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ABSTRACT

Semi-supervised learning with manifold regularization is a classical family for
learning from both labeled and unlabeled data jointly, where the key requirement
is that the support of the unknown marginal distribution possesses the geometric
structure of a Riemannian manifold. Typically, the Laplace-Beltrami operator-
based manifold regularization can be approximated empirically by the Laplacian
regularization associated with the entire training data and its corresponding graph
Laplacian matrix. However, the graph Laplacian matrix depends heavily on the
pre-specifying similarity metric and may result in inappropriate penalties when
facing redundant and noisy input variables. To address the above issues, this paper
proposes a new Semi-Supervised Meta Additive Model (S2MAM) based on a bilevel
optimization scheme, which automatically identifies informative variables, updates
the similarity matrix, and achieves interpretable predictions simultaneously. Theo-
retical guarantees are provided for S2MAM, including the computing convergence
and the statistical generalization bound. Experimental assessments on synthetic
and real-world datasets validate the robustness and interpretability of the proposed
approach.

1 INTRODUCTION

Manifold regularization provides an elegant and practical framework for developing semi-supervised
learning (SSL) models by utilizing a large amount of unlabeled data in conjunction with limited
labeled data (Belkin & Niyogi, 2004; Belkin et al., 2005; 2006; Geng et al., 2012; Van Engelen
& Hoos, 2020; Yao & Xia, 2025). The key assumption of manifold regularization is that the
support of the intrinsic marginal distribution has the geometric structure of a Riemannian manifold
(Belkin & Niyogi, 2004; Belkin et al., 2006; Johnson & Zhang, 2007; 2008)). Usually, the Laplace-
Beltrami operator-based manifold regularization can be approximated empirically by the Laplacian
regularization associated with the whole training data and the corresponding similarity (adjacent)
matrix (Belkin & Niyogi, 2004; Belkin et al., 2006; Roweis & Saul, 2000), where the similarity
matrix is constructed by the principles of Gaussian fields and harmonic functions (Zhu et al., 2003b)
or the local and global consistency (Zhou et al., 2003). Typical manifold regularization schemes
include Laplacian regularized least squares (LapRLS) and Laplacian regularized support vector
machine (LapSVM) (Belkin et al., 2006). Moreover, Nie et al. (2010) considered a flexible manifold
embedding for semi-supervised dimension reduction, and Qiu et al. (2018) further developed an
accelerated version (called fast flexible manifold embedding (f-FME)) by reconstructing a smaller
adjacency matrix with low-rank and sparse constraints.

Despite rapid progress, it is still scarce to validate the intrinsic manifold assumption (Belkin & Niyogi,
2004; Belkin et al., 2006; Johnson & Zhang, 2007; 2008; Li et al., 2024) for different types of data,
e.g., data with redundant or even noisy variables. Moreover, the investigation for the robustness and
interpretability of manifold regularization is far below its empirical applications only concerning the
prediction accuracy. The existing manifold regularization models require the similarity matrices to be
pre-specified before the semi-supervised training procedures, where the adaptivity and robustness
of manifold learning are largely unexplored. For real applications, they unavoidably involve some
abundant irrelevant and even noisy variables, and the pre-specified similarity metric associated with
all the variables can not reflect the true adjacent relations properly. The uninformative and noisy
variables often result in a significant deviation in estimating the manifold structure, which seriously
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(a) Training on clean data (b) Training on noisy data (c) LapSVM on noisy data (d) S2MAM on noisy data

Figure 1: Toy examples on the impact of noisy variables in the moon dataset for LapSVM and our S2MAM. (a)
and (b) show the 2D prediction curves w.r.t the original input X1 and X2, where LapSVM is sensitive to feature
corruptions Xn. (c) and (d) present the 3D decision surfaces on corrupted data, where S2MAM is robust against
the varying noisy variable Xn. Clean moon dataset contains inputs, X1 and X2. The corrupted data involves
another noisy variable Xn ∈ N (100, 100). The used moon dataset contains 99 unlabeled points and only one
labeled point for each class. Please refer to Appendix C.5 for detailed descriptions.

degrades the prediction capability of manifold regularization methods. As illustrated in Figure 1, the
clean unlabeled data are beneficial to better fit the decision curve, while the randomly added noisy
variables obviously hurt the performance of LapSVM (See Appendix C.5 for detailed illustrations).
The primary reason for the degraded performance is the computational bias in the similarity matrix,
which directly affects the entire set of input variables (Nie et al., 2019; 2021). This motivates the
following open questions:

“How to alleviate the impact of redundant and even noisy variables on SSL models with manifold
regularization? How to design a new manifold regularization scheme enjoying the robustness,
interpretability, and prediction effectiveness simultaneously?”

Intuitively, we can address the above questions using a two-stage framework, i.e., selecting the
informative variables first (e.g., via Lasso (Tibshirani, 1994), SpAM (Ravikumar et al., 2009)) and
then implementing manifold regularization approaches with the refined input variables. However, this
variable selection strategy is independent of the intrinsic manifold structure, and its accuracy cannot
be guaranteed due to the scarcity of labeled data. Inspired by meta-learning for coreset selection
(Borsos et al., 2020; Zhou et al., 2022), this paper considers assigning masks to all input variables for
both labeled and unlabeled data, retaining only those truly informative variables for modeling and
constructing the similarity matrix.

Nevertheless, there are several challenges along this way: 1) It is NP-hard to learn the discrete mask
variables taking values in {0, 1} directly. 2) The bilevel optimization usually needs the computation
on Hessian and Jacobian matrices, which leads to a heavy computation burden. 3) Most kernel-based
manifold regularization models construct the Gram matrix based on sample distance, which lacks the
result’s interpretability, e.g., screening the key variables associated with the response.

1.1 CONTRIBUTION

To address the aforementioned challenges, we incorporate the meta-learning strategy and sparse
additive models into a manifold-regularized SSL framework, and formulate a new Semi-Supervised
Meta Additive Model (S2MAM) to enable automatic variable masking and sparse approximation for
high-dimensional inputs, even in the presence of noisy variables.

The core technique involves updating the decision function and similarity matrix simultaneously,
using proper masks on input variables. The masks of S2MAM are learned through a probabilistic
meta-strategy. Moreover, an efficient implementation is employed here to solve the bilevel optimiza-
tion problem, which avoids the heavy computing burden on the implicit hypergradient calculation
(Pedregosa, 2016), Neumann series, and some variants with Hessian-vector or Jacobian-vector
products (Ghadimi & Wang, 2018; Lorraine et al., 2020; Liu et al., 2022a).

The main contributions of this paper are summarized below:
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Table 1: Properties of our S2MAM and related models where ”SSL” stands for semi-supervised learning. (✓ =
enjoying the given information, and × = not available for the information).

SpAM LapRLS f-FME AWSSL RER SemiReward PBCS S2MAM (ours)
Learning Task Supervised SSL SSL SSL SSL Supervised Supervised SSL

Optimization Framework 1-level 1-level 1-level 1-level 1-level 1-level Bilevel Bilevel
Interpretability ✓ × × × × × × ✓

Variable Selection ✓ × ✓ ✓ ✓ × × ✓
Noisy Variable Robustness × × × ✓ ✓ ✓ × ✓

Convergence Analysis × × × × × × ✓ ✓
Generalization Analysis ✓ × × × × × × ✓

Computation Complexity Analysis × × × × × × × ✓

• New statistical modeling. To the best of our knowledge, our S2MAM is the first meta-
learning method for manifold-regularized additive models, where a novel bilevel optimiza-
tion scheme is formulated to achieve robust estimation and data-driven automatic variable
selection simultaneously. By assigning flexible masks to individual variables, the proposed
S2MAM is capable of reducing the impact of noisy variables on SSL tasks.

• Computing and Theoretical Supports. An efficient probabilistic bilevel optimization is
developed to additionally learn the discrete masks, utilizing both policy gradient estimation
and the projection operation. This computational algorithm alleviates the computational
burden of the discrete bilevel optimization framework and provides theoretical guarantees
of convergence in optimization. Additionally, we establish the upper bounds of excess risk
for the baseline model of S2MAM, which implies that the proposed approach can achieve
polynomial decay in generalization error.

• Empirical competitiveness. Empirical results on several synthetic and real-world benchmarks
demonstrate that the proposed S2MAM can identify truly informative variables and achieve
robust prediction even in the presence of redundant and noisy input variables.

1.2 COMPARISONS WITH THE RELATED WORKS

Semi-supervised dimensionality reduction. Recently, some efforts were made towards constructing
a flexible similarity matrix against feature corruptions for SSL with manifold regularization (Chen
et al., 2018; Nie et al., 2019; Bao et al., 2024). By rescaling the regression coefficients as variable
weights, Chen et al. (2018) developed an efficient SSL method to identify important variables, known
as rescaled linear square regression. Another weighting approach in (Nie et al., 2019) is called
auto-weighting semi-supervised learning (AWSSL), which adaptively assigns continuous weights on
variables to update the similarity matrix. After the dimension reduction process, a specific classifier is
employed for downstream tasks. A robust graph learning (RGL) method (Kang et al., 2020) combined
label ranking regression and label propagation into a unified framework for weight graph construction
and semi-supervised learning. Semi-supervised adaptive local embedding learning (SALE) (Nie
et al., 2021) adaptively constructs two affinity graphs (based on labeled data and all embedding
samples) separately to explore the local and global structures. Bao et al. (2024) proposes an efficient
model, robust embedding regression (RER), integrating the low-rank representation and Laplacian
regularization. Unlike these works, this paper considers the automatic assignment of discrete masks
(0/1) to input features (variables) for screening the truly active variables.

Sparse additive models. Additive models (Stone, 1985; Hastie & Tibshirani, 1990), as natural
nonparametric extensions of linear models, have been burgeoning in high-dimensional data analysis
due to their attractive properties, i.e., overcoming the curse of dimensionality, the flexibility of
function approximation, and the ability of variable selection (Meier et al., 2009; Christmann & Hable,
2012; Yuan & Zhou, 2016; Chen et al., 2020). In recent years, many sparse additive models have
been proposed from various theoretical or empirical motivations, see e.g., (Lv et al., 2018; Haris
et al., 2022; Bouchiat et al., 2024; Duong et al., 2024). Naturally, the paradigm of additive models
can be applied to semi-supervised learning settings. As far as we know, there are only three papers
that touched on this topic (Culp & Michailidis, 2008; Culp et al., 2009; Culp, 2011). However,
not all of them consider the robustness of manifold learning against noisy variables and ignore
data-driven variable structure discovery. These stringent restrictions on the predefined similarity
matrix and variable structure may result in a severe degradation of existing models under complex
noise conditions.
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Meta learning for sample/variable selection. The meta-based masking policy was developed in
(Borsos et al., 2020), where a bilevel neural network is designed for automatic supervised coreset
selection. Furthermore, its improved version with probabilistic bilevel optimization is proposed for
supervised classification (Zhou et al., 2022), especially for corrupted and imbalanced data. Indeed,
Zhou et al. (2022) also provides an example of variable selection, while it is limited to the supervised
learning case and doesn’t concern the impact of noisy variables. To the best of our knowledge, there
has been no any endeavor before to explore the meta-based masking policy for semi-supervised
additive models.

To better highlight the novelty of our S2MAM, we summarize its properties in Table 1 compared
with several related state-of-the-art models, including sparse additive models (SpAM) (Ravikumar
et al., 2009)), LapRLS (Belkin et al., 2006)), fast flexible manifold embedding (f-FME) (Qiu et al.,
2018), auto-weighting semi-supervised learning (AWSSL) (Nie et al., 2019), RER (Bao et al., 2024)
SemiReward (Li et al., 2024) and the probabilistic bilevel coreset selection (PBCS) (Zhou et al.,
2022). Table 1 shows that the proposed S2MAM enjoys desirable properties, including variable
selection, robust estimation, and computational guarantees.

2 SEMI-SUPERVISED ADDITIVE MODELS

This section first introduces a manifold-regularized semi-supervised additive model (Culp, 2011) as
the basic model and then formulates the S2MAM under the discrete bilevel optimization framework.
Furthermore, a probabilistic bilevel scheme solves the NP-hard discrete optimization problem.

2.1 REVISITING MANIFOLD REGULARIZED SPARSE ADDITIVE MODEL

Let X = {X (1), · · · ,X (p)} ∈ Rp be a compact input space and the output space Y ∈ R. Denote ρ
as the joint distribution on X × Y , and ρX as the marginal distribution with respect to X induced
by ρ. The training set z = {zl, zu} involves the labeled set zl = {(xi, yi)}li=1 and the unlabeled
set zu = {xi}l+u

i=l+1, where each input xi = (x
(1)
i , · · · , x(p)

i )T ∈ Rp with x
(j)
i ∈ X (j) and output

yi ∈ R. The hypothesis space of additive models can be formulated as F = {f : f(x) =∑p
j=1 f

(j)(x(j)), f (j) ∈ F (j)}, where x(j) ∈ X (j) and F (j) is the component function space on
X (j) (Ravikumar et al., 2009). Typical candidates of additive hypothesis space include the basis
expansion space (Meier et al., 2009; Ravikumar et al., 2009), the reproducing kernel Hilbert space
(RKHS) (Raskutti et al., 2012), and the network-based space (Agarwal et al., 2021; Yang et al., 2020).

This paper choosesHK(j) to form the additive hypothesis space, whereHK(j) is the RKHS associated
with Mercer kernel K(j) defined on X (j) ×X (j), j ∈ {1, . . . , p}. Equipped by component function
f (j) : X (j) → R, j ∈ {1, . . . , p}, the additive hypothesis space can be further defined asH =

{
f =∑p

j=1 f
(j) : f (j) ∈ HK(j) , 1 ≤ j ≤ p

}
with ∥f∥2K = inf

{∑p
j=1 ∥f (j)∥2

K(j) : f =
∑p

j=1 f
(j)
}

.

Indeed,H is an RKHS associated with kernel K =
∑p

j=1 K
(j) (Christmann & Zhou, 2016). Due to

the Representer Theorem of RKHS (Smola & Schölkopf, 1998), the prediction function of supervised
additive models in RKHS often enjoys a parameterized representation (Yuan & Zhou, 2016)

f(·) =
p∑

j=1

l∑
i=1

α
(j)
i K

(j)
i (x

(j)
i , ·). (1)

Given a predictor f : X → R, denote f = (f(x1), . . . , f(xl+u))
T as the prediction vector associated

with the labeled data zl and the unlabeled data zu. Let λ1, λ2 > 0 be the regularization coefficients
and let τj be the positive weight to different input variables for j = 1, · · · , p. Then, the additive
model for regularized Laplacian regression can be formulated as

fz = argmin
f∈H

{
Ez(f) + λ1Ωz(f) +

λ2

(l + u)2
fTLf

}
, (2)

where empirical risk Ez(f) = 1
l

∑l
i=1(yi−f(xi))

2, the sparse regularization Ωz(f) is formulated by

infα(j)

{∑p
j=1 τj∥α(j)∥2 : f =

∑p
j=1

∑l
i=1 α

(j)
i K

(j)
i (x

(j)
i , ·)

}
, and the term fTLf is the manifold
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regularization (Belkin & Niyogi, 2004; Culp, 2011). Here, L = D −W is the graph Laplacian, and
diagonal matrix D satisfies Dii =

∑l+u
j=1 Wij and Wij is the adjacent weight for inputs xi and xj ,

e.g., Wij = exp{−∥xi − xj∥22/µ2} with bandwidth µ.

Remark 1 If the j-th variable is not truly informative, α(j)
z = (α

(j)
z,1, . . . , α

(j)
z,l+u)

T ∈ Rl+u is

expected to satisfy ∥α(j)
z ∥2 =

√
l+u∑
i=1

∣∣∣α(j)
z,i

∣∣∣2 = 0. Thus, ℓ2,1-regularizer is employed as the penalty.

Obviously, noisy input variables may bring an inappropriate similarity matrix W . Naturally, it is
necessary to improve the robustness of (2) against noisy variables by replacing the pre-specified
similarity measure (i.e., W ,L) in manifold regularization with an adaptive masking strategy.

2.2 DISCRETE BILEVEL FRAMEWORK FOR S2MAM

To mitigate the negative impact of noisy variables on Laplacian regularization in (2), we introduce
a bilevel optimization framework for automatically learning variable masks. In particular, both the
decision function f and Laplacian matrix L are updated by the learned masks.

Denote ℓ(·) as the loss function, f(x;α) as a decision function in RKHSH with spanning parameter
α and the mask m ∈ {0, 1}p as a binary vector, where mi = 1 implies i-th variable is selected as
the informative one and otherwise ignored. α denotes the coefficient parameter of the additive model.
The bilevel framework for directly learning the discrete masks is formulated as follows.

Upper Level: Given the meta dataset Dmeta = {(xi, yi)}li=1, we formulate the discrete optimization

min
m∈C̃
L (α̂(m)) =

1

l

l∑
i=1

ℓ (f(xi; α̂(m)), yi) , (3)

where the mask m is the learnable parameter in the upper level, α is the parameter of the decision func-
tion in the lower level depending on m, and C̃ = {m : mi ∈ {0, 1}, ∥m∥0 ≤ C, i = 1, 2, · · · , p} is
the feasible region of m with the size of selected variables C.

Lower Level: Based on the whole training set Dtotal involving Dmeta and unlabeled samples
{xi}l+u

i=l+1, the predictor of lower level optimization problem is

f̂(x) =

p∑
j=1

f̂ (j)(mjx
(j)) =

p∑
j=1

l∑
i=1

α
(j)
i K

(j)
i (mjx

(j)
i ,mjx

(j)), (4)

where α̂ = argmin
α∈R(l+u)×p

R(α;m;L), with risk R(α;m;L) = 1
l

∑l
i=1 ℓ(f(xi ⊙ m;α), yi) +

λ1

∑p
j=1 τj∥α(j)∥2 + λ2

(l+u)2 f
TLf .

Different from (2), the Laplacian matrix L is computed based on the masked similarity matrix W
with measure functionW(·, ·) and element Wij =W(xi ⊙m, xj ⊙m), i, j ∈ {1, 2, · · · , l + u}.
Usually, it is intractable to solve the above discrete bilevel problem directly. Fortunately, we can
formulate its continuous probabilistic form with the help of policy gradient estimation (Zhou et al.,
2022), and develop an efficient gradient-based optimization algorithm in the following section.

2.3 PROBABILISTIC BILEVEL FRAMEWORK FOR S2MAM

It is popular to transform the discrete tuning parameter space into the continuous probability space
for bilevel optimization (Zhao et al., 2023; Zhou et al., 2022). For simplicity, mi can be considered as
a Bernoulli random variable mi ∼ Bern (si), where si ∈ [0, 1] represents the probability of mi = 1.
Denote the domain on probability variable s = (s1, ..., sp) ∈ Rp as

C = {s : 0 ⪯ si ⪯ 1, ∥s∥1 ≤ C, i = 1, 2, · · · , p} . (5)

The discrete bilevel optimization in Section 2.2 can be relaxed into the following expected form

min
s∈C

Φ(s) = Ep(m|s)L (α∗(m)) , s.t. α∗(m) ∈ argmin
α∈R(l+u)×p

R(α;m;L). (6)
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Remark 2 Under the independent assumption on variable mi, we can derive its distribution p(m |
s) = Πp

i=1 (si)
mi (1− si)

(1−mi). Since Em∼p(m|s)∥m∥0 =
∑p

i=1 si, the original domain C̃ =
{m : mi ∈ {0, 1}, ∥m∥0 ≤ C, i = 1, 2, · · · , p} is transformed into C on probability s. Relaxing the
independence condition on mi is also meaningful in realistic scenarios in further research.

2.4 COMPUTING ALGORITHM OF S2MAM

Initialize the decision parameter α0 = 0, mask m0 = 1, probability s0 = C
p · 1 and select Laplacian

matrix associated with original (x1, · · · , xl+u) as L0. Before each iteration, a sample batch B is
selected from the whole training set. The computing steps of probabilistic S2MAM are summarized
in Algorithm 1. The procedures for solving (6) at the t-th iteration contain:

Step 1: Computing αt with mt−1 and Lt−1, where αt = argmin
α∈R(l+u)×p

R(αt−1;mt−1;Lt−1), with

R(αt−1;mt−1;Lt−1). The computing algorithm for Step 1, based on the alternating direction
method of multipliers, is presented in Appendix H.4.

Step 2: Computing st and mt with αt. From the probabilistic S2MAM in (6), the learning target
changes from the discrete masks m into the continuous probability s, which is updated by the
policy gradient estimator (Zhou et al., 2022) as∇sΦ(s) = Ep(m|s)L (α∗(m))∇s ln p(m | s). This
computing procedure provides unbiased gradient estimation without a heavy computational burden
on the inverse of the Hessian matrix or implicit differentiation.

Denote ηt as the step size for updating the upper level parameter s at the t-th step. Given αt, s can
be updated by the projected stochastic gradient descent below

st ← PC
(
st−1 − ηtL

(
αt
)
∇s ln p(m

t−1 | st−1)
)
, (7)

where the projection PC(s) from s to the domain C is summarized in Algorithm 2 in Appendix
H.2. Then, mt = (mt

1, · · · ,mt
p) ∈ Rp follows from Bernoulli distribution, where mt

i ∼ Bern (sti).
Appendix H.1 proves the closed-form solution in the projection computation.

Step 3: Updating Laplacian matrix Lt with mt

Lt = Dt −W t, (8)

where the diagonal matrix Dt ∈ R(l+u)×(l+u) satisfies Dt
ii =

∑l+u
j=1 Wij , and Wij = exp{−∥xi ⊙

mt − xj ⊙mt∥22/µ2} with the bandwidth parameter µ > 0. The metric Wij evaluates the similarity
between samples xi and xj that share the same mask mt. Finally, we obtain the decision function in
(4) with coefficient α and mask m.

To mitigate the quadratic cost of the graph Laplacian and probabilistic mask optimization on high-
dimensional or large-size datasets, we’ve adopted two efficient strategies for acceleration, including
preprocessing high-dimensional inputs (e.g., large images) via a pretrained CNN to extract a low-
dimensional embedding, and replacing exact kernel evaluations with Random Fourier Features (RFF),
which reduces complexity from O((l + u)2) to O((l + u)D) where D ≪ l + u.

3 THEORETICAL ASSESSMENTS

For the proposed S2MAM, this section presents its computational convergence and generalization
analysis for the basic model (2) in Section 2.1. All proofs are left in Appendices F&G.

3.1 COMPUTING CONVERGENCE ANALYSIS

We now establish the theoretical guarantee of optimization convergence for the policy gradient
estimation in Step 2. The following assumption has been widely used to characterize the conver-
gence behavior of projection operation algorithms (Pedregosa, 2016; Zhou et al., 2022) and bilevel
optimization with sample batches (Shu et al., 2023).

Assumption 1 Denote LB as the loss on selected batch B. Assume that Φ(s) is L-smooth,
constant σ > 0, there hold E[LB (α∗(m))∇s ln p(m | st) − ∇sΦ(s

t)] = 0, and
E ∥LB (α∗(m))∇s ln p(m | st)−∇sΦ(s

t)∥2 ≤ σ2.

6
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Theorem 1 At the t-th iteration, let the step size ηt = c√
t
≤ 1

L for some constant c > 0, and denote
the gradient mapping Gt = 1

ηt (s
t − PC (s

t − ηt∇sΦ (st))). Under Assumption 1, there holds

min
1≤t≤T

E
∥∥Gt∥∥2 ≲ O

(
T− 1

2

)
.

Remark 3 Indeed, Zhou et al. (2022) demonstrates that the average gradient 1
T

∑T
t=1 E ∥Gt∥

2 of
the policy gradient estimation converges to a small constant as T →∞. With the help of refined step
size ηt = c√

t
, our results in Theorem 1 shows better convergence property w.r.t. T . The empirical

and theoretical analysis of algorithmic computation complexity is left in Appendix E & H.5.

3.2 GENERALIZATION ERROR ANALYSIS

The expected risk of f : X → Y , w.r.t. Ez(f) in (2), is measured by E(f) =
∫
X×Y(f(x) −

y)2dρ(x, y). It is well known that fρ =
∫
Y ydρ(y|·) is the minimizer of E(f) over all measurable

functions, where ρ(y|x) denotes the conditional distribution of y for given x. This work describes
how fast fz defined in (2) approximates fρ as the sample size increases. To the best of our knowledge,
this is the first theoretical endeavor to analyze the generalization behavior of semi-supervised additive
models.

Before presenting our results, we recall some necessary assumptions and definitions involved here,
which have been widely used in bounding the excess risk for supervised learning algorithms (Shi
et al., 2011; Shi, 2013; Christmann & Zhou, 2016; Wang et al., 2023; Deng et al., 2023) and SSL
models (Belkin et al., 2006; Liu & Chen, 2018; Chen et al., 2018).

Assumption 2 (Christmann & Zhou (2016)) For any x ∈ X , there exists some M ≥ 0 such that
ρ(· | x) is almost everywhere supported on [−M,M ]. Assume fρ =

∑p
j=1 f

(j)
ρ with 0 < r ≤ 1

2 and

f
(j)
ρ = Lr

K(j)

(
g∗j
)

with some g∗j ∈ L2(ρ(X (j))) for any j ∈ {1, . . . , p}, where L2(ρ(X (j))) is the
square-integrable space on X (j) and Lr

K(j) is r-power of integral operator LK(j) : L2(ρ(X (j)))→
L2(ρ(X (j))) associated with kernel K(j).

Assumption 3 Each entry of similarity matrix W satisfies 0 ≤Wij ≤ w for a positive constant w.

Assumption 4 Let Cv be a ν-times continuously differentiable function set. Assume that K(j) ∈
Cν
(
X (j) ×X (j)

)
, j ∈ {1, . . . , p}.

Define π(f)(x) = max{min{f(x),M},−M}, ∀f ∈ H, as truncated output under Assumption 2.
This truncated operator has been used extensively for error analysis of learning algorithms, see e.g.,
(Steinwart et al., 2009; Shi et al., 2019). Since E(π(f)) ≤ E(f) for any f ∈ H, here we state the
upper bound of E (π (fz))− E (fρ) to get a tighter generalization characterization for the manifold
regularized additive model in (2).

Theorem 2 Let λ1 = (l+u)−∆, λ2 = λ1−r
1 for some ∆ > 0 and 0 < r ≤ 1/2. Under Assumptions

2-4, for any 0 < δ < 1/2, there holds

E (π (fz))− E (fρ) ≲ log(
8

δ
)
(
O
(
(l + u)−Θ

)
+O

(
l−1/2

))
,

with confidence at least 1− 2δ, where Θ = min{∆r, 1 + ∆(r − 1),∆(5r/2− 3/2) + 1/2, 2/(2 +

ζ), 3/2−∆r, 1/2} with ζ =


2

1+2v , v ∈ (0, 1]
2

1+v , v ∈ (1, 3/2]
1
v , v ∈ (3/2,∞)

.

Remark 4 Theorem 2 guarantees the learning rate O(1/
√
l) as setting ∆ = 1, r = 1/2, v → ∞

and u ≥ l2, which interprets the role of unlabeled sample size u. Besides the additional advantage of
the interpretability of input variables, the basic model (2) of S2MAM also achieves the polynomial
decay rate of excess risk, which is comparable with supervised (Christmann & Zhou, 2016; Wang
et al., 2023) and SSL models (Cao & Chen, 2012; Liu & Chen, 2018).
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Table 2: Average Accuracy ± standard deviation (%) on synthetic additive data for classification with fixed label
percentages in each class (r = 5%), uninformative variable (pu) and noisy variable numbers (pn).

Model r = 5%, pu = pn = 0 r = 5%, pu = 10, pn = 0 r = 5%, pu = 0, pn = 10 r = 5%, pu = pn = 10

Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

ℓ1-SVM - 83.914 ± 6.410 - 62.713 ± 6.098 - 62.261 ± 6.550 - 54.791 ± 6.951
SpAM - 84.150 ± 6.104 - 65.091 ± 5.917 - 64.814 ± 6.039 - 54.413 ± 6.295
CSAM - 86.597 ± 5.424 - 69.717 ± 5.101 - 65.178 ± 5.255 - 61.980 ± 5.701
TSpAM - 86.993 ± 5.340 - 71.044 ± 5.079 - 67.340 ± 4.959 - 63.145 ± 5.130
LapSVM 88.814 ± 5.398 88.850 ± 5.269 59.992 ± 5.259 60.325 ± 5.184 55.630 ± 8.213 55.957 ± 8.292 55.137 ± 8.414 55.203 ± 8.496
f-FME 89.141 ± 3.172 89.305 ± 3.359 64.495 ± 4.033 64.611 ± 4.208 59.671 ± 6.473 59.801 ± 6.655 59.311 ± 6.602 59.407 ± 6.659

AWSSL 91.259 ± 2.871 90.211 ± 3.077 83.691 ± 3.423 83.950 ± 3.519 73.701 ± 4.105 73.859 ± 4.322 72.255 ± 4.211 72.370 ± 4.428
RGL 90.422 ± 2.909 90.026 ± 3.477 84.065 ± 4.501 84.879 ± 4.711 77.726 ± 4.591 78.041 ± 4.510 75.155 ± 4.965 75.413 ± 4.708

SALE 89.717 ± 2.811 90.149 ± 2.665 85.742 ± 4.132 85.971 ± 4.018 79.071 ± 4.709 79.844 ± 4.277 77.201 ± 4.697 77.891 ± 4.431
SSNP 90.492 ± 3.059 89.871 ± 3.218 86.130 ± 3.922 85.908 ± 4.105 78.250 ± 4.294 78.062 ± 4.133 77.462 ± 4.412 77.601 ± 5.513
RER 89.416 ± 3.407 89.930 ± 3.622 85.195 ± 3.642 85.870 ± 3.703 80.933 ± 4.016 81.049 ± 4.055 78.981 ± 4.302 79.112 ± 4.517

S2MAM (ours) 89.979 ± 3.255 90.309 ± 3.409 85.517 ± 3.481 86.015 ± 3.575 81.702 ± 3.897 81.855 ± 4.055 80.012 ± 4.177 80.112 ± 4.370

4 EXPERIMENTAL EVALUATIONS

This section validates the effectiveness of S2MAM on simulated and real-world data. All experiments
are implemented in Python on RTX 3060 GPU and Intel Core i7 with 32 GB of memory. Due to
space limitations, experiments on more synthetic, UCI and image datasets are left in Appendices C-E.

4.1 BASELINES AND PARAMETER SELECTION

Baselines and Criterion: For classification, the competitors include ℓ1-SVM (Zhu et al., 2003a),
SpAM (with logistic loss) (Ravikumar et al., 2009), LapSVM (Belkin et al., 2006), f-FME (Qiu et al.,
2018), AWSSL (Nie et al., 2019), RGL (Kang et al., 2020), SALE (Nie et al., 2021), RER (Bao et al.,
2024), SemiReward (Li et al., 2024), Correntropy-based Sparse Additive Machine (CSAM) (Yuan
et al., 2023), Tilted Sparse Additive Model (TSpAM) (Wang et al., 2023) and semi-supervised neural
processes (SSNP) (Wang et al., 2022a). S2MAM is equipped with the logistic loss. Similarity measure
Wij = exp{−∥xi − xj∥22/µ2} and accuracy criterion are exploited. For the regression tasks, we
compare the proposed S2MAM with sparse supervised models (Lasso (Tibshirani, 1994) and SpAM
(Ravikumar et al., 2009)), Deep Analytic Networks (DAN) (Dinh & Ho, 2020), LapRLS (Belkin
et al., 2006), co-training regressor (COREG) (Lu et al., 2023) and deep SSL methods, including the
variational autoencoder (VAE) (Cemgil et al., 2020) and the semi-supervised deep kernel learning
(SSDKL (Jean et al., 2018) and pseudo-label filtering (PLF (Jo et al., 2024). For simplicity, the
squared loss is selected as the loss function for SpAM and S2MAM. The supervised methods are
trained with merely labeled data. The mean squared error (MSE) is used as the criterion. Partial
results are included in the Appendix, as SemiReward and PLF are primarily designed for image tasks.

Hyperparameters: For fairness, the penalty coefficients are tuned across [10−4, 10−3, 10−2, 10−1]
via leave-one-out cross-validation, which are shared for all regularized approaches. Let τj = 1 for all
j ∈ [1, 2, · · · , p] for additive baselines (Wang et al., 2023). The bandwidth µ for similarity measure
is selected within [10−4, 10−3, 10−2, 10−1, 1]. We repeat each experiment 100 times and report
the average accuracy as well as the standard deviation under different data settings. The selection
of informative feature size C is stated in Remark 6. The parameters for other methods were set
according to the corresponding references.

Benchmarks: As stated in Appendix B.1, 4 synthetic, 8 UCI and 4 real-world datasets are utilized
in the experiments, including the high-dimensional Alzheimer’s Disease Neuroimaging Initiative
(ADNI) clinical records, COIL-20 image, CelebA-HQ images (Lee et al., 2020), and AgeDB images
(Moschoglou et al., 2017). To evaluate the robustness of S2MAM, pu uninformative variables in
N (0, 1) and pn noisy variables in N (100, 100) are designed as corruptions (Bao et al., 2024). Due
to space limitations, empirical results on more datasets with interpretable visualizations are left
in Appendices C-E. Notably, Table 12 verifies the efficiency when employing the random Fourier
transformation (Rahimi & Recht, 2007; Wang et al., 2023) for accelerating the training process.

4.2 EXPERIMENTS ON SYNTHETIC DATA

Following the experimental design in (Chen et al., 2020; Wang et al., 2023), we consider the
following additive discriminant function f∗(xi) = (x

(1)
i − 0.5)2 + (x

(2)
i − 0.5)2 − 0.08, where
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Table 3: Average MSE ± standard deviation of 10 repeated experiments on ADNI datasets with different label
percentages (r) and noisy variable numbers (pn). Notably, noisy features are drawn from N (100, 100). The
upper and lower tables refer to prediction results on ”Fluency” and ”ADAS” cognitive scores of ADNI.

Model r = 20%, pn = 0 r = 20%, pn = 10 r = 50%, pn = 0 r = 50%, pn= 10

Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

Lasso - 0.941 ± 0.281 - 1.359 ± 0.733 - 0.668 ± 0.124 - 0.833 ± 0.474
SpAM - 0.831 ± 0.228 - 1.266 ± 0.646 - 0.589 ± 0.110 - 0.732 ± 0.417
DAN - 0.794 ± 0.197 - 1.210 ± 0.611 - 0.637 ± 0.105 - 0.793 ± 0.373

LapRLS 0.915 ± 0.301 0.932 ± 0.313 1.478 ± 0.812 1.617 ± 0.834 0.823 ± 0.215 0.838 ± 0.224 1.142 ± 0.511 1.167 ± 0.525
VAE 0.743 ± 0.324 0.754 ± 0.330 0.812 ± 0.397 0.825 ± 0.411 0.474 ± 0.115 0.493 ± 0.123 0.526 ± 0.226 0.541 ± 0.241

COREG 0.748 ± 0.308 0.761 ± 0.316 0.984 ± 0.423 1.020 ± 0.434 0.527 ± 0.276 0.546 ± 0.283 0.513 ± 0.384 0.531 ± 0.393
SSDKL 0.721 ± 0.321 0.739 ± 0.337 0.848 ± 0.446 0.867 ± 0.462 0.442 ± 0.271 0.454 ± 0.279 0.524 ± 0.391 0.547 ± 0.403

RER 0.780 ± 0.184 0.794 ± 0.201 0.807 ± 0.249 0.821 ± 0.266 0.437 ± 0.142 0.448 ± 0.157 0.477 ± 0.225 0.496 ± 0.249
S2MAM (ours) 0.730 ± 0.133 0.747 ± 0.147 0.786 ± 0.214 0.804 ± 0.228 0.423 ± 0.119 0.430 ± 0.130 0.464 ± 0.196 0.483 ± 0.205

Lasso - 1.179 ± 0.376 - 1.469 ± 0.817 - 0.824 ± 0.255 - 0.961 ± 0.511
SpAM - 1.250 ± 0.335 - 1.545 ± 0.748 - 0.831 ± 0.217 - 1.017 ± 0.470
DAN - 1.470 ± 0.346 - 1.844 ± 0.773 - 0.962 ± 0.230 - 1.672 ± 0.515

LapRLS 1.075 ± 0.416 0.973 ± 0.423 1.813 ± 0.934 1.706 ± 0.945 0.944 ± 0.290 0.898 ± 0.296 1.379 ± 0.532 1.409 ± 0.544
VAE 0.816 ± 0.399 0.808 ± 0.418 1.089 ± 0.553 0.924 ± 0.571 0.642 ± 0.253 0.633 ± 0.261 0.794 ± 0.509 0.760 ± 0.521

COREG 0.766 ± 0.374 0.748 ± 0.386 0.968 ± 0.515 0.735 ± 0.528 0.619 ± 0.277 0.625 ± 0.285 0.762 ± 0.452 0.736 ± 0.467
SSDKL 0.818 ± 0.383 0.794 ± 0.396 0.941 ± 0.532 0.920 ± 0.541 0.617 ± 0.282 0.605 ± 0.269 0.772 ± 0.473 0.730 ± 0.481

RER 0.782 ± 0.265 0.801 ± 0.273 0.828 ± 0.351 0.817 ± 0.358 0.624 ± 0.228 0.618 ± 0.208 0.680 ± 0.272 0.698 ± 0.287
S2MAM (ours) 0.771 ± 0.241 0.783 ± 0.255 0.816 ± 0.321 0.801 ± 0.330 0.614 ± 0.204 0.609 ± 0.192 0.663 ± 0.251 0.681 ± 0.266

Table 4: Extended experiments with average accuracy, standard deviation (SD), and training time cost (minutes)
on COIL-20 image data. Merely 30% samples in the training set are labeled.

Models ℓ1-SVM SpAM CSAM TSpAM LapSVM f-FME AWSSL RGL SALE SSNP RER SemiReward S2MAM
Accuracy 67.329 69.917 73.577 72.230 81.092 85.518 86.821 83.416 87.235 83.370 85.219 87.518 88.211

SD 0.583 0.709 0.622 0.616 0.417 0.408 0.430 0.527 0.616 0.429 0.452 0.397 0.427
Time Cost 0.2 0.9 2.3 2.5 0.6 1.5 2.7 3.1 2.2 4.1 1.8 7.4 2.4

x
(j)
i = (Wij + Ui)/2. Wij and Ui are independently from U(0, 1) for i = 1, · · · , 200, j =

1, · · · , 100. The category label satisfies yi = 0 when f(xi) ≤ 0 and 1 otherwise. After equally
dividing the entire dataset into training and testing sets, 5% samples for each class from the training
set are randomly selected as the labeled set. As present in Table 2, both irrelevant and noisy features
are harmful. Fortunately, even with irrelevant and noisy information, S2MAM still exhibits superior
prediction accuracy and stronger stability with the smallest variance compared to its supervised
or semi-supervised competitors. Moreover, the extended visualization results in Figure 9 help to
demonstrate the interpretability of S2MAM more effectively.

4.3 EXPERIMENTS ON ADNI AND COIL DATASETS

As for the ADNI data, the records of ”Fluency” and ”ADAS” cognitive scores involving 326 features
are selected as the identification targets. Table 3 demonstrates that S2MAM enjoys competitive
performance and even stronger robustness against variable corruptions compared to the other baselines,
e.g., average 0.119 lower MSE on ”ADAS” score with 20% labeled samples and 10 noisy features.

The following experiments are conducted for classifying the 12th and 13th objects in the COIL-20
image data. Inspired by some supervised (Su et al., 2023) and semi-supervised works (Qiu et al.,
2018; Kang et al., 2020; Bao et al., 2024; Nie et al., 2019; 2021), a practical approach for dealing with
high-dimensional data like COIL images is to extract the variable vectors first. As stated in Appendix
E, a CNN is utilized to learn the vectors for each image, which realizes a rough dimensional reduction.
However, this may not remove those irrelevant or even noisy variables (Nie et al., 2019; 2021). From
the results in Table 4 above, S2MAM provides competitive and robust prediction performance. See
Tables 12-18 for results on noisy COIL, CelebA-HQ and AgeDB images with pixel-level corruptions.

5 CONCLUSION

This paper proposes a semi-supervised meta additive model, called S2MAM, to enhance the robustness
and interpretability of manifold regularization (Belkin et al., 2006) in settings with redundant and
noisy input variables. Compared with existing SSL models with manifold regularization (Nie et al.,
2019; Bao et al., 2024) and deep SSL models (Li et al., 2024; Jo et al., 2024), the proposed approach
is capable of achieving variable selection, interpretability, and robust estimation simultaneously.
Theoretical and empirical evaluations verify its superiority over some state-of-the-art learning models.
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Appendix

A NOTATIONS

Some used notations are summarized in Table 5.

Table 5: Notations

Notations Descriptions

p the dimension of the input
X ,Y the input space X = {X (1), · · · ,X (p)} ∈ Rp and the output space Y ⊂ R, respectively
ρ the jointed distribution on X × Y
ρX the marginal distribution with respect to X induced by ρ
l/u the number of labeled / unlabeled samples
xi; yi input xi = (x

(1)
i , · · · , x(p)

i )T ∈ Rp with x
(j)
i ∈ X (j); output yi ∈ Y

zl; zu the labeled dataset zl = {(xi, yi)}li=1; the unlabeled dataset zu = {xi}l+u
i=l+1

H the hypothesis spaceH =
{
f =

∑p
j=1 f

(j) : f (j) ∈ HK(j) , 1 ≤ j ≤ p
}

HK(j) the RKHS associated with Mercer kernel K(j) defined on X (j) ×X (j), j ∈ {1, . . . , p}
LK(j) integral operator LK(j) : L2(ρ(X (j)))→ L2(ρ(X (j))) based on the square-integrable space L2

Lr
K(j) the r-power of LK(j) associated with feature X (j) and kernel K(j)

f(·) the prediction function of supervised additive models in RKHS where
f(·) =

∑p
j=1

∑l
i=1 α

(j)
i K

(j)
i (x

(j)
i , ·)

f∗ the ground truth function
f the prediction vector f = (f(x1), . . . , f(xl+u))

T , associated with zl and zu
fz the empirical decision function of manifold regularized additive model
τj the weight of j-th variable
α the coefficient of the lower level additive model
W the similarity matrix for SSL tasks

D ; L the diagonal matrix Dii =
∑l+u

j=1 Wij ; the graph Laplacian L = D −W
m the variable mask vector m ∈ {0, 1}p
s the vector s = (s1, · · · , sp) where si stands for the probability of mi = 1

B DESCRIPTIONS FOR BENCHMARKS AND BASELINES

In this paper, we select 4 synthetic datasets and 12 real-world datasets for our experiments. Indeed,
these datasets have been widely used for validating additive models (Ravikumar et al., 2009; Lahiri
et al., 2016; Chen et al., 2020; Wang et al., 2023) or semi-supervised learning models (Jean et al.,
2018; Qiu et al., 2018; Nie et al., 2019; 2021; Bao et al., 2024). We briefly summarize the datasets
used and some learning methods for baselines as follows.

B.1 DATA DESCRIPTION

Denote N and p (p = p∗ + pu + pn) as the total number of samples and the dimensions in each
dataset, where the training set involves l labeled data and u unlabeled data, and the remaining samples
are left for testing. We generate pu uninformative variables and pn noisy variables, which are added
into the truly informative variables p∗ from all samples within the dataset (including the training and
testing sets).

The 16 datasets used in this paper include:

• (1) Friedman data for regression. The corresponding generation function is provided in
the experiment section, which involves 200 samples, p∗ = 5 true informative features,
and pu = 95 uninformative features following N (0, 1). And pn = 10 noisy features in
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N (100, 100) are also considered to highlight the robustness better. Denote ϵ as the Gaussian
noise N (0, 1), the output y is generated by

f(X) = 10 sin
(
πX(1)X(2)

)
+ 20

(
X(3) − 0.5

)2
+ 10X(4) + 5X(5) + ϵ.

• (2) Synthetic additive data for regression. It involves N = 200 samples, p∗ = 8 true
informative features, and pu = 92 uninformative features. We also consider adding pn = 10
noisy features following N (100, 100) into the whole dataset,

Y = f∗(X) + ϵ =

8∑
j=1

f (j)(X(j)) + ϵ, (9)

where f (1)(u) = −2 sin(2u), f (2)(u) = 8u2, f (3)(u) = 7 sinu
2−sinu , f (4)(u) =

6e−u, f (5)(u) = u3 + 3
2 (u − 1)2, f (6)(u) = 5u, f (7)(u) =

10 sin(e−u/2), f (8)(u) = −10ϕ̃(u, 1
2 ,

4
5

2
). Notably, to validate the additive mod-

els on testing sets, the Gram matrices or new splined features for the testing sets must be
generated.

• (3) Synthetic additive data for classification. It involves N = 200 samples, p∗ = 2
informative features, pu = 98 uninformative redundant features following N (0, 1) and
pn = 10 noisy features following N (100, 100), and the output

f∗(xi) = (x
(1)
i − 0.5)2 + (x

(2)
i − 0.5)2 − 0.08,

where x(j)
i = (Wij+Ui)/2. Wij and Ui are independently from U(0, 1) for i = 1, · · · , 200,

j = 1, · · · , 100. The label satisfies yi = 0 when f(xi) ≤ 0 and 1 otherwise. This synthetic
data for classification has been widely used in some existing research for evaluating the
performance of additive models (Chen et al., 2020; Wang et al., 2023)

• (4) Synthetic Moon data for classification. It involves two classes with a total of 200 samples,
p∗ = 2 informative features, pu = uninformative, redundant features, and pn = additional,
noisy features. This data has been widely used for estimating the model’s capability for
correctly identifying different categories (Qiu et al., 2018; Nie et al., 2019; 2021).

• (5) Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset for regression. To better
highlight the robustness in real-world applications, the ADNI (https://adni.loni.usc.edu/)
dataset (795 instances, p = 326) is also considered.

• Four datasets from the UCI repository for regression.
(6) Buzz prediction on the Twitter dataset for regression. It involves a total of 38, 393
samples, p∗ = 77 original features, and additional pn = 10 noisy features. This dataset helps
to predict the mean number of active discussions.
(7) Boston Housing Price dataset for regression. It involves merely 506 samples, p∗ = 13
original features, and additional pn = 10 noisy features. This dataset has been widely used
for estimating the performance of regression models.
(8) Ozone Level Detection dataset for regression. It includes N = 2536 instances with
p∗ = 73 attributes, aiming to forecast ground ozone pollution using the given features. We
also add pn = 10 noisy features into the original dataset.
(9) SkillCraft Master dataset for regression. The dataset is made of N = 3395 observations
and p∗ = 19 input variables. And pn = 10 noisy features are further added to the original
dataset.

• Four datasets from the UCI repository for classification.
(10) Predicting Buzz Magnitude in the Social Media dataset for classification. It involves
N = 38393 instances with p∗ = 77 original features. We further add pn = 10 noisy
features into the original datasets for comparing the robustness of these baselines.
(11) Breast Cancer Wisconsin dataset for classification. There are 569 instances and p∗ = 29
original input features. pn = 10 noisy features following N (100, 100) are further added
into the original dataset.
(12) Phishing Websites dataset for classification. It contains 31 columns, with 30 features
and one target. The dataset has 2456 observations.
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(13) Statlog (Heart) dataset for classification. It involves N = 270 instances with p∗ = 13
input features. Noisy features are further added for comparison.

• Three image datasets for classification or regression.
(14) The image data from the COIL20 image library, which initially contains 20 objects,
is used for classification. For simplicity, the 12th and 13th digits are selected, where there
are N = 72 instances for each digit and p∗ = 16384 original features (gray images with a
size of 128 × 128). This dataset has been used for evaluating the prediction performance of
semi-supervised learning models on feature reduction (Nie et al., 2019; 2021).
(15) CelebA-HQ images, which were initially derived from the original CelebA, are used
for classification. For simplicity, the 12th and 13th digits are selected, where there are
N = 30, 000 instances for each digit and p∗ = 262, 144 original features (with a size of
512× 512).
(16) AgeDB is a specialized facial image dataset that comprises over N = 16, 000 high-
quality facial images of 568 distinct subjects, with each subject represented across a signifi-
cant age span (averaging 13.0 years between the youngest and oldest images per identity).
All photos are standardized to a uniform resolution of 224 × 224 pixels (p∗ = 50, 176),
ensuring consistency for model training and evaluation.

The above real-world datasets have undergone preliminary data cleaning, where those entries with
empty values are filled with mean values, or even removed when significant features are missing
(ratio of missing features ≥ 20%).

B.2 BASELINES & PARAMETER SETTINGS

B.2.1 REGRESSION TASKS

The baselines for regression tasks include:

• (1) Lasso (Tibshirani, 1994), is a type of supervised linear regression model that is used for
variable selection with sparsity-induced regularization. The regularization parameter λ is
tuned across [10−4, 10−3, 10−2, 10−1, 1].

• (2) SpAM (Ravikumar et al., 2009), is an additive supervised nonparametric model for
high-dimensional nonparametric regression and classification tasks. The regularization
parameter λ is tuned across [10−4, 10−3, 10−2, 10−1, 1].

• (3) DAN (Dinh & Ho, 2020) is designed to identify a subset of relevant features in deep
learning models. The core technology employs the adaptive group Lasso selection procedure,
with group Lasso serving as the base estimator, which has been demonstrated to be selection-
consistent for a broad class of networks.

• (4) LapRLS (Belkin et al., 2006), learns a semi-supervised linear model using the labeled
data by minimizing a regularized least squares objective function. The regularization term
incorporates the graph Laplacian matrix, which captures the assumption of smoothness,
where similar points are expected to have similar labels. The regularization parameters λ1

and λ2 are both tuned across [10−4, 10−3, 10−2, 10−1, 1].
• (5) Variational autoencoder (VAE) (Goodfellow et al., 2014), is designed as a semi-

supervised generative model by first learning an unsupervised embedding of the data and
then using the embeddings as input to a supervised multilayer perceptron.

• (6) Co-training regressor (COREG) (Lu et al., 2023), is a co-training algorithm for regression
tasks that uses two k-NN regressors with different distance metrics. During the training
process, each regressor generates labels for the other.

• (7) Semi-supervised deep kernel learning (SSDKL) (Jean et al., 2018), is a semi-supervised
regression model based on minimizing predictive variance in the posterior regularization
framework. It combines the hierarchical learning of networks with the probabilistic modeling
capabilities of Gaussian processes.

• (8) Pseudo-label filtering (PLF) (Jo et al., 2024) is a novel semi-supervised regression
framework for extending SSL methodologies beyond classification tasks. It first filters
unreliable pseudo-labels through uncertainty estimation and then refines the remaining
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pseudo-labels through similarity-based information propagation from labeled to unlabeled
examples.

• (9) SemiReward (Li et al., 2024) is a general and pluggable reward framework designed
for semi-supervised learning that evaluates and selects high-quality pseudo-labels to en-
hance both performance and convergence speeds of self-training techniques. SemiReward
implements an efficient two-stage training pipeline assisted by a generator network and a
lightweight rewarder network.

For fairness, a network with a [d− 100− 50− 50− 2] structure is employed here for the downstream
regression task. Following (Jean et al., 2018), the same base network is shared for all deep semi-
supervised models, including VAE and SSDKL. The learning rates for the neural network and the
Gaussian process are 10−3 and 10−1, respectively. The training process of VAE, COREG, and
SSDKL follows the settings in (Jean et al., 2018). Besides, the bandwidth µ for the Gaussian
similarity function (Wij = exp{−∥xi − xj∥22/µ2}) is also tuned across [10−4, 10−3, 10−2, 10−1, 1]
for all SSL methods for computing the similarity and Laplacian matrices. Notice that the similarity
matrix for S2MAM is calculated by Wij = exp{−∥xi ⊙m− xj ⊙m∥22/µ2} with learned mask m,
i, j ∈ {1, 2, · · · , l + u}. In practice, the proportion of labeled points in a single batch is consistent
with the settings in the whole training set to avoid empty labeled sets or inconsistency among each
batch.

Notably, both PLF and SemiReward are designed with specific modules, such as generative networks,
for processing images. Thus, they are adopted in the experiments on COIL-20, CelebA-HQ, and
AgeDB images in this paper, rather than the synthetic tubular data or the UCI datasets.

B.2.2 CLASSIFICATION TASKS

The baselines for classification tasks include:

• (10) ℓ1-SVM (Zhu et al., 2003a), is a supervised classification model with ℓ1 sparse reg-
ularization based on the classical SVM. The regularization parameter λ is tuned across
[10−4, 10−3, 10−2, 10−1, 1].

• (11) SpAM (induced by logistic loss) (Ravikumar et al., 2009), is equipped with logistic
loss for classification, which has been introduced above. Its regularization parameter λ is
tuned across [10−4, 10−3, 10−2, 10−1, 1].

• (12) LapSVM (Belkin et al., 2006), utilizes the concept of the graph Laplacian, which
captures the underlying manifold structure of the data. The objective of LapSVM is to find a
decision boundary that not only separates the labeled data accurately but also respects the
smoothness assumption captured by the graph Laplacian. The regularization parameters λ1

and λ2 are both tuned across [10−4, 10−3, 10−2, 10−1, 1]

• (13) f-FME (Qiu et al., 2018) is an improved version of classical flexible manifold embedding
(FME) that employs additional anchor graphs to reduce the time cost and computational
burden of FME.

• (14) AWSSL (Nie et al., 2019), is a semi-supervised learning model that constructs an
adaptive graph for propagating label information and using special strategies for ranking the
importance of variables. An auto-weighting matrix is learned to select informative variables
from both labeled and unlabeled data.

• (15) RGL (Kang et al., 2020) constructs a graph from the pristine data derived from restored
technology, subsequently utilizing this resilient graph to improve the performance of semi-
supervised classification tasks.

• (16) SALE (Nie et al., 2021) merges the processes of adaptive graph formation and label dis-
semination into a singular optimization framework, simultaneously developing an automatic
weighting matrix that discerns and emphasizes significant variables across the entire dataset.

• (17) CSAM (Yuan et al., 2023) utilizes a robust error metric based on the statistical corren-
tropy measure, which yields a robust additive model for classification with noisy labels.

• (18) TSpAM (Wang et al., 2023) constructs a robust additive model based on the tilted empir-
ical risk. It’s capable of robust estimation and imbalanced classification. Notably, an efficient
random Fourier features approach is used to accelerate the kernel-based computation.
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Algorithm 1: Computing Procedure for S2MAM

Input: Labeled data zl = {(xi, yi)}li=1, unlabeled data zu = {xi}l+u
i=l+1, step size ηt, core size

C, 1 = (1, ..., 1) ∈ Rp.
Initialization: α0, s0 = C

p · 1, m0, L0.
for t = 1 to T do

1) Update αt based on Step 1 with zl & zu
2) Update st based on Step 2 with zl
3) Update mt sampled from p(m|st)
4) Update Lt based on Step 3 with zl & zu

end for
Output: Decision function f̂ .

• (19) SSNP (Wang et al., 2022a) integrates neural processes with semi-supervised learning
for image classification tasks. The innovation lies in adapting NPs, a probabilistic model
that approximates Gaussian Processes, to the SSL framework. The CNN structure is slightly
modified to satisfy 1D value-based inputs.

• (20) Robust Embedding Regression (RER) (Bao et al., 2024) is a novel semi-supervised
learning approach that addresses the performance degradation of existing methods when
confronted with noisy and redundant data. RER adaptively constructs weighted graphs, in-
corporating low-rank representation to reduce noise and redundancy, and applies appropriate
norm constraints for feature selection and improved model stability.

• (21 / 9) SemiReward (Li et al., 2024) is also capable of regression estimation on image data
(e.g., AgeDB images). Please refer to the regression baseline (9) for a detailed description.

B.2.3 ALGORITHM AND PARAMETER SETTINGS

Before introducing the detailed parameter settings, we first present Algorithm 1, which summarizes the
computational process of our S2MAM. For simplicity, the parameter τj = 1 for all j ∈ {1, 2, · · · , p}.
The regularization parameters for regularized models are all tuned across [10−4, 10−3, 10−2, 10−1, 1].
As introduced in (Qiu et al., 2018; Nie et al., 2021; Bao et al., 2024), the 1-nearest neighbor
(1NN) classifier with Euclidean distance is recommended for evaluating classification accuracy after
dimension reduction. The number of selected variables, C, is shared for S2MAM and those baselines
used for dimension reduction.

To avoid singular solutions or unfair comparisons, each experiment has been repeated 20 times, and
the similarity (weight) graph is constructed following (Nie et al., 2019; 2021; Bao et al., 2024) for
those baselines with the Laplacian matrix. Each dataset is divided into training and testing sets with
a ratio of 1 : 1. Then we select l samples from each class as the labeled set, and the remaining
training samples are considered the unlabeled set. Every semi-supervised method that employs
two regularization coefficients is evaluated on the grid (λ1, λ2) ∈ {10−4, 10−3, 10−2, 10−1, 1}.
Supervised baselines with a single penalty (Lasso, ℓ1-SVM, SpAM, TSpAM) search the coefficient
in {10−4, 10−3, 10−2, 10−1, 1}, which also aligns with the settings in their publications (SpAM,
TSpAM). The 1-nearest neighbor classifier with Euclidean distance is employed in f-FME and
AWSSL. Furthermore, τ within regularization was utilized to provide flexibility in assigning different
weights to variables based on prior knowledge or importance.

The leave-one-out cross-validation strategy is utilized for parameter tuning, given the rarity of labeled
samples. Fortunately, the leave-one-out cross-validation is utilized due to limited labeled data, which
does not require a separate validation set and may not be heavily dependent on specific validation
sets (Hastie et al., 2009). The rest parameters for the other methods were set according to their
corresponding references.
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Table 6: Average MSE ± standard deviation on synthetic regression data with different label percentages (r) and
noisy variable numbers (pn). The upper and lower tables show the results on the Friedman data and the additive
data. Notably, some deep SSL approaches provide better prediction performance under clean scenarios, i.e.,
when the number of noisy variables pn = 0.

Model r = 5%, pn = 0 r = 5%, pn = 10 r = 10%, pn = 0 r = 10%, pn= 10

Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

Lasso - 15.579 ± 12.396 - 22.135 ± 14.442 - 8.684 ± 2.393 - 15.636 ± 7.785
SpAM - 14.791 ± 11.595 - 21.055 ± 13.744 - 8.201 ± 2.464 - 14.706 ± 7.577
DAN - 12.417 ± 7.947 - 23.350 ± 7.074 - 7.864 ± 2.017 - 17.392 ± 5.283

LapRLS 11.659 ± 5.024 11.678 ± 5.125 27.299 ± 8.549 27.588 ± 8.779 8.086 ± 2.000 8.103 ± 1.970 23.822 ± 4.498 23.918 ± 4.457
VAE 11.071 ± 7.011 11.499 ± 7.971 20.194 ± 9.477 20.860 ± 9.977 7.866 ± 3.752 7.950 ± 4.873 15.155 ± 4.950 15.809 ± 5.134

COREG 10.573 ± 6.855 10.730 ± 6.946 19.011 ± 7.644 19.644 ± 7.945 7.801 ± 3.011 7.820 ± 3.401 15.305 ± 4.117 15.914 ± 4.955
SSDKL 10.144 ± 6.917 10.744 ± 7.301 19.410 ± 7.809 19.655 ± 8.137 7.035 ± 7.155 7.195 ± 7.511 14.101 ± 4.055 14.731 ± 4.773

S2MAM (ours) 10.837 ± 4.355 11.350 ± 4.881 12.274 ± 5.101 12.941 ± 5.807 7.204 ± 2.591 7.430 ± 2.473 8.418 ± 3.140 8.701 ± 3.433
Lasso - 1.193 ± 0.437 - 2.706 ± 3.174 - 1.079 ± 0.304 - 2.102 ± 0.705
SpAM - 1.122 ± 0.422 - 2.597 ± 2.848 - 1.033 ± 0.301 - 1.955 ± 0.727
DAN - 1.217 ± 0.346 - 2.133 ± 1.294 - 1.014 ± 0.232 - 1.792 ± 0.538

LapRLS 1.025 ± 0.121 1.073 ± 0.182 3.571 ± 0.138 3.592 ± 0.171 0.986 ± 0.136 1.055 ± 0.181 3.101 ± 0.104 3.122 ± 0.166
VAE 1.117 ± 0.569 1.126 ± 0.590 1.433 ± 0.622 1.573 ± 0.662 0.991 ± 0.233 1.103 ± 0.247 1.341 ± 0.305 1.379 ± 0.337

COREG 0.959 ± 0.237 0.974 ± 0.295 1.137 ± 0.306 1.255 ± 0.411 0.937 ± 0.209 0.961 ± 0.104 1.059 ± 0.287 1.141 ± 0.388
SSDKL 0.992 ± 0.221 1.046 ± 0.269 1.312 ± 0.411 1.344 ± 0.462 0.959 ± 0.210 0.983 ± 0.233 1.247 ± 0.359 1.287 ± 0.394

S2MAM (ours) 0.982 ± 0.117 1.027 ± 0.162 1.093 ± 0.210 1.178 ± 0.281 0.944 ± 0.106 0.970 ± 0.146 0.979 ± 0.147 1.094 ± 0.240

Table 7: Average Accuracy ± standard deviation (%) on synthetic classification data with fixed label percentages
in each class (r = 5%), uninformative variable (pu) and noisy variable numbers (pn). The upper and lower
tables display the results of the moon data and additive data.

Model r = 5%, pu = pn = 0 r = 5%, pu = 10, pn = 0 r = 5%, pu = 0, pn = 10 r = 5%, pu = pn = 10

Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

ℓ1-SVM - 83.917 ± 1.949 - 78.631 ± 6.737 - 60.183 ± 10.243 - 55.872 ± 8.377
SpAM - 84.122 ± 1.626 - 76.021 ± 5.434 - 62.307 ± 9.590 - 54.481 ± 7.808
CSAM - 85.309 ± 1.216 - 77.611 ± 4.790 - 65.698 ± 7.139 - 64.714 ± 7.211
TSpAM - 85.729 ± 1.436 - 79.183 ± 4.260 - 67.064 ± 6.833 - 65.592 ± 7.148
LapSVM 88.635± 3.307 86.395 ± 2.825 69.261 ± 6.064 69.670 ± 5.941 50.083 ± 4.989 51.011 ± 5.001 49.026 ± 1.150 50.000 ± 0.000

f-FME 89.201± 1.955 87.370 ± 2.070 71.631 ± 5.255 72.314 ± 5.061 53.083 ± 5.109 54.171 ± 5.411 51.026 ± 6.598 51.231 ± 6.919
AWSSL 93.171± 1.801 92.395 ± 1.977 87.549 ± 2.701 87.106 ± 2.844 79.810 ± 3.577 79.901 ± 3.650 77.301 ± 3.944 77.368 ± 4.050

RGL 91.127 ± 2.497 90.804 ± 2.781 88.311 ± 3.030 87.914 ± 3.152 81.706 ± 3.951 81.254 ± 4.077 79.176 ± 4.511 78.679 ± 4.989
SALE 91.104 ± 2.060 90.799 ± 2.135 88.915 ± 2.944 88.193 ± 3.029 82.791 ± 3.464 82.199 ± 3.891 80.988 ± 5.066 80.489 ± 5.066
SSNP 92.720 ± 2.184 92.437 ± 2.237 88.642 ± 2.847 88.306 ± 3.195 81.244 ± 4.230 80.859 ± 4.406 79.287 ± 5.026 79.310 ± 5.211

S2MAM (ours) 91.195± 1.919 91.877 ± 2.207 89.704 ± 2.414 88.255 ± 2.873 83.013 ± 4.097 83.454 ± 4.388 81.636 ± 4.240 81.950 ± 4.713
ℓ1-SVM - 83.914 ± 6.410 - 62.713 ± 6.098 - 62.261 ± 6.550 - 54.791 ± 6.951
SpAM - 84.150 ± 6.104 - 65.091 ± 5.917 - 64.814 ± 6.039 - 54.413 ± 6.295
CSAM - 86.597 ± 5.424 - 69.717 ± 5.101 - 65.178 ± 5.255 - 61.980 ± 5.701
TSpAM - 86.993 ± 5.340 - 71.044 ± 5.079 - 67.340 ± 4.959 - 63.145 ± 5.130
LapSVM 88.814 ± 5.398 88.850 ± 5.269 59.992 ± 5.259 60.325 ± 5.184 55.630 ± 8.213 55.957 ± 8.292 55.137 ± 8.414 55.203 ± 8.496

f-FME 89.141 ± 3.172 89.305 ± 3.359 64.495 ± 4.033 64.611 ± 4.208 59.671 ± 6.473 59.801 ± 6.655 59.311 ± 6.602 59.407 ± 6.659
AWSSL 91.259 ± 2.871 90.211 ± 3.077 83.691 ± 3.423 83.950 ± 3.519 73.701 ± 4.105 73.859 ± 4.322 72.255 ± 4.211 72.370 ± 4.428

RGL 90.422 ± 2.909 90.026 ± 3.477 84.065 ± 4.501 84.879 ± 4.711 77.726 ± 4.591 78.041 ± 4.510 75.155 ± 4.965 75.413 ± 4.708
SALE 89.717 ± 2.811 90.149 ± 2.665 85.742 ± 4.132 85.971 ± 4.018 79.071 ± 4.709 79.844 ± 4.277 77.201 ± 4.697 77.891 ± 4.431
SSNP 90.492 ± 3.059 89.871 ± 3.218 86.130 ± 3.922 85.908 ± 4.105 78.250 ± 4.294 78.062 ± 4.133 77.462 ± 4.412 77.601 ± 5.513

S2MAM (ours) 89.979 ± 3.255 90.309 ± 3.409 85.517 ± 3.481 86.015 ± 3.575 81.702 ± 3.897 81.855 ±4.055 80.012 ± 4.177 80.112 ± 4.370

C ADDITIONAL EXPERIMENTS ON SYNTHETIC DATA

C.1 EXPERIMENTS ON SYNTHETIC DATA

Semi-supervised Regression: The Friedman dataset (Friedman, 1991) owns p∗ = 5 informative
variables, and is generated by y = 10 sin(πx(1)x(2)) + 20(x(3) − 0.5)2 +10x(4) +5x(5) + ϵ, where
each x(j) ∼ U(0, 1) and ϵ ∼ N (0, 1).

The additive data (Ravikumar et al., 2009; Chen et al., 2020; Wang et al., 2023) is generated from y =∑8
j=1 f

(j)(x(j)) + ϵ, where f (1)(u) = −2 sin(2u), f (2)(u) = 8u2, f (3)(u) = 7 sinu
2−sinu , f

(4)(u) =

6e−u, f (5)(u) = u3+ 3
2 (u−1)

2, f (6)(u) = 5u, f (7)(u) = 10 sin(e−u/2), f (8)(u) = −10ϕ̃(u, 1
2 ,

4
5 ).

Here ϕ̃ stands for the normal cumulative distribution with mean of 1
2 and the standard deviation of 4

5 .
We generate n = 200 samples with p∗ = 8 (p∗ = 5) informative variables and pu = 92 (pu = 95)
uninformative variables following N (0, 1) for the additive data (the Friedman data). To illustrate the
impact of noisy variables, an additional pn = 10 variables are designed as noisy variables following
N (100, 100) for simplicity. The entire dataset is then split equally into training and testing sets,
where only 10% or 20% of the samples retain their labels in the training set.

As shown in Table 6, S2MAM enjoys competitive or even the best performance over the baselines.
Under clean scenarios without corruption, some deep SSL baselines may perform slightly better,
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which is understandable due to their strong approximation ability and reliance on high-quality training
data. Especially under variable corruptions, our model has the smallest MSE and standard deviation,
which implies that S2MAM can identify most of the truly active variables by assigning the right
mask. As validated in the extended experiments, these supervised baselines require larger labeled
counterparts.

Semi-supervised Classification: Following the experimental design in (Chen et al., 2020; Wang et al.,
2023), we consider the additive discriminant function f∗(xi) = (x

(1)
i −0.5)2+(x

(2)
i −0.5)2−0.08,

where x
(j)
i = (Wij + Ui)/2. Wij and Ui are independently from U(0, 1) for i = 1, · · · , 200,

j = 1, · · · , 100. The label satisfies yi = 0 when f(xi) ≤ 0 and 1 otherwise.

To evaluate the robustness of S2MAM, pn irrelevant variables are designed as noisy variables
following N (100, 100). After equally dividing the entire dataset into training and testing sets, 5% or
10% samples for each class from the training set are randomly selected as the labeled set. As shown
in Table 7, our method often enjoys better performance than the other baselines, especially in the
case of noisy variables.

C.2 ABLATION ANALYSIS

Masking Continuing

Model 1
Manifold Regularized 

Sparse Additive Model
Model 2

Discrete S2MAM

Model 3
Probabilistic S2MAM

Sensitive to noisy features NP hard optimization

Assign maskUpdate model

Directly update discrete mask Step 2. Update continuous probability

Robustness & Optimization Efficient

Step 1. Update α Step 3. Assign  

Figure 2: Connections among three models introduced in Sections 2&3. The third model with the black box is
the final optimized bilevel model, probabilistic S2MAM. The parameter update procedure relevant to the bilevel
scheme is also illustrated.

This subsection investigated the effects of the manifold regularization, the probabilistic bilevel
optimization method, and the additive modeling strategy. Firstly, we illustrate the relationship among
the three models in Figure 2:

• Manifold Regularized Sparse Additive Model in Section 2.1,
• Discrete Bilevel Framework for S2MAM in Section 2.2,
• Probabilistic Bilevel Framework for S2MAM in Section 2.3.

We’ve further conducted extended ablation experiments by:

• removing the manifold regularization term (fTLf ), named Supervised Meta Additive Model
(SMAM);

• removing the upper-level problem (bilevel optimization), called Semi-supervised Additive
Model (S2AM);

• removing the additive strategy, named Semi-supervised Meta-based Model (S2MM).

The experiments on the synthetic Friedman data and 3 real-world UCI datasets are shown below:

From the results in Tables 8 and 9, one can see that 1) SMAM has the worst performance with
few labeled samples and even noisy variables. 2) Without feature corruptions, SSAM has similar
performance to S2MAM. Otherwise, S2MM breaks down. 3) Both S2MM and S2MAM are robust to
feature corruptions. And S2MAM performs slightly better than S2MM.

It implies that 1) The manifold regularization helps to use the unlabeled samples to learn better
prediction functions. 2) The employed bilevel scheme for automatically assigning variable masks is
vital to deal with noisy variables. 3) The additive strategy can improve the non-linear approximation
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Table 8: Average MSE of extended ablation experiments on Friedman data by 1) removing the manifold
regularization term; 2) removing the upper-level problem (bilevel optimization); 3) removing the additive
strategy.

Models r = 10% & pn = 0 r = 10% & pn = 10
1) SMAM 8.319±2.740 10.291±3.511
2) S2AM 8.041±1.862 21.328±4.108
3) S2MM 7.861±2.611 8.913±3.811
S2MAM 7.820±2.473 8.701±3.433

Table 9: Average R2 score of extended ablation experiments on UCI Datasets.

Model Buzz-Regression Boston House Ozone

r = 0.1, pn = 0 r = 0.1, pn = 10 r = 0.1, pn = 0 r = 0.1, pn = 10 r = 0.1, pn = 0 r = 0.1, pn = 10

1) SMAM 0.004± 3.290 −0.077± 4.584 −0.161± 3.702 −0.199± 3.962 −0.147± 3.157 −0.293± 3.542
2) S2AM 0.584± 1.940 0.553± 2.514 0.439± 1.702 0.421± 1.962 0.443± 1.157 0.397± 1.472
3) S2MM 0.684± 1.390 0.653± 1.684 0.539± 0.952 0.521± 1.132 0.543± 0.357 0.497± 0.642
S2MAM 0.704± 1.240 0.673± 1.534 0.559± 0.802 0.541± 0.982 0.563± 0.207 0.517± 0.492

ability. SSMM fails to illustrate the prediction curve of each input variable, as the additive model is
crucial for improving interpretability.

Remark 5 The above results also suggest that, after filtering out practical features using S2MAM,
the extracted data can be applied to downstream tasks under an adaptive bandwidth strategy, which
can adapt to complex data distributions, such as imbalanced categories.

C.3 EMPIRICAL VALIDATION ON SENSITIVITY & CONVERGENCE

C.3.1 IMPACT OF THE NUMBER OF LABELED SAMPLES

Based on the synthetic additive regression data, we first conduct a sensitivity analysis for the proposed
S2MAM on the size of the training set n, involving l labeled samples and u unlabeled ones.
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Figure 3: Average prediction MSE with standard deviation with different numbers of labeled samples. (a),
(b) and (c) represent the results of the unlabeled training set, labeled training set as well as the testing set,
respectively.

As shown in Figures 3, we find that larger size of labeled training data helps to improve the perfor-
mance of semi-supervised model, which is consistent with our theoretical findings on the generaliza-
tion error bounds, as well as some existing conclusions of statistical learning theory for supervised
learning (Christmann & Zhou, 2016; Chen et al., 2020) and semi-supervised learning (Liu & Chen,
2018).
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Figure 4: Average prediction MSE with different settings of λ1. (a), (b) and (c) represent the results of the
unlabeled training set, labeled training set as well as the testing set, respectively.
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Figure 5: Average prediction MSE with different settings of λ2. (a), (b) and (c) represent the results of the
unlabeled training set, labeled training set as well as the testing set, respectively.
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Figure 6: Average prediction MSE with different settings of Gaussian kernel bandwidth for computing similarity
matrix. (a), (b) and (c) represent the results of the unlabeled training set, labeled training set as well as the testing
set, respectively.

C.3.2 IMPACT OF REGULARIZATION COEFFICIENTS AND GAUSSIAN KERNEL BANDWIDTH

Here, we focus on the impact of regularization coefficients λ1, λ2 as well as the Gaussian kernel
bandwidth on the prediction performance.

Initially, we set λ1 = λ2 = 10−3 as default. By changing merely a single parameter and fixing the
left one, we draw the sensitive curves in Figures 4, 5, and 6. From practical experiments, we find
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that too large λ1 may introduce excessive sparsity, where truly informative variables could also be
assigned relatively small weights. And λ2 directly determines the degree of bias in the model towards
unlabeled samples. The kernel bandwidth controls the similarity matrix, where values that are too
small or too large can hinder the presentation of similarity between labeled and unlabeled samples.
Properly selected parameters enable the model to investigate information from unlabeled data more
effectively.

C.3.3 IMPACT OF SELECTED CORE SIZE C

Now we start to analyze the sensitivity of core size C on the performance. Following the same settings
as in the previous subsection, the sensitive curves for varying C, using the Friedman regression data
and synthetic additive regression data, are plotted in Figure 7. The labeled rate is 5% in the training
set. The average MSE and standard deviation are reported after 20 repeated experiments.
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Figure 7: Average prediction MSE with different settings of parameter C. The left and right panels present the
results on Friedman data (with 5/95/10 informative/redundant/noisy features) and synthetic additive regression
data (with 8/92/10 informative/redundant/noisy features), respectively.

The empirical results show that the size of core variables C is also a crucial parameter of S2MAM in
assigning proper masks to informative variables. In some high-dimensional real-world data without
prior knowledge of instrumental variables, the binary (half-interval) searching method is suggested
for setting C. Moreover, developing another level of problem to search for the proper C automatically
is also an enjoyable and meaningful direction, while the computation cost might also increase.

Remark 6 Practically, this binary search process was repeated individually for each baseline
(C1, · · · ) to find the 75-quantile {C1, · · · }0.75 as the choice for sharing with all baselines requiring
maximum core features, rather than relying solely on a single model. Both the searching range and
the final value are shared for all baselines. The coreset size C for useful variables could be set
slightly larger than the ground truth due to the sparsity constraint with ℓ-1 regularization. Moreover,
a too large C may introduce unnecessary variables or even noisy variables, which could degrade the
prediction performance.

When it comes to determining the value of C within the confines of the constraint set Cs, which is
defined by:

Cs = {s : 0 ⪯ si ⪯ 1, ∥s∥1 ≤ C, i = 1, 2, · · · , p} ,
we take the overall dimension d as the starting point, setting C equal to d. To streamline the process,
in the initial stage, we identify the most suitable value for C, denoted as Ĉ, by examining a sequence
that starts at d and decreases by factors of two down to 1, i.e., [d, d/2, d/4, . . . , 2, 1]. Fortunately, our
practical tests have shown that S2MAM is capable of pinpointing the correct dimensions with high
accuracy right from the outset, thereby significantly easing the burden of manually identifying key
features.

C.3.4 CONVERGENCE OF UPPER LEVEL PROBLEM

We then analyze the convergence performance of the mask learner at the upper level by plotting the
curve of the upper-level objective function value with respect to iteration t in Figure 8.
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Figure 8: Convergence curve of the upper level problem of S2MAM.

The synthetic additive regression data with noisy feature corruptions is used in this study. With fewer
than 100 iterations, our method almost realizes convergence. However, compared to some existing
SSL methods, the proposed S2MAM may introduce higher computation and space complexity due to
the additional computation required for the masks.

C.4 INTERPRETABILITY AND VISUALIZATION

Additive models, including our proposed S2MAM, have strong interpretability, where the component
function of each input variable can be explicitly formulated and directly visualized. Here, we also
give an example with our synthetic additive regression data, where the ground truth function is merely
relevant to the first eight input variables:

Y = f∗(X) + ϵ =

8∑
j=1

f (j)∗(X(j)) + ϵ, (10)

where f (1)∗(u) = −2 sin(2u), f (2)∗(u) = 8u2, f (3)∗(u) = 7 sinu
2−sinu , f (4)∗(u) =

6e−u, f (5)∗(u) = u3 + 3
2 (u− 1)2, f (6)∗(u) = 5u, f (7)∗(u) = 10 sin(e−u/2), f (8)∗(u) =

−10ϕ̃(u, 1
2 ,

4
5

2
).

For simplicity, we present the prediction components of f̂ (1) and f̂ (2) as well as their ground truth
f (1)∗ and f (2)∗ in Figure 9. We generate the input uniformly among [−1, 1], which is further
transformed into the Gram matrix of the corresponding component (K(1) and K(2)). By multiplying
with the model coefficients α(1) and α(2), one can directly obtain the outputs. As shown in Figure 9,
the prediction results of S2MAM for each input variable are close to the ground truth, which better
validates the effectiveness. Additionally, the other components can also be formulated or visualized,
where we omit them here for brevity.

Remark 7 In some relevant works, the high-dimensional observations can be regarded as the mixture
of hidden information from an unknown manifold and ambient noise (Yao et al., 2024). In many
realistic settings, including those with redundant, useless, or noisy variables, real-world data can
also be corrupted by some noisy labels. To achieve robustness against such corruptions, a commonly
considered approach is to replace the loss function with a robust one (e.g., the widely used robust
Huber loss function (Wang et al., 2022b) for regression tasks). Simple modifications may help to
improve the models’ robustness against noisy labels. Extensions of S2MAM from other perspectives
are interesting directions for future study.
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Figure 9: Visualization of the first two components. f∗ : ground truth; f̂ : results predicted by S2MAM.

C.5 EXPLANATION FOR TOY EXAMPLE IN FIGURE 1

To better illustrate the negative impact of noisy variables on SSL models, we conduct semi-supervised
binary classification experiments on moon data (Nie et al., 2019). For simplicity, here we generate a
total of 200 samples involving 99 unlabeled points and 1 labeled point for each class. The original
moon data involves two inputs (X and y) and a single label (−1 or 1). To highlight the robustness,
we further add a noisy input variable (Xn ∼ N (100, 100)). Thus, the corrupted sample involves
three inputs and a single output, where the i-th sample includes input variables xi = (Xi, yi, (Xn)i)
and true label -1 or 1.

As shown in Figure 1, both LapSVM and our proposal, S2MAM, perform well on the clean moon
data without corruptions (Figure 1a). In the 2D plot in Figure 1 (b) and 3D plot in Figure 1 (d), the
noisy variable directly causes negative impact on the Laplacian matrix W, whose calculation relies
on all input variables Wij = exp{−∥xi − xj∥/2µ2} with bandwidth µ.

And as present in Figure 1 (d), our proposed S2MAM, with learned mask m = (1, 1, 0) assigned on
inputs (X, y,Xn), is robust with masked similarity Wij = exp{−∥m⊙ xi −m⊙ xj∥/µ2}, since
noisy variable Xn is suppressed with mask 0.

D ADDITIONAL EXPERIMENTS ON UCI DATASET

Here we further present the additional empirical results of some baselines and S2MAM on SSL
learning problems. Following similar strategies for hyperparameter selection, we conduct additional
experiments on 8 UCI datasets by assigning a few samples with actual labels, as well as some samples
without labels, and treating the remaining points as testing sets. To better highlight the robustness of
S2MAM against noisy variables, the original input X is corrupted by 10 noisy variables following
N (100, 100).

Table 10 presents the experimental results on UCI datasets by varying the number of labeled training
samples l, unlabeled training samples u, and noisy variables pn. Since the data sizes of different
classes may vary, we fixed the size of the training samples and adjusted only the labeled data size.
The remaining samples are the unlabeled data sets. Because some datasets are extensive, we repeat
each method 100 (or 10) times on each dataset, and list the average results as well as the standard
deviation information.

Additionally, these algorithms perform better with an increasing number of labeled samples. Instead
of the MSE and accuracy results, we further consider the R-squared score as the criterion to measure
the performance of these methods on complex real-world data (involving a few labeled samples and
unknown noise). Moreover, our proposed S2MAM enjoys competitive or even better performance
than these supervised or semi-supervised baselines, especially when noisy variables corrupt the data.
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Table 10: Average R-squared score ± standard deviation on UCI data. The four tables from top to bottom
represent the regression results under settings of {l = 50/20/10/50, u = 450/180/40/450, pn = 0}, {l =
50/20/10/50, u = 450/180/40/450, pn = 10}, {l = 100/40/20/100, u = 400/160/30/400, pn = 0}
and {l = 100/40/20/100, u = 400/160/30/400, pn = 10}, respectively.

Model Buzz-Regression Boston House Ozone SkillCraft

Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

Lasso - -0.146 ± 12.345 - 0.045 ± 3.135 - 0.324 ± 0.822 - 0.467 ± 0.220
SpAM - 0.559 ± 1.969 - 0.322 ± 3.693 - 0.340 ± 0.278 - 0.504 ± 0.173

LapRLS 0.631 ± 0.236 0.632 ± 0.240 0.513 ± 0.196 0.482 ± 0.219 0.557 ± 0.178 0.550 ± 0.192 0.509 ± 0.125 0.506 ± 0.141
VAE 0.659 ± 2.406 0.641 ± 2.711 0.525 ± 1.213 0.519 ± 1.301 0.562 ± 1.043 0.557 ± 1.260 0.512 ± 0.460 0.504 ± 0.475

COREG 0.691 ± 1.733 0.684 ± 1.851 0.565 ± 0.981 0.557 ± 1.020 0.573 ± 0.958 0.566 ± 1.030 0.540 ± 0.376 0.532 ± 0.386
SSDKL 0.717 ± 2.307 0.709 ± 2.434 0.534 ± 2.107 0.527 ± 2.195 0.569 ± 1.424 0.562 ± 1.472 0.524 ± 0.560 0.512 ± 0.581

S2MAM (ours) 0.712 ± 1.055 0.704 ± 1.240 0.563 ± 0.737 0.559 ± 0.802 0.568 ± 0.194 0.563 ± 0.207 0.542 ± 0.217 0.535 ± 0.240
Lasso - -3.364 ± 137.251 - -0.358 ± 3.329 - -0.719 ± 4.627 - 0.322 ± 0.564
SpAM - 0.364 ± 2.596 - -0.023 ± 0.370 - -0.028 ± 0.078 - 0.375 ± 0.438

LapRLS 0.581 ± 0.244 0.574 ± 0.251 0.473 ± 0.223 0.461 ± 0.247 0.362 ± 0.347 0.357 ± 0.378 0.485 ± 0.138 0.477 ± 0.146
VAE 0.573 ± 3.107 0.566 ± 3.211 0.492 ± 4.683 0.487 ± 4.820 0.485 ± 2.177 0.463 ± 2.305 0.503 ± 0.870 0.494 ± 0.891

COREG 0.595 ± 2.422 0.581 ± 2.507 0.511 ± 3.328 0.509 ± 3.511 0.492 ± 1.560 0.481 ± 1.633 0.517 ± 0.644 0.512 ± 0.671
SSDKL 0.517 ± 3.924 0.504 ± 3.955 0.502 ± 3.730 0.501 ± 3.795 0.483 ± 1.866 0.475 ± 1.947 0.511 ± 1.104 0.506 ± 1.193

S2MAM (ours) 0.687 ± 1.401 0.673 ± 1.534 0.549 ± 0.947 0.541 ± 0.982 0.529 ± 0.471 0.517 ± 0.492 0.523 ± 0.424 0.520 ± 0.439
Lasso - 0.817 ± 0.115 - 0.552 ± 0.309 - 0.619 ± 0.331 - 0.524 ± 0.141
SpAM - 0.804 ± 0.177 - 0.554 ± 0.335 - 0.631 ± 0.314 - 0.529 ± 0.102

LapRLS 0.841 ± 0.149 0.822 ± 0.205 0.612 ± 0.161 0.607 ± 0.170 0.650 ± 1.273 0.642 ± 1.311 0.536 ± 0.102 0.531 ± 0.125
VAE 0.817 ± 0.346 0.812 ± 0.355 0.631 ± 0.971 0.627 ± 0.990 0.664 ± 0.913 0.657 ± 0.930 0.542 ± 0.310 0.538 ± 0.318

COREG 0.881 ± 0.311 0.869 ± 0.320 0.646 ± 0.730 0.642 ± 0.762 0.673 ± 0.731 0.662 ± 0.760 0.548 ± 0.261 0.541 ± 0.275
SSDKL 0.911 ± 0.395 0.905 ± 0.418 0.634 ± 1.625 0.627 ± 1.692 0.679 ± 1.105 0.670 ± 1.231 0.569 ± 0.462 0.560 ± 0.471

S2MAM (ours) 0.901 ± 0.211 0.891 ± 0.180 0.650 ± 0.510 0.641 ± 0.522 0.677 ± 0.143 0.672 ± 0.159 0.563 ± 0.135 0.558 ± 0.146

Lasso - 0.773 ± 0.433 - 0.526 ± 0.571 - -1.025 ± 3.630 - 0.515 ± 0.149
SpAM - 0.747 ± 0.542 - 0.530 ± 0.672 - 0.324 ± 3.395 - 0.522 ± 0.191

LapRLS 0.711 ± 0.377 0.702 ± 0.392 0.522 ± 0.193 0.510 ± 0.217 0.574 ± 0.278 0.563 ± 0.304 0.504 ± 0.127 0.498 ± 0.132
VAE 0.742 ± 2.871 0.736 ± 2.951 0.546 ± 3.720 0.541 ± 2.807 0.591 ± 2.041 0.584 ± 2.259 0.529 ± 0.511 0.522 ± 0.519

COREG 0.771 ± 2.142 0.761 ± 2.216 0.565 ± 1.836 0.561 ± 1.862 0.595 ± 1.320 0.589 ± 1.452 0.538 ± 0.431 0.530 ± 0.438
SSDKL 0.764 ± 3.104 0.749 ± 3.277 0.537 ± 2.541 0.522 ± 2.679 0.602 ± 1.655 0.590 ± 1.712 0.546 ± 0.831 0.541 ± 0.840

S2MAM (ours) 0.812 ± 1.255 0.804 ± 1.278 0.621 ± 0.866 0.610 ± 0.879 0.644 ± 0.386 0.631 ± 0.397 0.558 ± 0.265 0.551 ± 0.271

Table 11: Average Accuracy ± standard deviation (%) on synthetic additive data under some extreme
scenarios, i.e., label percentages in each class (r = 5%/50%) and noisy variable numbers (pn =
0/100), {l = 100/100/100/40, u = 400/200/200/110, pn = 0} and{l = 100/100/100/40, u =
400/200/200/110, pn = 10}, respectively.

Model r = 5%, pn = 0 r = 5%, pn = 100 r = 50%, pn = 0 r = 50%, pn = 100

Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

ℓ1-SVM - 83.914 ± 6.410 - 53.471 ± 8.427 - 93.644 ± 5.171 - 88.474 ± 6.209
SpAM - 84.150 ± 6.104 - 51.308 ± 7.242 - 94.020 ± 4.255 - 90.201 ± 5.330
CSAM - 86.597 ± 5.424 - 56.410 ± 8.781 - 94.973 ± 4.955 - 91.210 ± 5.237
TSpAM - 86.993 ± 5.340 - 56.811 ± 7.570 - 95.031 ± 4.601 - 91.244 ± 5.197
LapSVM 88.814 ± 5.398 88.850 ± 5.269 37.174 ± 10.244 38.208 ± 10.959 93.899 ± 4.860 94.101 ± 4.571 41.177 ± 9.814 41.490 ± 9.202

f-FME 89.141 ± 3.172 89.305 ± 3.359 60.276 ± 8.427 59.771 ± 8.610 94.505 ± 2.871 94.893 ± 2.747 71.038 ± 7.979 70.875 ± 8.201
AWSSL 91.259 ± 2.871 90.211 ± 3.077 62.707 ± 8.660 62.842 ± 8.290 95.410 ± 3.229 95.601 ± 3.073 69.071 ± 7.759 69.368 ± 7.831

RGL 90.422 ± 2.909 90.026 ± 3.477 64.371 ± 8.391 65.011 ± 8.140 95.973 ± 2.417 96.027 ± 2.289 71.462 ± 7.141 71.511 ± 7.062
SALE 89.717 ± 2.811 90.149 ± 2.665 65.805 ± 8.106 65.887 ± 8.010 95.402 ± 2.311 95.427 ± 2.268 71.855 ± 6.947 71.913 ± 6.850

S2MAM (ours) 89.979 ± 3.255 90.309 ± 3.409 73.420 ± 6.177 73.641 ± 6.020 95.941 ± 2.031 96.147 ± 1.954 76.518 ± 5.326 76.560 ± 5.244

As shown in the above results, S2MAM achieves competitive or even superior performance under
most settings, particularly when features are corrupted. However, when the synthetic data is clean
(without noisy variables), some deep SSL methods (COREG and SSDKL) may perform better than
S2MAM.

This is understandable, as the proposed S2MAM is built on kernels, and deep neural networks
typically have a stronger fitting ability under clean data (Ghorbani et al., 2020; Agarwal et al., 2021;
Yang et al., 2020). These deep SSL methods, along with the well-trained S2MAM, utilize all the
informative input variables. While still achieving competitive prediction accuracy compared to Deep
SSL methods, S2MAM further provides explainable predictions. Please refer to Figures 10 and 9,
which include visual examples, where a tradeoff between interpretability and accuracy may exist
(Rudin, 2019).

We further consider more settings of noisy variables, e.g., N (0, 100), N (50, 100), Student T distri-
bution (with freedom of 2/5/10) and Chi-square noise (with freedom of 2/5/10), where the results are
analogous to the setting (Xn ∈ N (100, 100)). Thus, the extremely large random noise, following a
N (100, 100) distribution, is employed throughout the entire paper for simplicity and consistency.
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To make a comprehensive comparison, we further consider the data settings of 5% and 50% labeled
samples, as well as pn = 0 and pn = 100 noisy features, on the synthetic additive data. The results
are summarized in Table 11. The empirical results show that:

• At a 5% labeling rate, S2MAM is capable of assigning suitable masks, effectively utilizing
the input from 95% unlabeled data to boost the model’s predictive accuracy.

• At a 50% labeling rate, these supervised baselines typically yield better sparse regression
estimators than S2MAM. The empirical observations are natural since the labeled data in
this setting is often sufficient to identify the predictor, and supervised methods should be
suggested.

D.1 VISUALIZED LEARNING DYNAMIC PROCESS OF S2MAM

Here, we further present the visualization for the learning process of S2MAM, which shows the
importance of assigning proper masks for (high-dimensional) semi-supervised modeling.
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Figure 10: 2d t-SNE visualization for masked Breast Cancer data corrupted by 10 noisy features during the
training process of S2MAM at epoch 0, 50, and 100, respectively. Dots with different colors represent different
classes.

In Figure 10, we present the visualization of masked Breast Cancer data based on the t-SNE technique
(Van der Maaten & Hinton, 2008), where the masks are updated gradually and can almost reach the
ground truth after 100 epochs.

Especially under the noisy scenario, the masks sometimes exhibit fluctuations in the early stage (e.g.,
the first 20 epochs on the Breast Cancer data), which may be attributed to the initial settings of large
step sizes and an all-one mask, as well as the high-variance gradient estimation on limited labeled
data. Thanks to the decay of step size (ηt = 1/

√
t in practice and in Theorem 1) and ℓ2,1 sparsity

penalty, the learned masks tend to be stable and reach convergence among 50 to 100 epochs (as in
Figure 10).

Fortunately, we observe that the coresize C could be slightly larger than the ground truth in practice.
Along with the ablation studies, the ℓ2,1 penalty also helps to stabilize the training process.

E EXTENSION TO IMAGE DATA

E.1 PRETRAINING CNN FOR FEATURE EXTRACTION

Inspired by supervised (Su et al., 2023) and semi-supervised works (Qiu et al., 2018; Nie et al., 2019;
Kang et al., 2020; Nie et al., 2021), an interesting approach for dealing with high-dimensional data,
such as images, is to extract the variable vectors first.

Following (Bao et al., 2024), we first use a CNN to learn the vectors with 32 features for each image,
which realizes rough dimensional reduction. However, this step may not remove those irrelevant or
even noisy variables (Nie et al., 2019; 2021). Thus, it’s still necessary to employ robust methods
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before building semi-supervised models. Similar preprocessing methods for dimensional reduction
also apply to larger (image) datasets.

E.1.1 DETAILS ON CNN STRUCTURE AND PRETRAINING

Structure We use a lightweight CNN with two convolutional layers followed by three fully connected
layers. This architecture is initialized randomly and explicitly trained for feature extraction.

As the dataset scales, some minor adjustments to the size of the input and hidden layers of the CNN
for feature extraction are required. However, different from S2MAM and RER, PLF and SemiReward
are initially designed with a specific (generative) network structure to deal directly with raw images.
To enable a controlled comparison with every other semi-supervised baseline, the following noise is
injected into all raw inputs, rather than the noisy dimensions as in Tables 4 and 8.

Optimization. Only labeled raw data are used for rough training of the CNN. The CNN is optimized
using the Cross-Entropy loss and the Adam optimizer with an initial learning rate of 0.001 and
exponential decay. After 50 epochs, the CNN parameters are frozen.

Extraction. The new data shared for all baselines is extracted from the first fully connected layer of
the frozen CNN.

E.1.2 EMPIRICAL VALIDATION ON THE IMPACT OF CNN PREPROCESS ON S2MAM

We conducted additional experiments based on the experimental settings in Table 12. We compared
the current CNN model (CNN-1) with a more complex network model (CNN-2) that includes two
convolutional layers, three local convolutional layers, and three fully connected layers (Wen et al.,
2016). The changes of feature extraction bring slight differences on S2MAM (Accuracy arises 0.42
with COIL-20 r = 30%, pn = 0)

E.2 TIME COST ANALYSIS ON IMAGES

The following experiments are conducted for classifying the 12th and 13th objects in the COIL-20
image data.

Firstly, we conduct experiments on the clean processed feature matrix. The results are present in
Table 4. Secondly, following the settings in (Bao et al., 2024), we simulate pixel-level corruption
in images by manually adding five noisy variables, drawn from N (100, 100), to the processed 32
dimensions. The results are presented in Table 12.

Table 12: Extended experiments with average accuracy (%) ± standard deviation (SD) and training time cost
(minutes) on (the 12th and 13th objects of) the corrupted COIL20 image data, which involves five manually
added noisy variables (Bao et al., 2024). For simplicity, the competitors used here are all designed for SSL.
Notably, S2MAM and S2MAM-F stand for the original strategy and the Fourier accelerated strategy (Wang
et al., 2023), respectively. The upper and lower panels correspond to scenarios of original and scaled features.

Models LapSVM f-FME AWSSL RGL SALE SSNP S2MAM S2MAM-F
Accuracy 57.026 76.464 74.034 74.217 75.109 77.629 78.917 79.020(↑)

SD 7.192 4.106 3.226 3.011 4.049 4.310 3.601 3.473(↓)
Time 0.6 1.5 2.8 3.0 2.2 4.1 2.4 1.7(↓)

Accuracy 64.433 78.815 75.682 75.729 76.811 78.796 79.167 79.341(↑)
SD 7.029 3.972 3.041 2.870 3.792 4.067 3.380 3.209(↓)

Time 0.5 1.3 2.4 2.7 2.0 3.7 2.2 1.4(↓)

Moreover, inspired by (Rahimi & Recht, 2007; Wang et al., 2023), we also consider some efficient
approaches for accelerating the optimization process of our S2MAM, especially under the kernel
hypothesis. These results empirically verify that S2MAM-F (S2MAM with RFF) largely retains
accuracy while reducing time costs from 2.4 minutes to 1.7 minutes, confirming the practical
scalability of the proposed framework.
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E.3 COMPARISONS TO DEEP SSL BASELINES WITH PIXEL CORRUPTIONS

The following comparisons are conducted on COIL images, the higher-dimensional CelebA-HQ
images and AgeDB images, focusing the comparisons of S2MAM and those deep SSL baselines,
including AWSSL (Nie et al., 2019), SSNP (Wang et al., 2022a), RER (Bao et al., 2024), SemiReward
(Li et al., 2024), PLF (Jo et al., 2024) and Flexmatch (Zhang et al., 2021). Both the regression and
classification scenarios are considered, evaluating the prediction accuracy and the training time cost.

Experimental Settings. All new results were produced on the identical hardware platform and a
similar CNN for feature extraction as in Section C.3 of the main experiments. As the dataset scales,
some minor modifications to the size of the input and hidden layers of the CNN are required.

However, unlike S2MAM and RER (Bao et al., 2024), PLF (Jo et al., 2024) and SemiReward (Li
et al., 2024) are initially designed with a specific network structure to handle raw images as inputs
directly. To enable a fair comparison with all semi-supervised baselines, the following noise (instead
of the noisy dimensions as in Tables 4 and 8) is injected into all raw inputs, which is done before
feature extraction via CNN.

Noise Injection with Image Blocks. To assess robustness and the capacity for feature selection, we
employed the pixel-level corruption protocol introduced by RER (See their Figure 5(a) with 10x10
block occlusions).

The following six tables in Tables 13-18, report the average testing results and training time (minutes)
on COIL, CelebA-HQ (on gender recognition), and AgeDB (age regression). Different sizes of
occlusion blocks are injected, respectively, according to their image sizes.

Table 13: Classification estimation of accuracy (%) and training time on COIL (r = 30%, pn = 0 , with no
blocks)

Models AWSSL SSNP RER SemiReward Flexmatch S2MAM S2MAM-F S2MAM-N
Accuracy 84.921 83.470 86.391 90.262 88.509 88.513 88.410 89.106
SD 0.420 0.430 0.461 0.390 0.377 0.439 0.417 0.381
Time 2.7 4.0 1.7 7.8 3.2 2.5 1.6 2.4

Table 14: Classification estimation of accuracy (%) and training time on COIL (r = 30%, pn = 0 , with
block=20x20)

Models AWSSL SSNP RER SemiReward Flexmatch S2MAM S2MAM-F S2MAM-N
Accuracy 78.812 79.361 80.280 82.672 80.466 83.403 83.115 83.710
SD 0.941 3.439 3.461 3.890 3.515 3.429 3.737 3.371
Time 3.0 4.4 1.9 8.1 3.4 2.6 1.9 2.5

Table 15: Classification estimation of accuracy (%) and training time on CelebA-HQ (r = 0.5%, no blocks)

Models AWSSL SSNP RER SemiReward Flexmatch S2MAM S2MAM-F S2MAM-N
Accuracy 80.102 79.720 83.593 86.172 86.049 85.960 85.572 86.218
SD 5.423 5.485 3.622 2.281 2.325 2.516 2.410 2.374
Time 20.7 24.0 17.0 39.2 29.3 22.5 16.8 20.8

Based on the above results, we find that the utilized dimensionality reduction (via a pretrained CNN
as in RER) combined with Fourier acceleration is both effective and accuracy-preserving for enabling
S2MAM to deal with relatively large-scale datasets.

In the absence of block occlusion, S2MAM underperforms PLF and SemiReward, which are designed
with specialized architectures that incorporate generative pseudo-label reward networks and task-
specific penalties. After introducing block occlusion, however, S2MAM and S2MAM-F achieve
marginally superior performance. Practically, when reproducing PLF and SemiReward, the noisy
pixel blocks appear to compromise the similarity principle and degrade their capabilities in pseudo-
label generation and filtering.

Beyond accuracy, S2MAM is an interpretable additive model. The selected features can be mapped
back to the frozen CNN (originally for feature extraction). Their relevance can be visualized through
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Table 16: Classification estimation of accuracy (%) and training time on CelebA-HQ (r = 0.5%, with
block=200x200)

Models AWSSL SSNP RER SemiReward Flexmatch S2MAM S2MAM-F S2MAM-N
Accuracy 73.102 72.720 76.593 76.172 77.416 78.960 78.572 79.180
SD 7.423 7.485 5.622 7.281 8.017 4.516 4.410 4.433
Time 21.0 24.1 17.3 40.2 34.5 22.8 17.0 21.2

Table 17: Regression estimation of root mean square error (RMSE) on AgeDB (r = 0.5%, with no blocks)

Models COREG SSDKL PLF SemiReward S2MAM S2MAM-F S2MAM-N
RMSE 17.456 17.728 17.025 16.215 16.515 16.808 16.328
SD 2.121 2.305 1.565 0.650 0.805 0.870 0.841
Time 13.8 9.1 10.8 22.1 12.4 11.2 11.7

Table 18: Regression estimation of RMSE on AgeDB (r = 0.5%, with block=50x50)

Models COREG SSDKL PLF SemiReward S2MAM S2MAM-F S2MAM-N
RMSE 19.931 22.713 19.435 18.302 17.012 17.317 16.941
SD 2.426 2.710 2.271 1.344 1.101 1.573 1.160
Time 14.0 9.3 11.0 22.3 12.6 11.4 12.2

Table 19: Accuracy ± standard deviation on the fast implementation experiments on COIL r = 30%, pn = 0,
where ↓ 1 implies the accuracy degrades 1 point compared to the fine-tuned model.

Fine-tuned With A With B With C With ALL
S2MAM 88.317± 0.412 86.123± 0.576 (↓2.194) 87.045± 0.543 (↓1.272) 86.789± 0.567 (↓1.528) 85.642± 0.675 (↓2.675)
S2MAM-F 88.162± 0.401 86.034± 0.612 (↓2.128) 86.871± 0.559 (↓1.291) 86.543± 0.584 (↓1.619) 85.487± 0.689 (↓2.675)

Table 20: Accuracy ± standard deviation on the fast implementation experiments on COIL r = 30%, pn = 5.

Fine-tuned With A With B With C With ALL
S2MAM 78.937± 3.572 74.567± 4.200 (↓4.37) 77.234± 3.950 (↓1.70) 74.892± 4.180 (↓4.05) 71.876± 4.800 (↓7.06)
S2MAM-F 79.029± 3.440 75.012± 4.150 (↓4.02) 77.345± 3.920 (↓1.68) 75.023± 4.140 (↓4.01) 72.123± 4.750 (↓6.91)

heat maps that highlight the corresponding pixel regions in the raw image. This yields interpretable
classification (on COIL and CelebA-HQ) and regression (on AgeDB).

E.4 TUNING-FREE TRAINING FOR FASTER IMPLEMENTATION

Parameter tuning can sometimes be time-consuming, especially in image semi-supervised classifica-
tion or regression tasks. In practice, parameter selection can be accelerated and simplified efficiently
by the following strategies.

Strategy A: As for mask constraint C, we initialize it by the first kink of the Lasso path (Chichignoud
et al., 2016; Dalalyan et al., 2017), which provides a fast yet near-optimal starting point C0(C0 ≪ C).
Then, the binary selection process begins with C0.

Strategy B: For the bandwidth µ, we replicate the algorithm from (Cheng & Wu, 2022) to adaptively
adjust the Laplacian kernel bandwidth.

Strategy C: Penalty coefficients are fixed with λ1 = u
l+u , l

l+u following similar strategies in (Ren
et al., 2020; Liu et al., 2022b).

We conduct a fine-grained ablation study on COIL image data below in Tables 19 and 20 to verify the
influence of the above strategies individually.

The results summarized in Tables 19 and 20 suggest that the proposal can be implemented quickly in
specific tasks through these three strategies, while maintaining relatively competitive prediction and
robustness compared to full fine-tuning.
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Figure 11: The lower additive model structure of neural S2MAM (S2MAM-F).

E.5 EXTENSIONS TO NON-CONVEX TASKS

To better validate the bilevel strategy in non-convex scenarios, we’ve further proposed the neural
S2MAM (called S2MAM-N), where each component fj is based on an individual MLP Yang et al.
(2020) as shown in Figure 11. The squared loss and cross-entropy loss are utilized in practice. The
extended experiments are conducted on the COIL image dataset, where the results are summarized in
Tables 12-16.

Theoretically, the generalization guarantees for neural semi-supervised meta additive models are
insightful and challenging, which is listed as a learning topic in future research.

F GENERALIZATION ERROR ANALYSIS (PROOF OF THEOREM 2)

To better illustrate the proof process, we summarize the major steps and lemmas in Figure 12.

Regularization Error

Generalization Gap

Sample Error

Hypothesis Error

Manifold Error

Proposition 1

Proposition 4

Proposition 5

Theorem 2+

Theorem 3

Error decomposition

Error Components Upper Bounds

Lemma 1

Lemma 2&3

additive assumption

covering number

Lemma 4

Lemma 5

Learning Rate

Proposition 2&3

Figure 12: Sketch of the theoretical proofs for the generalization bound.

F.1 ERROR DECOMPOSITION

Now we are in the position to recall the semi-supervised algorithm with ℓ2 regularizer in the additive
hypothesis space

fz = argmin
f∈H

{
Ez(f) + λ1Ωz(f) +

λ2

(l + u)2
fTLf

}
. (11)

For simplicity, the semi-supervised regression task with squared loss under a kernel-based frame-
work is considered here. Denote z = {zl, zu} as the labeled data zl = {xi, yi}li=1 and unlabeled
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data zu = {xi}l+u
i=l+1 together. Denote f = (f (x1) , . . . , f (xl+u))

T , which involves predict-
ing both the labeled and unlabeled data. λ1 > 0 and λ2 > 0 are regularization parameters.
Series {τj}pj=1 are weights to different input variables. For feasibility, define the Gram matrix

Ki =
(
K

(1)
i , . . . ,K

(p)
i

)T
∈ R(l+u)×p, K(j) =

(
K

(j)
1 , . . . ,K

(j)
l+u

)T
∈ R(l+u)×(l+u) with K

(j)
i =(

K(j)(x
(j)
1 , x

(j)
i ), . . . ,K(j)(x

(j)
l+u, x

(j)
i )
)T
∈ Rl+u and the coefficient α =

(
α(1), . . . ,α(p)

)T ∈
R(l+u)×p with α(j) =

(
α
(j)
1 , . . . , α

(j)
l+u

)T
∈ Rl+u.

The manifold regularized additive model in equation 11 can be formulated as

fz = argmin
f=

∑p
j=1 f(j)∈H

{
Ez(f) + λ1Ωz(f) +

λ2

(l + u)2
fTLf

}
, (12)

where

Ez(f) =
1

l

l∑
i=1

(f(xi)− yi)
2
=

1

l

l∑
i=1

 p∑
j=1

(K
(j)
i )Tα(j) − yi

2

. (13)

If the j-th variable is not truly informative, we expect that α̂(j)
z =

(
α̂
(j)
z,1, . . . , α̂

(j)
z,l+u

)T
∈ Rl+u

satisfies
∥∥∥α̂(j)

z

∥∥∥
2
=

(∑l+u
i=1

∣∣∣α̂(j)
z,i

∣∣∣2)(1/2)

= 0. Inspired by this, we introduce the ℓ2,1-regularizer

Ωz(f) = inf


p∑

j=1

τj

∥∥∥α(j)
∥∥∥
2
: f =

p∑
j=1

l+u∑
i=1

α(j)K(j)
(
x
(j)
i , ·

)
, α(j) ∈ Rl+u

 (14)

as the penalty to address the sparsity of the output functions.

Definition 1 Define an operator Lω : L2
ρX

→ L2
ρX

by (Lωf) (x) = f(x)p(x) −∫
X
K (x, x′) f (x′) dρX (x′), with p(x) =

∫
X
K (x, x′) dρX (x′). Then we have

⟨f, Lωf⟩2 =
1

2

∫∫
(f(x)− f (x′))

2
W (x, x′) dρX(x)dρX (x′) .

Suppose that ρ is a fixed (but unknown) probability distribution on Z := X × Y . Define f (j) =
(K(j))Tα(j). Similarly, now we introduce a regularizing function as

fλ = argmin
f=

∑p
j=1 f(j)∈H

{E(f) + λ1Ω(f) + λ2 ⟨f, Lωf⟩2} , (15)

where
E(f) =

∫
z

(f(x)− y)2dρ, (16)

and

Ω(f) =

p∑
j=1

τj∥f (j)∥2K(j) . (17)

Before presenting the error analysis, we give some basic definitions throughout this paper.

Definition 2 Define κ = supj,u

(
K(j)(u, u)

)1/2
< ∞. For fz defined above, there holds

∥fz∥K ≤ κ

p∑
j=1

l+u∑
i=1

∣∣∣α(j)
z,i

∣∣∣ ≤ κ

p∑
j=1

(
l+u∑
i=1

1
1− 1

q

)1− 1
q
(

l+u∑
i=1

∣∣∣α(j)
z,i

∣∣∣q) 1
q

≤ κ
√
l + u

p∑
j=1

∥∥∥α(j)
z

∥∥∥
2
, (18)

where the last inequality is obtained from the Hölder inequality with positive constant q = 2.
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Remark 8 Based on the definition of κ and Ωz(f), we can further obtain ∥f∥∞ ≤ κ∥f∥K for any
f ∈ HK (Mukherjee et al., 2006; Chen et al., 2018).

Definition 3 For any measurable function f : X → R, define the following clipping function:

π(f) =

{
M f(x) > M
−M f(x) < −M
f(x) otherwise

. (19)

Theorem 3 Let fz be defined by (11) and π(f) defined in (19). Then for λ > 0, we have

E (π (fz))− E (fρ) ≤ D(λ) + S(s, λ) +H(s, λ) +M(s, λ), (20)

where the regularization error, sample error, hypothesis error, and manifold error can be defined,
respectively, as

D(λ) = E (fλ)− E (fρ) + λ1

p∑
j=1

τj

∥∥∥f (j)
λ

∥∥∥2
K(j)

+ λ2

p∑
j=1

〈
f
(j)
λ , Lωf

(j)
λ

〉
2
,

S(z, λ) = E (π (fz))− Ez (π (fz)) + Ez (fλ)− E (fλ),

H(z, λ) = Ez (π (fz)) + λ1Ω (fz) +
λ2

(l + u)2

p∑
j=1

(f (j)z )TLjf
(j)
z

−

Ez (fλ) + λ1

p∑
j=1

τj∥f (j)
λ ∥

2
K(j) +

λ2

(l + u)2

p∑
j=1

(f
(j)
λ )TLjf

(j)
λ

 ,

M(z, λ) =
λ2

(l + u)2

p∑
j=1

(f (j)z )TLjf
(j)
z − λ2

p∑
j=1

〈
f
(j)
λ , Lωf

(j)
λ

〉
2
.

(21)
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Proof 1 Based on the definition of fz and π(f), we have

E (π (fz))− E (fρ)

≤E (π (fz))− E (fρ) + λ1Ω(fz) +
λ2

(l + u)2

p∑
j=1

(f (j)z )TLjf
(j)
z

≤E (π (fz))− Ez(π (fz)) + Ez(π (fz)) + λ1Ω((fz)) +
λ2

(l + u)2

p∑
j=1

(f (j)z )TLjf
(j)
z

−

{
Ez (fλ) + λ1

p∑
j=1

τj∥f (j)
λ ∥2K(j) + λ2

p∑
j=1

〈
f
(j)
λ , Lωf

(j)
λ

〉
2

}

+

{
Ez (fλ) + λ1

p∑
j=1

τj∥f (j)
λ ∥2K(j) + λ2

p∑
j=1

〈
f
(j)
λ , Lωf

(j)
λ

〉
2

}

− E (fλ) + E (fλ)− E (fρ) +
λ2

(l + u)2

p∑
j=1

(f
(j)
λ )TLjf

(j)
λ − λ2

(l + u)2

p∑
j=1

(f
(j)
λ )TLjf

(j)
λ

≤E (fλ)− E (fρ) + λ1

p∑
j=1

τj

∥∥∥f (j)
λ

∥∥∥2
K(j)

+ λ2

p∑
j=1

〈
f
(j)
λ , Lωf

(j)
λ

〉
2︸ ︷︷ ︸

D(λ)

+ E (π (fz))− Ez (π (fz)) + Ez (fλ)− E (fλ)︸ ︷︷ ︸
S(z,λ)

+ Ez (π (fz)) + λ1Ω(fz) +
λ2

(l + u)2

p∑
j=1

(f (j)z )TLjf
(j)
z −

{
Ez (fλ) + λ1

p∑
j=1

τj∥f (j)
λ ∥2K(j) +

λ2

(l + u)2

p∑
j=1

(f
(j)
λ )TLjf

(j)
λ

}
︸ ︷︷ ︸

H(z,λ)

+
λ2

(l + u)2

p∑
j=1

(f
(j)
λ )TLjf

(j)
λ − λ2

p∑
j=1

〈
f
(j)
λ , Lωf

(j)
λ

〉
2︸ ︷︷ ︸

M(z,λ)

,

where D(λ), S(z, λ),H(z, λ) andM(z, λ) stand for the regularization error, sample error, hypothe-
sis error, and manifold error, respectively. The proof is completed.

F.2 BOUNDING REGULARIZATION ERROR D(λ)

In this section, we present the theoretical results under specific assumptions on fρ for bounding
the regularization error of manifold-regularized additive models. Inspired by the supervised work
(Christmann & Zhou, 2016), we give some necessary assumptions and lemmas before deriving the
bound under the additive space.

As defined in Section 2, we denote ρX as the marginal distribution with respect to X . Here we further
introduce ρX (j) for X (j), which is the j-th component of X (Christmann & Zhou, 2016; Chen et al.,
2020). For completeness, we restate the settings in Assumption 2.

Assumption 5 Assume fρ ∈ L∞ (ρX ) and fρ = f
(1)
ρ +f

(2)
ρ + . . .+f

(p)
ρ where for some 0 < r ≤ 1

2

and for each j ∈ {1, . . . , p}, the j-th component function f
(j)
ρ : X (j) → R is a mapping: f

(j)
ρ =

Lr
K(j)

(
g∗j
)

with some g∗j ∈ L2 (ρX (j)).

The case r = 1
2 of Assumption 5 means each f

(j)
ρ lies in the RKHS K(j). Here, the operator LK is

defined by

LK(f)
(
X(1), . . . , X(p)

)
=

∫
X

 p∑
j=1

K(j)
(
X(j), X(j)′

) f
(
X(1)′, . . . , X(p)′

)
dρX

(
X(1)′, . . . , X(p)′

)
.
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Lemma 1 (Christmann & Zhou, 2016) Let j ∈ {1, . . . , p} and 0 < r ≤ 1
2 . Assume the j-th

component function f
(j)
ρ = Lr

K(j)

(
g∗j
)

for some g∗j ∈ L2 (ρX (j)). Define an intermediate function

f
(j)
λ on X (j) by

f
(j)
λ = (LK(j) + λI)

−1
LK(j)

(
f (j)
ρ

)
.

Then we have ∥∥∥f (j)
λ − f (j)

ρ

∥∥∥2
L2(ρX(j))

+ λ
∥∥∥f (j)

λ

∥∥∥2
K(j)
≤ λ2r

∥∥g∗j∥∥2L2(ρX(j))
.

Proposition 1 Under Assumption 5 and λ2 = λ1−r
1 where 0 < r ≤ 1/2, we have

D(λ) ≤ Cλr
1 ∀0 < λ1 ≤ 1,

where C is the constant given by

C =

p∑
j=1

(
L
∥∥g∗j∥∥L2(ρX(j))

+

(
2ωκ2 +max

j
{τj}

)∥∥g∗j∥∥2L2(ρX(j))

)
.

Proof 2 Observe that f (j)
λ ∈ HK(j) and

∑p
j f

(j)
λ ∈ HK . The definition of the regularization error

means that

D(λ) = E (fλ)− E (fρ) + λ1

p∑
j=1

τj

∥∥∥f (j)
λ

∥∥∥2
K(j)

+ λ2

p∑
j=1

〈
f
(j)
λ , Lωf

(j)
λ

〉
2

Denote

D1(λ) = E (fλ)− E (fρ) + λ1

p∑
j=1

τj

∥∥∥f (j)
λ

∥∥∥2
K(j)

.

By Theorem 1 of (Christmann & Zhou, 2016), based on the additive hypothesis with p components in
Assumption 1 and the L-Lipschitz property, we can rewrite

E (fλ)− E (fρ) = E
(
f
(1)
λ + · · ·+ f

(p)
λ

)
− E

(
f (1)
ρ + · · ·+ f (p)

ρ

)
≤ L

p∑
j=1

∫
X (j)

∣∣∣f (j)
λ

(
X(j)

)
− f (j)

ρ

(
X(j)

)∣∣∣ dρX (j)

(
X(j)

)
≤ L

∥∥∥f (j)
λ − f (j)

ρ

∥∥∥
L2(ρX(j))

.

With Lemma 1, we can further derive that∥∥∥f (j)
λ − f (j)

ρ

∥∥∥2
L2(ρX(j))

≤ λ2r
1

∥∥g∗j∥∥2L2(ρX(j))
,

and
λ1

∥∥∥f (j)
λ

∥∥∥2
K(j)
≤ λ2r

1

∥∥g∗j∥∥2L2(ρX(j))
.

Thus

D(λ) ≤ D1(λ) + λ2

p∑
j=1

〈
f
(j)
λ , Lωf

(j)
λ

〉
2
,

where 0 ≤ λ1 ≤ 1, 0 < r ≤ 1/2 and

D1(λ) ≤
p∑

j=1

(
Lλr

1

∥∥g∗j∥∥L2(ρX(j))
+ λ2r

1 max
j
{τj}

∥∥g∗j∥∥2L2(ρX(j))

)

≤ λr
1

p∑
j=1

(
L
∥∥g∗j∥∥L2(ρX(j))

+ max
j
{τj}

∥∥g∗j∥∥2L2(ρX(j))

)
.
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From the fact that (fλ(x)− fλ (x
′))

2
W (x, x′) ≤ 4ω ∥fλ∥2∞ and ∥fλ∥∞ ≤ κ ∥fλ∥K . Furthermore,

according to ⟨f, Lωf⟩2 = 1
2

∫∫
(f(x)− f (x′))

2
W (x, x′) dρX(x)dρX (x′), we have

∥fλ∥2K ≤
p∑

j=1

∥∥∥f (j)
λ

∥∥∥2
K(j)
≤ λ2r−1

1

p∑
j=1

∥∥g∗j∥∥2L2(ρX(j))
.

By setting λ2 = λ1−r
1 where 0 < r ≤ 1/2, we can derive

λ2 ⟨fλ, Lωfλ⟩2 ≤ 2ωκ2λ2λ
2r−1
1

p∑
j=1

∥∥g∗j∥∥2L2(ρX(j))
≤ 2ωκ2λr

1

p∑
j=1

∥∥g∗j∥∥2L2(ρX(j))
.

The desired bound is derived by combining the above inequalities.

F.3 BOUNDING SAMPLE ERROR S(z, λ)

This section aims to bound the sample error term, which could be written as

S(z, λ) = S1(z, λ) + S2(z, λ),

where
S1(z, λ) = {E (π(fz))− E (fρ)} − {Ez (π(fz))− Ez (fρ)} (22)

and
S2(z, λ) = {Ez (fλ)− Ez (fρ)} − {E (fλ)− E (fρ)} . (23)

Before bounding above S1(z, λ) and S2(z, λ), we introduce the following definitions and lemmas.

Definition 4 Define the ball Br associated with the function spaceHK as

Br = {f ∈ HK : ∥f∥K ≤ r} .

Definition 5 Let Cv be a ν-times continuously differentiable function set. Then, for K(j) ∈
Cν
(
X (j) ×X (j)

)
, j ∈ {1, . . . , p}, define

ζ =


2

1+2v , v ∈ (0, 1]
2

1+v , v ∈ (1, 3/2]
1
v , v ∈ (3/2,∞).

Now, we introduce the empirical covering number to measure the capacity of Br.

Definition 6 Let F be a set of measurable functions on X and x = {x1, x2, . . . , xn} ⊂ X . The

ℓ2-empirical metric for f1, f2 ∈ F is d2,x (f1, f2) =
√

1
n

∑n
i=1 (f1 (xi)− f2 (xi))

2. Then the
ℓ2-empirical covering number of F is defined as

N2(F , ϵ) = sup
n∈N

sup
x
N2,x(F , ϵ), ∀ϵ > 0,

where

N2,x(F , ϵ) = inf

{
m ∈ N : ∃

{
f (j)

}m

j=1
⊂ F , s.t.,F ⊂

⋃
m
j=1

{
f ∈ F : d2,x

(
f, f (j)

)
< ϵ
}}

.

Indeed, the empirical covering number of Br has been investigated extensively in learning theory
literature (Steinwart & Christmann, 2008; Shi et al., 2011; Shi, 2013; Guo & Zhou, 2013; Chen et al.,
2020).

The following concentration inequality established in (Wu et al., 2007) is used for our sample error
estimation.
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Lemma 2 (Wu et al., 2007) Let G be a measurable function set on Z . Assume that there are
constants B, c, a > 0 and θ ∈ [0, 1] such that ∥g∥∞ ⩽ B,Eg2 ⩽ c(Eg)θ for each g ∈ G. If for
0 < ζ < 2, logN2(G, ϵ) ⩽ aϵ−ζ , ∀ϵ > 0, then for any δ ∈ (0, 1) and i.i.d observations {zi}ni=1 ⊂ Z ,
there holds

Eg − 1

n

n∑
i=1

g (zi) ⩽
1

2
γ1−θ(Eg)θ + Cζγ + 2

(
c log(1/δ)

n

) 1
2−θ

+
18B log(1/δ)

n
, ∀g ∈ G

with confidence at least 1− δ, where Cζ is a constant depending only on ζ and

γ = max
{
c

2−ζ
4−2θ+ζθ (a/n)

2
4−2θ+ζθ , B

2−ζ
2+ζ (a/n)

2
2+ζ

}
.

Lemma 3 Let ξ be a random variable on a probability space Z satisfying |ξ(z) − Eξ| ≤ Mξ for
some constant Mξ and variance σξ. Then, for any δ ∈ (0, 1), there holds

1

n

n∑
i=1

ξ (zi)− Eξ ≤ 2Mξ log(1/δ)

3n
+

√
2σ2

ξ log(1/δ)

n

with confidence at least 1− δ.

F.3.1 BOUNDING S1(z, λ) IN EQUATION 22

Proposition 2 If for 0 < ζ < 2, logN2(G, ϵ) ⩽ aϵ−ζ , ∀ϵ > 0, then for any δ ∈ (0, 1) and i.i.d
observations {zi}l+u

i=1 ⊂ Z , under Assumptions 2, 3 and 4, there holds

S1(z, λ) ⩽
1

2
(E(π(fz))− E(fρ)) + Cζγ +

32M2 log(4/δ)

l + u
+

144M2 log(4/δ)

l + u
, ∀g ∈ G

with confidence at least 1− δ/4, where Cζ is a constant depending only on ζ and

γ = max
{
(16M2)

2−ζ
2+ζ (Cζp

1+ζ(4Mr)ζ/(l + u))
2

2+ζ , (8M2)
2−ζ
2+ζ (Cζp

1+ζ(4Mr)ζ/(l + u))
2

2+ζ

}
.

Proof 3 Step 1: Bounding fz.

Since fz is dependent on the training sample set z, we first need to find a function set containing fz.

λ1

p∑
j=1

τj∥α(j)
z ∥2 = λ1Ωz(fz) ≤ Ez (fz) + λ1Ωz(fz) +

λ2

(l + u)2

p∑
j=1

(f (j)
z )TLjf

(j)
z ≤ Ez(0) ≤M2.

Hence we have
p∑

j=1

∥α(j)
z ∥2 ≤

M2

λ1 minj τj
.

Furthermore, based on the Cauchy inequality, we can obtain

∥fz∥K =

∥∥∥∥∥∥
p∑

j=1

l+n∑
i=1

α
(j)
z,iK

(j)
(
x
(j)
i , ·

)∥∥∥∥∥∥
K

≤ κ

p∑
j=1

l+u∑
i=1

|α(j)
z,i | ≤ κ

p∑
j=1

√
l + u

√√√√l+u∑
i=1

∥α(j)
z,i∥2

= κ
√
l + u

p∑
j=1

∥α(j)
z ∥2.

Therefore, fz belongs to Br with r = κ
√
l + u

∑p
j=1 ∥α

(j)
z ∥2 ≤ κ

√
l+uM2

λ1 minj τj
.

Step 2: Bounding S1(z, λ) in equation 22.
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Consider the function set

G =
{
g(z) = (y − π(f)(x))2 − (y − fp(x))

2
, f ∈ Br, z = (x, y) ∈ Z

}
.

For any f1, f2 ∈ Br, we have

g(z1)− g(z2) = (y − π(f1)(x))
2 − (y − π(f2)(x))

2

≤ |(2y − π(f1)(x)− π(f2)(x))(π(f1)(x)− π(f2)(x))|
≤ 4M |π(f1)(x)− π(f2)(x)|.

Hence for each K(j) ∈ Cv(xj , xj), j = 1, · · · , p, we have

logN2(G, ϵ) ⩽ logN2

(
Br,

ϵ

4M

)
⩽ logN2

(
B1,

ϵ

4Mr

)
⩽ Csp

1+ζ(4Mr)ζϵ−ζ , (24)

where ζ is defined in Definition 5, and the last inequality follows from the covering number bounds
forHK(j) with K(j) ∈ Cv (see (Shi, 2013; Shi et al., 2011; Wang et al., 2021)).

Considering 0 ≤ (y − π(f)(x))2 ≤ 4M2 and 0 ≤ (y − fρ(x))
2 ≤ 4M2, we have

|g(z)| ≤ 8M2, |g(z)− E(g)| ≤ 16M2,

and
Eg2 =

∫
(2y − π(f)(x)− fp(x))

2
(π(f)(x)− fp(x))

2
dρ ⩽ 16M2E(g).

By applying Lemma 2 with a = Cζp
1+ζ(4Mr)ζ , B = 8M2, c = 16M2 and θ = 1, Cζ is the

constant depending only on ζ.

Therefore, we have the desired results for bounding S1 with confidence of 1− δ/4.

F.3.2 BOUNDING S2(z, λ) IN EQUATION 23

Proposition 3 Let Assumptions 2 and 3 hold, then for any δ > 0, there holds

S2(z, λ) ≤
2Mξ log(4/δ)

3(l + u)
+

√
2V ar(ξ)2 log(4/δ)d

l + u

≤
4
(
3M + κ

√
D(λ)

λ1 minj{τj}

)2
log(4/δ)

3(l + u)
+

√
2 log(4/δ)

l + u

(
3M + κ

√
D(λ)

λ1 minj{τj}

)3

D(λ)

with confidence at least 1− δ/4.

Proof 4 From the definition of D(λ) and fλ, we can deduce that

∥fλ∥2K ≤
D(λ)

λ1 minj{τj}
,

and

∥fλ∥∞ ≤ κ∥fλ∥K ≤ κ

√
D(λ)

λ1 minj{τj}
.

Denote ξ(z) = (y − fλ(z))
2 − (y − fρ(x))

2, we have

|ξ(z)| = |2y − fλ(x)− fρ(x)| · |fλ(x)− fρ(x)| ≤

(
3M + κ

√
D(λ)

λ1 minj{τj}

)2

:= d

Then
|ξ(z)− Eξ| ≤ 2d := Mξ,
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and

Eξ2 =

∫
|2y − fλ(x)− fρ(x)|2 · |fλ(x)− fρ(x)|2dρx

≤

(
3M + κ

√
D(λ)

λ1 minj{τj}

)2

∥fλ(x)− fρ(x)∥2ρx

≤ d(E(fλ)− E(fρ))
≤ dD(λ).

Moreover,
Var(ξ) ≤ E(ξ2) ≤ dD(λ).

Applying the one side Bernstein inequality in Lemma 3 with Mξ = 2d, V ar(ξ) ≤ dD(λ) and

d =
(
3M + κ

√
D(λ)

λ1 minj{τj}

)2
, we get

S2(z, λ) ≤
2Mξ log(4/δ)

3(l + u)
+

√
2V ar(ξ)2 log(4/δ)d

l + u

≤
4
(
3M + κ

√
D(λ)

λ1 minj{τj}

)2
log(4/δ)

3(l + u)
+

√
2 log(4/δ)

l + u

(
3M + κ

√
D(λ)

λ1 minj{τj}

)3

D(λ)

with confidence at least 1− δ/4.

The desired upper bound of S is obtained by combining the above estimations for S1 and S2.

F.4 BOUNDING HYPOTHESIS ERROR H(z, λ)

Before boundingH(z, λ), we first introduce the auxiliary function

fz,λ = argmin
f=

∑p
j=1 f(j)∈H

1

l

l∑
i=1

(yi − f(xi))
2 + λ1

p∑
j=1

τj∥f (j)∥2K(j) +
λ2

(l + u)2
fTLf

 , (25)

which enjoys the representation

fz,λ(xi) =

p∑
j=1

(K
(j)
i )T α̂(j)

z .

Here K
(j)
i = (K(j)(x

(j)
1 , x

(j)
i ),K(j)(x

(j)
2 , x

(j)
i ), · · · ,K(j)(x

(j)
l+u, x

(j)
i )) ∈ Rl+u and α̂

(j)
z =

(α̂
(j)
z,1, · · · , α̂

(j)
z,l+u) ∈ Rl+u.

Remark 9 Based on the assumptions of boundedness (Assumption 2), we can naturally obtain that
the introduced function fz,λ in (25) has a bounded output, where the corresponding proof could
be found at Lemma 4 in (Liu & Chen, 2018). By the definition of fz,λ in (25) for f = 0, we have
λ1∥fz,λ∥ ≤M2. That is, ∥fz,λ∥∞ ≤M2/λ1 ≤ ∞.

Inspired by Lemma 4 of (Chen et al., 2020) and Lemma 5 of (Wang et al., 2023), we further build the
following key lemma for deriving the upper bound of hypothesis error.

Lemma 4 For fz,λ defined in (25), there exists

τj∥α̂(j)
z ∥2 ≤

M + ∥fz,λ∥∞
λ1

√
l

+
λ2w∥f (j)z,λ∥∞
λ1(l + u)

.
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Proof 5 Based the definition of fz,λ, we can deduce that

∂fz,λ
∂α(j)

=
2

l

l∑
i=1

(yi − fz,λ(xi)(−(K(j)
i )T )) + 2λ1τj(α̂

(j)
z )TK(j) +

λ2Ljf
(j)
z,λK

(j)

(l + u)2

=
2

l

y1 − fz,λ(x1), · · · , yl − fz,λ(xl)︸ ︷︷ ︸
l Items

, 0, · · · , 0︸ ︷︷ ︸
u Items


T

(−K(j)) + 2λ1τj(α̂
(j)
z )TK(j)

+
2λ2Ljf

(j)
z,λK

(j)

(l + u)2
,

where K(j) = (K(j)(x
(j)
a , x

(j)
b ))l+u

a,b=1 ∈ R(l+u)×(l+u).

When satisfying ∂fz,λ
∂α(j) = 0, we have

τj(α̂
(j)
z )T =

1

lλ1
(y1 − fz,λ(x1), · · · , yl − fz,λ(xl), 0, · · · , 0)T −

λ2Ljf
(j)
z,λ

λ1(l + u)2
.

Then it follows for any j ∈ {1, · · · , p},

τj∥α̂(j)
z ∥2 ≤

1

lλ1

√√√√ l∑
i=1

(yi − fz,λ(xi))2 +
λ2

λ1(l + u)2
∥Ljf

(j)
z,λ∥2

≤ M + ∥fz,λ∥∞
λ1

√
l

+
λ2w

λ1(l + u)3/2
∥f (j)z,λ∥∞,

where Ljf
(j)
z,λ could also be rewritten as the sum of l + u components.

Based on the above conclusions, we give the proof for boundingH(z, λ).

Proposition 4 The hypothesis errorH(z, λ) defined in Theorem 3 could be bounded by

H(z, λ) ≤ p

(
(M + ∥fz,λ∥∞)√

l
+

λ2w∥fz,λ∥∞
(l + u)3/2

)
,

where fz,λ is defined in equation 25.

Proof 6 Recall the definitions of fz, fλ and fz,λ, we have

Ez(fz) ≤ Ez (fz) + λ1Ω(fz) +
λ2

(l + u)2

p∑
j=1

(f (j)z )TLjf
(j)
z

≤ Ez (fz,λ) + λ1Ω(fz,λ) +
λ2

(l + u)2

p∑
j=1

(f
(j)
z,λ)

TLjf
(j)
z,λ,

and

Ez (fz,λ) + λ1

p∑
j=1

τj∥f (j)
z,λ∥

2
K(j) +

λ2

(l + u)2

p∑
j=1

(f
(j)
z,λ)

TLjf
(j)
z,λ

≤Ez (fλ) + λ1

p∑
j=1

τj∥f (j)
λ ∥

2
K(j) +

λ2

(l + u)2

p∑
j=1

(f
(j)
λ )TLjf

(j)
λ .
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Then based on the definition ofH(z, λ), we can derive that

H(z, λ) =Ez (π(fz)) + λ1Ω(fz) +
λ2

(l + u)2

p∑
j=1

(f (j)z )TLjf
(j)
z

−

Ez (fλ) + λ1

p∑
j=1

τj∥f (j)
λ ∥

2
K(j) +

λ2

(l + u)2

p∑
j=1

(f
(j)
λ )TLjf

(j)
λ


≤Ez (fz,λ) + λ1Ω(fz,λ) +

λ2

(l + u)2

p∑
j=1

(f
(j)
z,λ)

TLjf
(j)
z,λ

−

Ez (fz,λ) + λ1

p∑
j=1

τj∥f (j)
z,λ∥

2
K(j) +

λ2

(l + u)2

p∑
j=1

(f
(j)
z,λ)

TLjf
(j)
z,λ


≤λ1Ω(fz,λ),

and based on Lemma 4, we have

λ1Ω(fz,λ) = λ1

p∑
j=1

τj∥α̂(j)
z ∥2 ≤ p

M + ∥fz,λ∥∞√
l

+

λ2w max
j=1,··· ,p

∥f (j)z,λ∥∞

(l + u)3/2

 .

The desired results can be obtained by combining the above inequalities.

F.5 BOUNDING MANIFOLD ERRORM(z, λ)

Recall the definition ofM(z, λ), we have

M(z, λ) =
λ2

(l + u)2

p∑
j=1

(f
(j)
λ )TLjf

(j)
λ − λ2

p∑
j=1

〈
f
(j)
λ , Lωf

(j)
λ

〉
2
.

The manifold error can be derived by bounding each of the terms with a reasonable assumption that
the random variables on the similarity measureW(·, x) lies in the additive space of RKHS. Thus, we
further divide the manifold error into the following four parts:

M(z, λ) =M1(z, λ) +M2(z, λ) +M3(z, λ) +M4(z, λ),

where

M1(z, λ) =
λ2

l + u

l+u∑
i=1

(
1

l + u

l+u∑
k=1

f2
λ(xk)W(xk, xi)−

∫
f2
λ(x)W(x, xi)dρX (x)

)
, (26)

M2(z, λ) = λ2

∫
f2
λ(x)

(
1

l + u

l+u∑
i=1

W(x, xi)−
∫
W(x, x′)dρX (x′)

)
dρX (x), (27)

M3(z, λ) =
λ2

l + u

l+u∑
i=1

fλ(xi)

(∫
fλ(x)W(x, xi)dρX (x)− 1

l + u

l+u∑
k=1

fλ(x)W(xk, xi)

)
, (28)

and

M4(z, λ) = λ2

∫
fλ(x)

(∫
fλ(x

′)W(x, x′)dρX (x′)− 1

l + u

l+u∑
i=1

fλ(xi)W(x, xi)

)
dρX (x).

(29)

To analyze the above terms, we introduce the following lemma.
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Lemma 5 (Smale & Zhou, 2007) Let ξ be a random variable on Z in a Hilbert space H, which
satisfies ∥ξ∥ ≤Mξ. Denote Var(ξ)= σ2

ξ = E(∥ξ∥2). Then for any δ ∈ (0, 1), there holds

∥ 1

l + u

l+u∑
i=1

[ξi − E(ξ)]∥ ≤
2Mξ log(

2
δ )

l + u
+

(
2σ2

ξ log(
2
δ )

l + u

) 1
2

with confidence 1− δ.

Proposition 5 For all δ ∈ (0, 1), with confidence at least 1− δ, there holds

M(z, λ) ≤ 8wλ2κ
2D(λ) log(8/δ)

λ1 minj{τj}
(l + u)−

1
2 .

Proof 7 Step 1: BoundingM1(z, λ) in equation 26. Based on the definition of fλ, we have

∥f2
λ(x)W(x, ·)∥∞ ≤ w∥fλ∥2∞

since ∥fλ∥∞ ≤ κ∥fλ∥K ≤ κ
√

D(λ)
λ1 minj{τj} .

Thus we have

Mξ ≤ ∥f2
λ(x)W(x, ·)∥∞ ≤

wκ2D(λ)
λ1 minj{τj}

.

and

σ2
ξ ≤ E[∥f2

λ(x)W(x, ·)∥2∞] ≤ w2κ4D2(λ)

λ2
1 minj{τj}2

.

Applying Lemma 5, we can derive that

M1(z, λ) ≤ λ2

2 log(8δ )

l + u

wκ2D(λ)
λ1 minj τj

+

√
2 log(8δ )

l + u

wκ2D(λ)
λ1 minj{τj}


≤ λ2wκ

2D(λ)
λ1 minj τj

2 log(8δ )

l + u
+

√
2 log(8δ )

l + u


≤

4λ2wκ
2D(λ) log( 8δ )√

l + uλ1 minj τj

with confidence of 1− δ/4.

Step 2: BoundingM2(z, λ) in equation 27. Note that ∥W(·, x)∥ ≤ w, E[∥W(·, x)∥2] ≤ w2.

Then, with confidence of 1− δ
4 , we have

M2(z, λ) ≤ λ2

∫
f2
λ(x)w

(
2 log(8/δ)

l + u
+

√
2 log(8/δ)

l + u

)
dρX (x)

≤ λ2w

(
2 log(8/δ)

l + u
+

√
2 log(8/δ)

l + u

)∫
f2
λ(x)dρX (x)

≤ λ2w
4 log(8/δ)√

l + u

wκ2D(λ)
λ1 minj τj

≤ 4λ2wκ
2D(λ)√

l + uλ1 minj τj
log(

8

δ
).

Step 3: BoundingM3(z, λ) in equation 28. It is easy to deduce that

∥fλ(x)W(·, x)∥ ≤ wκ

√
D(λ)

λ1 minj τj
,
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and

E[∥fλ(x)W(·, x)∥2] ≤ w2κ2 D(λ)
λ1 minj τj

.

Then, with confidence of 1− δ
4 , we can derive that

M3(z, λ) =
λ2

l + u

l+u∑
i=1

fλ(xi)

(∫
fλ(x)W(x, xi)dρX (x)− 1

l + u

l+u∑
k=1

fλ(x)W(xk, xi)

)

≤ λ2

l + u

l+u∑
i=1

fλ(xi)wκ

√
D(λ)

λ1 minj τj

2 log(8δ )

l + u
+

√
2 log(8δ )

l + u


≤ λ2wκ

2 D(λ)
λ1 minj τj

4 log(8δ )√
l + u

≤ 4λ2wκ
2D(λ)√

l + uλ1 minj τj
log(

8

δ
).

Step 4: BoundingM4(z, λ) in equation 29. Finally, we can deduce that with confidence of 1− δ/4,

M4(z, λ) ≤ λ2

∫
fλ(x)wκ

√
D(λ)

λ1 minj τj

2 log( 8δ )

l + u
+

√
2 log(8δ )

l + u

 dρX (x)

≤ λ2wκ

√
D(λ)

λ1 minj τj
2
2 log(8δ )√

l + u

∫
fλ(x)dρX (x)

≤ 4λ2wκ
2D(λ)√

l + uλ1 minj τj
log(

8

δ
).

The desired result follows by combining the above estimations.

F.6 PROOF OF THEOREM 2

Then we summarize the above conclusions and analyze the learning rate under mild assumptions.

Proposition 6 Let Assumptions 2-4 be true. For any δ ∈ (0, 1/2), with confidence 1−2δ there holds

E (π (fz))− E (fρ)
≤ D(λ) + S(z, λ) +H(z, λ) +M(z, λ)

≤ Crλ
r
1 +

1

2
(E(π(fz))− E(fρ)) + Cζγ +

32M2 log(4/δ)

l + u
+

144M2 log(4/δ)

l + u

+
4
(
3M + κ

√
D(λ)

λ1 minj{τj}

)2
log(4/δ)

3(l + u)
+

√
2 log(4/δ)

l + u

(
3M + κ

√
D(λ)

λ1 minj{τj}

)3

D(λ)

+p

(
(M + ∥fz,λ∥∞)√

l
+

λ2w∥f (j)z,λ∥∞
(l + u)3/2

)
+

16λ2wκ
2D(λ)√

l + uλ1 minj τj
log(

8

δ
),

where

Cr =

p∑
j=1

(
L
∥∥g∗j∥∥L2(ρX(j))

+

(
2ωκ2 +max

j
{τj}

)∥∥g∗j∥∥2L2(ρX(j))

)
,

γ = max
{
(16M2)

2−ζ
2+ζ (Cζp

1+ζ(4Mr)ζ/(l + u))
2

2+ζ , (8M2)
2−ζ
2+ζ (Cζp

1+ζ(4Mr)ζ/(l + u))
2

2+ζ

}
,

Cζ is a constant, 0 < r ≤ 1/2, 0 < ζ < 2 and fz,λ is defined in equation 25.
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Proof 8 The above results can be obtained by directly combining the results of Theorem 3 and
Propositions 1-5.

Now, we present the proof of Theorem 22.

Proof 9 Let λ1 = (l + u)−∆ and λ2 = λ1−r
1 = (l + u)−∆(1−r), where 0 < r ≤ 1/2. According to

Proposition 6 and the properties of D(λ) and fz,λ, we have

E (π (fz))− E (fρ)
≤C1(l + u)−∆r + C2(l + u)−2/(2+ξ) + C3 log(4/δ)(l + u)−1

+ C4 log(4/δ)(l + u)∆(1−r)−1 + C5

√
log(4/δ)(l + u)−∆(5r/2−3/2)−1/2 + C6l

−1/2

+ C7(l + u)∆r−3/2 + C8 log(8/δ)(l + u)−1/2

≤C9 log(8/δ)
(
(l + u)−∆r + (l + u)−2/(2+ξ) + (l + u)−1 + (l + u)∆(1−r)−1

+(l + u)−∆(5r/2−3/2)−1/2 + (l + u)∆r−3/2 + (l + u)−1/2
)
+ l−1/2)

≤C10 log(8/δ)
(
(l + u)−Θ + l−1/2

)
,

where

Θ =min{∆r, 2/(2 + ζ), 1, 1 + ∆(r − 1),∆(5r/2− 3/2) + 1/2, 3/2−∆r, 1/2}
=min{∆r, 1 + ∆(r − 1),∆(5r/2− 3/2) + 1/2, 3/2−∆r, 1/2},

and ∆ > 0, 0 < r ≤ 1/2, 0 < ζ < 2. And C1, · · · , C10 are positive constants independently of
l, u, δ and r.

With ∆ = 1 and r = 1/2, the following holds

E (π (fz))− E (fρ) ≤ max
{
O
(
(l + u)−1/4

)
,O
(
l−1/2

)}
.

This completes the proof.

G CONVERGENCE ANALYSIS (PROOF OF THEOREM 1)

As described in the main paper, the masks on all features are learned at the upper level of S2MAM,
where a project operation is employed to limit informative variables. Thus, we mainly focus on the
corresponding convergence performance of the upper level of S2MAM.

Notice that the update rule for variable s in practice can be formulated by

st+1 = PC
(
st − ηtLB (α∗(m))∇s ln p

(
m | st

))
, (30)

where LB is the loss on selected sample batch B.

Furthermore, denote the update rules with stochastic and deterministic gradient mappings as

st+1 = st − ηtĜt = PC
(
st − ηtLB (α∗(m))∇s ln p

(
m | st

))
,

st+1 = st − ηtGt = PC
(
st − ηt∇sΦ

(
st
))

.

That is to say

Ĝt = 1

ηt
(
st − PC

(
st − ηtLB (α∗(m))∇s ln p

(
m | st

)))
=

1

ηt
(
st − st+1

)
,

Gt = 1

ηt
(
st − PC

(
st − ηt∇sΦ

(
st
)))

.

Firstly, we recall some necessary assumptions and definitions for projection operation, which have
been used in existing works on algorithmic convergence analysis on projection optimization for
single-level problems (Bauschke et al., 2012) and bilevel ones (Pedregosa, 2016).

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Inspired by some research on bilevel optimization problems (Pedregosa, 2016; Shu et al., 2023; Zhao
et al., 2023) with mini-batch settings, this paper adopts the independently and identically distributed
(i.i.d.) random variables induced by the mini-batch. Notice that ξ(t) = LB (α∗(m))∇s ln p(m |
st) − ∇sΦ(s

t) for t ∈ [1, 2, · · · , T ] are i.i.d random variables with finite variance σ2, since the
mini-batch are drawn i.i.d with a finite number of samples. Furthermore, E

[
ξ(t)
]
= 0 since samples

are drawn uniformly at random.

Lemma 6 Given a compact convex set C ⊂ Rd and let PC(·) be the projection operator on C, then
for any u ∈ Rd and v ∈ Rd, we have

∥PC(u)− PC(v)∥2 ≤ (u− v)⊤ (PC(u)− PC(v))

Lemma 7 Given a compact convex set C ⊂ Rd and let PC(·) be the projection operator on C, then
for any c ∈ C and u ∈ Rd,v ∈ Rd, we have

∥PC(c+ u)− PC(c+ v)∥ ≤ ∥u− v∥.

Remark 10 Considering c = st, u = ηtLB (α∗(m))∇s ln p(m | st) and v = ∇sΦ(s
t), we can

easily obtain that

∥Ĝt − Gt∥ ≤ ∥LB (α∗(m))∇s ln p(m | st)−∇sΦ(s
t)∥ := ∥ξ(t)∥.

In the following, we present the corresponding proof for Theorem 1.

Proof 10 Inspired from Theorem 2 in (Pedregosa, 2016), the following holds with Lemma 6 by setting
u = st and v = st − ηtgt,

∥st−st+1∥2 ≤ ηt(LB (α∗(m))∇s ln p(m | st))T (st−st+1) = ηt(LB (α∗(m))∇s ln p(m | st))T Ĝt.

Thus we have
∥Ĝt∥2 ≤

〈
LB (α∗(m))∇s ln p(m | st), Ĝt

〉
.

Recall the random variable ξ(t) = LB (α∗(m))∇s ln p(m | st) −∇sΦ(s
t) for t ∈ [1, 2, · · · , T ].

Based on the definitions of the stochastic gradient mapping Ĝt and the L smoothness of Φ, we have

Φ
(
st+1

)
− Φ

(
st
)
≤ L

2

∥∥st+1 − st
∥∥2 − 〈∇sΦ

(
st
)
, st − st+1

〉
=

L(ηt)2

2

∥∥∥Ĝt∥∥∥2 − ηt
〈
LB (α∗(m))∇s ln p(m | st)− ξ(t), Ĝt

〉
=

L(ηt)2

2

∥∥∥Ĝt∥∥∥2 − ηt
〈
LB (α∗(m))∇s ln p(m | st), Ĝt

〉
+ ηt

〈
ξ(t), Ĝt

〉
≤ (

L(ηt)2

2
− ηt)

∥∥∥Ĝt∥∥∥2 + ηt
〈
ξ(t),Gt

〉
+ ηt

〈
ξ(t), Ĝt − Gt

〉
≤ (

L(ηt)2

2
− ηt)

∥∥∥Ĝt∥∥∥2 + ηt
〈
ξ(t),Gt

〉
+ ηt∥ξ(t)∥2

≤ (L(ηt)2 − 2ηt)(
∥∥Gt∥∥2 + ∥ξ(t)∥2) + ηt

〈
ξ(t),Gt

〉
+ ηt∥ξ(t)∥2,

where the last line is obtained with Lemma 7 and
∥∥∥Ĝt∥∥∥2 ≤ 2(∥Gt∥2 +

∥∥ξ(t)∥∥2).
By summing up from t = 1 to T , we derive that

T∑
t=1

(
2ηt − L(ηt)2

) ∥∥Gt∥∥2 ≤ Φ
(
s1
)
−Φ

(
sT+1

)
+

T∑
t=1

(
ηt
〈
ξ(t),Gt

〉
+ (L(ηt)2 − ηt)

∥∥∥ξ(t)∥∥∥2) .

Since ηt = c√
t
≤ 1

L , we have 2ηt − Lηt ≥ ηt ≥ 0. Denote (ηt)′ = min{ηt, t = 1, · · · , T} = c√
T

.
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Then we can derive
T∑

t=1

(
2ηt − L(ηt)2

)
≥

T∑
t=1

ηt,

and
1∑T

t=1 (2η
t − L(ηt)2)

≤ 1∑T
t=1 η

t
≤ 1

T (ηt)′
=

1

c
√
T
.

Under the assumptions on E[ξ(t)] = 0 and E∥ξ(t)∥2 ≤ σ2, we have

min
1≤t≤T

E
∥∥Gt∥∥2 ≤ ∑T

t=1

(
2ηt − L(ηt)2

)
∥Gt∥2∑T

t=1 (2η
t − L(ηt)2)

≤
Φ
(
s1
)
− Φ

(
sT+1

)
+
∑T

t=1(L(η
t)2 − ηt)σ2

c
√
T

≤
Φ
(
s1
)
− Φ

(
sT+1

)
c
√
T

,

where last inequality is obtained by ηt ≤ 1/L and L(ηt)2 − ηt ≤ 0.

Finally, it can be obtained that

min
1≤t≤T

E
∥∥Gt∥∥2 ≲ O

(
1√
T

)
.

Remark 11 Zhou et al. (2022) demonstrate that with assumed variance σ, smoothness parameter
ℓ and learning rate η ≤ 2

ℓ , the average gradient 1
T

∑T
t=1 E ∥Gt∥

2 converges to a small constant
8−2ℓη
2−ℓη σ2, when T →∞.

Differently, we further adopt the learning rate η = c
t ≤

1
L (c > 0), and new inequalities to further

derive an improved convergence rate, O( 1√
T
), which converges to zero with T →∞.

H OPTIMIZATION DETAILS

H.1 DISCRETE MASKS m TO CONTINUOUS PROBABILITY s

As introduced in (Zhou et al., 2022), the probabilistic bilevel problem is indeed a tight relaxation
(although not equivalent) of the original discrete problem. For completeness, we summarize the
reasons for such a transformation:

• The discrete masks m = 0/1 can be represented as a particular stochastic one by letting
si = 0/1, thus we have mins∈C Φ(s) ≤ minm∈C̃ Φ̃(m);

• The constraint on s with ℓ-1 regularization within [0, 1] guides the most components of the
optimal s either 0 or 1, which has already been empirically validated in (Zhou et al., 2022);

• The new probabilistic form can be optimized directly with the gradient-based method as
follows,

∇sΦ(s) = ∇sEp(m|s)L (α∗(m))

= ∇s

∫
L (α∗(m)) p(m | s)dm

=

∫
L (α∗(m))

∇sp(m | s)
p(m | s)

p(m | s)dm

=

∫
L (α∗(m))∇s ln p(m | s)p(m | s)dm

= Ep(m|s)L (α∗(m))∇s ln p(m | s),

which obviously reduced the computation cost of bilevel problems.
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Algorithm 2: Projection Operation PC(a)

Input: Vector a ∈ Rp, core variables C, Domain C = {s : 0 ⪯ s ⪯ 1, ∥s∥1 ≤ C}.
1) Computing auxiliary variable b satisfying:

1⊤ [min (1,max (0,a− b · 1))]− C = 0
2) Computing auxiliary variable c satisfying:

c← max (0, b)
3) Update a:

a∗ ← min (1,max (0,a− c · 1))
Output: PC(a) = a∗.

H.2 PROJECT OPTIMIZATION FROM PROBABILITY s TO DOMAIN C

Inspired from existing works (Zhao et al., 2023; Zhou et al., 2022), the algorithm for project operation
from probability s to domain C is realized with projection operation PC(s), which is summarized
in Algorithm 2. Indeed, the Lagrangian multiplier, as well as the bisection method, are employed
in designing this algorithm, yielding a closed-form solution. The theoretical guarantee for learning
masks on all samples m ∈ RN can be found at (Zhou et al., 2022). Moreover, this paper focuses
on the masks on all variables m ∈ Rp. For completeness, we present the corresponding theoretical
proof as follows.

Proof 11 Given variable a ∈ Rp, in order to project a to set C, we introduce the following problem
with constraints:

min
s∈Rp

1

2
∥s− a∥2, s.t.1Ts ≤ C and 0 ≤ si ≤ 1,

where 1 = (1, 1, · · · , 1) ∈ Rp and s is the ideal output after projection.

The above problem can be resolved by the commonly used Lagrangian multiplier method formulated
with:

L(s, b) =
1

2
∥s− a∥2 + b

(
1⊤s− C

)
=

1

2
∥s− (a− b1)∥2 + b

(
1⊤a− C

)
− n

2
b2. (31)

where the auxiliary variable b ≥ 0 and 0 ≤ si ≤ 1.

To minimize above problem equation 31 with respect to s, we can derive that s̃ = 1a−b1≥1 + (a−
b1)1>a−b1>0.

Then we can develop two auxiliary functions as follows:

g(b) = L(s̃, b) =
1

2
∥[a− b1]− + [a− (b+ 1)1]+∥2 + b

(
1⊤a− s

)
− n

2
b2

=
1

2
∥[a− b1]−∥2 +

1

2
∥[a− (b+ 1)1]+∥2 + b

(
1⊤a− s

)
− n

2
b2, for b ≥ 0,

and

g′(b) = 1⊤[b1−a]++1⊤[(b+1)1−a]−+
(
1Ta− s

)
−nb = 1⊤ min(1,max(0,a−b1))−C, for b ≥ 0.

Finally, with the monotone decreasing property of g′(b), a bisection method is exploited to solve the
equation g′(b) = 0 with solution b∗. Because g(b) increases in (−∞, b∗] and decreases in [b∗,+∞),
we can conclude that the maximum of g(b) is obtained at 0 if b∗ ≤ 0 and b∗ if b∗ > 0.

Finally, by setting c∗ = max (0, b∗), we have the output

s∗ = 1a−c∗1≥1 + (a− c∗1)1>a−c∗1>0 = min (1,max (0,a− c∗1)) .

H.3 OPTIMIZATION FOR UPPER-LEVEL PROBLEM

The detailed optimization steps for probabilistic S2MAM have already been introduced in Section
2.4, which has been further summarized in Algorithm 1. Notably, this policy gradient estimation
approach significantly improves the algorithmic efficiency by reducing the computational burden
associated with the hypergradient of bilevel optimization problems.
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H.4 OPTIMIZATION FOR LOWER-LEVEL PROBLEM

Based on the principle of the Alternating Direction Method of Multipliers (ADMM), an optimization
algorithm is designed to solve the manifold-regularized sparse additive problem at the lower level.
For simplicity, merely the regression task with squared loss is presented here.

Here we generate the Gram matrix over labeled and unlabeled points K =
(
K(1), . . . ,K(p)

)
∈

R(l+u)×(l+u)p with masked input m ⊙ xi where i ∈ [1, 2, · · · , l + u], the model coefficient α =(
α(1)T , . . . α(p)T

)T
∈ R(l+u)p, and the label vector Y = (y1, . . . , yl, 0, . . . , 0)

T ∈ Rl+u. Then, the
lower-level problem can be reformulated as

α∗ = arg min
α∈R(l+u)p

1

l
(Y −JKα)T (Y −JKα)+λ1

p∑
j=1

τj

∥∥∥α(j)
∥∥∥
2
+

λ2

(l + u)2
αTKLKα, (32)

where the matrix J = diag(1, . . . , 1, 0, . . . , 0) is an (l+ u)× (l+ u) diagonal matrix with the first l
diagonal entries as 1 and the rest as 0 (Belkin et al., 2006).

By introducing the auxiliary variable ϑ =
(
ϑ(1)T , . . . , ϑ(p)T

)T
∈ R(l+u)p, ϑ(j) =(

ϑ
(j)
1 , . . . , ϑ

(j)
l+u

)
∈ Rl+u, equation 32 can be rewritten as:

min
α,ϑ

1

l
(Y −JKα)T (Y −JKα)+λ1

p∑
j=1

τj

∥∥∥ϑ(j)
∥∥∥
2
+

λ2

(l + u)2
αTKLKα, s.t. α−ϑ = 0. (33)

Hence, by introducing the auxiliary variable ϑ ∈ R(l+u)p and the Lagrange multiplier Λ ∈ R(l+u)p,
the scaled augmented Lagrangian function of the primal problem equation 32 is

L(α, ϑ,Λ) =
1

l
(Y − JKα)T (Y − JKα) + λ1

p∑
j=1

τj

∥∥∥ϑ(j)
∥∥∥
2

+
λ2

(l + u)2
αTKLKα+

ϱ

2
∥α− ϑ− Λ∥22 −

ϱ

2
∥Λ∥22,

(34)

where ϱ > 0 is a positive penalty coefficient.

Given initialized parameters (α0, ϑ0, Λ0) and convergence criterion ϵ, the manifold regularized
additive regression problem with squared loss can be solved by the following iterative steps:

(1) Fix ϑt and Λt, and update the model coefficient αt+1:

αt+1 = argmin
α

1

l
(Y − JKα)T (Y − JKα) +

λ2

(l + u)2
αTKLKα+

ϱ

2
∥α− ϑt − Λt∥22.

αt+1 can be calculated by the derivative of the objective function, which vanishes at the minimizer:

1

l
(Y − JKα)T (−JK) +

(
λ2

(l + u)2
KLK+ ϱ(α− ϑt − Λt)T

)
α = 0.

(2) Fix αt+1 and Λt, and update the auxiliary variable ϑt+1:

ϑt+1 = argmin
ϑ

1

2
∥αt+1 − ϑ+ Λt∥22 +

λ1

ϱ

p∑
j=1

τj

∥∥∥ϑ(j)
∥∥∥
2
. (35)

With fixed αt+1 and Λt, equation 35 is equivalent to the following p subproblems:

(ϑ(j))t+1 = argmin
ϑ(j)

1

2

∥∥∥(α(j))t+1 − ϑ(j) + (Λ(j))t
∥∥∥2
2
+

λ1τj
ϱ

∥∥∥ϑ(j)
∥∥∥
2
.
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Thanks to the soft thresholding operators (Boyd et al., 2011; Chen et al., 2020), we have

(ϑ(j))t+1 = Sλ1τj/ϱ

(
(α(j))t+1 + (Λ(j))t

)
, j = 1, . . . , p,

where the soft thresholding operator S stands for

Sk(a) = (a− k/∥a∥2)+ a.

(3) Fix αt+1 and ϑt+1, and update the Lagrange multiplier Λt+1 :

Λt+1 = Λt + αt+1 − ϑt+1.

Denote the objective function of lower level problem asR(α) (standing forR(α;m;L)) parame-
terized by model coefficient α (and mask m learned by upper level problem, the Laplacian matrix
L). The above three iterative steps form a loop until the following convergence conditions are met at
(t+ 1)-th iteration:

|R(αt+1)−R(αt)| ≤ ϵ. (36)

Then the updating process stops and the output αt+1 can be considered as the desired model coefficient.
Moreover, inspired by (Chen et al., 2020; Yuan et al., 2023), the early-stop condition in equation 36
could also be set as

∥αt+1 − αt∥∞ ≤ ϵ and ∥αt+1 − ϑt+1∥∞ ≤ ϵ.

H.5 ANALYSIS ON COMPUTATION COMPLEXITY

With the ϵ-stationary point defined in (Ji et al., 2021; Chu et al., 2024; Zhang et al., 2024), we
conclude that the optimization for the upper problem requires at most T = O(ϵ−2

1 ) iterations
before reaching ϵ1-stationary based on Theorem 1. The lower level requires O(K(l + u)) steps on
gradient computations and O(p(l + u)) assigning masks per outer iteration. Notice that K is the
inner iteration and p is the input dimension. The lower problem optimized by ADMM (Culp, 2011;
Culp & Michailidis, 2008) exhibits a sublinear convergence rate O(1/K) with respect to the Nash
point, provided the threshold 1/K ≲ ϵ2 is satisfied, when the lower problem satisfies the convexity
condition. Please refer to (Wang & Zhao, 2022) for the corresponding proof of general ADMM
optimization.

In summary, the computation complexity of S2MAM reaches O
(

p(l+u)
ϵ21ϵ2

)
, which is competitive

with some latest bilevel algorithms(Liu et al., 2022a; Xiao et al., 2023). Empirically, please refer to
Appendix G for convergence analysis and Section E for some experimental comparisons on training
time cost.

I IMPACT, CHALLENGES, AND LIMITATIONS

I.1 IMPACT STATEMENT

This paper presents work aimed at advancing the field of Machine Learning. We believe this work
can deepen our understanding of the interplay between generalization and variable selection, and
widen the applications of bilevel optimization for interpretable prediction.

I.2 NOVELTY AND DIFFERENCE TO RELATED WORK

In the following, we summarize and restate the novelty and contributions of S2MAM to our bilevel
baseline, PBCS (Zhou et al., 2022), and another classical work on generalization theory (Cao & Chen,
2012), from the perspectives of algorithm design, learning region, and theoretical analysis.

I.2.1 MOTIVATION AND ALGORITHMIC DESIGN

While we adopt a similar policy gradient estimation (PGE) technique to avoid implicit differentiation
(e.g., Hessian/Jacobian computations), significant technical hurdles arise when adapting PBCS to
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semi-supervised feature selection with interpretable additive schemes. Below, we first recall the
differences, clarify these challenges, and summarize our novel contributions to address them.

PBCS (Supervised Coreset Selection): (1) Upper-level: Learns an l-dimensional sample mask
using l labeled points. (2) Lower-level: Trains a CNN on the same l labeled points (masked subset)
via standard backpropagation. (3) Data usage: Single labeled set for both levels.

Our Work (Semi-Supervised Feature Selection): (1) Upper-level: Learns a p-dimensional feature
mask using only l labeled points (challenges arise with high-dimension p, e.g., l < p). (2) Lower-
level: Solves a Laplacian-regularized sparse additive model over l + u points (labeled + unlabeled):
Mask impacts feature-wise additive terms (fj , dimensions p, j ∈ {1, 2, · · · , p}). (3) Data usage:
Labeled data for the supervised upper problem and the supervision part of the lower problem;
unlabeled data for lower-level manifold regularization.

I.3 CORE TECHNICAL CHALLENGES IN ALGORITHM DESIGN

The following three challenges make the method in PBCS inapplicable to the semi-supervised learning
(SSL) scenarios.

(1) Challenge 1 (Mask Dimension Mismatch):

When p > l, learning a p-dimensional mask from l labels is challenging (ill-posed (Friedman, 1989;
Meng et al., 2014)). PBCS avoids this since its mask dimension (l) matches supervision.

Our Solution:

Introduce sparsity regularization (via ℓ2,1-norm) to stabilize mask learning.

For extremely high-dimensional data (e.g., 512×512 images from CelebA-HQ), employ a pre-trained
and frozen CNN on limited labeled samples for feature extraction to enhance the capability of
S2MAM in handling such SSL tasks.

(2) Challenge 2 (Computational Cost of Laplacian):

Each mask update requires recomputing pairwise similarities across all l + u samples, costing
O((l + u)2p). For large u, this might dominate the training.

Our Solution: Accelerate with Random Fourier Features (RFF), reducing Laplacian-based cost to
O((l + u)d) (where d≪ l + u).

(3) Challenge 3 (Specialized Lower-Level Solver):

PBCS uses a standard SGD for CNNs.

Our Solution: Our lower-level requires solving:

min
α

1

l

l∑
i=1

ℓ(f(xi ⊙m), yi)︸ ︷︷ ︸
supervised loss

+λ1

p∑
j=1

τj∥α(j)∥2︸ ︷︷ ︸
Sparsity regularization

+
λ2

(l + u)2
fTLf︸ ︷︷ ︸

Laplacian regularization

. (37)

This kernel-based objective, regularized by two different penalties, demands a custom solver as
introduced in our Appendix H.4.

Practically, this work naturally solves the question: How to retain interpretability while filtering
redundant or corrupted features efficiently in semi-supervised settings?

I.4 THEORETICAL CHALLENGES AND NEW TECHNIQUES

The hypothesis space of S2MAM is additive and data-dependent, instead of the data-independent
hypothesis in (Cao & Chen, 2012). Concretely, the Regularization error of S2MAM is derived under
the assumption of generalized additive forms.

Our excess-risk decomposition contains four terms: Regularization, Sample, Manifold, and an extra
Hypothesis error absent in (Cao & Chen, 2012), which requires new auxiliary functions and proof
techniques.
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The manifold error of S2MAM is decomposed into p additive U-statistic deviations, bounded by
a Hilbert-space Bernstein-type concentration inequality, rather than by the spectral-based lemma
(Theorem 4.11 of (Cao & Chen, 2011)) in (Cao & Chen, 2012).

I.5 LIMITATIONS AND DISCUSSIONS

LIMITATIONS AND EXISTING SOLUTIONS

This paper proposes a new bilevel manifold regularization approach for semi-supervised learning
tasks, featuring an automatic feature masking mechanism. Theoretically, we establish the foundations
of learning theory, including the computing convergence and the generalization error analysis. To
the best of our knowledge, this is the first work to bound the excess risk of a semi-supervised
additive model. Our results show better convergence performance than those in (Zhou et al., 2022).
While inspired by the PGE technique (Zhou et al., 2022), our proposal S2MAM addresses distinct
challenges in semi-supervised feature selection on high-dimensional mask learning, Laplacian
scalability, and specialized optimization. Our innovations (RFF acceleration, sparsity regularization,
ADMM solver) enable robust performance where direct extension of PBCS fails. Empirically, we
verify the effectiveness of the proposed approach using both synthetic and real-world datasets. We
designed a novel optimization algorithm for the proposed manifold-regularized sparse additive model
(see Appendix H.4). In the implemented codes, we further provide the settings of spline-based
additive models. However, some limitations still exist, including computational difficulties with
large-scale datasets and the assumption of bounded output.

Fortunately, as introduced in Appendix E, our proposal S2MAM can also handle high-dimensional
data with the aid of some preprocessing techniques. An interesting approach for dealing with high-
dimensional data, such as images, is to extract the feature vectors first, which has been widely
employed in various supervised (Su et al., 2023) and semi-supervised works (Qiu et al., 2018;
Nie et al., 2019; Kang et al., 2020; Nie et al., 2021). The random Fourier technique (Rahimi &
Recht, 2007; Wang et al., 2023) can also be considered to accelerate the computation process further.
Theoretically, the bounded condition of the response can be relaxed to include the unbounded output,
e.g., replacing it by the 1 + ϵ moment bounded assumptions (Feng, 2021; Feng & Wu, 2022)). The
neural additive modeling strategy (Agarwal et al., 2021; Yang et al., 2020) is another interesting and
compelling direction for improving the non-linear approximation ability and prediction performance
of S2MAM. Furthermore, in the image-type experiments, mapping from mask importance back to
image attributes is also meaningful to identify which of these extracted features are informative for
the classification task. In addition, the current generalization analysis focuses on the basic model of
S2MAM, which can be further improved to match the bilevel manifold regularization tightly.

HOW DOES S2MAM SCALE AND PERFORM WITH EXTREMELY HIGH DIMENSIONS?

Common Challenges in S2MAM and SSL when n ≪ p. When n ≪ p, the sample-covariance
matrix is singular and the graph-Laplacian L ∈ Rn×n becomes rank-deficient, which violates the
restricted strong convexity condition required by manifold regularization. Furthermore, the bilevel
optimization becomes NP-hard, and the space complexity for directly computing on raw data increases
to O(n2p).

Our solutions and suggestions As reported in Section 4 and the Appendix, the CNN-based feature ex-
traction and random Fourier transformation have been successfully utilized to enhance computational
efficiency on large-scale image datasets.

The semi-supervised modeling of extremely high-dimensional data remains a challenging task (Azriel
et al., 2022; Mai & Couillet, 2021) in both practical and theoretical analyses, which is listed as a
future research goal.
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