14.791 \pm 11.595	-	21.055 \pm 13.744	-	8.201 \pm 2.464	-	14.706 \pm 7.577
DAN	-	12.417 \pm 7.947	-	23.350 \pm 7.074	-	7.864 \pm 2.017	-	17.392 \pm 5.283
LapRLS	11.659 \pm 5.024	11.678 \pm 5.125	27.299 \pm 8.549	27.588 \pm 8.779	8.086 \pm 2.000	8.103 \pm 1.970	23.822 \pm 4.498	23.918 \pm 4.457
VAE	11.071 \pm 7.011	11.499 \pm 7.971	20.194 \pm 9.477	20.860 \pm 9.977	7.866 \pm 3.752	7.950 \pm 4.873	15.155 \pm 4.950	15.809 \pm 5.134
COREG	10.573 \pm 6.855	10.730 \pm 6.946	19.011 \pm 7.644	19.644 \pm 7.945	7.801 \pm 3.011	7.820 \pm 3.401	15.305 \pm 4.117	15.914 \pm 4.955
SSDKL	10.144 \pm 6.917	10.744 \pm 7.301	19.410 \pm 7.809	19.655 \pm 8.137	7.035 \pm 7.155	7.195 \pm 7.511	14.101 \pm 4.055	14.731 \pm 4.773
S ² MAM (ours)	10.837 \pm 4.355	11.350 \pm 4.881	12.274 \pm 5.101	12.941 \pm 5.807	7.204 \pm 2.591	7.430 \pm 2.473	8.418 \pm 3.140	8.701 \pm 3.433
Lasso	-	1.193 \pm 0.437	-	2.706 \pm 3.174	-	1.079 \pm 0.304	-	2.102 \pm 0.705
SpAM	-	1.122 \pm 0.422	-	2.597 \pm 2.848	-	1.033 \pm 0.301	-	1.955 \pm 0.727
DAN	-	1.217 \pm 0.346	-	2.133 \pm 1.294	-	1.014 \pm 0.232	-	1.792 \pm 0.538
LapRLS	1.025 \pm 0.121	1.073 \pm 0.182	3.571 \pm 0.138	3.592 \pm 0.171	0.986 \pm 0.136	1.055 \pm 0.181	3.101 \pm 0.104	3.122 \pm 0.166
VAE	1.117 \pm 0.569	1.126 \pm 0.590	1.433 \pm 0.622	1.573 \pm 0.662	0.991 \pm 0.233	1.103 \pm 0.247	1.341 \pm 0.305	1.379 \pm 0.337
COREG	0.959 \pm 0.237	0.974 \pm 0.295	1.137 \pm 0.306	1.255 \pm 0.411	0.937 \pm 0.209	0.961 \pm 0.104	1.059 \pm 0.287	1.141 \pm 0.388
SSDKL	0.992 \pm 0.221	1.046 \pm 0.269	1.312 \pm 0.411	1.344 \pm 0.462	0.959 \pm 0.210	0.983 \pm 0.233	1.247 \pm 0.359	1.287 \pm 0.394
S ² MAM (ours)	0.982 \pm 0.117	1.027 \pm 0.162	1.093 \pm 0.210	1.178 \pm 0.281	0.944 \pm 0.106	0.970 \pm 0.146	0.979 \pm 0.147	1.094 \pm 0.240

1203
1204 Table 7: Average Accuracy \pm standard deviation (%) on synthetic classification data with fixed label percentages
1205 in each class ($r = 5\%$), uninformative variable (p_u) and noisy variable numbers (p_n). The upper and lower
1206 tables display the results of the moon data and additive data.

Model	r = 5%, $p_u = p_n = 0$		r = 5%, $p_u = 10, p_n = 0$		r = 5%, $p_u = 0, p_n = 10$		r = 5%, $p_u = p_n = 10$	
	Unlabeled	Test	Unlabeled	Test	Unlabeled	Test	Unlabeled	Test
ℓ_1 -SVM	-	83.917 \pm 1.949	-	78.631 \pm 6.737	-	60.183 \pm 10.243	-	55.872 \pm 8.377
SpAM	-	84.122 \pm 1.626	-	76.021 \pm 5.434	-	62.307 \pm 9.590	-	54.481 \pm 7.808
CSAM	-	85.309 \pm 1.216	-	77.611 \pm 4.790	-	65.698 \pm 7.139	-	64.714 \pm 7.211
TSpAM	-	85.729 \pm 1.436	-	79.183 \pm 4.260	-	67.064 \pm 6.833	-	65.592 \pm 7.148
LapSVM	88.635 \pm 3.307	86.395 \pm 2.825	69.261 \pm 6.064	69.670 \pm 5.941	50.083 \pm 4.989	51.011 \pm 5.001	49.026 \pm 1.150	50.000 \pm 0.000
f-FME	89.201 \pm 1.955	87.370 \pm 2.070	71.631 \pm 5.255	72.314 \pm 5.061	53.083 \pm 5.109	54.171 \pm 5.411	51.026 \pm 6.598	51.231 \pm 6.919
AWSSL	93.171 \pm 1.803	92.395 \pm 1.977	87.549 \pm 2.701	87.106 \pm 2.844	79.810 \pm 3.577	79.901 \pm 3.650	77.301 \pm 3.944	77.368 \pm 4.050
RGL	91.127 \pm 2.497	90.804 \pm 2.781	88.311 \pm 3.030	87.914 \pm 3.152	81.706 \pm 3.951	81.254 \pm 4.077	79.176 \pm 4.511	78.679 \pm 4.989
SALE	91.104 \pm 2.060	90.799 \pm 2.135	88.915 \pm 2.944	88.193 \pm 3.029	82.791 \pm 3.464	82.199 \pm 3.891	80.988 \pm 5.066	80.489 \pm 5.066
SSNP	92.720 \pm 2.184	92.437 \pm 2.237	88.642 \pm 2.847	88.306 \pm 3.195	81.244 \pm 4.230	80.859 \pm 4.406	79.287 \pm 5.026	79.310 \pm 5.211
S ² MAM (ours)	91.195 \pm 1.919	91.877 \pm 2.207	89.704 \pm 2.414	88.255 \pm 2.873	83.013 \pm 4.097	83.454 \pm 4.388	81.636 \pm 4.240	81.950 \pm 4.713
ℓ_1 -SVM	-	83.914 \pm 6.410	-	62.713 \pm 6.098	-	62.261 \pm 6.550	-	54.791 \pm 6.951
SpAM	-	84.150 \pm 6.104	-	65.091 \pm 5.917	-	64.814 \pm 6.039	-	54.413 \pm 6.295
CSAM	-	86.597 \pm 5.424	-	69.717 \pm 5.101	-	65.178 \pm 5.255	-	61.980 \pm 5.701
TSpAM	-	86.993 \pm 5.340	-	71.044 \pm 5.079	-	67.340 \pm 4.959	-	63.145 \pm 5.130
LapSVM	88.814 \pm 5.398	88.850 \pm 5.269	59.992 \pm 5.259	60.325 \pm 5.184	55.630 \pm 8.213	55.957 \pm 8.292	55.137 \pm 8.414	55.203 \pm 8.496
f-FME	89.141 \pm 3.172	89.305 \pm 3.359	64.495 \pm 4.033	64.611 \pm 4.208	59.671 \pm 6.473	59.801 \pm 6.655	59.311 \pm 6.602	59.407 \pm 6.659
AWSSL	91.259 \pm 2.871	90.211 \pm 3.077	83.691 \pm 3.423	83.950 \pm 3.519	73.701 \pm 4.105	73.859 \pm 4.322	72.255 \pm 4.211	72.370 \pm 4.428
RGL	90.422 \pm 2.909	90.026 \pm 3.477	84.065 \pm 4.501	84.879 \pm 4.711	77.726 \pm 4.591	78.041 \pm 4.510	75.155 \pm 4.965	75.413 \pm 4.708
SALE	89.717 \pm 2.811	90.149 \pm 2.665	85.742 \pm 4.132	85.971 \pm 4.018	79.071 \pm 4.709	79.844 \pm 4.277	77.201 \pm 4.697	77.891 \pm 4.431
SSNP	90.492 \pm 3.059	89.871 \pm 3.218	86.130 \pm 3.922	85.908 \pm 4.105	78.250 \pm 4.294	78.062 \pm 4.133	77.462 \pm 4.412	77.601 \pm 5.513
S ² MAM (ours)	89.979 \pm 3.255	90.309 \pm 3.409	85.517 \pm 3.481	86.015 \pm 3.575	81.702 \pm 3.897	81.855 \pm 4.055	80.012 \pm 4.177	80.112 \pm 4.370

1224
1225
1226 C ADDITIONAL EXPERIMENTS ON SYNTHETIC DATA
1227
1228 C.1 EXPERIMENTS ON SYNTHETIC DATA
1229
1230 **Semi-supervised Regression:** The Friedman dataset (Friedman, 1991) owns $p^* = 5$ informative
1231 variables, and is generated by $y = 10 \sin(\pi x^{(1)} x^{(2)}) + 20(x^{(3)} - 0.5)^2 + 10x^{(4)} + 5x^{(5)} + \epsilon$, where
1232 each $x^{(j)} \sim U(0, 1)$ and $\epsilon \sim \mathcal{N}(0, 1)$.

1233 The additive data (Ravikumar et al., 2009; Chen et al., 2020; Wang et al., 2023) is generated from $y =$
1234 $\sum_{j=1}^8 f^{(j)}(x^{(j)}) + \epsilon$, where $f^{(1)}(u) = -2 \sin(2u)$, $f^{(2)}(u) = 8u^2$, $f^{(3)}(u) = \frac{7 \sin u}{2 - \sin u}$, $f^{(4)}(u) =$
1235 $6e^{-u}$, $f^{(5)}(u) = u^3 + \frac{3}{2}(u-1)^2$, $f^{(6)}(u) = 5u$, $f^{(7)}(u) = 10 \sin(e^{-u/2})$, $f^{(8)}(u) = -10 \tilde{\phi}(u, \frac{1}{2}, \frac{4}{5})$.
1236 Here $\tilde{\phi}$ stands for the normal cumulative distribution with mean of $\frac{1}{2}$ and the standard deviation of $\frac{4}{5}$.
1237 We generate $n = 200$ samples with $p^* = 8$ ($p^* = 5$) informative variables and $p_u = 92$ ($p_u = 95$)
1238 uninformative variables following $\mathcal{N}(0, 1)$ for the additive data (the Friedman data). To illustrate the
1239 impact of noisy variables, an additional $p_n = 10$ variables are designed as noisy variables following
1240 $\mathcal{N}(100, 100)$ for simplicity. The entire dataset is then split equally into training and testing sets,
1241 where only 10% or 20% of the samples retain their labels in the training set.

1242 As shown in Table 6, S²MAM enjoys competitive or even the best performance over the baselines.
1243 Under clean scenarios without corruption, some deep SSL baselines may perform slightly better,

which is understandable due to their strong approximation ability and reliance on high-quality training data. Especially under variable corruptions, our model has the smallest MSE and standard deviation, which implies that S²MAM can identify most of the truly active variables by assigning the right mask. As validated in the extended experiments, these supervised baselines require larger labeled counterparts.

Semi-supervised Classification: Following the experimental design in (Chen et al., 2020; Wang et al., 2023), we consider the additive discriminant function $f^*(x_i) = (x_i^{(1)} - 0.5)^2 + (x_i^{(2)} - 0.5)^2 - 0.08$, where $x_i^{(j)} = (W_{ij} + U_i)/2$. W_{ij} and U_i are independently from $U(0, 1)$ for $i = 1, \dots, 200$, $j = 1, \dots, 100$. The label satisfies $y_i = 0$ when $f(x_i) \leq 0$ and 1 otherwise.

To evaluate the robustness of S²MAM, p_n irrelevant variables are designed as noisy variables following $\mathcal{N}(100, 100)$. After equally dividing the entire dataset into training and testing sets, 5% or 10% samples for each class from the training set are randomly selected as the labeled set. As shown in Table 7, our method often enjoys better performance than the other baselines, especially in the case of noisy variables.

C.2 ABLATION ANALYSIS

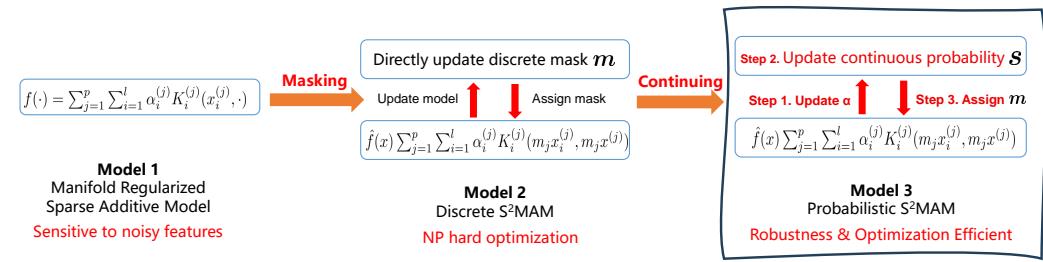


Figure 2: Connections among three models introduced in Sections 2&3. The third model with the black box is the final optimized bilevel model, probabilistic S²MAM. The parameter update procedure relevant to the bilevel scheme is also illustrated.

This subsection investigated the effects of the manifold regularization, the probabilistic bilevel optimization method, and the additive modeling strategy. Firstly, we illustrate the relationship among the three models in Figure 2:

- Manifold Regularized Sparse Additive Model in Section 2.1,
- Discrete Bilevel Framework for S²MAM in Section 2.2,
- Probabilistic Bilevel Framework for S²MAM in Section 2.3.

We've further conducted extended ablation experiments by:

- removing the manifold regularization term ($\mathbf{f}^T \mathbf{L} \mathbf{f}$), named Supervised Meta Additive Model (SMAM);
- removing the upper-level problem (bilevel optimization), called Semi-supervised Additive Model (S²AM);
- removing the additive strategy, named Semi-supervised Meta-based Model (S²MM).

The experiments on the synthetic Friedman data and 3 real-world UCI datasets are shown below:

From the results in Tables 8 and 9, one can see that 1) SMAM has the worst performance with few labeled samples and even noisy variables. 2) Without feature corruptions, SSAM has similar performance to S²MAM. Otherwise, S²MM breaks down. 3) Both S²MM and S²MAM are robust to feature corruptions. And S²MAM performs slightly better than S²MM.

It implies that 1) The manifold regularization helps to use the unlabeled samples to learn better prediction functions. 2) The employed bilevel scheme for automatically assigning variable masks is vital to deal with noisy variables. 3) The additive strategy can improve the non-linear approximation

1296 Table 8: Average MSE of extended ablation experiments on Friedman data by 1) removing the manifold
 1297 regularization term; 2) removing the upper-level problem (bilevel optimization); 3) removing the additive
 1298 strategy.

Models	$r = 10\% \& p_n = 0$	$r = 10\% \& p_n = 10$
1) SMAM	8.319 ± 2.740	10.291 ± 3.511
2) S^2 AM	8.041 ± 1.862	21.328 ± 4.108
3) S^2 MM	7.861 ± 2.611	8.913 ± 3.811
S^2 MAM	7.820 ± 2.473	8.701 ± 3.433

1305 Table 9: Average R2 score of extended ablation experiments on UCI Datasets.

Model	Buzz-Regression		Boston House		Ozone	
	$r = 0.1, p_n = 0$	$r = 0.1, p_n = 10$	$r = 0.1, p_n = 0$	$r = 0.1, p_n = 10$	$r = 0.1, p_n = 0$	$r = 0.1, p_n = 10$
1) SMAM	0.004 ± 3.290	-0.077 ± 4.584	-0.161 ± 3.702	-0.199 ± 3.962	-0.147 ± 3.157	-0.293 ± 3.542
2) S^2 AM	0.584 ± 1.940	0.553 ± 2.514	0.439 ± 1.702	0.421 ± 1.962	0.443 ± 1.157	0.397 ± 1.472
3) S^2 MM	0.684 ± 1.390	0.653 ± 1.684	0.539 ± 0.952	0.521 ± 1.132	0.543 ± 0.357	0.497 ± 0.642
S^2 MAM	0.704 ± 1.240	0.673 ± 1.534	0.559 ± 0.802	0.541 ± 0.982	0.563 ± 0.207	0.517 ± 0.492

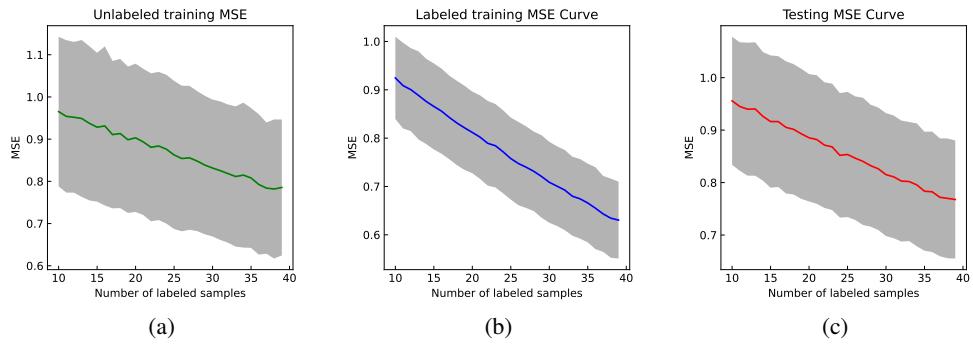
1313
 1314 ability. SSMM fails to illustrate the prediction curve of each input variable, as the additive model is
 1315 crucial for improving interpretability.

1316
 1317 **Remark 5** *The above results also suggest that, after filtering out practical features using S^2 MAM, the extracted data can be applied to downstream tasks under an adaptive bandwidth strategy, which can adapt to complex data distributions, such as imbalanced categories.*

1322 C.3 EMPIRICAL VALIDATION ON SENSITIVITY & CONVERGENCE

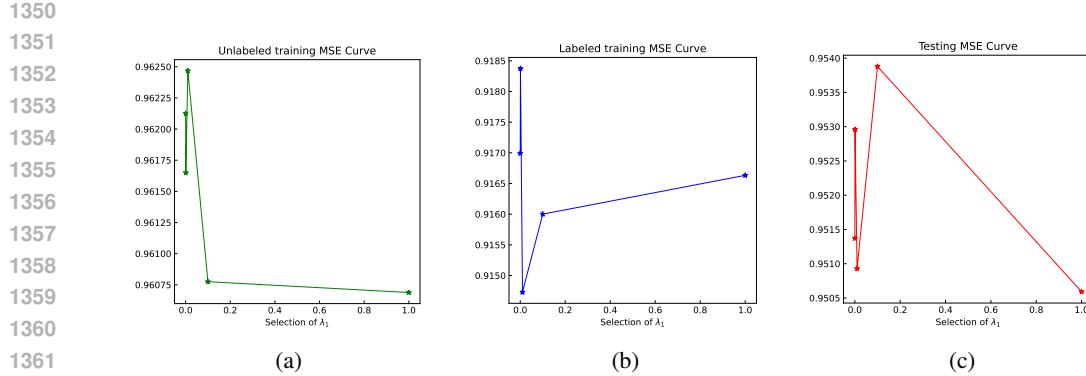
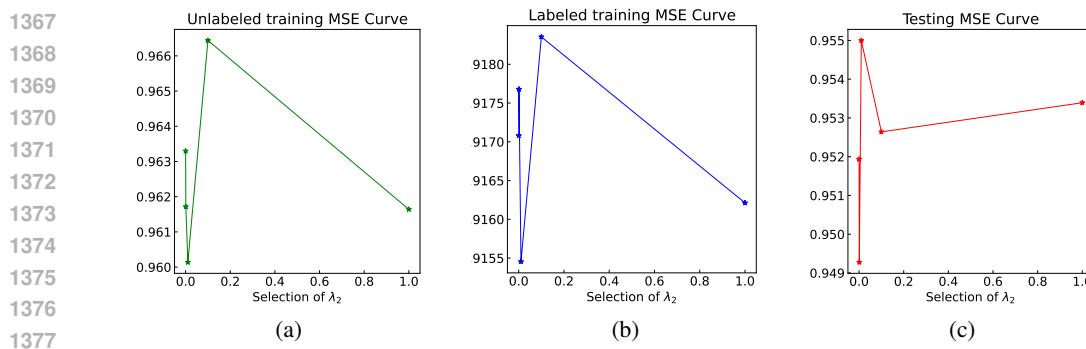
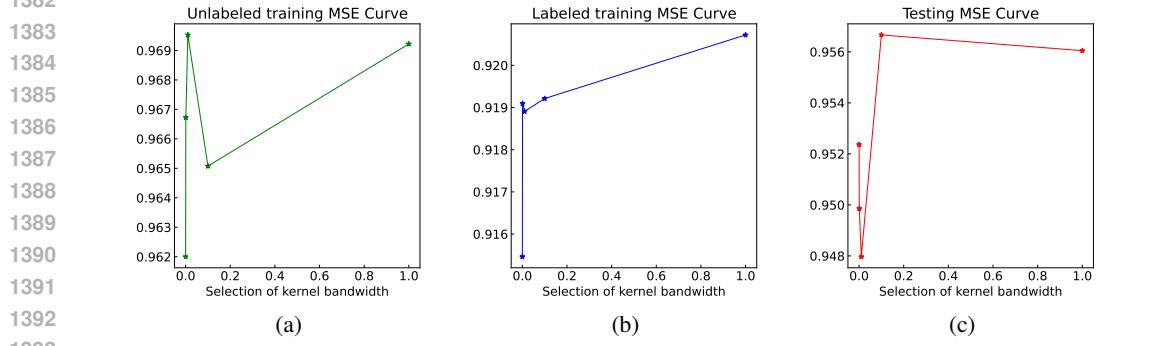
1324 C.3.1 IMPACT OF THE NUMBER OF LABELED SAMPLES

1325 Based on the synthetic additive regression data, we first conduct a sensitivity analysis for the proposed
 1326 S^2 MAM on the size of the training set n , involving l labeled samples and u unlabeled ones.



1342 Figure 3: Average prediction MSE with standard deviation with different numbers of labeled samples. (a),
 1343 (b) and (c) represent the results of the unlabeled training set, labeled training set as well as the testing set,
 1344 respectively.

1345 As shown in Figures 3, we find that larger size of labeled training data helps to improve the performance
 1346 of semi-supervised model, which is consistent with our theoretical findings on the generalization
 1347 error bounds, as well as some existing conclusions of statistical learning theory for supervised
 1348 learning (Christmann & Zhou, 2016; Chen et al., 2020) and semi-supervised learning (Liu & Chen,
 1349 2018).



C.3.2 IMPACT OF REGULARIZATION COEFFICIENTS AND GAUSSIAN KERNEL BANDWIDTH

Here, we focus on the impact of regularization coefficients λ_1, λ_2 as well as the Gaussian kernel bandwidth on the prediction performance.

Initially, we set $\lambda_1 = \lambda_2 = 10^{-3}$ as default. By changing merely a single parameter and fixing the left one, we draw the sensitive curves in Figures 4, 5, and 6. From practical experiments, we find

that too large λ_1 may introduce excessive sparsity, where truly informative variables could also be assigned relatively small weights. And λ_2 directly determines the degree of bias in the model towards unlabeled samples. The kernel bandwidth controls the similarity matrix, where values that are too small or too large can hinder the presentation of similarity between labeled and unlabeled samples. Properly selected parameters enable the model to investigate information from unlabeled data more effectively.

C.3.3 IMPACT OF SELECTED CORE SIZE C

Now we start to analyze the sensitivity of core size C on the performance. Following the same settings as in the previous subsection, the sensitive curves for varying C , using the Friedman regression data and synthetic additive regression data, are plotted in Figure 7. The labeled rate is 5% in the training set. The average MSE and standard deviation are reported after 20 repeated experiments.

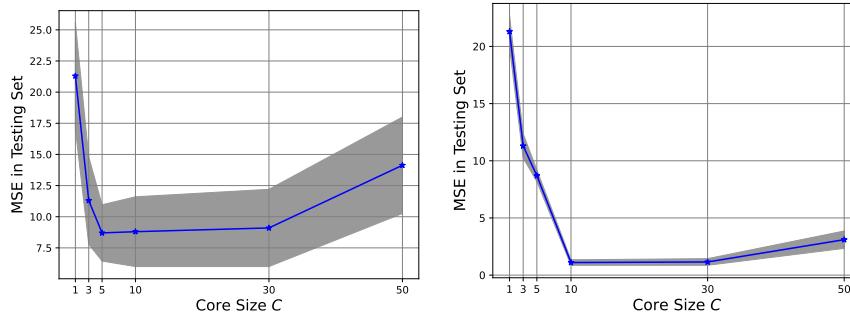


Figure 7: Average prediction MSE with different settings of parameter C . The left and right panels present the results on Friedman data (with 5/95/10 informative/redundant/noisy features) and synthetic additive regression data (with 8/92/10 informative/redundant/noisy features), respectively.

The empirical results show that the size of core variables C is also a crucial parameter of S²MAM in assigning proper masks to informative variables. In some high-dimensional real-world data without prior knowledge of instrumental variables, the binary (half-interval) searching method is suggested for setting C . Moreover, developing another level of problem to search for the proper C automatically is also an enjoyable and meaningful direction, while the computation cost might also increase.

Remark 6 Practically, this binary search process was repeated individually for each baseline (C_1, \dots) to find the 75-quantile $\{C_1, \dots\}^{0.75}$ as the choice for sharing with all baselines requiring maximum core features, rather than relying solely on a single model. Both the searching range and the final value are shared for all baselines. The coresset size C for useful variables could be set slightly larger than the ground truth due to the sparsity constraint with ℓ_1 regularization. Moreover, a too large C may introduce unnecessary variables or even noisy variables, which could degrade the prediction performance.

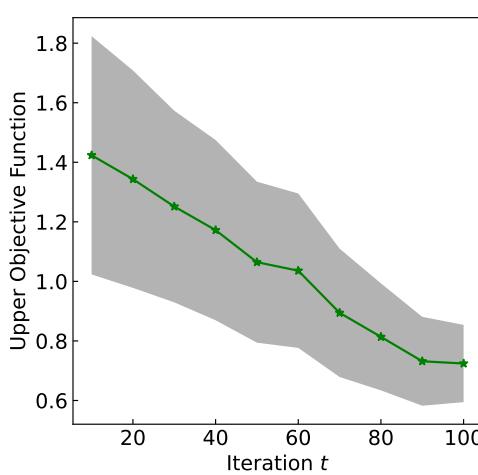
When it comes to determining the value of C within the confines of the constraint set \mathcal{C}_s , which is defined by:

$$\mathcal{C}_s = \{s : 0 \preceq s_i \preceq 1, \|s\|_1 \leq C, i = 1, 2, \dots, p\},$$

we take the overall dimension d as the starting point, setting C equal to d . To streamline the process, in the initial stage, we identify the most suitable value for C , denoted as \hat{C} , by examining a sequence that starts at d and decreases by factors of two down to 1, i.e., $[d, d/2, d/4, \dots, 2, 1]$. Fortunately, our practical tests have shown that S²MAM is capable of pinpointing the correct dimensions with high accuracy right from the outset, thereby significantly easing the burden of manually identifying key features.

C.3.4 CONVERGENCE OF UPPER LEVEL PROBLEM

We then analyze the convergence performance of the mask learner at the upper level by plotting the curve of the upper-level objective function value with respect to iteration t in Figure 8.

Figure 8: Convergence curve of the upper level problem of S²MAM.

The synthetic additive regression data with noisy feature corruptions is used in this study. With fewer than 100 iterations, our method almost realizes convergence. However, compared to some existing SSL methods, the proposed S²MAM may introduce higher computation and space complexity due to the additional computation required for the masks.

C.4 INTERPRETABILITY AND VISUALIZATION

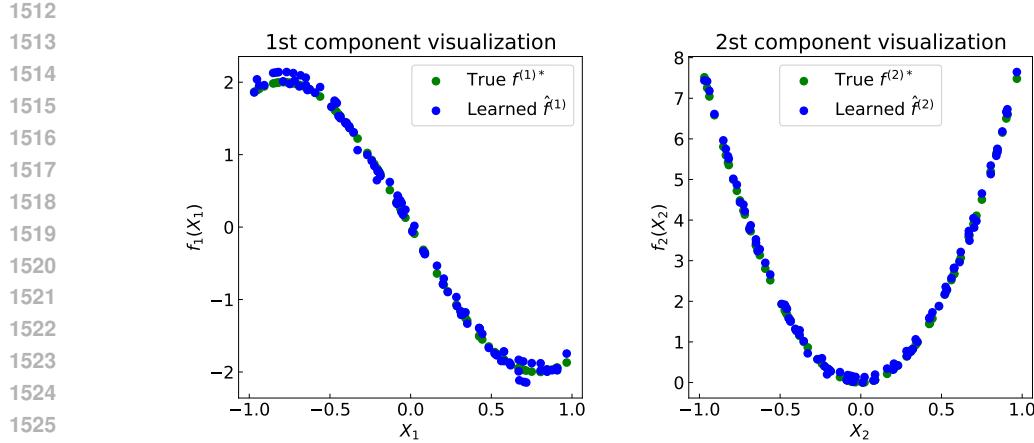
Additive models, including our proposed S²MAM, have strong interpretability, where the component function of each input variable can be explicitly formulated and directly visualized. Here, we also give an example with our synthetic additive regression data, where the ground truth function is merely relevant to the first eight input variables:

$$Y = f^*(X) + \epsilon = \sum_{j=1}^8 f^{(j)*}(X^{(j)}) + \epsilon, \quad (10)$$

where $f^{(1)*}(u) = -2 \sin(2u)$, $f^{(2)*}(u) = 8u^2$, $f^{(3)*}(u) = \frac{7 \sin u}{2 - \sin u}$, $f^{(4)*}(u) = 6e^{-u}$, $f^{(5)*}(u) = u^3 + \frac{3}{2}(u-1)^2$, $f^{(6)*}(u) = 5u$, $f^{(7)*}(u) = 10 \sin(e^{-u/2})$, $f^{(8)*}(u) = -10\tilde{\phi}(u, \frac{1}{2}, \frac{4}{5})$.

For simplicity, we present the prediction components of $\hat{f}^{(1)}$ and $\hat{f}^{(2)}$ as well as their ground truth $f^{(1)*}$ and $f^{(2)*}$ in Figure 9. We generate the input uniformly among $[-1, 1]$, which is further transformed into the Gram matrix of the corresponding component ($\mathbf{K}^{(1)}$ and $\mathbf{K}^{(2)}$). By multiplying with the model coefficients $\alpha^{(1)}$ and $\alpha^{(2)}$, one can directly obtain the outputs. As shown in Figure 9, the prediction results of S²MAM for each input variable are close to the ground truth, which better validates the effectiveness. Additionally, the other components can also be formulated or visualized, where we omit them here for brevity.

Remark 7 In some relevant works, the high-dimensional observations can be regarded as the mixture of hidden information from an unknown manifold and ambient noise (Yao et al., 2024). In many realistic settings, including those with redundant, useless, or noisy variables, real-world data can also be corrupted by some noisy labels. To achieve robustness against such corruptions, a commonly considered approach is to replace the loss function with a robust one (e.g., the widely used robust Huber loss function (Wang et al., 2022b) for regression tasks). Simple modifications may help to improve the models' robustness against noisy labels. Extensions of S²MAM from other perspectives are interesting directions for future study.

Figure 9: Visualization of the first two components. f^* : ground truth; \hat{f} : results predicted by S²MAM.

C.5 EXPLANATION FOR TOY EXAMPLE IN FIGURE 1

To better illustrate the negative impact of noisy variables on SSL models, we conduct semi-supervised binary classification experiments on moon data (Nie et al., 2019). For simplicity, here we generate a total of 200 samples involving 99 unlabeled points and 1 labeled point for each class. The original moon data involves two inputs (X and y) and a single label (-1 or 1). To highlight the robustness, we further add a noisy input variable ($X_n \sim \mathcal{N}(100, 100)$). Thus, the corrupted sample involves three inputs and a single output, where the i -th sample includes input variables $x_i = (X_i, y_i, (X_n)_i)$ and true label -1 or 1 .

As shown in Figure 1, both LapSVM and our proposal, S²MAM, perform well on the clean moon data without corruptions (Figure 1a). In the 2D plot in Figure 1 (b) and 3D plot in Figure 1 (d), the noisy variable directly causes negative impact on the Laplacian matrix \mathbf{W} , whose calculation relies on all input variables $W_{ij} = \exp\{-\|x_i - x_j\|^2/2\mu^2\}$ with bandwidth μ .

And as present in Figure 1 (d), our proposed S²MAM, with learned mask $\mathbf{m} = (1, 1, 0)$ assigned on inputs (X, y, X_n) , is robust with masked similarity $W_{ij} = \exp\{-\|\mathbf{m} \odot x_i - \mathbf{m} \odot x_j\|^2/\mu^2\}$, since noisy variable X_n is suppressed with mask 0.

D ADDITIONAL EXPERIMENTS ON UCI DATASET

Here we further present the additional empirical results of some baselines and S²MAM on SSL learning problems. Following similar strategies for hyperparameter selection, we conduct additional experiments on 8 UCI datasets by assigning a few samples with actual labels, as well as some samples without labels, and treating the remaining points as testing sets. To better highlight the robustness of S²MAM against noisy variables, the original input X is corrupted by 10 noisy variables following $\mathcal{N}(100, 100)$.

Table 10 presents the experimental results on UCI datasets by varying the number of labeled training samples l , unlabeled training samples u , and noisy variables p_n . Since the data sizes of different classes may vary, we fixed the size of the training samples and adjusted only the labeled data size. The remaining samples are the unlabeled data sets. Because some datasets are extensive, we repeat each method 100 (or 10) times on each dataset, and list the average results as well as the standard deviation information.

Additionally, these algorithms perform better with an increasing number of labeled samples. Instead of the MSE and accuracy results, we further consider the R-squared score as the criterion to measure the performance of these methods on complex real-world data (involving a few labeled samples and unknown noise). Moreover, our proposed S²MAM enjoys competitive or even better performance than these supervised or semi-supervised baselines, especially when noisy variables corrupt the data.

1566 Table 10: Average R-squared score \pm standard deviation on UCI data. The four tables from top to bottom
1567 represent the regression results under settings of $\{l = 50/20/10/50, u = 450/180/40/450, p_n = 0\}$, $\{l =$
1568 $50/20/10/50, u = 450/180/40/450, p_n = 10\}$, $\{l = 100/40/20/100, u = 400/160/30/400, p_n = 0\}$
1569 and $\{l = 100/40/20/100, u = 400/160/30/400, p_n = 10\}$, respectively.

Model	Buzz-Regression		Boston House		Ozone		SkillCraft	
	Unlabeled	Test	Unlabeled	Test	Unlabeled	Test	Unlabeled	Test
Lasso	-	-0.146 \pm 12.345	-	0.045 \pm 3.135	-	0.324 \pm 0.822	-	0.467 \pm 0.220
SpAM	-	0.559 \pm 1.969	-	0.322 \pm 3.693	-	0.340 \pm 0.278	-	0.504 \pm 0.173
LapRLS	0.631 \pm 0.236	0.632 \pm 0.240	0.513 \pm 0.196	0.482 \pm 0.219	0.557 \pm 0.178	0.550 \pm 0.192	0.509 \pm 0.125	0.506 \pm 0.141
VAE	0.659 \pm 2.406	0.641 \pm 2.711	0.525 \pm 1.213	0.519 \pm 1.301	0.562 \pm 1.043	0.557 \pm 1.260	0.512 \pm 0.460	0.504 \pm 0.475
COREG	0.691 \pm 1.733	0.684 \pm 1.851	0.565 \pm 0.981	0.557 \pm 1.020	0.573 \pm 0.958	0.566 \pm 1.030	0.540 \pm 0.376	0.532 \pm 0.386
SSDKL	0.717 \pm 2.307	0.709 \pm 2.434	0.534 \pm 2.107	0.527 \pm 2.195	0.569 \pm 1.424	0.562 \pm 1.472	0.524 \pm 0.560	0.512 \pm 0.581
S ² MAM (ours)	0.712 \pm 1.055	0.704 \pm 1.240	0.563 \pm 0.737	0.559 \pm 0.802	0.568 \pm 0.194	0.563 \pm 0.207	0.542 \pm 0.217	0.535 \pm 0.240
Lasso	-	-3.364 \pm 137.251	-	-0.358 \pm 3.329	-	-0.719 \pm 4.627	-	0.322 \pm 0.564
SpAM	-	0.364 \pm 2.596	-	-0.023 \pm 0.370	-	-0.028 \pm 0.078	-	0.375 \pm 0.438
LapRLS	0.581 \pm 0.244	0.574 \pm 0.251	0.473 \pm 0.223	0.461 \pm 0.247	0.362 \pm 0.347	0.357 \pm 0.378	0.485 \pm 0.138	0.477 \pm 0.146
VAE	0.573 \pm 3.107	0.566 \pm 3.211	0.492 \pm 4.683	0.487 \pm 4.820	0.485 \pm 2.177	0.463 \pm 2.305	0.503 \pm 0.870	0.494 \pm 0.891
COREG	0.595 \pm 2.422	0.581 \pm 2.507	0.511 \pm 3.328	0.509 \pm 3.511	0.492 \pm 1.560	0.481 \pm 1.633	0.517 \pm 0.644	0.512 \pm 0.671
SSDKL	0.517 \pm 3.924	0.504 \pm 3.955	0.502 \pm 3.730	0.501 \pm 3.795	0.483 \pm 1.866	0.475 \pm 1.947	0.511 \pm 1.104	0.506 \pm 1.193
S ² MAM (ours)	0.687 \pm 1.401	0.673 \pm 1.534	0.549 \pm 0.947	0.541 \pm 0.982	0.529 \pm 0.471	0.517 \pm 0.492	0.523 \pm 0.424	0.520 \pm 0.439
Lasso	-	0.817 \pm 0.115	-	0.552 \pm 0.309	-	0.619 \pm 0.331	-	0.524 \pm 0.141
SpAM	-	0.804 \pm 0.177	-	0.554 \pm 0.335	-	0.631 \pm 0.314	-	0.529 \pm 0.102
LapRLS	0.841 \pm 0.149	0.822 \pm 0.205	0.612 \pm 0.161	0.607 \pm 0.170	0.650 \pm 1.273	0.642 \pm 1.311	0.536 \pm 0.102	0.531 \pm 0.125
VAE	0.817 \pm 0.346	0.812 \pm 0.355	0.631 \pm 0.971	0.627 \pm 0.990	0.664 \pm 0.913	0.657 \pm 0.930	0.542 \pm 0.310	0.538 \pm 0.318
COREG	0.881 \pm 0.311	0.869 \pm 0.320	0.646 \pm 0.730	0.642 \pm 0.762	0.673 \pm 0.731	0.662 \pm 0.760	0.548 \pm 0.261	0.541 \pm 0.275
SSDKL	0.911 \pm 0.395	0.905 \pm 0.418	0.634 \pm 1.625	0.627 \pm 1.692	0.679 \pm 1.105	0.670 \pm 1.231	0.569 \pm 0.462	0.560 \pm 0.471
S ² MAM (ours)	0.901 \pm 0.211	0.891 \pm 0.180	0.650 \pm 0.510	0.641 \pm 0.522	0.677 \pm 0.143	0.672 \pm 0.159	0.563 \pm 0.135	0.558 \pm 0.146
Lasso	-	0.773 \pm 0.433	-	0.526 \pm 0.571	-	-1.025 \pm 3.630	-	0.515 \pm 0.149
SpAM	-	0.747 \pm 0.542	-	0.530 \pm 0.672	-	0.324 \pm 3.395	-	0.522 \pm 0.191
LapRLS	0.711 \pm 0.377	0.702 \pm 0.392	0.522 \pm 0.193	0.510 \pm 0.217	0.574 \pm 0.278	0.563 \pm 0.304	0.504 \pm 0.127	0.498 \pm 0.132
VAE	0.742 \pm 2.871	0.736 \pm 2.951	0.546 \pm 3.720	0.541 \pm 2.807	0.591 \pm 2.041	0.584 \pm 2.259	0.529 \pm 0.511	0.522 \pm 0.519
COREG	0.771 \pm 2.142	0.761 \pm 2.216	0.565 \pm 1.836	0.561 \pm 1.862	0.595 \pm 1.320	0.589 \pm 1.452	0.538 \pm 0.431	0.530 \pm 0.438
SSDKL	0.764 \pm 3.104	0.749 \pm 3.277	0.537 \pm 2.541	0.522 \pm 2.679	0.602 \pm 1.655	0.590 \pm 1.712	0.546 \pm 0.831	0.541 \pm 0.840
S ² MAM (ours)	0.812 \pm 1.255	0.804 \pm 1.278	0.621 \pm 0.866	0.610 \pm 0.879	0.644 \pm 0.386	0.631 \pm 0.397	0.558 \pm 0.265	0.551 \pm 0.271

1591 Table 11: Average Accuracy \pm standard deviation (%) on synthetic additive data under some extreme
1592 scenarios, i.e., label percentages in each class ($r = 5\%/50\%$) and noisy variable numbers ($p_n =$
1593 $0/100$), $\{l = 100/100/100/40, u = 400/200/200/110, p_n = 0\}$ and $\{l = 100/100/100/40, u =$
1594 $400/200/200/110, p_n = 10\}$, respectively.

Model	r = 5%, $p_n = 0$		r = 5%, $p_n = 100$		r = 50%, $p_n = 0$		r = 50%, $p_n = 100$	
	Unlabeled	Test	Unlabeled	Test	Unlabeled	Test	Unlabeled	Test
ℓ_1 -SVM	-	83.914 \pm 6.410	-	53.471 \pm 8.427	-	93.644 \pm 5.171	-	88.474 \pm 6.209
SpAM	-	84.150 \pm 6.104	-	51.308 \pm 7.242	-	94.020 \pm 4.255	-	90.201 \pm 5.330
CSAM	-	86.597 \pm 5.424	-	56.410 \pm 8.781	-	94.973 \pm 4.955	-	91.210 \pm 5.237
TsPAM	-	86.993 \pm 5.340	-	56.811 \pm 7.570	-	95.031 \pm 4.601	-	91.244 \pm 5.197
LapSVM	88.814 \pm 5.398	88.850 \pm 5.269	37.174 \pm 10.244	38.208 \pm 10.959	93.899 \pm 4.860	94.101 \pm 4.571	41.177 \pm 9.814	41.490 \pm 9.202
f-FME	89.141 \pm 3.172	89.305 \pm 3.359	60.276 \pm 8.427	59.771 \pm 8.610	94.505 \pm 2.871	94.893 \pm 2.747	71.038 \pm 7.979	70.875 \pm 8.201
AWSSL	91.259 \pm 2.871	90.211 \pm 3.077	62.707 \pm 8.660	62.842 \pm 8.290	95.410 \pm 3.229	95.601 \pm 3.073	69.071 \pm 7.759	69.368 \pm 7.831
RGL	90.422 \pm 2.909	90.026 \pm 3.477	64.371 \pm 8.391	65.011 \pm 8.140	95.973 \pm 2.417	96.027 \pm 2.289	71.462 \pm 7.141	71.511 \pm 7.062
SALE	89.717 \pm 2.811	90.149 \pm 2.665	65.805 \pm 8.106	65.887 \pm 8.010	95.402 \pm 2.311	95.427 \pm 2.266	71.855 \pm 6.947	71.913 \pm 6.850
S ² MAM (ours)	89.979 \pm 3.255	90.309 \pm 3.409	73.420 \pm 6.177	73.641 \pm 6.020	95.941 \pm 2.031	96.147 \pm 1.954	76.518 \pm 5.326	76.560 \pm 5.244

1606 As shown in the above results, S²MAM achieves competitive or even superior performance under
1607 most settings, particularly when features are corrupted. However, when the synthetic data is clean
1608 (without noisy variables), some deep SSL methods (COREG and S²MAM) may perform better than
1609 S²MAM.

1610 This is understandable, as the proposed S²MAM is built on kernels, and deep neural networks
1611 typically have a stronger fitting ability under clean data (Ghorbani et al., 2020; Agarwal et al., 2021;
1612 Yang et al., 2020). These deep SSL methods, along with the well-trained S²MAM, utilize all the
1613 informative input variables. While still achieving competitive prediction accuracy compared to Deep
1614 SSL methods, S²MAM further provides explainable predictions. Please refer to Figures 10 and 9,
1615 which include visual examples, where a tradeoff between interpretability and accuracy may exist
1616 (Rudin, 2019).

1617 We further consider more settings of noisy variables, e.g., $\mathcal{N}(0, 100)$, $\mathcal{N}(50, 100)$, Student T distribution
1618 (with freedom of 2/5/10) and Chi-square noise (with freedom of 2/5/10), where the results are
1619 analogous to the setting ($X_n \in \mathcal{N}(100, 100)$). Thus, the extremely large random noise, following a
 $\mathcal{N}(100, 100)$ distribution, is employed throughout the entire paper for simplicity and consistency.

To make a comprehensive comparison, we further consider the data settings of 5% and 50% labeled samples, as well as $p_n = 0$ and $p_n = 100$ noisy features, on the synthetic additive data. The results are summarized in Table 11. The empirical results show that:

- At a 5% labeling rate, S²MAM is capable of assigning suitable masks, effectively utilizing the input from 95% unlabeled data to boost the model’s predictive accuracy.
- At a 50% labeling rate, these supervised baselines typically yield better sparse regression estimators than S²MAM. The empirical observations are natural since the labeled data in this setting is often sufficient to identify the predictor, and supervised methods should be suggested.

D.1 VISUALIZED LEARNING DYNAMIC PROCESS OF S²MAM

Here, we further present the visualization for the learning process of S²MAM, which shows the importance of assigning proper masks for (high-dimensional) semi-supervised modeling.

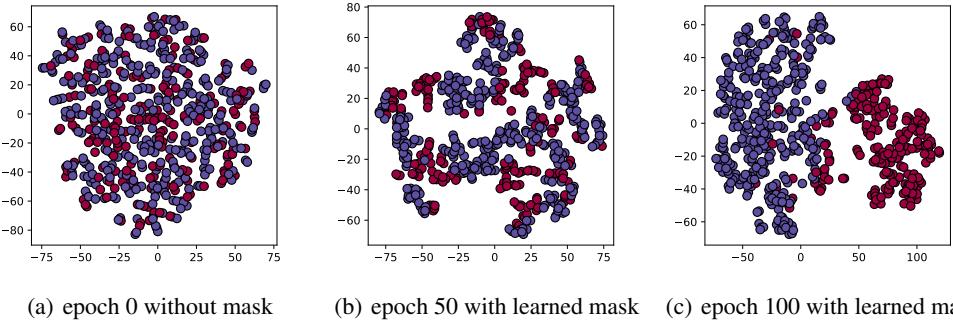


Figure 10: 2d t-SNE visualization for masked Breast Cancer data corrupted by 10 noisy features during the training process of S²MAM at epoch 0, 50, and 100, respectively. Dots with different colors represent different classes.

In Figure 10, we present the visualization of masked Breast Cancer data based on the t-SNE technique (Van der Maaten & Hinton, 2008), where the masks are updated gradually and can almost reach the ground truth after 100 epochs.

Especially under the noisy scenario, the masks sometimes exhibit fluctuations in the early stage (e.g., the first 20 epochs on the Breast Cancer data), which may be attributed to the initial settings of large step sizes and an all-one mask, as well as the high-variance gradient estimation on limited labeled data. Thanks to the decay of step size ($\eta^t = 1/\sqrt{t}$ in practice and in Theorem 1) and $\ell_{2,1}$ sparsity penalty, the learned masks tend to be stable and reach convergence among 50 to 100 epochs (as in Figure 10).

Fortunately, we observe that the coresize C could be slightly larger than the ground truth in practice. Along with the ablation studies, the $\ell_{2,1}$ penalty also helps to stabilize the training process.

E EXTENSION TO IMAGE DATA

E.1 PRETRAINING CNN FOR FEATURE EXTRACTION

Inspired by supervised (Su et al., 2023) and semi-supervised works (Qiu et al., 2018; Nie et al., 2019; Kang et al., 2020; Nie et al., 2021), an interesting approach for dealing with high-dimensional data, such as images, is to extract the variable vectors first.

Following (Bao et al., 2024), we first use a CNN to learn the vectors with 32 features for each image, which realizes rough dimensional reduction. However, this step may not remove those irrelevant or even noisy variables (Nie et al., 2019; 2021). Thus, it’s still necessary to employ robust methods

1674 before building semi-supervised models. Similar preprocessing methods for dimensional reduction
 1675 also apply to larger (image) datasets.
 1676

1677 **E.1.1 DETAILS ON CNN STRUCTURE AND PRETRAINING**

1679 **Structure** We use a lightweight CNN with two convolutional layers followed by three fully connected
 1680 layers. This architecture is initialized randomly and explicitly trained for feature extraction.
 1681

1682 As the dataset scales, some minor adjustments to the size of the input and hidden layers of the CNN
 1683 for feature extraction are required. However, different from S²MAM and RER, PLF and SemiReward
 1684 are initially designed with a specific (generative) network structure to deal directly with raw images.
 1685 To enable a controlled comparison with every other semi-supervised baseline, the following noise is
 1686 injected into all raw inputs, rather than the noisy dimensions as in Tables 4 and 8.

1687 **Optimization.** Only labeled raw data are used for rough training of the CNN. The CNN is optimized
 1688 using the Cross-Entropy loss and the Adam optimizer with an initial learning rate of 0.001 and
 1689 exponential decay. After 50 epochs, the CNN parameters are frozen.

1690 **Extraction.** The new data shared for all baselines is extracted from the first fully connected layer of
 1691 the frozen CNN.
 1692

1693 **E.1.2 EMPIRICAL VALIDATION ON THE IMPACT OF CNN PREPROCESS ON S²MAM**
 1694

1695 We conducted additional experiments based on the experimental settings in Table 12. We compared
 1696 the current CNN model (CNN-1) with a more complex network model (CNN-2) that includes two
 1697 convolutional layers, three local convolutional layers, and three fully connected layers (Wen et al.,
 1698 2016). The changes of feature extraction bring slight differences on S²MAM (Accuracy arises 0.42
 1699 with COIL-20 $r = 30\%$, $p_n = 0$)
 1700

1701 **E.2 TIME COST ANALYSIS ON IMAGES**
 1702

1703 The following experiments are conducted for classifying the 12th and 13th objects in the COIL-20
 1704 image data.
 1705

1706 Firstly, we conduct experiments on the clean processed feature matrix. The results are present in
 1707 Table 4. Secondly, following the settings in (Bao et al., 2024), we simulate pixel-level corruption
 1708 in images by manually adding five noisy variables, drawn from $\mathcal{N}(100, 100)$, to the processed 32
 1709 dimensions. The results are presented in Table 12.

1710
 1711 Table 12: Extended experiments with average accuracy (%) \pm standard deviation (SD) and training time cost
 1712 (minutes) on (the 12th and 13th objects of) the corrupted COIL20 image data, which involves five manually
 1713 added noisy variables (Bao et al., 2024). For simplicity, the competitors used here are all designed for SSL.
 1714 Notably, S²MAM and S²MAM-F stand for the original strategy and the Fourier accelerated strategy (Wang
 1715 et al., 2023), respectively. **The upper and lower panels correspond to scenarios of original and scaled features.**
 1716

Models	LapSVM	f-FME	AWSSL	RGL	SALE	SSNP	S ² MAM	S ² MAM-F
Accuracy	57.026	76.464	74.034	74.217	75.109	77.629	78.917	79.020(↑)
SD	7.192	4.106	3.226	3.011	4.049	4.310	3.601	3.473(↓)
Time	0.6	1.5	2.8	3.0	2.2	4.1	2.4	1.7(↓)
Accuracy	64.433	78.815	75.682	75.729	76.811	78.796	79.167	79.341(↑)
SD	7.029	3.972	3.041	2.870	3.792	4.067	3.380	3.209(↓)
Time	0.5	1.3	2.4	2.7	2.0	3.7	2.2	1.4(↓)

1723 Moreover, inspired by (Rahimi & Recht, 2007; Wang et al., 2023), we also consider some efficient
 1724 approaches for accelerating the optimization process of our S²MAM, especially under the kernel
 1725 hypothesis. These results empirically verify that S²MAM-F (S²MAM with RFF) largely retains
 1726 accuracy while reducing time costs from 2.4 minutes to 1.7 minutes, confirming the practical
 1727 scalability of the proposed framework.

1728 E.3 COMPARISONS TO DEEP SSL BASELINES WITH PIXEL CORRUPTIONS
1729

1730 The following comparisons are conducted on COIL images, the higher-dimensional CelebA-HQ
1731 images and AgeDB images, focusing the comparisons of S²MAM and those deep SSL baselines,
1732 including AWSSL (Nie et al., 2019), SSNP (Wang et al., 2022a), RER (Bao et al., 2024), SemiReward
1733 (Li et al., 2024), PLF (Jo et al., 2024) and **Flexmatch** (Zhang et al., 2021). Both the regression and
1734 classification scenarios are considered, evaluating the prediction accuracy and the training time cost.

1735 **Experimental Settings.** All new results were produced on the identical hardware platform and a
1736 similar CNN for feature extraction as in Section C.3 of the main experiments. As the dataset scales,
1737 some minor modifications to the size of the input and hidden layers of the CNN are required.

1738 However, unlike S²MAM and RER (Bao et al., 2024), PLF (Jo et al., 2024) and SemiReward (Li
1739 et al., 2024) are initially designed with a specific network structure to handle raw images as inputs
1740 directly. To enable a fair comparison with all semi-supervised baselines, the following noise (instead
1741 of the noisy dimensions as in Tables 4 and 8) is injected into all raw inputs, which is done before
1742 feature extraction via CNN.

1743 **Noise Injection with Image Blocks.** To assess robustness and the capacity for feature selection, we
1744 employed the pixel-level corruption protocol introduced by RER (See their Figure 5(a) with 10x10
1745 block occlusions).

1746 The following six tables in Tables 13-18, report the average testing results and training time (minutes)
1747 on COIL, CelebA-HQ (on gender recognition), and AgeDB (age regression). Different sizes of
1748 occlusion blocks are injected, respectively, according to their image sizes.

1749
1750 Table 13: Classification estimation of accuracy (%) and training time on COIL ($r = 30\%$, $p_n = 0$, with no
1751 blocks)

Models	AWSSL	SSNP	RER	SemiReward	Flexmatch	S ² MAM	S ² MAM-F	S ² MAM-N
Accuracy	84.921	83.470	86.391	90.262	88.509	88.513	88.410	89.106
SD	0.420	0.430	0.461	0.390	0.377	0.439	0.417	0.381
Time	2.7	4.0	1.7	7.8	3.2	2.5	1.6	2.4

1752
1753 Table 14: Classification estimation of accuracy (%) and training time on COIL ($r = 30\%$, $p_n = 0$, with
1754 block=20x20)

Models	AWSSL	SSNP	RER	SemiReward	Flexmatch	S ² MAM	S ² MAM-F	S ² MAM-N
Accuracy	78.812	79.361	80.280	82.672	80.466	83.403	83.115	83.710
SD	0.941	3.439	3.461	3.890	3.515	3.429	3.737	3.371
Time	3.0	4.4	1.9	8.1	3.4	2.6	1.9	2.5

1755
1756 Table 15: Classification estimation of accuracy (%) and training time on CelebA-HQ ($r = 0.5\%$, no blocks)

Models	AWSSL	SSNP	RER	SemiReward	Flexmatch	S ² MAM	S ² MAM-F	S ² MAM-N
Accuracy	80.102	79.720	83.593	86.172	86.049	85.960	85.572	86.218
SD	5.423	5.485	3.622	2.281	2.325	2.516	2.410	2.374
Time	20.7	24.0	17.0	39.2	29.3	22.5	16.8	20.8

1757 Based on the above results, we find that the utilized dimensionality reduction (via a pretrained CNN
1758 as in RER) combined with Fourier acceleration is both effective and accuracy-preserving for enabling
1759 S²MAM to deal with relatively large-scale datasets.

1760 In the absence of block occlusion, S²MAM underperforms PLF and SemiReward, which are designed
1761 with specialized architectures that incorporate generative pseudo-label reward networks and task-
1762 specific penalties. After introducing block occlusion, however, S²MAM and S²MAM-F achieve
1763 marginally superior performance. Practically, when reproducing PLF and SemiReward, the noisy
1764 pixel blocks appear to compromise the similarity principle and degrade their capabilities in pseudo-
1765 label generation and filtering.

1766 Beyond accuracy, S²MAM is an interpretable additive model. The selected features can be mapped
1767 back to the frozen CNN (originally for feature extraction). Their relevance can be visualized through

1782 Table 16: Classification estimation of accuracy (%) and training time on CelebA-HQ ($r = 0.5\%$, with
1783 block=200x200)

Models	AWSSL	SSNP	RER	SemiReward	Flexmatch	S ² MAM	S ² MAM-F	S ² MAM-N
Accuracy	73.102	72.720	76.593	76.172	77.416	78.960	78.572	79.180
SD	7.423	7.485	5.622	7.281	8.017	4.516	4.410	4.433
Time	21.0	24.1	17.3	40.2	34.5	22.8	17.0	21.2

1789 Table 17: Regression estimation of root mean square error (RMSE) on AgeDB ($r = 0.5\%$, with no blocks)

Models	COREG	SSDKL	PLF	SemiReward	S ² MAM	S ² MAM-F	S ² MAM-N
RMSE	17.456	17.728	17.025	16.215	16.515	16.808	16.328
SD	2.121	2.305	1.565	0.650	0.805	0.870	0.841
Time	13.8	9.1	10.8	22.1	12.4	11.2	11.7

1796 Table 18: Regression estimation of RMSE on AgeDB ($r = 0.5\%$, with block=50x50)

Models	COREG	SSDKL	PLF	SemiReward	S ² MAM	S ² MAM-F	S ² MAM-N
RMSE	19.931	22.713	19.435	18.302	17.012	17.317	16.941
SD	2.426	2.710	2.271	1.344	1.101	1.573	1.160
Time	14.0	9.3	11.0	22.3	12.6	11.4	12.2

1803 Table 19: Accuracy \pm standard deviation on the fast implementation experiments on COIL $r = 30\%$, $p_n = 0$,
1804 where $\downarrow 1$ implies the accuracy degrades 1 point compared to the fine-tuned model.

	Fine-tuned	With A	With B	With C	With ALL
S ² MAM	88.317 \pm 0.412	86.123 \pm 0.576 (\downarrow 2.194)	87.045 \pm 0.543 (\downarrow 1.272)	86.789 \pm 0.567 (\downarrow 1.528)	85.642 \pm 0.675 (\downarrow 2.675)
S ² MAM-F	88.162 \pm 0.401	86.034 \pm 0.612 (\downarrow 2.128)	86.871 \pm 0.559 (\downarrow 1.291)	86.543 \pm 0.584 (\downarrow 1.619)	85.487 \pm 0.689 (\downarrow 2.675)

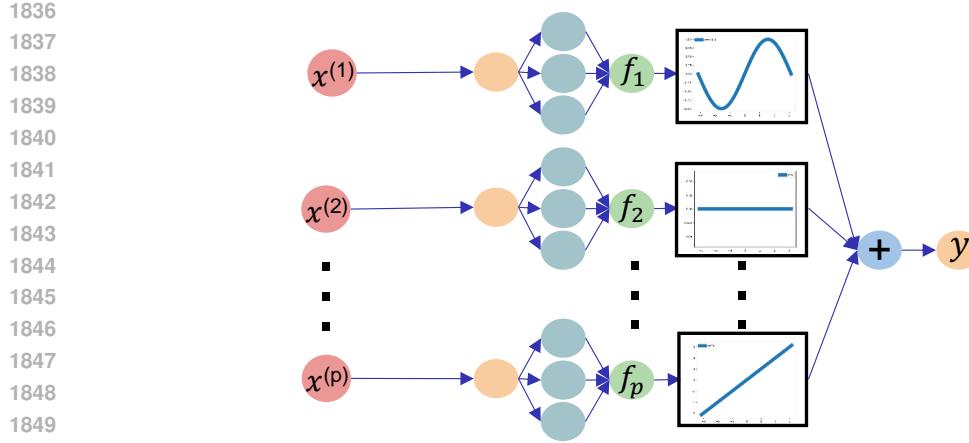
1809 Table 20: Accuracy \pm standard deviation on the fast implementation experiments on COIL $r = 30\%$, $p_n = 5$.

	Fine-tuned	With A	With B	With C	With ALL
S ² MAM	78.937 \pm 3.572	74.567 \pm 4.200 (\downarrow 4.37)	77.234 \pm 3.950 (\downarrow 1.70)	74.892 \pm 4.180 (\downarrow 4.05)	71.876 \pm 4.800 (\downarrow 7.06)
S ² MAM-F	79.029 \pm 3.440	75.012 \pm 4.150 (\downarrow 4.02)	77.345 \pm 3.920 (\downarrow 1.68)	75.023 \pm 4.140 (\downarrow 4.01)	72.123 \pm 4.750 (\downarrow 6.91)

1814 heat maps that highlight the corresponding pixel regions in the raw image. This yields interpretable
1815 classification (on COIL and CelebA-HQ) and regression (on AgeDB).

1818 E.4 TUNING-FREE TRAINING FOR FASTER IMPLEMENTATION

1820 Parameter tuning can sometimes be time-consuming, especially in image semi-supervised classification
1821 or regression tasks. In practice, parameter selection can be accelerated and simplified efficiently
1822 by the following strategies.1823 **Strategy A: As for mask constraint C**, we initialize it by the first kink of the Lasso path (Chichignoud
1824 et al., 2016; Dalalyan et al., 2017), which provides a fast yet near-optimal starting point C_0 ($C_0 \ll C$).
1825 Then, the binary selection process begins with C_0 .1827 **Strategy B: For the bandwidth μ** , we replicate the algorithm from (Cheng & Wu, 2022) to adaptively
1828 adjust the Laplacian kernel bandwidth.1829 **Strategy C: Penalty coefficients** are fixed with $\lambda_1 = \frac{u}{l+u}$, $\frac{l}{l+u}$ following similar strategies in (Ren
1830 et al., 2020; Liu et al., 2022b).1831 We conduct a fine-grained ablation study on COIL image data below in Tables 19 and 20 to verify the
1832 influence of the above strategies individually.1834 The results summarized in Tables 19 and 20 suggest that the proposal can be implemented quickly in
1835 specific tasks through these three strategies, while maintaining relatively competitive prediction and
robustness compared to full fine-tuning.

Figure 11: The lower additive model structure of neural S²MAM (S²MAM-F).

E.5 EXTENSIONS TO NON-CONVEX TASKS

To better validate the bilevel strategy in non-convex scenarios, we've further proposed the neural S²MAM (called S²MAM-N), where each component f_j is based on an individual MLP Yang et al. (2020) as shown in Figure 11. The squared loss and cross-entropy loss are utilized in practice. The extended experiments are conducted on the COIL image dataset, where the results are summarized in Tables 12-16.

Theoretically, the generalization guarantees for neural semi-supervised meta additive models are insightful and challenging, which is listed as a learning topic in future research.

F GENERALIZATION ERROR ANALYSIS (PROOF OF THEOREM 2)

To better illustrate the proof process, we summarize the major steps and lemmas in Figure 12.

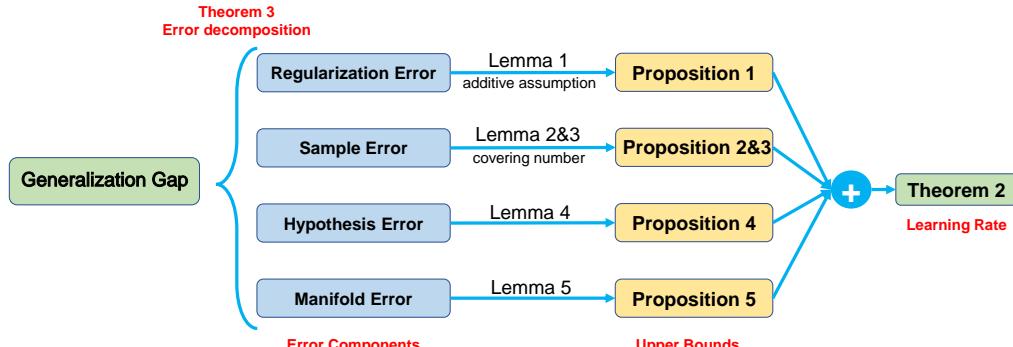


Figure 12: Sketch of the theoretical proofs for the generalization bound.

F.1 ERROR DECOMPOSITION

Now we are in the position to recall the semi-supervised algorithm with ℓ_2 regularizer in the additive hypothesis space

$$f_{\mathbf{z}} = \arg \min_{f \in \mathcal{H}} \left\{ \mathcal{E}_{\mathbf{z}}(f) + \lambda_1 \Omega_{\mathbf{z}}(f) + \frac{\lambda_2}{(l+u)^2} \mathbf{f}^T \mathbf{L} \mathbf{f} \right\}. \quad (11)$$

For simplicity, the semi-supervised regression task with squared loss under a kernel-based framework is considered here. Denote $\mathbf{z} = \{\mathbf{z}_l, \mathbf{z}_u\}$ as the labeled data $\mathbf{z}_l = \{x_i, y_i\}_{i=1}^l$ and unlabeled

1890 data $\mathbf{z}_u = \{x_i\}_{i=l+1}^{l+u}$ together. Denote $\mathbf{f} = (f(x_1), \dots, f(x_{l+u}))^T$, which involves predicting both the labeled and unlabeled data. $\lambda_1 > 0$ and $\lambda_2 > 0$ are regularization parameters. Series $\{\tau_j\}_{j=1}^p$ are weights to different input variables. For feasibility, define the Gram matrix
1891 $\mathbf{K}_i = (\mathbf{K}_i^{(1)}, \dots, \mathbf{K}_i^{(p)})^T \in \mathbb{R}^{(l+u) \times p}$, $\mathbf{K}^{(j)} = (\mathbf{K}_1^{(j)}, \dots, \mathbf{K}_{l+u}^{(j)})^T \in \mathbb{R}^{(l+u) \times (l+u)}$ with $\mathbf{K}_i^{(j)} =$
1892 $(K^{(j)}(x_1^{(j)}, x_i^{(j)}), \dots, K^{(j)}(x_{l+u}^{(j)}, x_i^{(j)}))^T \in \mathbb{R}^{l+u}$ and the coefficient $\boldsymbol{\alpha} = (\boldsymbol{\alpha}^{(1)}, \dots, \boldsymbol{\alpha}^{(p)})^T \in$
1893 $\mathbb{R}^{(l+u) \times p}$ with $\boldsymbol{\alpha}^{(j)} = (\alpha_1^{(j)}, \dots, \alpha_{l+u}^{(j)})^T \in \mathbb{R}^{l+u}$.
1894

1895 The manifold regularized additive model in equation 11 can be formulated as
1896

$$1897 f_{\mathbf{z}} = \arg \min_{f=\sum_{j=1}^p f^{(j)} \in \mathcal{H}} \left\{ \mathcal{E}_{\mathbf{z}}(f) + \lambda_1 \Omega_{\mathbf{z}}(f) + \frac{\lambda_2}{(l+u)^2} \mathbf{f}^T L \mathbf{f} \right\}, \quad (12)$$

1900 where
1901

$$1902 \mathcal{E}_{\mathbf{z}}(f) = \frac{1}{l} \sum_{i=1}^l (f(x_i) - y_i)^2 = \frac{1}{l} \sum_{i=1}^l \left(\sum_{j=1}^p (\mathbf{K}_i^{(j)})^T \boldsymbol{\alpha}^{(j)} - y_i \right)^2. \quad (13)$$

1903 If the j -th variable is not truly informative, we expect that $\hat{\boldsymbol{\alpha}}_{\mathbf{z}}^{(j)} = (\hat{\alpha}_{\mathbf{z},1}^{(j)}, \dots, \hat{\alpha}_{\mathbf{z},l+u}^{(j)})^T \in \mathbb{R}^{l+u}$
1904 satisfies $\|\hat{\boldsymbol{\alpha}}_{\mathbf{z}}^{(j)}\|_2 = \left(\sum_{i=1}^{l+u} |\hat{\alpha}_{\mathbf{z},i}^{(j)}|^2 \right)^{(1/2)} = 0$. Inspired by this, we introduce the $\ell_{2,1}$ -regularizer
1905

$$1906 \Omega_{\mathbf{z}}(f) = \inf \left\{ \sum_{j=1}^p \tau_j \|\boldsymbol{\alpha}^{(j)}\|_2 : f = \sum_{j=1}^p \sum_{i=1}^{l+u} \alpha^{(j)} K^{(j)}(x_i^{(j)}, \cdot), \boldsymbol{\alpha}^{(j)} \in \mathbb{R}^{l+u} \right\} \quad (14)$$

1907 as the penalty to address the sparsity of the output functions.
1908

1909 **Definition 1** Define an operator $L_{\omega} : L_{\rho_X}^2 \rightarrow L_{\rho_X}^2$ by $(L_{\omega}f)(x) = f(x)p(x) -$
1910 $\int_X K(x, x') f(x') d\rho_X(x')$, with $p(x) = \int_X K(x, x') d\rho_X(x')$. Then we have
1911

$$1912 \langle f, L_{\omega} f \rangle_2 = \frac{1}{2} \iint (f(x) - f(x'))^2 W(x, x') d\rho_X(x) d\rho_X(x').$$

1913 Suppose that ρ is a fixed (but unknown) probability distribution on $Z := X \times Y$. Define $f^{(j)} =$
1914 $(\mathbf{K}^{(j)})^T \boldsymbol{\alpha}^{(j)}$. Similarly, now we introduce a regularizing function as
1915

$$1916 f_{\lambda} = \arg \min_{f=\sum_{j=1}^p f^{(j)} \in \mathcal{H}} \{ \mathcal{E}(f) + \lambda_1 \Omega(f) + \lambda_2 \langle f, L_{\omega} f \rangle_2 \}, \quad (15)$$

1917 where
1918

$$1919 \mathcal{E}(f) = \int_{\mathbf{z}} (f(x) - y)^2 d\rho, \quad (16)$$

1920 and

$$1921 \Omega(f) = \sum_{j=1}^p \tau_j \|f^{(j)}\|_{K^{(j)}}^2. \quad (17)$$

1922 Before presenting the error analysis, we give some basic definitions throughout this paper.
1923

1924 **Definition 2** Define $\kappa = \sup_{j,u} (K^{(j)}(u, u))^{1/2} < \infty$. For $f_{\mathbf{z}}$ defined above, there holds
1925

$$1926 \|f_{\mathbf{z}}\|_K \leq \kappa \sum_{j=1}^p \sum_{i=1}^{l+u} |\alpha_{\mathbf{z},i}^{(j)}| \leq \kappa \sum_{j=1}^p \left(\sum_{i=1}^{l+u} 1^{1-\frac{1}{q}} \right)^{1-\frac{1}{q}} \left(\sum_{i=1}^{l+u} |\alpha_{\mathbf{z},i}^{(j)}|^q \right)^{\frac{1}{q}} \leq \kappa \sqrt{l+u} \sum_{j=1}^p \|\boldsymbol{\alpha}^{(j)}\|_2, \quad (18)$$

1927 where the last inequality is obtained from the Hölder inequality with positive constant $q = 2$.
1928

1944
 1945 **Remark 8** Based on the definition of κ and $\Omega_{\mathbf{z}}(f)$, we can further obtain $\|f\|_{\infty} \leq \kappa\|f\|_K$ for any
 1946 $f \in \mathcal{H}_K$ (Mukherjee et al., 2006; Chen et al., 2018).

1947
 1948
 1949
 1950
 1951 **Definition 3** For any measurable function $f : X \rightarrow \mathbb{R}$, define the following clipping function:

$$\pi(f) = \begin{cases} M & f(x) > M \\ -M & f(x) < -M \\ f(x) & \text{otherwise} \end{cases}. \quad (19)$$

1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960 **Theorem 3** Let $f_{\mathbf{z}}$ be defined by (11) and $\pi(f)$ defined in (19). Then for $\lambda > 0$, we have

$$\mathcal{E}(\pi(f_{\mathbf{z}})) - \mathcal{E}(f_{\rho}) \leq \mathcal{D}(\lambda) + \mathcal{S}(\mathbf{s}, \lambda) + \mathcal{H}(\mathbf{s}, \lambda) + \mathcal{M}(\mathbf{s}, \lambda), \quad (20)$$

1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978 where the regularization error, sample error, hypothesis error, and manifold error can be defined,
 1979 respectively, as

$$\begin{aligned} \mathcal{D}(\lambda) &= \mathcal{E}(f_{\lambda}) - \mathcal{E}(f_{\rho}) + \lambda_1 \sum_{j=1}^p \tau_j \left\| f_{\lambda}^{(j)} \right\|_{K^{(j)}}^2 + \lambda_2 \sum_{j=1}^p \left\langle f_{\lambda}^{(j)}, L_{\omega} f_{\lambda}^{(j)} \right\rangle_2, \\ \mathcal{S}(\mathbf{z}, \lambda) &= \mathcal{E}(\pi(f_{\mathbf{z}})) - \mathcal{E}_{\mathbf{z}}(\pi(f_{\mathbf{z}})) + \mathcal{E}_{\mathbf{z}}(f_{\lambda}) - \mathcal{E}(f_{\lambda}), \\ \mathcal{H}(\mathbf{z}, \lambda) &= \mathcal{E}_{\mathbf{z}}(\pi(f_{\mathbf{z}})) + \lambda_1 \Omega(f_{\mathbf{z}}) + \frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (\mathbf{f}_{\mathbf{z}}^{(j)})^T L_j \mathbf{f}_{\mathbf{z}}^{(j)} \\ &\quad - \left\{ \mathcal{E}_{\mathbf{z}}(f_{\lambda}) + \lambda_1 \sum_{j=1}^p \tau_j \|f_{\lambda}^{(j)}\|_{K^{(j)}}^2 + \frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (\mathbf{f}_{\lambda}^{(j)})^T L_j \mathbf{f}_{\lambda}^{(j)} \right\}, \\ \mathcal{M}(\mathbf{z}, \lambda) &= \frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (\mathbf{f}_{\mathbf{z}}^{(j)})^T L_j \mathbf{f}_{\mathbf{z}}^{(j)} - \lambda_2 \sum_{j=1}^p \left\langle f_{\lambda}^{(j)}, L_{\omega} f_{\lambda}^{(j)} \right\rangle_2. \end{aligned} \quad (21)$$

1998 **Proof 1** Based on the definition of $f_{\mathbf{z}}$ and $\pi(f)$, we have

1999
$$\mathcal{E}(\pi(f_{\mathbf{z}})) - \mathcal{E}(f_{\rho})$$

2000
$$\leq \mathcal{E}(\pi(f_{\mathbf{z}})) - \mathcal{E}(f_{\rho}) + \lambda_1 \Omega(f_{\mathbf{z}}) + \frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (\mathbf{f}_{\mathbf{z}}^{(j)})^T L_j \mathbf{f}_{\mathbf{z}}^{(j)}$$

2001
$$\leq \mathcal{E}(\pi(f_{\mathbf{z}})) - \mathcal{E}_{\mathbf{z}}(\pi(f_{\mathbf{z}})) + \mathcal{E}_{\mathbf{z}}(\pi(f_{\mathbf{z}})) + \lambda_1 \Omega(f_{\mathbf{z}}) + \frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (\mathbf{f}_{\mathbf{z}}^{(j)})^T L_j \mathbf{f}_{\mathbf{z}}^{(j)}$$

2002
$$- \left\{ \mathcal{E}_{\mathbf{z}}(f_{\lambda}) + \lambda_1 \sum_{j=1}^p \tau_j \|f_{\lambda}^{(j)}\|_{K^{(j)}}^2 + \lambda_2 \sum_{j=1}^p \left\langle f_{\lambda}^{(j)}, L_{\omega} f_{\lambda}^{(j)} \right\rangle_2 \right\}$$

2003
$$+ \left\{ \mathcal{E}_{\mathbf{z}}(f_{\lambda}) + \lambda_1 \sum_{j=1}^p \tau_j \|f_{\lambda}^{(j)}\|_{K^{(j)}}^2 + \lambda_2 \sum_{j=1}^p \left\langle f_{\lambda}^{(j)}, L_{\omega} f_{\lambda}^{(j)} \right\rangle_2 \right\}$$

2004
$$- \mathcal{E}(f_{\lambda}) + \mathcal{E}(f_{\lambda}) - \mathcal{E}(f_{\rho}) + \frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (\mathbf{f}_{\lambda}^{(j)})^T L_j \mathbf{f}_{\lambda}^{(j)} - \frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (\mathbf{f}_{\lambda}^{(j)})^T L_j \mathbf{f}_{\lambda}^{(j)}$$

2005
$$\leq \mathcal{E}(f_{\lambda}) - \mathcal{E}(f_{\rho}) + \lambda_1 \sum_{j=1}^p \tau_j \|f_{\lambda}^{(j)}\|_{K^{(j)}}^2 + \lambda_2 \sum_{j=1}^p \left\langle f_{\lambda}^{(j)}, L_{\omega} f_{\lambda}^{(j)} \right\rangle_2$$

2006
$$\underbrace{\quad\quad\quad}_{\mathcal{D}(\lambda)}$$

2007
$$+ \underbrace{\mathcal{E}(\pi(f_{\mathbf{z}})) - \mathcal{E}_{\mathbf{z}}(\pi(f_{\mathbf{z}})) + \mathcal{E}_{\mathbf{z}}(f_{\lambda}) - \mathcal{E}(f_{\lambda})}_{\mathcal{S}(\mathbf{z}, \lambda)}$$

2008
$$+ \underbrace{\mathcal{E}_{\mathbf{z}}(\pi(f_{\mathbf{z}})) + \lambda_1 \Omega(f_{\mathbf{z}}) + \frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (\mathbf{f}_{\mathbf{z}}^{(j)})^T L_j \mathbf{f}_{\mathbf{z}}^{(j)} - \left\{ \mathcal{E}_{\mathbf{z}}(f_{\lambda}) + \lambda_1 \sum_{j=1}^p \tau_j \|f_{\lambda}^{(j)}\|_{K^{(j)}}^2 + \frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (\mathbf{f}_{\lambda}^{(j)})^T L_j \mathbf{f}_{\lambda}^{(j)} \right\}}_{\mathcal{H}(\mathbf{z}, \lambda)}$$

2009
$$+ \underbrace{\frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (\mathbf{f}_{\lambda}^{(j)})^T L_j \mathbf{f}_{\lambda}^{(j)} - \lambda_2 \sum_{j=1}^p \left\langle f_{\lambda}^{(j)}, L_{\omega} f_{\lambda}^{(j)} \right\rangle_2}_{\mathcal{M}(\mathbf{z}, \lambda)},$$

2010 where $\mathcal{D}(\lambda)$, $\mathcal{S}(\mathbf{z}, \lambda)$, $\mathcal{H}(\mathbf{z}, \lambda)$ and $\mathcal{M}(\mathbf{z}, \lambda)$ stand for the regularization error, sample error, hypothesis error, and manifold error, respectively. The proof is completed.

F.2 BOUNDING REGULARIZATION ERROR $\mathcal{D}(\lambda)$

2011 In this section, we present the theoretical results under specific assumptions on f_{ρ} for bounding the regularization error of manifold-regularized additive models. Inspired by the supervised work (Christmann & Zhou, 2016), we give some necessary assumptions and lemmas before deriving the bound under the additive space.

2012 As defined in Section 2, we denote $\rho_{\mathcal{X}}$ as the marginal distribution with respect to \mathcal{X} . Here we further introduce $\rho_{\mathcal{X}^{(j)}}$ for $\mathcal{X}^{(j)}$, which is the j -th component of \mathcal{X} (Christmann & Zhou, 2016; Chen et al., 2020). For completeness, we restate the settings in Assumption 2.

2013 **Assumption 5** Assume $f_{\rho} \in L_{\infty}(\rho_{\mathcal{X}})$ and $f_{\rho} = f_{\rho}^{(1)} + f_{\rho}^{(2)} + \dots + f_{\rho}^{(p)}$ where for some $0 < r \leq \frac{1}{2}$ and for each $j \in \{1, \dots, p\}$, the j -th component function $f_{\rho}^{(j)} : \mathcal{X}^{(j)} \rightarrow \mathbb{R}$ is a mapping: $f_{\rho}^{(j)} = L_{K^{(j)}}^r(g_j^*)$ with some $g_j^* \in L_2(\rho_{\mathcal{X}^{(j)}})$.

2014 The case $r = \frac{1}{2}$ of Assumption 5 means each $f_{\rho}^{(j)}$ lies in the RKHS $K^{(j)}$. Here, the operator L_K is defined by

$$\begin{aligned} 2015 \quad L_K(f)(X^{(1)}, \dots, X^{(p)}) \\ 2016 \quad = \int_{\mathcal{X}} \left(\sum_{j=1}^p K^{(j)}(X^{(j)}, X^{(j)\prime}) \right) f(X^{(1)\prime}, \dots, X^{(p)\prime}) d\rho_{\mathcal{X}}(X^{(1)\prime}, \dots, X^{(p)\prime}). \end{aligned}$$

2052
 2053 **Lemma 1** (Christmann & Zhou, 2016) Let $j \in \{1, \dots, p\}$ and $0 < r \leq \frac{1}{2}$. Assume the j -th
 2054 component function $f_\rho^{(j)} = L_{K^{(j)}}^r(g_j^*)$ for some $g_j^* \in L_2(\rho_{\mathcal{X}^{(j)}})$. Define an intermediate function
 2055 $f_\lambda^{(j)}$ on $\mathcal{X}^{(j)}$ by

$$2056 \quad f_\lambda^{(j)} = (L_{K^{(j)}} + \lambda I)^{-1} L_{K^{(j)}}(f_\rho^{(j)}).$$

2057
 2058 Then we have

$$2059 \quad \|f_\lambda^{(j)} - f_\rho^{(j)}\|_{L_2(\rho_{\mathcal{X}^{(j)}})}^2 + \lambda \|f_\lambda^{(j)}\|_{K^{(j)}}^2 \leq \lambda^{2r} \|g_j^*\|_{L_2(\rho_{\mathcal{X}^{(j)}})}^2.$$

2062 **Proposition 1** Under Assumption 5 and $\lambda_2 = \lambda_1^{1-r}$ where $0 < r \leq 1/2$, we have

$$2063 \quad \mathcal{D}(\lambda) \leq C\lambda_1^r \quad \forall 0 < \lambda_1 \leq 1,$$

2064 where C is the constant given by

$$2065 \quad C = \sum_{j=1}^p \left(L \|g_j^*\|_{L_2(\rho_{\mathcal{X}^{(j)}})} + \left(2\omega\kappa^2 + \max_j \{\tau_j\} \right) \|g_j^*\|_{L_2(\rho_{\mathcal{X}^{(j)}})}^2 \right).$$

2069 **Proof 2** Observe that $f_\lambda^{(j)} \in H_{K^{(j)}}$ and $\sum_j f_\lambda^{(j)} \in H_K$. The definition of the regularization error
 2070 means that

$$2071 \quad \mathcal{D}(\lambda) = \mathcal{E}(f_\lambda) - \mathcal{E}(f_\rho) + \lambda_1 \sum_{j=1}^p \tau_j \|f_\lambda^{(j)}\|_{K^{(j)}}^2 + \lambda_2 \sum_{j=1}^p \langle f_\lambda^{(j)}, L_\omega f_\lambda^{(j)} \rangle_2$$

2072 Denote

$$2073 \quad \mathcal{D}_1(\lambda) = \mathcal{E}(f_\lambda) - \mathcal{E}(f_\rho) + \lambda_1 \sum_{j=1}^p \tau_j \|f_\lambda^{(j)}\|_{K^{(j)}}^2.$$

2074 By Theorem 1 of (Christmann & Zhou, 2016), based on the additive hypothesis with p components in
 2075 Assumption 1 and the L -Lipschitz property, we can rewrite

$$2076 \quad \begin{aligned} \mathcal{E}(f_\lambda) - \mathcal{E}(f_\rho) &= \mathcal{E}\left(f_\lambda^{(1)} + \dots + f_\lambda^{(p)}\right) - \mathcal{E}\left(f_\rho^{(1)} + \dots + f_\rho^{(p)}\right) \\ 2077 &\leq L \sum_{j=1}^p \int_{\mathcal{X}^{(j)}} \left| f_\lambda^{(j)}(X^{(j)}) - f_\rho^{(j)}(X^{(j)}) \right| d\rho_{\mathcal{X}^{(j)}}(X^{(j)}) \\ 2078 &\leq L \|f_\lambda^{(j)} - f_\rho^{(j)}\|_{L_2(\rho_{\mathcal{X}^{(j)}})}. \end{aligned}$$

2079 With Lemma 1, we can further derive that

$$2080 \quad \|f_\lambda^{(j)} - f_\rho^{(j)}\|_{L_2(\rho_{\mathcal{X}^{(j)}})}^2 \leq \lambda_1^{2r} \|g_j^*\|_{L_2(\rho_{\mathcal{X}^{(j)}})}^2,$$

2081 and

$$2082 \quad \lambda_1 \|f_\lambda^{(j)}\|_{K^{(j)}}^2 \leq \lambda_1^{2r} \|g_j^*\|_{L_2(\rho_{\mathcal{X}^{(j)}})}^2.$$

2083 Thus

$$2084 \quad \mathcal{D}(\lambda) \leq \mathcal{D}_1(\lambda) + \lambda_2 \sum_{j=1}^p \langle f_\lambda^{(j)}, L_\omega f_\lambda^{(j)} \rangle_2,$$

2085 where $0 \leq \lambda_1 \leq 1$, $0 < r \leq 1/2$ and

$$2086 \quad \begin{aligned} \mathcal{D}_1(\lambda) &\leq \sum_{j=1}^p \left(L\lambda_1^r \|g_j^*\|_{L_2(\rho_{\mathcal{X}^{(j)}})} + \lambda_1^{2r} \max_j \{\tau_j\} \|g_j^*\|_{L_2(\rho_{\mathcal{X}^{(j)}})}^2 \right) \\ 2087 &\leq \lambda_1^r \sum_{j=1}^p \left(L \|g_j^*\|_{L_2(\rho_{\mathcal{X}^{(j)}})} + \max_j \{\tau_j\} \|g_j^*\|_{L_2(\rho_{\mathcal{X}^{(j)}})}^2 \right). \end{aligned}$$

2106 From the fact that $(f_\lambda(x) - f_\lambda(x'))^2 W(x, x') \leq 4\omega \|f_\lambda\|_\infty^2$ and $\|f_\lambda\|_\infty \leq \kappa \|f_\lambda\|_K$. Furthermore,
 2107 according to $\langle f, L_\omega f \rangle_2 = \frac{1}{2} \iint (f(x) - f(x'))^2 W(x, x') d\rho_X(x) d\rho_X(x')$, we have
 2108

$$2109 \|f_\lambda\|_K^2 \leq \sum_{j=1}^p \|f_\lambda^{(j)}\|_{K^{(j)}}^2 \leq \lambda_1^{2r-1} \sum_{j=1}^p \|g_j^*\|_{L_2(\rho_{\mathcal{X}^{(j)}})}^2.$$

2112 By setting $\lambda_2 = \lambda_1^{1-r}$ where $0 < r \leq 1/2$, we can derive
 2113

$$2115 \lambda_2 \langle f_\lambda, L_\omega f_\lambda \rangle_2 \leq 2\omega\kappa^2 \lambda_2 \lambda_1^{2r-1} \sum_{j=1}^p \|g_j^*\|_{L_2(\rho_{\mathcal{X}^{(j)}})}^2 \leq 2\omega\kappa^2 \lambda_1^r \sum_{j=1}^p \|g_j^*\|_{L_2(\rho_{\mathcal{X}^{(j)}})}^2.$$

2118 The desired bound is derived by combining the above inequalities.
 2119

2120 F.3 BOUNDING SAMPLE ERROR $\mathcal{S}(\mathbf{z}, \lambda)$

2122 This section aims to bound the sample error term, which could be written as
 2123

$$2124 \mathcal{S}(\mathbf{z}, \lambda) = \mathcal{S}_1(\mathbf{z}, \lambda) + \mathcal{S}_2(\mathbf{z}, \lambda),$$

2125 where

$$2126 \mathcal{S}_1(\mathbf{z}, \lambda) = \{\mathcal{E}(\pi(f_\mathbf{z})) - \mathcal{E}(f_\rho)\} - \{\mathcal{E}_\mathbf{z}(\pi(f_\mathbf{z})) - \mathcal{E}_\mathbf{z}(f_\rho)\} \quad (22)$$

2128 and

$$2129 \mathcal{S}_2(\mathbf{z}, \lambda) = \{\mathcal{E}_\mathbf{z}(f_\lambda) - \mathcal{E}_\mathbf{z}(f_\rho)\} - \{\mathcal{E}(f_\lambda) - \mathcal{E}(f_\rho)\}. \quad (23)$$

2130 Before bounding above $\mathcal{S}_1(\mathbf{z}, \lambda)$ and $\mathcal{S}_2(\mathbf{z}, \lambda)$, we introduce the following definitions and lemmas.
 2131

2132 **Definition 4** Define the ball \mathcal{B}_r associated with the function space \mathcal{H}_K as
 2133

$$2134 \mathcal{B}_r = \{f \in \mathcal{H}_K : \|f\|_K \leq r\}.$$

2135 **Definition 5** Let C^v be a v -times continuously differentiable function set. Then, for $K^{(j)} \in$
 2136 $C^v(\mathcal{X}^{(j)} \times \mathcal{X}^{(j)})$, $j \in \{1, \dots, p\}$, define
 2137

$$2138 \zeta = \begin{cases} \frac{2}{1+2v}, & v \in (0, 1] \\ \frac{2}{1+v}, & v \in (1, 3/2] \\ \frac{1}{v}, & v \in (3/2, \infty). \end{cases}$$

2142 Now, we introduce the empirical covering number to measure the capacity of \mathcal{B}_r .
 2143

2145 **Definition 6** Let \mathcal{F} be a set of measurable functions on \mathcal{X} and $\mathbf{x} = \{x_1, x_2, \dots, x_n\} \subset \mathcal{X}$. The
 2146 ℓ_2 -empirical metric for $f_1, f_2 \in \mathcal{F}$ is $d_{2,\mathbf{x}}(f_1, f_2) = \sqrt{\frac{1}{n} \sum_{i=1}^n (f_1(x_i) - f_2(x_i))^2}$. Then the
 2147 ℓ_2 -empirical covering number of \mathcal{F} is defined as
 2148

$$2149 \mathcal{N}_2(\mathcal{F}, \epsilon) = \sup_{n \in \mathbb{N}} \sup_{\mathbf{x}} \mathcal{N}_{2,\mathbf{x}}(\mathcal{F}, \epsilon), \forall \epsilon > 0,$$

2151 where

$$2152 \mathcal{N}_{2,\mathbf{x}}(\mathcal{F}, \epsilon) = \inf \left\{ m \in \mathbb{N} : \exists \left\{ f^{(j)} \right\}_{j=1}^m \subset \mathcal{F}, \text{s.t., } \mathcal{F} \subset \bigcup_{j=1}^m \left\{ f \in \mathcal{F} : d_{2,\mathbf{x}}(f, f^{(j)}) < \epsilon \right\} \right\}.$$

2155 Indeed, the empirical covering number of \mathcal{B}_r has been investigated extensively in learning theory
 2156 literature (Steinwart & Christmann, 2008; Shi et al., 2011; Shi, 2013; Guo & Zhou, 2013; Chen et al.,
 2157 2020).

2158 The following concentration inequality established in (Wu et al., 2007) is used for our sample error
 2159 estimation.

2160 **Lemma 2** (Wu et al., 2007) Let \mathcal{G} be a measurable function set on \mathcal{Z} . Assume that there are
 2161 constants $B, c, a > 0$ and $\theta \in [0, 1]$ such that $\|g\|_\infty \leq B, \text{E}g^2 \leq c(\text{E}g)^\theta$ for each $g \in \mathcal{G}$. If for
 2162 $0 < \zeta < 2, \log \mathcal{N}_2(\mathcal{G}, \epsilon) \leq a\epsilon^{-\zeta}, \forall \epsilon > 0$, then for any $\delta \in (0, 1)$ and i.i.d observations $\{z_i\}_{i=1}^n \subset \mathcal{Z}$,
 2163 there holds

$$2164 \text{E}g - \frac{1}{n} \sum_{i=1}^n g(z_i) \leq \frac{1}{2} \gamma^{1-\theta} (\text{E}g)^\theta + C_\zeta \gamma + 2 \left(\frac{c \log(1/\delta)}{n} \right)^{\frac{1}{2-\theta}} + \frac{18B \log(1/\delta)}{n}, \forall g \in \mathcal{G}$$

2165 with confidence at least $1 - \delta$, where C_ζ is a constant depending only on ζ and

$$2166 \gamma = \max \left\{ c^{\frac{2-\zeta}{4-2\theta+\zeta\theta}} (a/n)^{\frac{2}{4-2\theta+\zeta\theta}}, B^{\frac{2-\zeta}{2+\zeta}} (a/n)^{\frac{2}{2+\zeta}} \right\}.$$

2167 **Lemma 3** Let ξ be a random variable on a probability space \mathcal{Z} satisfying $|\xi(z) - \text{E}\xi| \leq M_\xi$ for
 2168 some constant M_ξ and variance σ_ξ . Then, for any $\delta \in (0, 1)$, there holds

$$2169 \frac{1}{n} \sum_{i=1}^n \xi(z_i) - \text{E}\xi \leq \frac{2M_\xi \log(1/\delta)}{3n} + \sqrt{\frac{2\sigma_\xi^2 \log(1/\delta)}{n}}$$

2170 with confidence at least $1 - \delta$.

2171 F.3.1 BOUNDING $\mathcal{S}_1(\mathbf{z}, \lambda)$ IN EQUATION 22

2172 **Proposition 2** If for $0 < \zeta < 2, \log \mathcal{N}_2(\mathcal{G}, \epsilon) \leq a\epsilon^{-\zeta}, \forall \epsilon > 0$, then for any $\delta \in (0, 1)$ and i.i.d
 2173 observations $\{z_i\}_{i=1}^{l+u} \subset \mathcal{Z}$, under Assumptions 2, 3 and 4, there holds

$$2174 \mathcal{S}_1(\mathbf{z}, \lambda) \leq \frac{1}{2} (\mathcal{E}(\pi(f_\mathbf{z})) - \mathcal{E}(f_\rho)) + C_\zeta \gamma + \frac{32M^2 \log(4/\delta)}{l+u} + \frac{144M^2 \log(4/\delta)}{l+u}, \forall g \in \mathcal{G}$$

2175 with confidence at least $1 - \delta/4$, where C_ζ is a constant depending only on ζ and

$$2176 \gamma = \max \left\{ (16M^2)^{\frac{2-\zeta}{2+\zeta}} (C_\zeta p^{1+\zeta} (4Mr)^\zeta / (l+u))^{\frac{2}{2+\zeta}}, (8M^2)^{\frac{2-\zeta}{2+\zeta}} (C_\zeta p^{1+\zeta} (4Mr)^\zeta / (l+u))^{\frac{2}{2+\zeta}} \right\}.$$

2177 **Proof 3** Step 1: Bounding $f_\mathbf{z}$.

2178 Since $f_\mathbf{z}$ is dependent on the training sample set \mathbf{z} , we first need to find a function set containing $f_\mathbf{z}$.

$$2179 \lambda_1 \sum_{j=1}^p \tau_j \|\alpha_{\mathbf{z}}^{(j)}\|_2 = \lambda_1 \Omega_{\mathbf{z}}(f_\mathbf{z}) \leq \mathcal{E}_{\mathbf{z}}(f_\mathbf{z}) + \lambda_1 \Omega_{\mathbf{z}}(f_\mathbf{z}) + \frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (f_\mathbf{z}^{(j)})^T L_j f_\mathbf{z}^{(j)} \leq \mathcal{E}_{\mathbf{z}}(0) \leq M^2.$$

2180 Hence we have

$$2181 \sum_{j=1}^p \|\alpha_{\mathbf{z}}^{(j)}\|_2 \leq \frac{M^2}{\lambda_1 \min_j \tau_j}.$$

2182 Furthermore, based on the Cauchy inequality, we can obtain

$$2183 \|\mathbf{f}_\mathbf{z}\|_K = \left\| \sum_{j=1}^p \sum_{i=1}^{l+u} \alpha_{\mathbf{z},i}^{(j)} K^{(j)}(x_i^{(j)}, \cdot) \right\|_K \leq \kappa \sum_{j=1}^p \sum_{i=1}^{l+u} |\alpha_{\mathbf{z},i}^{(j)}| \leq \kappa \sum_{j=1}^p \sqrt{l+u} \sqrt{\sum_{i=1}^{l+u} \|\alpha_{\mathbf{z},i}^{(j)}\|^2} \\ 2184 = \kappa \sqrt{l+u} \sum_{j=1}^p \|\alpha_{\mathbf{z}}^{(j)}\|_2.$$

2185 Therefore, $f_\mathbf{z}$ belongs to B_r with $r = \kappa \sqrt{l+u} \sum_{j=1}^p \|\alpha_{\mathbf{z}}^{(j)}\|_2 \leq \frac{\kappa \sqrt{l+u} M^2}{\lambda_1 \min_j \tau_j}$.

2186 Step 2: Bounding $\mathcal{S}_1(\mathbf{z}, \lambda)$ in equation 22.

2214 Consider the function set
 2215

$$2216 \quad \mathcal{G} = \left\{ g(z) = (y - \pi(f)(x))^2 - (y - f_p(x))^2, f \in B_r, z = (x, y) \in \mathcal{Z} \right\}. \\ 2217$$

2218 For any $f_1, f_2 \in \mathcal{B}_r$, we have
 2219

$$2220 \quad g(z_1) - g(z_2) = (y - \pi(f_1)(x))^2 - (y - \pi(f_2)(x))^2 \\ 2221 \quad \leq |(2y - \pi(f_1)(x) - \pi(f_2)(x))(\pi(f_1)(x) - \pi(f_2)(x))| \\ 2222 \quad \leq 4M|\pi(f_1)(x) - \pi(f_2)(x)|. \\ 2223$$

2224 Hence for each $K^{(j)} \in C^v(x_j, x_j)$, $j = 1, \dots, p$, we have
 2225

$$2226 \quad \log \mathcal{N}_2(\mathcal{G}, \epsilon) \leq \log \mathcal{N}_2\left(\mathcal{B}_r, \frac{\epsilon}{4M}\right) \leq \log \mathcal{N}_2\left(\mathcal{B}_1, \frac{\epsilon}{4Mr}\right) \leq C_s p^{1+\zeta} (4Mr)^\zeta \epsilon^{-\zeta}, \quad (24) \\ 2227$$

2228 where ζ is defined in Definition 5, and the last inequality follows from the covering number bounds
 2229 for $\mathcal{H}_{K^{(j)}}$ with $K^{(j)} \in C^v$ (see (Shi, 2013; Shi et al., 2011; Wang et al., 2021)).
 2230

2231 Considering $0 \leq (y - \pi(f)(x))^2 \leq 4M^2$ and $0 \leq (y - f_p(x))^2 \leq 4M^2$, we have
 2232

$$2233 \quad |g(z)| \leq 8M^2, \quad |g(z) - \mathbb{E}(g)| \leq 16M^2,$$

2234 and

$$2235 \quad \mathbb{E}g^2 = \int (2y - \pi(f)(x) - f_p(x))^2 (\pi(f)(x) - f_p(x))^2 d\rho \leq 16M^2 \mathbb{E}(g). \\ 2236$$

2237 By applying Lemma 2 with $a = C_\zeta p^{1+\zeta} (4Mr)^\zeta$, $B = 8M^2$, $c = 16M^2$ and $\theta = 1$, C_ζ is the
 2238 constant depending only on ζ .
 2239

2240 Therefore, we have the desired results for bounding S_1 with confidence of $1 - \delta/4$.
 2241

2242 BOUNDING $\mathcal{S}_2(\mathbf{z}, \lambda)$ IN EQUATION 23

2243 **Proposition 3** Let Assumptions 2 and 3 hold, then for any $\delta > 0$, there holds
 2244

$$2245 \quad \mathcal{S}_2(\mathbf{z}, \lambda) \leq \frac{2M\xi \log(4/\delta)}{3(l+u)} + \sqrt{\frac{2\text{Var}(\xi)^2 \log(4/\delta)}{l+u}} \\ 2246 \quad \leq \frac{4 \left(3M + \kappa \sqrt{\frac{\mathcal{D}(\lambda)}{\lambda_1 \min_j \{\tau_j\}}} \right)^2 \log(4/\delta)}{3(l+u)} + \sqrt{\frac{2 \log(4/\delta)}{l+u}} \left(3M + \kappa \sqrt{\frac{\mathcal{D}(\lambda)}{\lambda_1 \min_j \{\tau_j\}}} \right)^3 \mathcal{D}(\lambda) \\ 2247 \\ 2248 \\ 2249 \\ 2250$$

2251 with confidence at least $1 - \delta/4$.
 2252

2253 **Proof 4** From the definition of $\mathcal{D}(\lambda)$ and f_λ , we can deduce that
 2254

$$2255 \quad \|f_\lambda\|_K^2 \leq \frac{\mathcal{D}(\lambda)}{\lambda_1 \min_j \{\tau_j\}}, \\ 2256$$

2257 and

$$2258 \quad \|f_\lambda\|_\infty \leq \kappa \|f_\lambda\|_K \leq \kappa \sqrt{\frac{\mathcal{D}(\lambda)}{\lambda_1 \min_j \{\tau_j\}}}. \\ 2259 \\ 2260$$

2261 Denote $\xi(z) = (y - f_\lambda(z))^2 - (y - f_\rho(x))^2$, we have
 2262

$$2263 \quad |\xi(z)| = |2y - f_\lambda(x) - f_\rho(x)| \cdot |f_\lambda(x) - f_\rho(x)| \leq \left(3M + \kappa \sqrt{\frac{\mathcal{D}(\lambda)}{\lambda_1 \min_j \{\tau_j\}}} \right)^2 := d \\ 2264 \\ 2265$$

2266 Then

$$2267 \quad |\xi(z) - \mathbb{E}\xi| \leq 2d := M_\xi,$$

2268 and

$$\begin{aligned}
\mathbb{E}\xi^2 &= \int |2y - f_\lambda(x) - f_\rho(x)|^2 \cdot |f_\lambda(x) - f_\rho(x)|^2 d\rho_x \\
&\leq \left(3M + \kappa\sqrt{\frac{\mathcal{D}(\lambda)}{\lambda_1 \min_j \{\tau_j\}}}\right)^2 \|f_\lambda(x) - f_\rho(x)\|_{\rho_x}^2 \\
&\leq d(\mathcal{E}(f_\lambda) - \mathcal{E}(f_\rho)) \\
&\leq d\mathcal{D}(\lambda).
\end{aligned}$$

2277 Moreover,

2279 $\text{Var}(\xi) \leq \mathbb{E}(\xi^2) \leq d\mathcal{D}(\lambda).$

2281 Applying the one side Bernstein inequality in Lemma 3 with $M_\xi = 2d$, $\text{Var}(\xi) \leq d\mathcal{D}(\lambda)$ and
2282 $d = \left(3M + \kappa\sqrt{\frac{\mathcal{D}(\lambda)}{\lambda_1 \min_j \{\tau_j\}}}\right)^2$, we get
2283

$$\begin{aligned}
\mathcal{S}_2(\mathbf{z}, \lambda) &\leq \frac{2M_\xi \log(4/\delta)}{3(l+u)} + \sqrt{\frac{2\text{Var}(\xi)^2 \log(4/\delta)d}{l+u}} \\
&\leq \frac{4\left(3M + \kappa\sqrt{\frac{\mathcal{D}(\lambda)}{\lambda_1 \min_j \{\tau_j\}}}\right)^2 \log(4/\delta)}{3(l+u)} + \sqrt{\frac{2\log(4/\delta)}{l+u}} \left(3M + \kappa\sqrt{\frac{\mathcal{D}(\lambda)}{\lambda_1 \min_j \{\tau_j\}}}\right)^3 \mathcal{D}(\lambda)
\end{aligned}$$

2290 with confidence at least $1 - \delta/4$.
22912293 The desired upper bound of S is obtained by combining the above estimations for S_1 and S_2 .
22942295 F.4 BOUNDING HYPOTHESIS ERROR $\mathcal{H}(\mathbf{z}, \lambda)$ 2297 Before bounding $\mathcal{H}(\mathbf{z}, \lambda)$, we first introduce the auxiliary function
2298

2299
$$\mathbf{f}_{\mathbf{z}, \lambda} = \arg \min_{f=\sum_{j=1}^p f^{(j)} \in \mathcal{H}} \left\{ \frac{1}{l} \sum_{i=1}^l (y_i - f(x_i))^2 + \lambda_1 \sum_{j=1}^p \tau_j \|f^{(j)}\|_{K^{(j)}}^2 + \frac{\lambda_2}{(l+u)^2} \mathbf{f}^T L \mathbf{f} \right\}, \quad (25)$$

2302 which enjoys the representation
2303

2304
$$f_{\mathbf{z}, \lambda}(x_i) = \sum_{j=1}^p (\mathbf{K}_i^{(j)})^T \hat{\alpha}_{\mathbf{z}}^{(j)}.$$

2307 Here $\mathbf{K}_i^{(j)} = (K^{(j)}(x_1^{(j)}, x_i^{(j)}), K^{(j)}(x_2^{(j)}, x_i^{(j)}), \dots, K^{(j)}(x_{l+u}^{(j)}, x_i^{(j)})) \in \mathbb{R}^{l+u}$ and $\hat{\alpha}_{\mathbf{z}}^{(j)} =$
2308 $(\hat{\alpha}_{\mathbf{z}, 1}^{(j)}, \dots, \hat{\alpha}_{\mathbf{z}, l+u}^{(j)}) \in \mathbb{R}^{l+u}$.
23092311 **Remark 9** Based on the assumptions of boundedness (Assumption 2), we can naturally obtain that
2312 the introduced function $\mathbf{f}_{\mathbf{z}, \lambda}$ in (25) has a bounded output, where the corresponding proof could
2313 be found at Lemma 4 in (Liu & Chen, 2018). By the definition of $\mathbf{f}_{\mathbf{z}, \lambda}$ in (25) for $f = 0$, we have
2314 $\lambda_1 \|f_{\mathbf{z}, \lambda}\| \leq M^2$. That is, $\|\mathbf{f}_{\mathbf{z}, \lambda}\|_\infty \leq M^2/\lambda_1 \leq \infty$.
23152316 Inspired by Lemma 4 of (Chen et al., 2020) and Lemma 5 of (Wang et al., 2023), we further build the
2317 following key lemma for deriving the upper bound of hypothesis error.
23182319 **Lemma 4** For $f_{\mathbf{z}, \lambda}$ defined in (25), there exists

2320
$$\tau_j \|\hat{\alpha}_{\mathbf{z}}^{(j)}\|_2 \leq \frac{M + \|f_{\mathbf{z}, \lambda}\|_\infty}{\lambda_1 \sqrt{l}} + \frac{\lambda_2 w \|\mathbf{f}_{\mathbf{z}, \lambda}^{(j)}\|_\infty}{\lambda_1 (l+u)}.$$

2322 **Proof 5** Based the definition of $f_{\mathbf{z}, \lambda}$, we can deduce that
2323

$$\begin{aligned} 2324 \quad \frac{\partial f_{\mathbf{z}, \lambda}}{\partial \alpha^{(j)}} &= \frac{2}{l} \sum_{i=1}^l (y_i - f_{\mathbf{z}, \lambda}(x_i) \cdot (-(\mathbf{K}_i^{(j)})^T)) + 2\lambda_1 \tau_j (\hat{\alpha}_{\mathbf{z}}^{(j)})^T \mathbf{K}^{(j)} + \frac{\lambda_2 L_j \mathbf{f}_{\mathbf{z}, \lambda}^{(j)} \mathbf{K}^{(j)}}{(l+u)^2} \\ 2325 \quad &= \frac{2}{l} \left(\underbrace{y_1 - f_{\mathbf{z}, \lambda}(x_1), \dots, y_l - f_{\mathbf{z}, \lambda}(x_l)}_{l \text{ Items}}, \underbrace{0, \dots, 0}_{u \text{ Items}} \right)^T (-\mathbf{K}^{(j)}) + 2\lambda_1 \tau_j (\hat{\alpha}_{\mathbf{z}}^{(j)})^T \mathbf{K}^{(j)} \\ 2326 \quad &\quad + \frac{2\lambda_2 L_j \mathbf{f}_{\mathbf{z}, \lambda}^{(j)} \mathbf{K}^{(j)}}{(l+u)^2}, \\ 2327 \quad & \end{aligned}$$

2328 where $\mathbf{K}^{(j)} = (K^{(j)}(x_a^{(j)}, x_b^{(j)}))_{a,b=1}^{l+u} \in \mathbb{R}^{(l+u) \times (l+u)}$.
2329

2330 When satisfying $\frac{\partial f_{\mathbf{z}, \lambda}}{\partial \alpha^{(j)}} = 0$, we have
2331

$$\begin{aligned} 2332 \quad \tau_j (\hat{\alpha}_{\mathbf{z}}^{(j)})^T &= \frac{1}{l\lambda_1} (y_1 - f_{\mathbf{z}, \lambda}(x_1), \dots, y_l - f_{\mathbf{z}, \lambda}(x_l), 0, \dots, 0)^T - \frac{\lambda_2 L_j \mathbf{f}_{\mathbf{z}, \lambda}^{(j)}}{\lambda_1 (l+u)^2}. \\ 2333 \quad & \end{aligned}$$

2334 Then it follows for any $j \in \{1, \dots, p\}$,
2335

$$\begin{aligned} 2336 \quad \tau_j \|\hat{\alpha}_{\mathbf{z}}^{(j)}\|_2 &\leq \frac{1}{l\lambda_1} \sqrt{\sum_{i=1}^l (y_i - f_{\mathbf{z}, \lambda}(x_i))^2 + \frac{\lambda_2}{\lambda_1 (l+u)^2} \|L_j \mathbf{f}_{\mathbf{z}, \lambda}^{(j)}\|_2^2} \\ 2337 \quad &\leq \frac{M + \|f_{\mathbf{z}, \lambda}\|_{\infty}}{\lambda_1 \sqrt{l}} + \frac{\lambda_2 w}{\lambda_1 (l+u)^{3/2}} \|\mathbf{f}_{\mathbf{z}, \lambda}^{(j)}\|_{\infty}, \\ 2338 \quad & \end{aligned}$$

2339 where $L_j \mathbf{f}_{\mathbf{z}, \lambda}^{(j)}$ could also be rewritten as the sum of $l+u$ components.
2340

2341 Based on the above conclusions, we give the proof for bounding $\mathcal{H}(\mathbf{z}, \lambda)$.
2342

2343 **Proposition 4** The hypothesis error $\mathcal{H}(\mathbf{z}, \lambda)$ defined in Theorem 3 could be bounded by
2344

$$\mathcal{H}(\mathbf{z}, \lambda) \leq p \left(\frac{(M + \|f_{\mathbf{z}, \lambda}\|_{\infty})}{\sqrt{l}} + \frac{\lambda_2 w \|\mathbf{f}_{\mathbf{z}, \lambda}\|_{\infty}}{(l+u)^{3/2}} \right),$$

2345 where $f_{\mathbf{z}, \lambda}$ is defined in equation 25.
2346

2347 **Proof 6** Recall the definitions of $f_{\mathbf{z}}$, f_{λ} and $f_{\mathbf{z}, \lambda}$, we have
2348

$$\begin{aligned} 2349 \quad \mathcal{E}_{\mathbf{z}}(f_{\mathbf{z}}) &\leq \mathcal{E}_{\mathbf{z}}(f_{\mathbf{z}}) + \lambda_1 \Omega(f_{\mathbf{z}}) + \frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (\mathbf{f}_{\mathbf{z}}^{(j)})^T L_j \mathbf{f}_{\mathbf{z}}^{(j)} \\ 2350 \quad &\leq \mathcal{E}_{\mathbf{z}}(f_{\mathbf{z}, \lambda}) + \lambda_1 \Omega(f_{\mathbf{z}, \lambda}) + \frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (\mathbf{f}_{\mathbf{z}, \lambda}^{(j)})^T L_j \mathbf{f}_{\mathbf{z}, \lambda}^{(j)}, \\ 2351 \quad & \end{aligned}$$

2352 and
2353

$$\begin{aligned} 2354 \quad \mathcal{E}_{\mathbf{z}}(f_{\mathbf{z}, \lambda}) + \lambda_1 \sum_{j=1}^p \tau_j \|f_{\mathbf{z}, \lambda}^{(j)}\|_{K^{(j)}}^2 &+ \frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (\mathbf{f}_{\mathbf{z}, \lambda}^{(j)})^T L_j \mathbf{f}_{\mathbf{z}, \lambda}^{(j)} \\ 2355 \quad &\leq \mathcal{E}_{\mathbf{z}}(f_{\lambda}) + \lambda_1 \sum_{j=1}^p \tau_j \|f_{\lambda}^{(j)}\|_{K^{(j)}}^2 + \frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (\mathbf{f}_{\lambda}^{(j)})^T L_j \mathbf{f}_{\lambda}^{(j)}. \\ 2356 \quad & \end{aligned}$$

Then based on the definition of $\mathcal{H}(\mathbf{z}, \lambda)$, we can derive that

$$\begin{aligned}
 \mathcal{H}(\mathbf{z}, \lambda) &= \mathcal{E}_{\mathbf{z}}(\pi(f_{\mathbf{z}})) + \lambda_1 \Omega(f_{\mathbf{z}}) + \frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (\mathbf{f}_{\mathbf{z}}^{(j)})^T L_j \mathbf{f}_{\mathbf{z}}^{(j)} \\
 &\quad - \left\{ \mathcal{E}_{\mathbf{z}}(f_{\lambda}) + \lambda_1 \sum_{j=1}^p \tau_j \|f_{\lambda}^{(j)}\|_{K^{(j)}}^2 + \frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (\mathbf{f}_{\lambda}^{(j)})^T L_j \mathbf{f}_{\lambda}^{(j)} \right\} \\
 &\leq \mathcal{E}_{\mathbf{z}}(f_{\mathbf{z}, \lambda}) + \lambda_1 \Omega(f_{\mathbf{z}, \lambda}) + \frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (\mathbf{f}_{\mathbf{z}, \lambda}^{(j)})^T L_j \mathbf{f}_{\mathbf{z}, \lambda}^{(j)} \\
 &\quad - \left\{ \mathcal{E}_{\mathbf{z}}(f_{\mathbf{z}, \lambda}) + \lambda_1 \sum_{j=1}^p \tau_j \|f_{\mathbf{z}, \lambda}^{(j)}\|_{K^{(j)}}^2 + \frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (\mathbf{f}_{\mathbf{z}, \lambda}^{(j)})^T L_j \mathbf{f}_{\mathbf{z}, \lambda}^{(j)} \right\} \\
 &\leq \lambda_1 \Omega(f_{\mathbf{z}, \lambda}),
 \end{aligned}$$

and based on Lemma 4, we have

$$\lambda_1 \Omega(f_{\mathbf{z}, \lambda}) = \lambda_1 \sum_{j=1}^p \tau_j \|\hat{\alpha}_{\mathbf{z}}^{(j)}\|_2 \leq p \left(\frac{M + \|f_{\mathbf{z}, \lambda}\|_{\infty}}{\sqrt{l}} + \frac{\lambda_2 w \max_{j=1, \dots, p} \|\mathbf{f}_{\mathbf{z}, \lambda}^{(j)}\|_{\infty}}{(l+u)^{3/2}} \right).$$

The desired results can be obtained by combining the above inequalities.

F.5 BOUNDING MANIFOLD ERROR $\mathcal{M}(\mathbf{z}, \lambda)$

Recall the definition of $\mathcal{M}(\mathbf{z}, \lambda)$, we have

$$\mathcal{M}(\mathbf{z}, \lambda) = \frac{\lambda_2}{(l+u)^2} \sum_{j=1}^p (\mathbf{f}_{\lambda}^{(j)})^T L_j \mathbf{f}_{\lambda}^{(j)} - \lambda_2 \sum_{j=1}^p \left\langle f_{\lambda}^{(j)}, L_{\omega} f_{\lambda}^{(j)} \right\rangle_2.$$

The manifold error can be derived by bounding each of the terms with a reasonable assumption that the random variables on the similarity measure $\mathcal{W}(\cdot, x)$ lies in the additive space of RKHS. Thus, we further divide the manifold error into the following four parts:

$$\mathcal{M}(\mathbf{z}, \lambda) = \mathcal{M}_1(\mathbf{z}, \lambda) + \mathcal{M}_2(\mathbf{z}, \lambda) + \mathcal{M}_3(\mathbf{z}, \lambda) + \mathcal{M}_4(\mathbf{z}, \lambda),$$

where

$$\mathcal{M}_1(\mathbf{z}, \lambda) = \frac{\lambda_2}{l+u} \sum_{i=1}^{l+u} \left(\frac{1}{l+u} \sum_{k=1}^{l+u} f_{\lambda}^2(x_k) \mathcal{W}(x_k, x_i) - \int f_{\lambda}^2(x) \mathcal{W}(x, x_i) d\rho_{\mathcal{X}}(x) \right), \quad (26)$$

$$\mathcal{M}_2(\mathbf{z}, \lambda) = \lambda_2 \int f_{\lambda}^2(x) \left(\frac{1}{l+u} \sum_{i=1}^{l+u} \mathcal{W}(x, x_i) - \int \mathcal{W}(x, x') d\rho_{\mathcal{X}}(x') \right) d\rho_{\mathcal{X}}(x), \quad (27)$$

$$\mathcal{M}_3(\mathbf{z}, \lambda) = \frac{\lambda_2}{l+u} \sum_{i=1}^{l+u} f_{\lambda}(x_i) \left(\int f_{\lambda}(x) \mathcal{W}(x, x_i) d\rho_{\mathcal{X}}(x) - \frac{1}{l+u} \sum_{k=1}^{l+u} f_{\lambda}(x) \mathcal{W}(x_k, x_i) \right), \quad (28)$$

and

$$\mathcal{M}_4(\mathbf{z}, \lambda) = \lambda_2 \int f_{\lambda}(x) \left(\int f_{\lambda}(x') \mathcal{W}(x, x') d\rho_{\mathcal{X}}(x') - \frac{1}{l+u} \sum_{i=1}^{l+u} f_{\lambda}(x_i) \mathcal{W}(x, x_i) \right) d\rho_{\mathcal{X}}(x). \quad (29)$$

To analyze the above terms, we introduce the following lemma.

2430
2431 **Lemma 5** (Smale & Zhou, 2007) Let ξ be a random variable on \mathcal{Z} in a Hilbert space \mathcal{H} , which
2432 satisfies $\|\xi\| \leq M_\xi$. Denote $\text{Var}(\xi) = \sigma_\xi^2 = \mathbb{E}(\|\xi\|^2)$. Then for any $\delta \in (0, 1)$, there holds
2433

$$2434 \quad \left\| \frac{1}{l+u} \sum_{i=1}^{l+u} [\xi_i - \mathbb{E}(\xi)] \right\| \leq \frac{2M_\xi \log(\frac{2}{\delta})}{l+u} + \left(\frac{2\sigma_\xi^2 \log(\frac{2}{\delta})}{l+u} \right)^{\frac{1}{2}}$$

2435 with confidence $1 - \delta$.
2436

2437 **Proposition 5** For all $\delta \in (0, 1)$, with confidence at least $1 - \delta$, there holds
2438

$$2439 \quad \mathcal{M}(\mathbf{z}, \lambda) \leq \frac{8w\lambda_2\kappa^2\mathcal{D}(\lambda) \log(8/\delta)}{\lambda_1 \min_j \{\tau_j\}} (l+u)^{-\frac{1}{2}}.$$

2440 **Proof 7** Step 1: Bounding $\mathcal{M}_1(\mathbf{z}, \lambda)$ in equation 26. Based on the definition of f_λ , we have
2441

$$2442 \quad \|f_\lambda^2(x)\mathcal{W}(x, \cdot)\|_\infty \leq w\|f_\lambda\|_\infty^2$$

$$2443 \quad \text{since } \|f_\lambda\|_\infty \leq \kappa\|f_\lambda\|_K \leq \kappa\sqrt{\frac{\mathcal{D}(\lambda)}{\lambda_1 \min_j \{\tau_j\}}}.$$

2444 Thus we have
2445

$$2446 \quad M_\xi \leq \|f_\lambda^2(x)\mathcal{W}(x, \cdot)\|_\infty \leq \frac{w\kappa^2\mathcal{D}(\lambda)}{\lambda_1 \min_j \{\tau_j\}}.$$

2447 and
2448

$$2449 \quad \sigma_\xi^2 \leq E[\|f_\lambda^2(x)\mathcal{W}(x, \cdot)\|_\infty^2] \leq \frac{w^2\kappa^4\mathcal{D}^2(\lambda)}{\lambda_1^2 \min_j \{\tau_j\}^2}.$$

2450 Applying Lemma 5, we can derive that
2451

$$2452 \quad \begin{aligned} \mathcal{M}_1(\mathbf{z}, \lambda) &\leq \lambda_2 \left(\frac{2 \log(\frac{8}{\delta})}{l+u} \frac{w\kappa^2\mathcal{D}(\lambda)}{\lambda_1 \min_j \{\tau_j\}} + \sqrt{\frac{2 \log(\frac{8}{\delta})}{l+u} \frac{w\kappa^2\mathcal{D}(\lambda)}{\lambda_1 \min_j \{\tau_j\}}} \right) \\ 2453 &\leq \frac{\lambda_2 w \kappa^2 \mathcal{D}(\lambda)}{\lambda_1 \min_j \{\tau_j\}} \left(\frac{2 \log(\frac{8}{\delta})}{l+u} + \sqrt{\frac{2 \log(\frac{8}{\delta})}{l+u}} \right) \\ 2454 &\leq \frac{4\lambda_2 w \kappa^2 \mathcal{D}(\lambda) \log(\frac{8}{\delta})}{\sqrt{l+u} \lambda_1 \min_j \{\tau_j\}} \end{aligned}$$

2455 with confidence of $1 - \delta/4$.
2456

2457 Step 2: Bounding $\mathcal{M}_2(\mathbf{z}, \lambda)$ in equation 27. Note that $\|\mathcal{W}(\cdot, x)\| \leq w$, $E[\|\mathcal{W}(\cdot, x)\|^2] \leq w^2$.
2458

2459 Then, with confidence of $1 - \frac{\delta}{4}$, we have
2460

$$2461 \quad \begin{aligned} \mathcal{M}_2(\mathbf{z}, \lambda) &\leq \lambda_2 \int f_\lambda^2(x) w \left(\frac{2 \log(8/\delta)}{l+u} + \sqrt{\frac{2 \log(8/\delta)}{l+u}} \right) d\rho_{\mathcal{X}}(x) \\ 2462 &\leq \lambda_2 w \left(\frac{2 \log(8/\delta)}{l+u} + \sqrt{\frac{2 \log(8/\delta)}{l+u}} \right) \int f_\lambda^2(x) d\rho_{\mathcal{X}}(x) \\ 2463 &\leq \lambda_2 w \frac{4 \log(8/\delta)}{\sqrt{l+u}} \frac{w\kappa^2\mathcal{D}(\lambda)}{\lambda_1 \min_j \{\tau_j\}} \\ 2464 &\leq \frac{4\lambda_2 w \kappa^2 \mathcal{D}(\lambda)}{\sqrt{l+u} \lambda_1 \min_j \{\tau_j\}} \log(\frac{8}{\delta}). \end{aligned}$$

2465 Step 3: Bounding $\mathcal{M}_3(\mathbf{z}, \lambda)$ in equation 28. It is easy to deduce that
2466

$$2467 \quad \|f_\lambda(x)\mathcal{W}(\cdot, x)\| \leq w\kappa\sqrt{\frac{\mathcal{D}(\lambda)}{\lambda_1 \min_j \{\tau_j\}}},$$

2484 and

$$2485 \quad E[\|f_\lambda(x)\mathcal{W}(\cdot, x)\|^2] \leq w^2 \kappa^2 \frac{\mathcal{D}(\lambda)}{\lambda_1 \min_j \tau_j}.$$

2488 Then, with confidence of $1 - \frac{\delta}{4}$, we can derive that

$$2489 \quad \mathcal{M}_3(\mathbf{z}, \lambda) = \frac{\lambda_2}{l+u} \sum_{i=1}^{l+u} f_\lambda(x_i) \left(\int f_\lambda(x)\mathcal{W}(x, x_i) d\rho_{\mathcal{X}}(x) - \frac{1}{l+u} \sum_{k=1}^{l+u} f_\lambda(x)\mathcal{W}(x_k, x_i) \right)$$

$$2490 \quad \leq \frac{\lambda_2}{l+u} \sum_{i=1}^{l+u} f_\lambda(x_i) w \kappa \sqrt{\frac{\mathcal{D}(\lambda)}{\lambda_1 \min_j \tau_j}} \left(\frac{2 \log(\frac{8}{\delta})}{l+u} + \sqrt{\frac{2 \log(\frac{8}{\delta})}{l+u}} \right)$$

$$2491 \quad \leq \lambda_2 w \kappa^2 \frac{\mathcal{D}(\lambda)}{\lambda_1 \min_j \tau_j} \frac{4 \log(\frac{8}{\delta})}{\sqrt{l+u}}$$

$$2492 \quad \leq \frac{4 \lambda_2 w \kappa^2 \mathcal{D}(\lambda)}{\sqrt{l+u} \lambda_1 \min_j \tau_j} \log(\frac{8}{\delta}).$$

2501 Step 4: Bounding $\mathcal{M}_4(\mathbf{z}, \lambda)$ in equation 29. Finally, we can deduce that with confidence of $1 - \delta/4$,

$$2502 \quad \mathcal{M}_4(\mathbf{z}, \lambda) \leq \lambda_2 \int f_\lambda(x) w \kappa \sqrt{\frac{\mathcal{D}(\lambda)}{\lambda_1 \min_j \tau_j}} \left(\frac{2 \log(\frac{8}{\delta})}{l+u} + \sqrt{\frac{2 \log(\frac{8}{\delta})}{l+u}} \right) d\rho_{\mathcal{X}}(x)$$

$$2503 \quad \leq \lambda_2 w \kappa \sqrt{\frac{\mathcal{D}(\lambda)}{\lambda_1 \min_j \tau_j}} 2 \frac{2 \log(\frac{8}{\delta})}{\sqrt{l+u}} \int f_\lambda(x) d\rho_{\mathcal{X}}(x)$$

$$2504 \quad \leq \frac{4 \lambda_2 w \kappa^2 \mathcal{D}(\lambda)}{\sqrt{l+u} \lambda_1 \min_j \tau_j} \log(\frac{8}{\delta}).$$

2513 The desired result follows by combining the above estimations.

2514 F.6 PROOF OF THEOREM 2

2517 Then we summarize the above conclusions and analyze the learning rate under mild assumptions.

2519 **Proposition 6** Let Assumptions 2-4 be true. For any $\delta \in (0, 1/2)$, with confidence $1 - 2\delta$ there holds

$$2520 \quad \mathcal{E}(\pi(f_{\mathbf{z}})) - \mathcal{E}(f_{\rho})$$

$$2521 \quad \leq \mathcal{D}(\lambda) + \mathcal{S}(\mathbf{z}, \lambda) + \mathcal{H}(\mathbf{z}, \lambda) + \mathcal{M}(\mathbf{z}, \lambda)$$

$$2522 \quad \leq C_r \lambda_1^r + \frac{1}{2} (\mathcal{E}(\pi(f_{\mathbf{z}})) - \mathcal{E}(f_{\rho})) + C_{\zeta} \gamma + \frac{32M^2 \log(4/\delta)}{l+u} + \frac{144M^2 \log(4/\delta)}{l+u}$$

$$2523 \quad + \frac{4 (3M + \kappa \sqrt{\frac{\mathcal{D}(\lambda)}{\lambda_1 \min_j \{\tau_j\}}})^2 \log(4/\delta)}{3(l+u)} + \sqrt{\frac{2 \log(4/\delta)}{l+u}} \left(3M + \kappa \sqrt{\frac{\mathcal{D}(\lambda)}{\lambda_1 \min_j \{\tau_j\}}} \right)^3 \mathcal{D}(\lambda)$$

$$2524 \quad + p \left(\frac{(M + \|f_{\mathbf{z}, \lambda}\|_{\infty})}{\sqrt{l}} + \frac{\lambda_2 w \|\mathbf{f}_{\mathbf{z}, \lambda}^{(j)}\|_{\infty}}{(l+u)^{3/2}} \right) + \frac{16 \lambda_2 w \kappa^2 \mathcal{D}(\lambda)}{\sqrt{l+u} \lambda_1 \min_j \tau_j} \log(\frac{8}{\delta}),$$

2528 where

$$2529 \quad C_r = \sum_{j=1}^p \left(L \|g_j^*\|_{L_2(\rho_{\mathcal{X}^{(j)}})} + \left(2\omega \kappa^2 + \max_j \{\tau_j\} \right) \|g_j^*\|_{L_2(\rho_{\mathcal{X}^{(j)}})}^2 \right),$$

$$2530 \quad \gamma = \max \left\{ (16M^2)^{\frac{2-\zeta}{2+\zeta}} (C_{\zeta} p^{1+\zeta} (4Mr)^{\zeta} / (l+u))^{\frac{2}{2+\zeta}}, (8M^2)^{\frac{2-\zeta}{2+\zeta}} (C_{\zeta} p^{1+\zeta} (4Mr)^{\zeta} / (l+u))^{\frac{2}{2+\zeta}} \right\},$$

2531 C_{ζ} is a constant, $0 < r \leq 1/2$, $0 < \zeta < 2$ and $f_{\mathbf{z}, \lambda}$ is defined in equation 25.

2538 **Proof 8** The above results can be obtained by directly combining the results of Theorem 3 and
 2539 Propositions 1-5.

2541 Now, we present the proof of Theorem 22.

2543 **Proof 9** Let $\lambda_1 = (l+u)^{-\Delta}$ and $\lambda_2 = \lambda_1^{1-r} = (l+u)^{-\Delta(1-r)}$, where $0 < r \leq 1/2$. According to
 2544 Proposition 6 and the properties of $\mathcal{D}(\lambda)$ and $\mathbf{f}_{\mathbf{z},\lambda}$, we have

$$\begin{aligned} & \mathcal{E}(\pi(f_{\mathbf{z}})) - \mathcal{E}(f_{\rho}) \\ & \leq C_1(l+u)^{-\Delta r} + C_2(l+u)^{-2/(2+\xi)} + C_3 \log(4/\delta)(l+u)^{-1} \\ & \quad + C_4 \log(4/\delta)(l+u)^{\Delta(1-r)-1} + C_5 \sqrt{\log(4/\delta)}(l+u)^{-\Delta(5r/2-3/2)-1/2} + C_6 l^{-1/2} \\ & \quad + C_7(l+u)^{\Delta r-3/2} + C_8 \log(8/\delta)(l+u)^{-1/2} \\ & \leq C_9 \log(8/\delta) \left((l+u)^{-\Delta r} + (l+u)^{-2/(2+\xi)} + (l+u)^{-1} + (l+u)^{\Delta(1-r)-1} \right. \\ & \quad \left. + (l+u)^{-\Delta(5r/2-3/2)-1/2} + (l+u)^{\Delta r-3/2} + (l+u)^{-1/2} \right) + l^{-1/2} \\ & \leq C_{10} \log(8/\delta) \left((l+u)^{-\Theta} + l^{-1/2} \right), \end{aligned}$$

2556 where

$$\begin{aligned} \Theta &= \min\{\Delta r, 2/(2+\zeta), 1, 1+\Delta(r-1), \Delta(5r/2-3/2)+1/2, 3/2-\Delta r, 1/2\} \\ &= \min\{\Delta r, 1+\Delta(r-1), \Delta(5r/2-3/2)+1/2, 3/2-\Delta r, 1/2\}, \end{aligned}$$

2560 and $\Delta > 0$, $0 < r \leq 1/2$, $0 < \zeta < 2$. And C_1, \dots, C_{10} are positive constants independently of
 2561 l, u, δ and r .

2562 With $\Delta = 1$ and $r = 1/2$, the following holds

$$\mathcal{E}(\pi(f_{\mathbf{z}})) - \mathcal{E}(f_{\rho}) \leq \max \left\{ \mathcal{O}((l+u)^{-1/4}), \mathcal{O}(l^{-1/2}) \right\}.$$

2566 This completes the proof.

2569 G CONVERGENCE ANALYSIS (PROOF OF THEOREM 1)

2571 As described in the main paper, the masks on all features are learned at the upper level of S²MAM,
 2572 where a project operation is employed to limit informative variables. Thus, we mainly focus on the
 2573 corresponding convergence performance of the upper level of S²MAM.

2574 Notice that the update rule for variable s in practice can be formulated by

$$s^{t+1} = \mathcal{P}_{\mathcal{C}}(s^t - \eta^t \mathcal{L}_{\mathcal{B}}(\alpha^*(\mathbf{m})) \nabla_s \ln p(\mathbf{m} | s^t)), \quad (30)$$

2577 where $\mathcal{L}_{\mathcal{B}}$ is the loss on selected sample batch \mathcal{B} .

2578 Furthermore, denote the update rules with stochastic and deterministic gradient mappings as

$$\begin{aligned} s^{t+1} &= s^t - \eta^t \hat{\mathcal{G}}^t = \mathcal{P}_{\mathcal{C}}(s^t - \eta^t \mathcal{L}_{\mathcal{B}}(\alpha^*(\mathbf{m})) \nabla_s \ln p(\mathbf{m} | s^t)), \\ s^{t+1} &= s^t - \eta^t \mathcal{G}^t = \mathcal{P}_{\mathcal{C}}(s^t - \eta^t \nabla_s \Phi(s^t)). \end{aligned}$$

2583 That is to say

$$\begin{aligned} \hat{\mathcal{G}}^t &= \frac{1}{\eta^t} (s^t - \mathcal{P}_{\mathcal{C}}(s^t - \eta^t \mathcal{L}_{\mathcal{B}}(\alpha^*(\mathbf{m})) \nabla_s \ln p(\mathbf{m} | s^t))) = \frac{1}{\eta^t} (s^t - s^{t+1}), \\ \mathcal{G}^t &= \frac{1}{\eta^t} (s^t - \mathcal{P}_{\mathcal{C}}(s^t - \eta^t \nabla_s \Phi(s^t))). \end{aligned}$$

2590 Firstly, we recall some necessary assumptions and definitions for projection operation, which have
 2591 been used in existing works on algorithmic convergence analysis on projection optimization for
 single-level problems (Bauschke et al., 2012) and bilevel ones (Pedregosa, 2016).

Inspired by some research on bilevel optimization problems (Pedregosa, 2016; Shu et al., 2023; Zhao et al., 2023) with mini-batch settings, this paper adopts the independently and identically distributed (i.i.d.) random variables induced by the mini-batch. Notice that $\xi^{(t)} = \mathcal{L}_B(\alpha^*(\mathbf{m})) \nabla_s \ln p(\mathbf{m} | s^t) - \nabla_s \Phi(s^t)$ for $t \in [1, 2, \dots, T]$ are i.i.d random variables with finite variance σ^2 , since the mini-batch are drawn i.i.d with a finite number of samples. Furthermore, $\mathbb{E} [\xi^{(t)}] = 0$ since samples are drawn uniformly at random.

Lemma 6 *Given a compact convex set $\mathcal{C} \subset \mathbb{R}^d$ and let $\mathcal{P}_{\mathcal{C}}(\cdot)$ be the projection operator on \mathcal{C} , then for any $\mathbf{u} \in \mathbb{R}^d$ and $\mathbf{v} \in \mathbb{R}^d$, we have*

$$\|\mathcal{P}_{\mathcal{C}}(\mathbf{u}) - \mathcal{P}_{\mathcal{C}}(\mathbf{v})\|^2 \leq (\mathbf{u} - \mathbf{v})^\top (\mathcal{P}_{\mathcal{C}}(\mathbf{u}) - \mathcal{P}_{\mathcal{C}}(\mathbf{v}))$$

Lemma 7 *Given a compact convex set $\mathcal{C} \subset \mathbb{R}^d$ and let $\mathcal{P}_{\mathcal{C}}(\cdot)$ be the projection operator on \mathcal{C} , then for any $\mathbf{c} \in \mathcal{C}$ and $\mathbf{u} \in \mathbb{R}^d, \mathbf{v} \in \mathbb{R}^d$, we have*

$$\|\mathcal{P}_{\mathcal{C}}(\mathbf{c} + \mathbf{u}) - \mathcal{P}_{\mathcal{C}}(\mathbf{c} + \mathbf{v})\| \leq \|\mathbf{u} - \mathbf{v}\|.$$

Remark 10 *Considering $\mathbf{c} = s^t$, $\mathbf{u} = \eta^t \mathcal{L}_B(\alpha^*(\mathbf{m})) \nabla_s \ln p(\mathbf{m} | s^t)$ and $\mathbf{v} = \nabla_s \Phi(s^t)$, we can easily obtain that*

$$\|\hat{\mathcal{G}}^t - \mathcal{G}^t\| \leq \|\mathcal{L}_B(\alpha^*(\mathbf{m})) \nabla_s \ln p(\mathbf{m} | s^t) - \nabla_s \Phi(s^t)\| := \|\xi^{(t)}\|.$$

In the following, we present the corresponding proof for Theorem 1.

Proof 10 *Inspired from Theorem 2 in (Pedregosa, 2016), the following holds with Lemma 6 by setting $\mathbf{u} = s^t$ and $\mathbf{v} = s^t - \eta^t g^t$,*

$$\|s^t - s^{t+1}\|^2 \leq \eta^t (\mathcal{L}_B(\alpha^*(\mathbf{m})) \nabla_s \ln p(\mathbf{m} | s^t))^T (s^t - s^{t+1}) = \eta^t (\mathcal{L}_B(\alpha^*(\mathbf{m})) \nabla_s \ln p(\mathbf{m} | s^t))^T \hat{\mathcal{G}}^t.$$

Thus we have

$$\|\hat{\mathcal{G}}^t\|^2 \leq \langle \mathcal{L}_B(\alpha^*(\mathbf{m})) \nabla_s \ln p(\mathbf{m} | s^t), \hat{\mathcal{G}}^t \rangle.$$

Recall the random variable $\xi^{(t)} = \mathcal{L}_B(\alpha^*(\mathbf{m})) \nabla_s \ln p(\mathbf{m} | s^t) - \nabla_s \Phi(s^t)$ for $t \in [1, 2, \dots, T]$. Based on the definitions of the stochastic gradient mapping $\hat{\mathcal{G}}^t$ and the L smoothness of Φ , we have

$$\begin{aligned} \Phi(s^{t+1}) - \Phi(s^t) &\leq \frac{L}{2} \|s^{t+1} - s^t\|^2 - \langle \nabla_s \Phi(s^t), s^t - s^{t+1} \rangle \\ &= \frac{L(\eta^t)^2}{2} \|\hat{\mathcal{G}}^t\|^2 - \eta^t \langle \mathcal{L}_B(\alpha^*(\mathbf{m})) \nabla_s \ln p(\mathbf{m} | s^t) - \xi^{(t)}, \hat{\mathcal{G}}^t \rangle \\ &= \frac{L(\eta^t)^2}{2} \|\hat{\mathcal{G}}^t\|^2 - \eta^t \langle \mathcal{L}_B(\alpha^*(\mathbf{m})) \nabla_s \ln p(\mathbf{m} | s^t), \hat{\mathcal{G}}^t \rangle + \eta^t \langle \xi^{(t)}, \hat{\mathcal{G}}^t \rangle \\ &\leq \left(\frac{L(\eta^t)^2}{2} - \eta^t\right) \|\hat{\mathcal{G}}^t\|^2 + \eta^t \langle \xi^{(t)}, \mathcal{G}^t \rangle + \eta^t \langle \xi^{(t)}, \hat{\mathcal{G}}^t - \mathcal{G}^t \rangle \\ &\leq \left(\frac{L(\eta^t)^2}{2} - \eta^t\right) \|\hat{\mathcal{G}}^t\|^2 + \eta^t \langle \xi^{(t)}, \mathcal{G}^t \rangle + \eta^t \|\xi^{(t)}\|^2 \\ &\leq (L(\eta^t)^2 - 2\eta^t) (\|\mathcal{G}^t\|^2 + \|\xi^{(t)}\|^2) + \eta^t \langle \xi^{(t)}, \mathcal{G}^t \rangle + \eta^t \|\xi^{(t)}\|^2, \end{aligned}$$

where the last line is obtained with Lemma 7 and $\|\hat{\mathcal{G}}^t\|^2 \leq 2(\|\mathcal{G}^t\|^2 + \|\xi^{(t)}\|^2)$.

By summing up from $t = 1$ to T , we derive that

$$\sum_{t=1}^T (2\eta^t - L(\eta^t)^2) \|\mathcal{G}^t\|^2 \leq \Phi(s^1) - \Phi(s^{T+1}) + \sum_{t=1}^T \left(\eta^t \langle \xi^{(t)}, \mathcal{G}^t \rangle + (L(\eta^t)^2 - \eta^t) \|\xi^{(t)}\|^2 \right).$$

Since $\eta^t = \frac{c}{\sqrt{t}} \leq \frac{1}{L}$, we have $2\eta^t - L\eta^t \geq \eta^t \geq 0$. Denote $(\eta^t)' = \min\{\eta^t, t = 1, \dots, T\} = \frac{c}{\sqrt{T}}$.

2646 Then we can derive

$$2647 \sum_{t=1}^T (2\eta^t - L(\eta^t)^2) \geq \sum_{t=1}^T \eta^t,$$

2650 and

$$2651 \frac{1}{\sum_{t=1}^T (2\eta^t - L(\eta^t)^2)} \leq \frac{1}{\sum_{t=1}^T \eta^t} \leq \frac{1}{T(\eta^t)'} = \frac{1}{c\sqrt{T}}.$$

2654 Under the assumptions on $\mathbb{E}[\xi^{(t)}] = 0$ and $\mathbb{E}\|\xi^{(t)}\|^2 \leq \sigma^2$, we have

$$2656 \min_{1 \leq t \leq T} \mathbb{E} \|\mathcal{G}^t\|^2 \leq \frac{\sum_{t=1}^T (2\eta^t - L(\eta^t)^2) \|\mathcal{G}^t\|^2}{\sum_{t=1}^T (2\eta^t - L(\eta^t)^2)} \leq \frac{\Phi(s^1) - \Phi(s^{T+1}) + \sum_{t=1}^T (L(\eta^t)^2 - \eta^t) \sigma^2}{c\sqrt{T}}$$

$$2659 \leq \frac{\Phi(s^1) - \Phi(s^{T+1})}{c\sqrt{T}},$$

2661 where last inequality is obtained by $\eta^t \leq 1/L$ and $L(\eta^t)^2 - \eta^t \leq 0$.

2663 Finally, it can be obtained that

$$2665 \min_{1 \leq t \leq T} \mathbb{E} \|\mathcal{G}^t\|^2 \lesssim \mathcal{O}\left(\frac{1}{\sqrt{T}}\right).$$

2668 **Remark 11** Zhou et al. (2022) demonstrate that with assumed variance σ , smoothness parameter
2669 ℓ and learning rate $\eta \leq \frac{2}{\ell}$, the average gradient $\frac{1}{T} \sum_{t=1}^T \mathbb{E} \|\mathcal{G}^t\|^2$ converges to a small constant
2670 $\frac{8-2\ell\eta}{2-\ell\eta} \sigma^2$, when $T \rightarrow \infty$.

2672 Differently, we further adopt the learning rate $\eta = \frac{c}{t} \leq \frac{1}{L}$ ($c > 0$), and new inequalities to further
2673 derive an improved convergence rate, $\mathcal{O}(\frac{1}{\sqrt{T}})$, which converges to zero with $T \rightarrow \infty$.

2675 H OPTIMIZATION DETAILS

2677 H.1 DISCRETE MASKS \mathbf{m} TO CONTINUOUS PROBABILITY \mathbf{s}

2679 As introduced in (Zhou et al., 2022), the probabilistic bilevel problem is indeed a tight relaxation
2680 (although not equivalent) of the original discrete problem. For completeness, we summarize the
2681 reasons for such a transformation:

- 2683 • The discrete masks $m = 0/1$ can be represented as a particular stochastic one by letting
2684 $s_i = 0/1$, thus we have $\min_{\mathbf{s} \in \mathcal{C}} \Phi(\mathbf{s}) \leq \min_{\mathbf{m} \in \tilde{\mathcal{C}}} \tilde{\Phi}(\mathbf{m})$;
- 2685 • The constraint on \mathbf{s} with ℓ -1 regularization within $[0, 1]$ guides the most components of the
2686 optimal \mathbf{s} either 0 or 1, which has already been empirically validated in (Zhou et al., 2022);
- 2688 • The new probabilistic form can be optimized directly with the gradient-based method as
2689 follows,

$$2690 \nabla_{\mathbf{s}} \Phi(\mathbf{s}) = \nabla_{\mathbf{s}} \mathbb{E}_{p(\mathbf{m}|\mathbf{s})} \mathcal{L}(\boldsymbol{\alpha}^*(\mathbf{m}))$$

$$2691 = \nabla_{\mathbf{s}} \int \mathcal{L}(\boldsymbol{\alpha}^*(\mathbf{m})) p(\mathbf{m} | \mathbf{s}) d\mathbf{m}$$

$$2693 = \int \mathcal{L}(\boldsymbol{\alpha}^*(\mathbf{m})) \frac{\nabla_{\mathbf{s}} p(\mathbf{m} | \mathbf{s})}{p(\mathbf{m} | \mathbf{s})} p(\mathbf{m} | \mathbf{s}) d\mathbf{m}$$

$$2695 = \int \mathcal{L}(\boldsymbol{\alpha}^*(\mathbf{m})) \nabla_{\mathbf{s}} \ln p(\mathbf{m} | \mathbf{s}) p(\mathbf{m} | \mathbf{s}) d\mathbf{m}$$

$$2697 = \mathbb{E}_{p(\mathbf{m}|\mathbf{s})} \mathcal{L}(\boldsymbol{\alpha}^*(\mathbf{m})) \nabla_{\mathbf{s}} \ln p(\mathbf{m} | \mathbf{s}),$$

2698 which obviously reduced the computation cost of bilevel problems.

2700

Algorithm 2: Projection Operation $\mathcal{P}_C(\mathbf{a})$

2701

Input: Vector $\mathbf{a} \in \mathbb{R}^p$, core variables C , Domain $\mathcal{C} = \{\mathbf{s} : 0 \preceq \mathbf{s} \preceq 1, \|\mathbf{s}\|_1 \leq C\}$.

2702

1) Computing auxiliary variable b satisfying:

2703

$$\mathbf{1}^\top [\min(1, \max(0, \mathbf{a} - b \cdot \mathbf{1}))] - C = 0$$

2704

2) Computing auxiliary variable c satisfying:

2705

$$c \leftarrow \max(0, b)$$

2706

3) Update \mathbf{a} :

2707

$$\mathbf{a}^* \leftarrow \min(1, \max(0, \mathbf{a} - c \cdot \mathbf{1}))$$

2708

Output: $\mathcal{P}_C(\mathbf{a}) = \mathbf{a}^*$.

2709

2710

2711

H.2 PROJECT OPTIMIZATION FROM PROBABILITY \mathbf{s} TO DOMAIN \mathcal{C}

2712

Inspired from existing works (Zhao et al., 2023; Zhou et al., 2022), the algorithm for project operation from probability \mathbf{s} to domain \mathcal{C} is realized with projection operation $\mathcal{P}_C(\mathbf{s})$, which is summarized in Algorithm 2. Indeed, the Lagrangian multiplier, as well as the bisection method, are employed in designing this algorithm, yielding a closed-form solution. The theoretical guarantee for learning masks on all samples $\mathbf{m} \in \mathbb{R}^N$ can be found at (Zhou et al., 2022). Moreover, this paper focuses on the masks on all variables $\mathbf{m} \in \mathbb{R}^p$. For completeness, we present the corresponding theoretical proof as follows.

2720

Proof 11 Given variable $\mathbf{a} \in \mathbb{R}^p$, in order to project \mathbf{a} to set \mathcal{C} , we introduce the following problem with constraints:

2721

$$\min_{\mathbf{s} \in \mathbb{R}^p} \frac{1}{2} \|\mathbf{s} - \mathbf{a}\|^2, \text{ s.t. } \mathbf{1}^\top \mathbf{s} \leq C \text{ and } 0 \leq s_i \leq 1,$$

2722

where $\mathbf{1} = (1, 1, \dots, 1) \in \mathbb{R}^p$ and \mathbf{s} is the ideal output after projection.

2723

The above problem can be resolved by the commonly used Lagrangian multiplier method formulated with:

2724

$$L(\mathbf{s}, b) = \frac{1}{2} \|\mathbf{s} - \mathbf{a}\|^2 + b (\mathbf{1}^\top \mathbf{s} - C) = \frac{1}{2} \|\mathbf{s} - (\mathbf{a} - b \mathbf{1})\|^2 + b (\mathbf{1}^\top \mathbf{a} - C) - \frac{n}{2} b^2. \quad (31)$$

2725

where the auxiliary variable $b \geq 0$ and $0 \leq s_i \leq 1$.

2726

To minimize above problem equation 31 with respect to \mathbf{s} , we can derive that $\tilde{\mathbf{s}} = \mathbf{1}_{\mathbf{a} - b \mathbf{1} \geq 1} + (\mathbf{a} - b \mathbf{1})_{1 > \mathbf{a} - b \mathbf{1} > 0}$.

2727

Then we can develop two auxiliary functions as follows:

2728

$$\begin{aligned} g(b) &= L(\tilde{\mathbf{s}}, b) = \frac{1}{2} \|[\mathbf{a} - b \mathbf{1}]_- + [\mathbf{a} - (b + 1) \mathbf{1}]_+\|^2 + b (\mathbf{1}^\top \mathbf{a} - s) - \frac{n}{2} b^2 \\ &= \frac{1}{2} \|[\mathbf{a} - b \mathbf{1}]_-\|^2 + \frac{1}{2} \|[\mathbf{a} - (b + 1) \mathbf{1}]_+\|^2 + b (\mathbf{1}^\top \mathbf{a} - s) - \frac{n}{2} b^2, \text{ for } b \geq 0, \end{aligned}$$

2729

and

2730

$$g'(b) = \mathbf{1}^\top [\mathbf{b} \mathbf{1} - \mathbf{a}]_+ + \mathbf{1}^\top [(\mathbf{b} + 1) \mathbf{1} - \mathbf{a}]_- + (\mathbf{1}^\top \mathbf{a} - s) - nb = \mathbf{1}^\top \min(1, \max(0, \mathbf{a} - b \mathbf{1})) - C, \text{ for } b \geq 0.$$

2731

Finally, with the monotone decreasing property of $g'(b)$, a bisection method is exploited to solve the equation $g'(b) = 0$ with solution b^* . Because $g(b)$ increases in $(-\infty, b^*]$ and decreases in $[b^*, +\infty)$, we can conclude that the maximum of $g(b)$ is obtained at 0 if $b^* \leq 0$ and b^* if $b^* > 0$.

2732

Finally, by setting $c^* = \max(0, b^*)$, we have the output

2733

$$\mathbf{s}^* = \mathbf{1}_{\mathbf{a} - c^* \mathbf{1} \geq 1} + (\mathbf{a} - c^* \mathbf{1})_{1 > \mathbf{a} - c^* \mathbf{1} > 0} = \min(1, \max(0, \mathbf{a} - c^* \mathbf{1})).$$

2734

H.3 OPTIMIZATION FOR UPPER-LEVEL PROBLEM

2735

2736

The detailed optimization steps for probabilistic S²MAM have already been introduced in Section 2.4, which has been further summarized in Algorithm 1. Notably, this policy gradient estimation approach significantly improves the algorithmic efficiency by reducing the computational burden associated with the hypergradient of bilevel optimization problems.

2754 H.4 OPTIMIZATION FOR LOWER-LEVEL PROBLEM
2755

2756 Based on the principle of the Alternating Direction Method of Multipliers (ADMM), an optimization
2757 algorithm is designed to solve the manifold-regularized sparse additive problem at the lower level.
2758 For simplicity, merely the regression task with squared loss is presented here.

2759 Here we generate the Gram matrix over labeled and unlabeled points $\mathbf{K} = (\mathbf{K}^{(1)}, \dots, \mathbf{K}^{(p)}) \in$
2760 $\mathbb{R}^{(l+u) \times (l+u)p}$ with masked input $\mathbf{m} \odot x_i$ where $i \in [1, 2, \dots, l+u]$, the model coefficient $\alpha =$
2761 $(\alpha^{(1)^T}, \dots, \alpha^{(p)^T})^T \in \mathbb{R}^{(l+u)p}$, and the label vector $Y = (y_1, \dots, y_l, 0, \dots, 0)^T \in \mathbb{R}^{l+u}$. Then, the
2762 lower-level problem can be reformulated as
2763

$$2764 \alpha^* = \arg \min_{\alpha \in \mathbb{R}^{(l+u)p}} \frac{1}{l} (Y - J\mathbf{K}\alpha)^T (Y - J\mathbf{K}\alpha) + \lambda_1 \sum_{j=1}^p \tau_j \|\alpha^{(j)}\|_2 + \frac{\lambda_2}{(l+u)^2} \alpha^T \mathbf{K} L \mathbf{K} \alpha, \quad (32)$$

2765 where the matrix $J = \text{diag}(1, \dots, 1, 0, \dots, 0)$ is an $(l+u) \times (l+u)$ diagonal matrix with the first l
2766 diagonal entries as 1 and the rest as 0 (Belkin et al., 2006).

2767 By introducing the auxiliary variable $\vartheta = (\vartheta^{(1)^T}, \dots, \vartheta^{(p)^T})^T \in \mathbb{R}^{(l+u)p}$, $\vartheta^{(j)} =$
2768 $(\vartheta_1^{(j)}, \dots, \vartheta_{l+u}^{(j)}) \in \mathbb{R}^{l+u}$, equation 32 can be rewritten as:
2769

$$2770 \min_{\alpha, \vartheta} \frac{1}{l} (Y - J\mathbf{K}\alpha)^T (Y - J\mathbf{K}\alpha) + \lambda_1 \sum_{j=1}^p \tau_j \|\vartheta^{(j)}\|_2 + \frac{\lambda_2}{(l+u)^2} \alpha^T \mathbf{K} L \mathbf{K} \alpha, \quad \text{s.t. } \alpha - \vartheta = 0. \quad (33)$$

2771 Hence, by introducing the auxiliary variable $\vartheta \in \mathbb{R}^{(l+u)p}$ and the Lagrange multiplier $\Lambda \in \mathbb{R}^{(l+u)p}$,
2772 the scaled augmented Lagrangian function of the primal problem equation 32 is
2773

$$2774 L(\alpha, \vartheta, \Lambda) = \frac{1}{l} (Y - J\mathbf{K}\alpha)^T (Y - J\mathbf{K}\alpha) + \lambda_1 \sum_{j=1}^p \tau_j \|\vartheta^{(j)}\|_2 \\ 2775 + \frac{\lambda_2}{(l+u)^2} \alpha^T \mathbf{K} L \mathbf{K} \alpha + \frac{\varrho}{2} \|\alpha - \vartheta - \Lambda\|_2^2 - \frac{\varrho}{2} \|\Lambda\|_2^2, \quad (34)$$

2776 where $\varrho > 0$ is a positive penalty coefficient.
2777

2778 Given initialized parameters $(\alpha^0, \vartheta^0, \Lambda^0)$ and convergence criterion ϵ , the manifold regularized
2779 additive regression problem with squared loss can be solved by the following iterative steps:
2780

2781 (1) Fix ϑ^t and Λ^t , and update the model coefficient α^{t+1} :
2782

$$2783 \alpha^{t+1} = \arg \min_{\alpha} \frac{1}{l} (Y - J\mathbf{K}\alpha)^T (Y - J\mathbf{K}\alpha) + \frac{\lambda_2}{(l+u)^2} \alpha^T \mathbf{K} L \mathbf{K} \alpha + \frac{\varrho}{2} \|\alpha - \vartheta^t - \Lambda^t\|_2^2.$$

2784 α^{t+1} can be calculated by the derivative of the objective function, which vanishes at the minimizer:
2785

$$2786 \frac{1}{l} (Y - J\mathbf{K}\alpha)^T (-J\mathbf{K}) + \left(\frac{\lambda_2}{(l+u)^2} \mathbf{K} L \mathbf{K} + \varrho(\alpha - \vartheta^t - \Lambda^t)^T \right) \alpha = 0.$$

2787 (2) Fix α^{t+1} and Λ^t , and update the auxiliary variable ϑ^{t+1} :
2788

$$2789 \vartheta^{t+1} = \arg \min_{\vartheta} \frac{1}{2} \|\alpha^{t+1} - \vartheta + \Lambda^t\|_2^2 + \frac{\lambda_1}{\varrho} \sum_{j=1}^p \tau_j \|\vartheta^{(j)}\|_2. \quad (35)$$

2790 With fixed α^{t+1} and Λ^t , equation 35 is equivalent to the following p subproblems:
2791

$$2792 (\vartheta^{(j)})^{t+1} = \arg \min_{\vartheta^{(j)}} \frac{1}{2} \|(\alpha^{(j)})^{t+1} - \vartheta^{(j)} + (\Lambda^{(j)})^t\|_2^2 + \frac{\lambda_1 \tau_j}{\varrho} \|\vartheta^{(j)}\|_2.$$

2808 Thanks to the soft thresholding operators (Boyd et al., 2011; Chen et al., 2020), we have
 2809

$$2810 \quad (\vartheta^{(j)})^{t+1} = S_{\lambda_1 \tau_j / \rho} \left((\alpha^{(j)})^{t+1} + (\Lambda^{(j)})^t \right), \quad j = 1, \dots, p,$$

2811 where the soft thresholding operator S stands for
 2812

$$2813 \quad S_k(a) = (a - k/\|a\|_2)_+ a.$$

2815 (3) Fix α^{t+1} and ϑ^{t+1} , and update the Lagrange multiplier Λ^{t+1} :
 2816

$$2817 \quad \Lambda^{t+1} = \Lambda^t + \alpha^{t+1} - \vartheta^{t+1}.$$

2820 Denote the objective function of lower level problem as $\mathcal{R}(\alpha)$ (standing for $\mathcal{R}(\alpha; \mathbf{m}; \mathbf{L})$) parameterized by model coefficient α (and mask \mathbf{m} learned by upper level problem, the Laplacian matrix \mathbf{L}). The above three iterative steps form a loop until the following convergence conditions are met at
 2821 $(t+1)$ -th iteration:
 2822

$$2823 \quad |\mathcal{R}(\alpha^{t+1}) - \mathcal{R}(\alpha^t)| \leq \epsilon. \quad (36)$$

2825 Then the updating process stops and the output α^{t+1} can be considered as the desired model coefficient.
 2826 Moreover, inspired by (Chen et al., 2020; Yuan et al., 2023), the early-stop condition in equation 36
 2827 could also be set as

$$2828 \quad \|\alpha^{t+1} - \alpha^t\|_\infty \leq \epsilon \quad \text{and} \quad \|\alpha^{t+1} - \vartheta^{t+1}\|_\infty \leq \epsilon.$$

2829 H.5 ANALYSIS ON COMPUTATION COMPLEXITY

2831 With the ϵ -stationary point defined in (Ji et al., 2021; Chu et al., 2024; Zhang et al., 2024), we
 2832 conclude that the optimization for the upper problem requires at most $T = \mathcal{O}(\epsilon_1^{-2})$ iterations
 2833 before reaching ϵ_1 -stationary based on Theorem 1. The lower level requires $\mathcal{O}(K(l+u))$ steps on
 2834 gradient computations and $\mathcal{O}(p(l+u))$ assigning masks per outer iteration. Notice that K is the
 2835 inner iteration and p is the input dimension. The lower problem optimized by ADMM (Culp, 2011;
 2836 Culp & Michailidis, 2008) exhibits a sublinear convergence rate $\mathcal{O}(1/K)$ with respect to the Nash
 2837 point, provided the threshold $1/K \lesssim \epsilon_2$ is satisfied, when the lower problem satisfies the convexity
 2838 condition. Please refer to (Wang & Zhao, 2022) for the corresponding proof of general ADMM
 2839 optimization.

2840 In summary, the computation complexity of S²MAM reaches $\mathcal{O}\left(\frac{p(l+u)}{\epsilon_1^2 \epsilon_2}\right)$, which is competitive
 2841 with some latest bilevel algorithms (Liu et al., 2022a; Xiao et al., 2023). Empirically, please refer to
 2842 Appendix G for convergence analysis and Section E for some experimental comparisons on training
 2843 time cost.

2845 I IMPACT, CHALLENGES, AND LIMITATIONS

2848 I.1 IMPACT STATEMENT

2849 This paper presents work aimed at advancing the field of Machine Learning. We believe this work
 2850 can deepen our understanding of the interplay between generalization and variable selection, and
 2851 widen the applications of bilevel optimization for interpretable prediction.

2853 I.2 NOVELTY AND DIFFERENCE TO RELATED WORK

2855 In the following, we summarize and restate the novelty and contributions of S²MAM to our bilevel
 2856 baseline, PBCS (Zhou et al., 2022), and another classical work on generalization theory (Cao & Chen,
 2857 2012), from the perspectives of algorithm design, learning region, and theoretical analysis.

2859 I.2.1 MOTIVATION AND ALGORITHMIC DESIGN

2860 While we adopt a similar policy gradient estimation (PGE) technique to avoid implicit differentiation
 2861 (e.g., Hessian/Jacobian computations), significant technical hurdles arise when adapting PBCS to

2862 semi-supervised feature selection with interpretable additive schemes. Below, we first recall the
 2863 differences, clarify these challenges, and summarize our novel contributions to address them.
 2864

2865 **PBCS (Supervised Coreset Selection):** (1) **Upper-level:** Learns an l -dimensional sample mask
 2866 using l labeled points. (2) **Lower-level:** Trains a CNN on the same l labeled points (masked subset)
 2867 via standard backpropagation. (3) **Data usage:** Single labeled set for both levels.

2868 **Our Work (Semi-Supervised Feature Selection):** (1) **Upper-level:** Learns a p -dimensional feature
 2869 mask using only l labeled points (challenges arise with high-dimension p , e.g., $l < p$). (2) **Lower-
 2870 level:** Solves a Laplacian-regularized sparse additive model over $l + u$ points (labeled + unlabeled):
 2871 Mask impacts feature-wise additive terms (f_j , dimensions p , $j \in \{1, 2, \dots, p\}$). (3) **Data usage:**
 2872 Labeled data for the supervised upper problem and the supervision part of the lower problem;
 2873 unlabeled data for lower-level manifold regularization.

2874 I.3 CORE TECHNICAL CHALLENGES IN ALGORITHM DESIGN

2876 The following three challenges make the method in PBCS inapplicable to the semi-supervised learning
 2877 (SSL) scenarios.

2878 **(1) Challenge 1 (Mask Dimension Mismatch):**

2880 When $p > l$, learning a p -dimensional mask from l labels is challenging (ill-posed (Friedman, 1989;
 2881 Meng et al., 2014)). PBCS avoids this since its mask dimension (l) matches supervision.

2882 **Our Solution:**

2884 Introduce sparsity regularization (via $\ell_{2,1}$ -norm) to stabilize mask learning.

2885 For extremely high-dimensional data (e.g., 512×512 images from CelebA-HQ), employ a pre-trained
 2886 and frozen CNN on limited labeled samples for feature extraction to enhance the capability of
 2887 S²MAM in handling such SSL tasks.

2888 **(2) Challenge 2 (Computational Cost of Laplacian):**

2889 Each mask update requires recomputing pairwise similarities across all $l + u$ samples, costing
 2891 $\mathcal{O}((l + u)^2 p)$. For large u , this might dominate the training.

2892 **Our Solution:** Accelerate with Random Fourier Features (RFF), reducing Laplacian-based cost to
 2893 $\mathcal{O}((l + u)d)$ (where $d \ll l + u$).

2894 **(3) Challenge 3 (Specialized Lower-Level Solver):**

2895 PBCS uses a standard SGD for CNNs.

2896 **Our Solution:** Our lower-level requires solving:

$$\min_{\alpha} \underbrace{\frac{1}{l} \sum_{i=1}^l \ell(f(x_i \odot \mathbf{m}), y_i)}_{\text{supervised loss}} + \underbrace{\lambda_1 \sum_{j=1}^p \tau_j \|\alpha^{(j)}\|_2}_{\text{Sparsity regularization}} + \underbrace{\frac{\lambda_2}{(l+u)^2} \mathbf{f}^T \mathbf{L} \mathbf{f}}_{\text{Laplacian regularization}}. \quad (37)$$

2903 This kernel-based objective, regularized by two different penalties, demands a custom solver as
 2904 introduced in our Appendix H.4.

2905 Practically, this work naturally solves the question: ***How to retain interpretability while filtering
 2906 redundant or corrupted features efficiently in semi-supervised settings?***

2907 I.4 THEORETICAL CHALLENGES AND NEW TECHNIQUES

2908 **The hypothesis space** of S²MAM is additive and data-dependent, instead of the data-independent
 2909 hypothesis in (Cao & Chen, 2012). Concretely, the Regularization error of S²MAM is derived under
 2910 the assumption of generalized additive forms.

2911 **Our excess-risk decomposition** contains four terms: Regularization, Sample, Manifold, and an extra
 2912 Hypothesis error absent in (Cao & Chen, 2012), which requires new auxiliary functions and proof
 2913 techniques.

2916 The **manifold error** of S^2MAM is decomposed into p additive U-statistic deviations, bounded by
 2917 a Hilbert-space Bernstein-type concentration inequality, rather than by the spectral-based lemma
 2918 (Theorem 4.11 of (Cao & Chen, 2011)) in (Cao & Chen, 2012).

2919

2920 I.5 LIMITATIONS AND DISCUSSIONS

2921

2922 LIMITATIONS AND EXISTING SOLUTIONS

2923

2924 This paper proposes a new bilevel manifold regularization approach for semi-supervised learning
 2925 tasks, featuring an automatic feature masking mechanism. Theoretically, we establish the foundations
 2926 of learning theory, including the computing convergence and the generalization error analysis. To
 2927 the best of our knowledge, this is the first work to bound the excess risk of a semi-supervised
 2928 additive model. Our results show better convergence performance than those in (Zhou et al., 2022).
 2929 While inspired by the PGE technique (Zhou et al., 2022), our proposal S^2MAM addresses distinct
 2930 challenges in semi-supervised feature selection on high-dimensional mask learning, Laplacian
 2931 scalability, and specialized optimization. Our innovations (RFF acceleration, sparsity regularization,
 2932 ADMM solver) enable robust performance where direct extension of PBCS fails. Empirically, we
 2933 verify the effectiveness of the proposed approach using both synthetic and real-world datasets. We
 2934 designed a novel optimization algorithm for the proposed manifold-regularized sparse additive model
 2935 (see Appendix H.4). In the implemented codes, we further provide the settings of spline-based
 2936 additive models. However, some limitations still exist, including computational difficulties with
 2937 large-scale datasets and the assumption of bounded output.

2938

2939 Fortunately, as introduced in Appendix E, our proposal S^2MAM can also handle high-dimensional
 2940 data with the aid of some preprocessing techniques. An interesting approach for dealing with high-
 2941 dimensional data, such as images, is to extract the feature vectors first, which has been widely
 2942 employed in various supervised (Su et al., 2023) and semi-supervised works (Qiu et al., 2018;
 2943 Nie et al., 2019; Kang et al., 2020; Nie et al., 2021). The random Fourier technique (Rahimi &
 2944 Recht, 2007; Wang et al., 2023) can also be considered to accelerate the computation process further.
 2945 Theoretically, the bounded condition of the response can be relaxed to include the unbounded output,
 2946 e.g., replacing it by the $1 + \epsilon$ moment bounded assumptions (Feng, 2021; Feng & Wu, 2022)). The
 2947 neural additive modeling strategy (Agarwal et al., 2021; Yang et al., 2020) is another interesting and
 2948 compelling direction for improving the non-linear approximation ability and prediction performance
 2949 of S^2MAM . **Furthermore, in the image-type experiments, mapping from mask importance back to
 2950 image attributes is also meaningful to identify which of these extracted features are informative for
 2951 the classification task.** In addition, the current generalization analysis focuses on the basic model of
 2952 S^2MAM , which can be further improved to match the bilevel manifold regularization tightly.

2953

2954 HOW DOES S^2MAM SCALE AND PERFORM WITH EXTREMELY HIGH DIMENSIONS?

2955

2956 **Common Challenges in S^2MAM and SSL when $n \ll p$.** When $n \ll p$, the sample-covariance
 2957 matrix is singular and the graph-Laplacian $L \in \mathbb{R}^{n \times n}$ becomes rank-deficient, which violates the
 2958 restricted strong convexity condition required by manifold regularization. Furthermore, the bilevel
 2959 optimization becomes NP-hard, and the space complexity for directly computing on raw data increases
 2960 to $\mathcal{O}(n^2 p)$.

2961

2962 **Our solutions and suggestions** As reported in Section 4 and the Appendix, the CNN-based feature
 2963 extraction and random Fourier transformation have been successfully utilized to enhance computational
 2964 efficiency on large-scale image datasets.

2965

2966 The semi-supervised modeling of extremely high-dimensional data remains a challenging task (Azriel
 2967 et al., 2022; Mai & Couillet, 2021) in both practical and theoretical analyses, which is listed as a
 2968 future research goal.

2969

2966 DISCLOSURE OF GENERATIVE AI USAGE

2967

2968 GenAI tools were used during the editing (e.g., grammar, spelling, word choice). And the authors are
 2969 fully accountable for the content.