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ABSTRACT

Personalized Federated Learning (PFL) has gained attention for privacy-preserving
training on heterogeneous data. However, existing methods fail to capture the
unique inherent geometric properties across diverse datasets by assuming a unified
Euclidean space for all data distributions. Drawing on hyperbolic geometry’s
ability to fit complex data properties, we present FlatLand1, a novel personalized
Federated learning method that embeds different clients’ data in tailored Lorentz
space. FlatLand is able to directly tackle the challenge of heterogeneity through the
personalized curvatures of their respective Lorentz model of hyperbolic geometry,
which is manifested by the time-like dimension. Leveraging the Lorentz model
properties, we further design a parameter decoupling strategy that enables direct
server aggregation of common client information, with reduced heterogeneity in-
terference and without the need for client-wise similarity estimation. To the best
of our knowledge, this is the first attempt to incorporate hyperbolic geometry into
personalized federated learning. Empirical results on various federated graph learn-
ing tasks demonstrate that FlatLand achieves superior performance, particularly in
low-dimensional settings.

1 INTRODUCTION

Federated learning (FL) trains machine learning models across multiple clients while ensuring data
privacy. Traditional FL struggles with data heterogeneity, as one model cannot satisfy diverse
local requirements. Personalized federated learning (PFL) resolves this by sharing common model
knowledge and allowing for client-specific adaptations. PFL approaches mainly address heterogeneity
through three strategies during aggregation: (1) splitting models into shared and personalized
components (McMahan et al., 2017; Tan et al., 2023); (2) analyzing weights/gradients to evaluate
client similarities (Xie et al., 2021); or (3) incorporating additional modules to enable client-specific
customization (Baek et al., 2023). All these methods are conducted in Euclidean space.

Recent studies in various domains, including text (Tifrea et al., 2018; Dhingra et al., 2018), im-
ages (Atigh et al., 2022; Khrulkov et al., 2020), and graphs (Chami et al., 2019; Tan et al., 2023; Yang
et al., 2022b;a), have shown that real-world data exhibit non-Euclidean properties, such as scale-free
structures and implicit hierarchical relationships (Albert & Barabási, 2002; Khrulkov et al., 2020).
Euclidean space, being inherently “flat”, fails to adequately represent these characteristics, leading to
structural distortions and reduced performance (Chami et al., 2019). For example, the CiteSeer graph
dataset partitioned into 10 clients, shows varying degree distributions with long-tail characteristics
which are poorly captured by Euclidean geometry, as illustrated in Figure 1(a). Besides, we calculate
the Ricci curvature values of multiple real-world graph datasets after splitting them into 10 clients
each and observe that they all exhibit negative Ricci curvature with significantly varying values, as
shown in Figure 6. Higher absolute values indicate more pronounced non-Euclidean properties.

Moreover, embedding data from various clients into a fixed Euclidean space complicates inter-
pretability of model parameters. All parameters play the same role during training, obscuring which
encapsulates client heterogeneity versus shared information. This makes it difficult to segment the
model into meaningful components and assess client similarity. Additionally, incorporating extra
modules to aid this process escalates complexity and reduces flexibility.

1Our method is named after Edwin Abbott’s book "Flatland: A Romance of Many Dimensions", highlighting
our insights of exploring an extra dimension that maps various data distributions onto different Lorentz surfaces.
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Figure 1: Toy example: (a) KDE of degree distri-
butions from three CiteSeer clients (Davis et al.,
2011), and (b) their respective 2D Lorentz Spaces
with different curvatures K.

The aforementioned problems inspire us to ask
whether there is a space where we can design
a tailored model for each client, in which we
can effectively represent the inherent prop-
erties of local data and succinctly reflect the
heterogeneity without any extra calculations?

We propose to leverage Lorentz Space. With
negative curvature, Lorentz space has the advan-
tage of modeling complex data, particularly hi-
erarchical, tree-like, and power-law distributed
data (Lensink et al., 2022; Dhingra et al., 2018;
Sun et al., 2022). By adjusting its curvature,
it offers personalized and precise data repre-
sentations for each client, leveraging its unique
time-like dimension to capture diversity. This
inspires us to design a framework that embeds
each client’s data into a suitable Lorentz space. This will bridge the gap between the fields of
hyperbolic geometry and personalized federated learning.

Furthermore, the representations in Lorentz space and the operations of Lorentz neural networks (Chen
et al., 2021) have stronger interpretability. Take Figure 1(b) as an example2. Informally speaking, the
diversity of the distribution can be more prominently represented by the "height" of the additional
time-like dimension (xt ∈ R) while maintaining the relatively similar properties in the "Flatland"
(space-like dimensions xs ∈ Rd). In this work, we focus on federated graph learning (FGL)
as hyperbolic encoders have achieved state-of-the-art results in many benchmarks (Atigh et al.,
2022; Peng et al., 2021; Lensink et al., 2022). And there is a theoretical guarantee connecting the
heterogeneity of graph data with hyperbolic curvature (Krioukov et al., 2010). This method is
generalizable to other datasets and settings.

Although the Lorentz space has demonstrated significant potential in various tasks (Peng et al.,
2021; Atigh et al., 2022), applying it to personalized federated learning (PFL) scenarios is still
non-trivial. The challenge is how to mitigate the influence of parameters related to heterogeneous
information, and aggregate the parameters that represent common features in the "Flatland" without
accessing client data?

Motivated by the above insights, we propose an exploratory personalized Federated learning method
that embeds different clients’ data in Tailored Lorentz space, called FlatLand. To address the
challenge, we formulate a novel parameter decoupling strategy that can directly aggregate shared
parameters without any extra similarity calculations.

To the best of our knowledge, FlatLand is the first work to incorporate Lorentz geometry into
personalized federated learning. It is succinct, effective, and easily interpretable. Experimental
results demonstrate that FlatLand achieves superior performance than its Euclidean counterpart,
particularly in low-dimensional representations.

2 RELATED WORK

Personalized Federated Learning With statistical heterogeneity (Kairouz et al., 2021), conven-
tional FL frameworks like FedAvg (McMahan et al., 2017) can hardly obtain a single global model
that generalizes well to every client (the basic framework is shown in Appendix A.4). Motivated by
this, researchers have proposed personalized FL (PFL) to train customized local models. Generally
speaking, existing PFL techniques can be categorized into the following three groups: (1) techniques
that personalize client models via local fine-tuning (Fallah et al., 2020; Jiang et al., 2019; Wang
et al., 2019), (2) techniques that personalize client models via customized model aggregation (Huang
et al., 2021; Li et al., 2021b; Luo & Wu, 2022; Sun et al., 2021; Zhang et al., 2023b; 2021b), and (3)
techniques that personalize client models via creating localized models/layers (Arivazhagan et al.,
2019; Chen & Chao, 2022; Collins et al., 2021; Deng et al., 2020; Dinh et al., 2020; Hanzely &

2For convenience, all origins of Lorentz spaces in the figure are shown as the same, but actually, their origins
are not in the same location.
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Richtárik, 2020; Li et al., 2021a; Mansour et al., 2020). However, these PFL methods typically
operate in Euclidean spaces to encode data samples, which can hardly capture the scale-free property
and implicit hierarchical structure embedded within client data.

Personalized Federated Graph Learning When applied to graph data, personalized federated
graph learning (PFGL) can intuitively exhibit the problem mentioned above. For example, Xie
et al. (2021) clusters clients based on gradients to aggregate models with similar data distributions.
Another method (Tan et al., 2023) introduces additional personalized models to capture client-
specific knowledge of graph structure. Baek et al. (2023) calculates client-client similarities to
apply personalized model aggregation with local weight masking. All these methods learn node
representations in Euclidean spaces, which cannot model the power-law degree distributions that
widely exist in real-world graph data (Albert & Barabási, 2002; Krioukov et al., 2010). Additionally,
the client clustering procedure and additional model components introduce computational overhead
that may not be feasible in real-world scenarios with strict privacy constraints or limited resources.

Hyperbolic Federated Learning Very few research works have considered incorporating hy-
perbolic spaces into federated settings. An et al. (2024) leverages hyperbolic distances to distill
knowledge from the global model to the local model, to mitigate model inconsistency caused by data
heterogeneity. Liao et al. (2023) applies hyperbolic prototype learning to capture the hierarchical
structure among data samples. As the work most similar to our FlatLand, FedHGCN (Du et al.,
2024) is a simple combination of FedAvg and hyperbolic graph neural networks along with a node
selection process. Although these methods can benefit from the hyperbolic space to capture the
hierarchical structure in the data, they do not have the personalization capability to adaptively model
client data spaces with different curvatures. This may lead to suboptimal results when there is severe
data heterogeneity. Therefore, our goal is to design a novel FL framework that can encode client data
in hyperbolic spaces with adaptive curvatures using personalization techniques.

3 PRELIMINARIES

Lorentz Manifold Given a d-dimensional Lorentz manifold Ld
K with a constant negative curvature

−1/K(K > 0), suppose a point / vector x ∈ Ld
K , which has the form x =

[
xt

xs

]
∈ Rd+1 , where the

first dimension xt ∈ R is called time-like dimension and others xs ∈ Rd are space-like dimensions.
It satisfies the following conditions: ⟨x,x⟩L = −K and xt > 0, where ⟨x,y⟩L = −xtyt + x⊤

s ys is
the Lorentzian inner product. Note that the larger the K, the more the intrinsic structure of the data
deviates from the flatness of Euclidean space. Formal definitions are shown in Appendix A.1.

Typically, inputs reside in Euclidean space and need to be mapped into hyperbolic space. The way of
projecting the data vE ∈ Rd in Euclidean to Lorentz space x ∈ Ld

K can be simplified as 3

xK = expKo
(
vE

)
= expKo

([
0,vE

])
=

cosh

(
∥vE∥2√

K

)
︸ ︷︷ ︸
time-like dimension xt

,
√
K sinh

(
∥vE∥2√

K

)
vE

∥vE ||2︸ ︷︷ ︸
space-like dimensions xs

 . (1)

Fully Lorentz Neural Networks Fully Lorentz networks (Chen et al., 2021) are proved to be
ideal for PFL due to their reduced need for space projections, enhancing computational efficiency.
These networks also incorporate Lorentz transformations (boosts and rotations), improving data
heterogeneity handling and parameter interpretability (Appendix A.3).

Given an input vector x ∈ Ln
K , and a linear layer matrix M̂ ∈ R(m+1)×(n+1) to optimize, ∀x ∈

Ln
K , M̂x ∈ Lm

K . Let M̂ =

[
vT

W

]
,v ∈ R(n+1),W ∈ Rm×(n+1). The fully Lorentz linear layer can

be denoted as LT in a general form as follows:
3For clarity, all Lorentz space embeddings are denoted by ·H . Specifically, if the curvature of the space is

known as K, it is denoted by ·K . In contrast, Euclidean space embeddings are denoted by ·E .

3
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LT(x; f ;W) :=
(√
∥f(Wx,v)∥2 +K, f(Wx,v)

)T

. (2)

It involves a function f that operates on vectors v ∈ Rn+1 and W ∈ Rm×(n+1). Depending on the
type of function, it can perform different operations. For instance, for dropout, the operation function
is f(Wx,v) = W dropout (x). For normalization with learned scale, f(Wx,v) = σ(vTx)

∥Wx∥ Wx.

4 MOTIVATION AND INSIGHTS

This paper focuses on graph data for its clear distribution and simpler models, facilitating the
validation of our approach using Lorentz neural networks to address heterogeneity in personalized
federated learning. Our method is also applicable to other datasets and tasks.

PROBLEM STATEMENT

Given clients C = 1, 2, . . . , C, each with a dataset Dc = (xc
i , y

c
i )

Nc

i=1 and distribution pc(x, y),
Personalized Federated Learning (PFL) encounters distributional heterogeneity if pi(x, y) ̸= pj(x, y)
for any clients i ̸= j. This heterogeneity can degrade performance. In PFL, the goal is to optimize
personalized models fc(·;θc,θs) for each client using specific and shared parameters θc, θs.

min
θc|Cc=1,θs

C∑
c=1

E(x,y)∼pc(x,y)[Lc(f(x;θc,θs), y)] + λΩ(θc|Cc=1,θs) (3)

This function merges local loss Lc with regularization Ω, balanced by hyperparameter λ.

Our goals are

(1) to effectively represent the inherent properties of each local client data;
(2) to succinctly reflect heterogeneity among client data and facilitate the communication

of shared information without requiring additional computations.

INSIGHTS: INTRODUCE A HIGHER DIMENSION (time axes) TO "Flatland".

In "Flatland", a two-dimensional flat plane, the same shapes may represent the projections of
various three-dimensional objects. For instance, a circle could be the projection of either a
cylinder or a sphere from a higher dimension.

In the above case, "Flatland" captures the common feature of a cylinder or a sphere, while a higher
dimension (the third dimension) highlights the differences between the objects. Analogous to our
setting, informally speaking, by introducing an additional time-like dimension, we can imagine each
client’s data residing in a unique Lorentz space (a curved world in a higher-dimensional space), where
the curvature reflects the distinct distributions (objects). "Flatland", Rd (flat), serves as a metaphor
for a platform where common information (circle) is exchanged and integrated.

MOTIVATION: WHY LORENTZ SPACE?

(1) Prevalent Non-Euclidean properties of real-world data. Forman-Ricci curvature Ric measures
deviations from flat (Euclidean) geometry in data structures (Sandhu et al., 2016; Forman, 2003). A
more negative Ric indicates a structure more suited for hyperbolic space representation (Sun et al.,
2024). Figure 2 shows varying Ric values across 10 clients from the CiteSeer dataset, highlighting the
common non-Euclidean nature of real-world data. Thus, employing Lorentz space with client-specific
curvature can better capture intrinsic data structures, supporting our goal (1).

(2) Strong correlation between heterogeneity and curvature. Figure 1(a) shows that distribution
curves exhibit long-tailed characteristic with varying skewness, supporting the findings from previous

4
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Figure 2: The FlatLand framework.

studies (Xie et al., 2021). In particular, Client 1’s distribution is steeper and less Euclidean, suggesting
a need for embedding in a Lorentz space with a larger curvature (a smaller K), depicted in Figure 1(b).
This space accommodates more tail nodes (black stars) than Clients 2 and 3, requiring a "roomier"
embedding environment to ensure separability and enhance performance. A larger curvature facili-
tates this by allowing embeddings to occupy a "higher" position (larger xt) in the space, where the
volume expands exponentially.

The observations align with our goal (2) because heterogeneous properties like "how significant is
the imbalance between tail nodes and head nodes?" can be naturally distinguished through their
corresponding Lorentz space with different curvature (differed by the time-like axes xt). Meanwhile,
when the star nodes are mapped back to the Euclidean space, the common information, e.g., "the star
is the tail node in their client", is preserved in space-like dimensions xs as the same node v.

5 THE FlatLand FRAMEWORK

We propose a personalized federated learning framework, FlatLand, using tailored Lorentz spaces
for each client. The main steps are outlined in Figure 2 and Algorithm 2.

S1 Initialization. At the initial communication round r = 0, the parameters that need to be
initialized can be divided into three parts:

(1) Curvature parameters of C clients {K1,K2, ...KC} ; (Section 5.1)
(2) Personalized parameters of C clients {θ1,θ2, ...,θC}; (Section 5.2)
(3) Shared parameters θs of central server.

All the parameters of client i at round 0 can be written as Θ
(0)
i =

(
Ki;θ

(0)
i ;θ

(0)

s

)
and

server parameters as θ
(0)

s .

S2 Local updates. Given learning rate η, for round r, each local client model performs training
on the data Di to minimize the task loss L(Di;Θ

(r)
i ) and then updating the parameters as

Θ
(r+1)
i ← Θ

(r)
i − η∇L. (Section 5.3)

S3 Server updates. After local training, only shared parameters θsc
(r+1) are updated

to the server for each client c. These are then aggregated using FedAvg: θ
(r+1)

s ←
Nc

N

∑C
c=1 θ

(r+1)
sc , , where N =

∑
c Nc. The aggregated parameters are subsequently

distributed to clients for the next round.

5.1 CURVATURE ESTIMATION

To embed the dataset Dc of client c ∈ C into its tailored Lorentz space Ld
Kc

, a suitable curvature Kc

should be first explored.

5
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There are many comprehensive ways can assist in estimating the suitable curvature for various types
of data (Gao et al., 2021). Here, given a weighted graph Gc = (V,E,w) in client c, we adopt
Forman-Ricci curvature (Appendix A.2) and the overall curvature of the graph can be calculated as
follows Ric(G) = 1

|E|
∑

(x,y)∈E Ric(x, y), where V represents graph nodes and |E| the number of
edges, specifically, (x, y) means the edge between node x to node y. Additionally, the curvature can
be a learnable parameter or calculated using a simple Multi-Layer Perceptron (MLP) neural network.
Here, we initialize Kc with Ric(Gc) as learnable.

5.2 PARAMETER DECOUPLING STRATEGY

This section details the fully Lorentz model’s parameters (excluding K), divided into shared θs for
space-like dimensions and personalized θc for time-like dimension. The model has layers of fully
Lorentz neural networks that transform data within Lorentz space (Section 3).

First, without loss of generality, we decouple the function of Lorentz linear layer in Equation (2)
without the functions f of activation, dropout, bias, and so on.

Given input x(l) =

[
x
(l)
t

x
(l)
s

]
∈ Ln

K , x
(l)
t ∈ R,x(l)

s ∈ Rn in layer l. We rewrite the learnable matrix

M̂(l) in Section 3 as
[
v(l) vT (l)

m(l) M(l)

]
∈ R(m+1)×(n+1), v(l) ∈ R,v(l) ∈ Rn,m(l) ∈ Rm,M(l) ∈

Rm×n, the output x(l+1) of the Lorentz linear layer could be reformulated as

x(l+1) = LT(x(l); M̂(l)) =

√
∥mxt +Mxs∥2 +K︸ ︷︷ ︸
time-like dimension x

(l+1)
t

, mxt +Mxs︸ ︷︷ ︸
space-like dimensions x(l+1)

s


T

. (4)

Then, we decouple the parameters as follows under the deviation from Appendix B.3:

Suppose the modelM consists of L layers of neural networks,
• The personalized parameter set θc for all layers is formulated as

θc =

L⋃
l=1

{v(l),vT (l),m(l)};

• The shared parameter set θs across all layers is formulated as

θs =

L⋃
l=1

{M (l)};

where
⋃L

l=1 indicates the union of parameter sets from each layer l from 1 to L.

5.3 LOCAL TRAINING PROCEDURE

Obtained the curvature K
(r)
c at round r, we directly project the client input xE

i ∈ Dc into its
corresponding Lorentz space via the exponential map xKc = expKc

o (xE), as shown in Equation (1).
Note that to simplify the notation, all vectors x, if not superscripted, are assumed to represent being
in the Lorentz space.

Afterwards, the training data are fed into the Lorentz modelM, the output is f((xKc ;θc,θs), y). In
the graph model, in addition to the Lorentz linear layer, there is also an aggregation operation (Zhang
et al., 2021c), which does not involve any parameters, so it has no impact on our results.

At client c, the objective function is

6
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min
θc|Cc=1,θs

Lc(f(x
Kc ;θc,θs), y) + λ∥θsc − θs∥22, (5)

where λ is a hyperparameter, ∥θsc − θs∥22 is the regularize term that prevent locally updated model
θsc deviates too far from the server shared parameters θs.

6 ANALYSIS

In this section, we provide further analysis to demonstrate the effectiveness and interpretability of
our method as described in Section 5.2. Specifically, we first verify the correctness that federated
learning does not cause the data in each client to deviate from its original space during the process of
parameter communication (server updates). Furthermore, we expound on the rationale behind our
proposed method from the perspectives of debiasing and Lorentz transformation.

Proposition 1. ∀x ∈ Ln
K ,∀M ∈ R(m+1)×(n+1), we have LT(x;M) ∈ Lm

K .

Proof. ∀x ∈ Ln
K , we have ⟨LT(x;M),LT(x;M)⟩L = −K. Therefore, LT(x;M) ∈ Lm

K .

Corollary 1. Let M̂ =

[
v vT

m M

]
, where M̂ ∈ R(m+1)×(n+1) and Φ

(
M̂,N

)
=

[
v vT

m N

]
.∀x ∈

Ln
K ,∀M̂ ∈ R(m+1)×(n+1), ∀N ∈ Rn×n, we have LT

(
x; Φ

(
M̂,N

))
∈ Lm

K .

This corollary (refer to the proof in the Appendix B.4) implies that even after the aggregation of
shared parameters in the server, the transformation of any client vector x ∈ Ln

K by this updated
matrix will still yield results in the Lorentz space Lm

K with the same curvature, indicating that the
client’s representation remains unaffected.

PERSPECTIVES ON DEBIASING

Remark 1 (Feature Debiasing). During the local and server updates in FlatLand, the debiasing
process is inherently integrated via the gradient of shared parameters M.

According to the derivations in Appendix B.3, it can be observed that the gradient of the shared
parameters M is highly correlated with xs, where xs is derived from the raw input xE using
the exponential map in Equation (1). Therefore, given the same input xE for different clients
tailored to different Lorentz manifolds, the gradient of M for client c is inherently weighted by
√
Kc sinh

(
∥xE∥2√

Kc

)
1

∥xE∥2
, where Kc can be intuitively interpreted as the parameter that reflects the

overall distribution of the dataset specific to client c, which differs from other clients. This can play a
role in debiasing during the parameter aggregation process compared to Euclidean methods.

PERSPECTIVES ON LORENTZ TRANSFORMATIONS

Lorentz Boosts and Lorentz Rotations (Appendix A.3) are interpreted as being covered by LT
(
x; M̂

)
when the dimension is unchanged (Chen et al., 2021). We can easily prove that the Lorentz transfor-
mations are still covered by LT

(
·; Φ

(
M̂,N

))
, where M̂ ∈ R(n+1)×(n+1), N ∈ Rn×n.

For any data point x ∈ Dc, transformations LT
(
x; M̂

)
and LT

(
x; Φ

(
M̂,N

))
map x to a new

spacetime position, maintaining the spacetime interval invariant (Corollary 1), thus preserving the
physical and geometric relationships within the same client, in line with special relativity. However,
clients with varying spacetime curvatures maintain distinct spacetime intervals, reflecting differing
underlying data distributions.

Moreover, according to the definition of Lorentz Rotation in Equation (9), the server updates only the
M, leaving the time-like dimension unchanged. This operation is a relaxation of the Lorentz rotation,
consistent with our "Flatland" assumption that aggregates only spatial dimension information.

7
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Table 2: Comparison of node classification performance across real-world datasets with varying
numbers of clients. The results, presented as mean and standard deviation, are based on five separate
trials. Performances that are statistically significant (p < 0.05) are highlighted in bold.

Cora CiteSeer ogbn-arxiv Photo

# clients 10 20 10 20 10 20 10 20

Local (E) 79.94± 0.24 80.30± 0.25 67.82± 0.13 65.98± 0.17 64.92± 0.09 65.06± 0.05 91.80± 0.02 90.47± 0.15

Local (L) 78.35± 0.05 80.46± 0.18 72.30± 0.04 69.52± 0.25 65.85± 0.09 66.75± 0.05 91.76± 0.10 90.12± 0.20

FedAvg 69.19± 0.67 69.50± 3.58 63.61± 3.59 64.68± 1.83 64.44± 0.10 63.24± 0.13 83.15± 3.71 81.35± 1.04

FedPer 79.35± 0.04 78.01± 0.32 70.53± 0.28 66.64± 0.27 64.99± 0.18 64.66± 0.11 91.76± 0.23 90.59± 0.06

FedProx 60.18± 7.04 48.22± 6.81 63.33± 3.25 64.85± 1.35 64.37± 0.18 63.03± 0.04 80.92± 4.64 82.32± 0.29

FedGNN 70.12± 0.99 70.10± 3.52 55.52± 3.17 52.23± 6.00 64.21± 0.32 63.80± 0.05 87.12± 2.01 81.00± 4.48

FedSage+ 69.05± 1.59 57.97± 12.6 65.63± 3.10 65.46± 0.74 64.52± 0.14 63.31± 0.20 76.81± 8.24 80.58± 1.15

GCFL 78.66± 0.27 79.21± 0.70 69.01± 0.12 66.33± 0.05 65.09± 0.08 65.08± 0.04 92.06± 0.25 90.79± 0.17

FedHGCN 72.09± 0.16 74.67± 1.50 66.98± 0.56 64.28± 0.62 OOM OOM 79.26± 0.56 79.57± 0.10

FlatLand (Ours) 80.46± 0.28 82.49± 0.25 73.90± 0.23 72.24± 0.24 67.52± 0.16 67.64± 0.04 92.49± 0.19 91.06± 0.15

7 EXPERIMENTS

In this section, we validate the effectiveness of FlatLand by conducting experiments for node
classification and graph classification on a series of benchmark datasets. The experiments are
designed to address the following research questions. RQ1. Can FlatLand outperform personalized
and hyperbolic FL baselines? RQ2. Can FlatLand still perform well in low-dimensional settings?
RQ3. Are the proposed novel components really beneficial?

7.1 EXPERIMENTAL SETUP

Datasets and Baselines The details about datasets are listed in Appendix C.1. Implementation
details are shown in Appendix C.2. More detailed information can be found in our anonymous
repository. To assess FlatLand and demonstrate its superiority, we compare it with the following
baselines: (1) Local: clients train their models locally without any communication, Local (E) refers
to self-training in the Euclidean model, while Local (L) refers to training in the Lorentz model.; (2)
FedAvg (McMahan et al., 2017) and (3) FedProx (Li et al., 2020a): the most popular FL baselines; (4)
FedPer (Arivazhagan et al., 2019): a PFL baseline with personalized model layers; (5) FedGNN (Wu
et al., 2021) and (6) FedSage (Zhang et al., 2021a): two FGL baselines; (7) GCFL (Xie et al., 2021):
a PFGL baseline with client clustering and cluster-wise model aggregation; (8) FedHGCN (Du et al.,
2024): a hyperbolic FGL baseline that fails considering the heterogeneity among clients.

7.2 MAIN EXPERIMENTAL RESULTS (RQ1)

Table 1: Performance on graph classification
tasks. The results, presented as mean and
standard deviation, are based on five separate
trials. Performances that are statistically sig-
nificant (p < 0.05) are highlighted in bold.

CHEM (1) BIO-CHEM-SN (3)

# datasets 7 13

Local (E) 75.54 ± 1.73 67.17 ± 1.76
Local (L) 75.72 ± 2.41 65.31 ± 2.13

FedAvg 75.88 ± 2.17 66.91 ± 1.94
FedProx 76.05 ± 1.92 66.34 ± 2.26
FedPer 75.81 ± 2.17 66.27 ± 2.09
GCFL 76.49 ± 1.23 67.21 ± 2.39

FedHGCN 75.06 ± 1.81 OOM
FlatLand (Ours) 76.55 ± 2.28 67.31 ± 2.58

Node Classification We tackle node classifica-
tion on highly heterogeneous datasets, with non-
overlapping node partitions for each client, which
most previous work fail to address. This challenge
highlights our method’s ability to handle heterogene-
ity that previous approaches could not address. Ta-
ble 2 shows that our proposed FlatLand outperforms
all baselines with statistical significance (p < 0.05).
(1) Local (L) often surpasses Local (E), suggest-
ing that hyperbolic space can better represent most
datasets, though the gap is sometimes marginal.
(2) Euclidean FL methods like FedAvg, FedProx,
FedGNN, and FedSage+ significantly underperform
self-training. GCFL is generally the best among Eu-
clidean methods, but cannot consistently beat Local
(E). FedPer sometimes exceeds Local (E) with small
gains, highlighting challenges with heterogeneous data. (3) FedHGCN, despite operating in hy-
perbolic space, underperforms on heterogeneous datasets by not accounting for data heterogeneity,
akin to FedAvg vs Local (E) in Euclidean space. Besides, due to the quadratic time and space
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Figure 4: Ablation study of
FlatLand on the Cora dataset.

complexity of FedHGCN’s node selection module. Therefore, it can easily encounter out-of-memory
(OOM) issues with large datasets, like ogbn-arxiv. In conclusion, experiments show that FlatLand
can mitigate the heterogeneity, and with larger gains on highly heterogeneous datasets like CiteSeer.

Graph Classification Table 3 shows the results of the graph classification task, which is conducted
with multiple datasets from one or more domains owned by different clients in each task/setting.
In the single-dataset CHEM setting, Local (L) outperforms Local (E) due to inherent hyperbolic
characteristics better captured by hyperbolic geometry. However, in multiple-dataset settings like
BIO-CHEM-SN, Local (L) fails to surpass Local (E), potentially because not all datasets exhibit
prominent hyperbolic features. With our proposed federated graph learning approach, FlatLand
can significantly enhance the performance of the Lorentzian model, outperforming the Euclidean
baselines, and demonstrating the effectiveness of our proposed method.

Convergence Curves The convergence curves for node classification tasks are shown in Figure 7
in Appendix C.5. As the figures demonstrate, our proposed method has great convergence speed,
highlighting the superiority of our proposed approach.

7.3 VARYING EMBEDDING DIMENSIONS (RQ2)

Lower embedding and hidden dimensions reduce the parameter transmission cost in federated
learning, as fewer parameters are communicated between the server and clients during training.
Considering the representational power of hyperbolic spaces in lower dimensions (Chami et al.,
2019), we reduced the embedding dimension from 64 to 4 to evaluate FlatLand’s ability to mitigate
data heterogeneity using compact representations. Figure 3 shows the results on CiteSeer (20 clients),
with similar trends observed across datasets. Dimensionality reduction from 64 to 4 had a relatively
small impact on the hyperbolic methods (FlatLand and FedHGCN) compared to their Euclidean
counterparts. Notably, while FedHGCN underperformed Euclidean methods at higher dimensions, it
outperformed them when the dimension was reduced to 16. FlatLand consistently outperformed all
other methods in different embedding dimensions, and its performance advantage over the baselines
became increasingly significant as the dimensionality was reduced.

7.4 ABLATION STUDY (RQ3)

To analyze the contribution of each component, we conduct ablation studies. Figure 4. Through
ablation studies, we analyze the contribution of each component to the model’s performance.

The benefits of adaptive curvature The "w/o TS" (without tailed space) refers to setting a constant
curvature of 1 for all clients instead of employing tailored curvature settings. It indicates that using
a fixed hyperbolic space with constant curvature yields inferior performance compared to utilizing
tailored curvatures. Furthermore, the results obtained with tailored curvatures closely approximate
those of the local (L) setting, demonstrating the inherent effectiveness of the hyperbolic space itself.
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Figure 5: Performance comparison of FlatLand on Cora and CitSeer across local 10 clients.

The benefits of time-like parameters decoupling. The "w/o DS" refers to no parameter de-
coupling strategy, which exhibits significant fluctuations across rounds because the aggregation
process incorporates heterogeneous information, adversely affecting the results. This highlights the
effectiveness of our proposed decoupling strategy and validates that the time-like dimension can
effectively capture heterogeneous information. Moreover, we analyze the benefits of DS for each
client’s performance. As shown in Figure 5, with client IDs on the x-axis, Flatland outperforms the
local method for the vast majority clients, notably improving performance for clients with inherently
poorer results, like c_8 in the CiteSeer dataset. This underscores the necessity of federated settings
for hyperbolic models. Without our proposed DS, performance deteriorates significantly (e.g., c_7
in CiteSeer), further validating our hypothesis that the time-like parameter encapsulates crucial
heterogeneity information.

The necessity of Lorentz space We conducted experiments to further evaluate the necessity of
using Lorentz space. Table 3 presents the results of an ablation study on the Lorentz transformation.
FlatLand (E) represents our proposed method with parameter decoupling strategy implemented
using an Euclidean backbone. Without Lorentz geometry, FlatLand (E) underperforms because the
time-like parameter loses its geometric meaning. It even falls short of FedPer in most cases, which
uses the classifier layer for personalization. These results validate our hypothesis and underscore the
importance of hyperbolic representation for our proposed decoupling strategy in our method.

8 CONCLUSION AND LIMITATIONS

Table 3: Ablation study results about the necessity of using
Lorentz space to do parameter decoupling.

Cora (10) Cora (20) CiteSeer (10) CiteSeer (20)

# datasets 10 20 10 20

FedAvg 69.19 ± 0.67 69.50 ± 3.58 63.61 ± 3.59 64.68 ± 1.83
FedPer 79.35 ± 0.04 78.01 ± 0.32 70.53 ± 0.28 66.64 ± 0.27
FlatLand (E) 78.53 ± 0.73 76.23 ± 0.43 70.68 ± 0.52 66.29 ± 0.35
FlatLand (ours) 80.46 ± 0.28 82.49 ± 0.25 73.90 ± 0.23 72.24 ± 0.24

Conclusions In this paper, we in-
troduce FlatLand, an exploratory
personalized federated learning ap-
proach leveraging hyperbolic geome-
try to succinctly capture heterogeneity
across clients’ data distributions em-
bedded in tailored Lorentz spaces. We
propose a novel parameter decoupling

strategy, which enables server-side aggregation of common information while mitigating heterogene-
ity interference, without client similarity estimation. This is a previously unexplored approach not
only in FL but also in hyperbolic geometry. As the first work incorporating hyperbolic geometry into
PFL, FlatLand demonstrates superior performance over Euclidean counterparts, especially in low
dimensions, showcasing strong potential as an effective solution to the heterogeneity challenge.

Future work While evaluated on graph data, FlatLand is not limited to graphs and can be extended
to other data types. Note that hyperbolic space is not universally optimal for all data distributions
— some exhibit positive curvature — highlighting the need to model complex data structures in
mixed-curvature spaces. Moreover, more complex Lorentz neural networks can be explored for
federated learning of sophisticated models beyond the simple encoder used currently. Therefore, our
next step is to extend and evaluate FlatLand to more complex backbones and tasks.
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APPENDIX / SUPPLEMENTAL MATERIAL

A PRELIMINARIES

A.1 LORENTZ MANIFOLD: FORMAL DEFINITIONS

Hyperbolic space is non-Euclidean geometry with a constant negative curvature. The curvature
of hyperbolic space is a measure of how the geometry of the space deviates from the flatness of
Euclidean space. The Lorentz manifold, also known as the hyperboloid model, is one of the most
commonly used mathematical representations of hyperbolic space. Its greater stability for numerical
optimization makes it a popular choice for hyperbolic geometry methods Nickel & Kiela (2018).

Definition 1 (Lorentz Manifold). A d-dimensional Lorentz manifold Ld
K with a negative cur-

vature of −1/K(K > 0) can be defined as the Riemannian manifold
(
Hd

K , gℓ
)
, where gℓ =

diag([−K, 1, . . . , 1]) and Hd
K =

{
x ∈ Rd+1 : ⟨x,x⟩L = −K,x0 > 0

}
.

Definition 2 (Lorentzian Inner Product). The inner product ⟨x,y⟩L for x,y ∈ Rd+1 can be defined
as let ⟨x,y⟩L = −x0y0 +

∑d
i=1 xdyd.

Based on the constraint ⟨x,x⟩L = −K, it holds for any point x = (x0,x
′) ∈ Rd+1 that x ∈ Ld

K ⇔
x0 =

√
∥x′∥+K. The larger the value of K, the greater the extent to which the hyperbolic surface

deviates from the Euclidean plane, as it is influenced by the larger value of x0.

Next, the corresponding Lorentzian distance function for two points x,y ∈ Ld
K is provided as

dKL (x,y) =
√
Karcosh(−⟨x,y⟩L/K). (6)

Definition 3 (Tangent Space). For a point x ∈ Ld
K , the tangent space TxLd

K consists of all vectors
orthogonal to x, where orthogonality is defined with respect to the Lorentzian inner product(
Definition 2). Hence, TxLd

K = {v : ⟨x,v⟩L = 0} .
Definition 4 (Exponential and Logarithmic Maps). Let v ∈ TxLd

K . The exponential map expKx :

TxLd
K → Ld

K and logarithmic map logKx : Ld
K → TxLd

K are defined as

expKx (v) = cosh

(
∥v∥L√

K

)
x+
√
K sinh

(
∥v∥L√

K

)
v

∥v∥L
,

logKx (y) = dKL (x,y)
y + 1

K ⟨x,y⟩Lx∥∥y + 1
K ⟨x,y⟩Lx

∥∥
L
,

where ∥v∥L =
√
⟨v,v⟩L denotes the norm of v in TxLd

K .

Particularly, for the sake of calculation, the origin of Lorentz manifold o = (
√
K, 0, 0, ..., 0) ∈ Ld

K
is chosen as the reference point for the exponential and logarithmic maps, which can be simplified as

expKo (v) = expKo
([
0,vE

])
=

cosh

(
∥vE∥2√

K

)
︸ ︷︷ ︸

time-like dimension

,
√
K sinh

(
∥vE∥2√

K

)
vE

∥vE ||2︸ ︷︷ ︸
space-like dimension

 ,
(7)

where the (, ) denotes concatenation and the ·E denotes the embedding in Euclidean space .

A.2 FORMAN-RICCI CURVATURE

Curvature is a metric used in Riemannian geometry that expresses how far a curved line deviates
from a straight line, or how much a surface deviates from planarity. In this context, knowledge of the
local and global geometrical features depends on an understanding of sectional curvature and Ricci
curvature, respectively Sun et al. (2024); Ye et al. (2019).
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Sectional Curvature. This type of curvature is determined at any given point on a manifold by
examining all possible two-dimensional subspaces that intersect at that point. It provides a more
straightforward representation than the Riemann curvature tensor Lee (2018). Recent studies Chen
et al. (2021) often treat sectional curvature uniformly across the manifold, simplifying it to a singular
constant value.

Ricci Curvature. Ricci curvature averages the sectional curvatures at a specific point. In graph
theory, various discrete versions of Ricci curvature have been developed, such as Ollivier-Ricci
curvature Ollivier (2009) and Forman-Ricci curvature Forman (2003). The Ricci curvature on graphs
is intended to assess how the local structure around a graph edge deviates from that of a grid graph.
Notably, the Ollivier approach provides a rougher estimate of Ricci curvature, whereas the Forman
method is more combinatorial and computationally efficient.

For a weighted graph G = (V,E,w), the overall Forman-Ricci curvature Ric(G) can be calculated
as follows:

Ric(G) =
1

|E|
∑

(i,j)∈E

Ric(i, j),

where |E| represents the cardinality of the edge set E (i.e., the total number of edges), and Ric(i, j)
is the Forman-Ricci curvature of the edge (i, j), computed as Southern et al. (2024)

Ric(i, j) =: we

wi

we
+

wj

we
−

∑
el∼i

wi√
wewel

−
∑
el∼j

wj√
wewel


where we denotes the weight of the edge e, i.e, (x, y), wi and wj are the weights of vertices i and
j, respectively. The sums over el ∼ k run over all edges el incident on the vertex k excluding e.
Specifically, the curvature with vertex and edge weights set to 1 , is

Ric(i, j) := 4− di − dj + 3|#∆|,
where di is the degree of node i and |#∆| is the number of 3-cycles (i.e. triangles) containing the
adjacent nodes.

Therefore, the overall Forman-Ricci curvature of the graph is the weighted average of the curvature
values of all edges.

A.3 LORENTZ TRANSFORMATIONS

In special relativity, Lorentz transformations are a family of linear transformations that describe the
relationship between two coordinate frames in spacetime moving at a constant velocity relative to each
other. They can be decomposed into a combination of a Lorentz Boost and a Lorentz Rotation Moretti
(2002). The Lorentz boost, given a velocity v ∈ Rn with ∥v∥ < 1, is represented by the matrix B,
which encodes the relative motion with constant velocity without rotation of the spatial axes. The
Lorentz rotation matrix R represents the rotation of spatial coordinates and is a special orthogonal
matrix, i.e., R⊤R = I and det(R) = 1.

Definition 5 (Lorentz Boost). A Lorentz boost represents a change in velocity between two coordinate
frames without rotation of the spatial axes. Given a velocity v ∈ Rn (relative to the speed of light)
with ∥v∥ < 1, and the Lorentz factor γ = 1√

1−∥v∥2
, the Lorentz boost matrix is defined as:

B =

[
γ −γv⊤

−γv I+ γ2

1+γvv
⊤

]
(8)

where I is the n× n identity matrix.

A Lorentz boost describes the geometric transformation between two inertial reference frames moving
at a constant relative velocity, which involves a hyperbolic rotation in the space-time plane.
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Definition 6 (Lorentz Rotation). A Lorentz rotation describes a rotation of the spatial coordinates.
The Lorentz rotation matrix is defined as:

R =

[
1 0⊤

0 R̃

]
(9)

where R̃ ∈ SO(n) is a special orthogonal matrix satisfying R̃⊤R̃ = I and det(R̃) = 1.

A Lorentz rotation represents a geometric rotation or change of orientation in the spatial dimensions
of the space-time manifold, while leaving the time dimension unchanged.

Both the Lorentz boost and the Lorentz rotation are linear transformations defined directly in the
Lorentz model. For any point x ∈ Ln

K , we have Bx ∈ Ln
K and Rx ∈ Ln

K .

A.4 THE FEDAVG ALGORITHM

Federated Learning (FL) is a distributed learning approach that enables the training of machine
learning models using data residing on local devices. A cornerstone algorithm within the FL paradigm
is the FedAvg algorithm McMahan et al. (2017). FedAvg is particularly effective for scenarios where
data is decentralized and not identically distributed across participants.

Algorithm 1: FedAvg
Input :Model parameters θ, learning rate η, and client dataset Dc for each client c ∈ C
Output :Aggregated model parameters θ

1 Initialize model parameters θ(0);
2 for each communication round r do
3 for each client c in C do
4 Client c receives global model parameters θ(r);
5 for local epochs e do
6 Compute gradients∇L = ∇θ(r)

∑
(x,y)∈Dc

Lc(f(x;θ
(r)), y);

7 end
8 Update local model θ(r+1) ← θ(r) − η∇L;
9 Send θ(r+1) to the server;

10 end
11 N =

∑
c∈C |Dc|;

12 Server aggregates models θ(r+1) ← |Dc|
N

∑
c∈C θ

(r+1)
c ;

13 end

B METHODOLOGY AND ANALYSIS

B.1 STATISTICS OF FORMAN-RICCI CURVATURE IN OTHER DATASETS

We have calculated the Forman-Ricci curvature (Appendix A.2) for each client in the Cora, Photo,
and ogbn-arxiv datasets, which have 10 clients each. The statistics for CiteSeer dataset are shown in
Figure 2 Initialization.

B.2 THE FlatLand ALGORITHM

This section introduces the pseudocode of our FlatLand, as shown in Algorithm 2.

B.3 DERIVATION OF PARAMETERS DISENTANGLEMENT

The reformulated Lorentz neural network in layer l is shown as

x(l+1) = LT(x(l); M̂(l)) =

√
∥mxt +Mxs∥2 +K︸ ︷︷ ︸
time-like dimension x

(l+1)
t

, mxt +Mxs︸ ︷︷ ︸
space-like dimensions x(l+1)

s


T

. (10)

The loss Lc(f(x;θc,θs), y) of client c, the partial derivatives can be calculated as follows:
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Figure 6: Averaged Forman-Ricci curvature across datasets (Cora, ogbn-arxiv, and Amazon-Photo).
Higher bars indicate more pronounced non-Euclidean characteristics in these datasets.

Algorithm 2: FlatLand
Input :Personalized parameters θ(0)

c ,K
(0)
c and dataset Dc, for each client c ∈ C

Shared parameters θ
(0)
s

Learning rate η
Output :Client model parameters Θc =

(
Kc;θc;θs

)
, for each client c ∈ C

Shared parameters θs

1 Initialize model parameters: θ
(0)
s and Θ

(0)
c =

(
K

(0)
c ;θ

(0)
c ;θ

(0)
s

)
, for c ∈ C;

2 for each communication round r do
3 for each client c in C do
4 x = expK

(r)
c

o (x), for x ∈ Dc;

5 Client c receives global model parameters θ
(r)
s ;

6 Θ
(r)
c =

(
K

(r)
c ;θ

(r)
c ;θ

(r)
s

)
;

7 for local epochs e do
8 Compute gradients∇L = ∇

Θ
(r)
c

∑
(x,y)∈Dc

Lc(f(x;Θ
(r)
c ), y);

9 end
10 Update local model Θ(r+1)

c ← Θ
(r)
c − η∇L;

11 Send θ
(r+1)
s ∈ Θ

(r+1)
c to the server;

12 end
13 N =

∑
c∈C |Dc|;

14 Server aggregates models θ
(r+1)
s ←

∑
c∈C

|Dc|
N

θ
(r+1)
sc ;

15 end
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TIME-LIKE DIMENSION x
(l+1)
t

First, we compute the partial derivative of x(l+1)
t with respect to the matrix M(l) and m(l). Using the

chain rule:

∂x
(l+1)
t

∂M(l)
=

∂

∂M

√
∥m(l)x

(l)
t +M(l)x

(l)
s ∥2 +K;

∂x
(l+1)
t

∂m(l)
=

∂

∂m

√
∥m(l)x

(l)
t +M(l)x

(l)
s ∥2 +K.

Applying the chain rule, we get:

∂x
(l+1)
t

∂M(l)
=

1

2

(
∥m(l)x

(l)
t +M(l)x(l)

s ∥2 +K
)− 1

2 · 2(m(l)x
(l)
t +M(l)x(l)

s ) · ∂(M
(l)x

(l)
s )

∂M(l)

=
m(l)x

(l)
t +M(l)x

(l)
s√

∥m(l)x
(l)
t +M(l)x

(l)
s ∥2 +K

· ∂(M
(l)x

(l)
s )

∂M(l)

(11)

∂x
(l+1)
t

∂m(l)
=

1

2

(
∥m(l)x

(l)
t +M(l)x(l)

s ∥2 +K
)− 1

2 · 2(m(l)x
(l)
t +M(l)x(l)

s ) · ∂(m
(l)x

(l)
t )

∂M(l)

=
(m(l)x

(l)
t +M(l)x

(l)
s )√

∥m(l)x
(l)
t +M(l)x

(l)
s ∥2 +K

· x(l)
t

(12)

SPACE-LIKE DIMENSION x
(l+1)
s

Assume that the update rule for the space-like vector x(l+1)
s is given by the following formula:

x(l+1)
s = m(l)x

(l)
t +M(l)x(l)

s

Similarly, we have

∂x
(l+1)
s

∂M(l)
=

∂
(
M(l)x

(l)
s

)
∂M(l)

,
∂x

(l+1)
s

∂m(l)
=

∂
(
m(l)x

(l)
t

)
∂m(l)

. (13)

"Flatland" is the space of dimension 1 : n, serving as a metaphor for a platform where common
information is exchanged and integrated. The same space-like dimension transformation x

(l)
s →

x
(l+1)
s , i.e., x(l)

s →
(
M(l)x

(l)
s +m(l)x

(l)
s

)
in different client with different curvatures, it is easy to

know that the gradient of the parameter m is only related to xt.

For better illustration, here, we let x(l) ∈ Ln
K , x(l+1) ∈ Ln

K , and M̂(l) ∈ R(n+1)×(n+1). The
introduced "Flatland" Rn is defined as a manifold spanning dimensions 1 to n. This construct serves
as a metaphorical platform for the exchange and integration of common information, and xt serves
as the heterogeneous information. Consider the same transformation of a space-like vector x(l)

s to
x
(l+1)
s in different clients, formulated as

x(l)
s →

(
M(l)x(l)

s +m(l)x(l)
s

)
,

it is easy to recognize that the gradient of the parameter m(l) depends solely on xt (Equation (12) and
Equation (13)). Therefore, the update of parameter m(l) is only related to heterogeneous information
and transmitted to the server side for aggregation may lead to performance degradation.
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B.4 PROOF OF COROLLARY 1

Proof. Let x =

[
xt

xs

]
∈ Ln

K , where xt ∈ R,xs ∈ Rn. According to Equation (4), we have:

LT
(
x; Φ(M̂,N)

)
=

[√
∥mxt +Nxs∥2 +K

mxt +Nxs

]
We need to prove that LT(x; Φ(M̂,N)) ∈ Lm

K , i.e., to prove that it satisfies the definition condition
of the Lorentz manifold ⟨·, ·⟩L = −K:

〈
LT

(
x; Φ(M̂,N)

)
,LT

(
x; Φ(M̂,N)

)〉
L

=

〈[√
∥mxt +Nxs∥2 +K

mxt +Nxs

]
,

[√
∥mxt +Nxs∥2 +K

mxt +Nxs

]〉
L

(Definition 2)

=−
(√
∥mxt +Nxs∥2 +K

)2

+ ∥mxt +Nxs∥2

=−K

Therefore, we have proved that LT
(
x; Φ(M̂,N)

)
∈ Lm

K .

B.5 CONVERGENCE ANALYSIS

FedAvg converges to the global optimum at a rate of O( 1
T ) for strongly convex and smooth functions

and non-iid data. When the learning rate is sufficiently small, the effect of E steps of local updates is
similar to a step update with a larger learning rate (Li et al., 2020b).

In this section, we demonstrate that FlatLand achieves a convergence rate of O( 1
T ) without regular-

ization, which is consistent with FedAvg. Furthermore, when incorporating regularization similar to
FedProx (Li et al., 2020a), the convergence rate can be bounded by a constant that reflects the degree
of data heterogeneity, analogous to FedProx’s theoretical guarantees. This analysis confirms that our
special geometric enhanced decoupling strategy maintains the overall convergence properties while
addressing the challenges of heterogeneous data distribution.

To simplify the analysis, we consider each client conducts full batch gradient descent with one step.
At client c, the objective function can be generally written as

min
θc|Cc=1,θs

Lc(f(x
Kc ;θc,θs), y) + λ∥θsc − θs∥22, (14)

where λ is a hyperparameter, y ∈ Y , ∥θsc − θs∥22 is the regularization term that prevents the locally
updated model θsc from deviating too far from the server shared parameters θs.

Let ℓc = Lc(f(x
Kc ;θc,θs), y) , then the global loss is taken as an average of the loss of each client:

ℓ =
∑

c∈C pcℓc, where pc ≥ 0 and
∑

c pc = 1.

The local update is performed using vanilla gradient descent with a local learning rate η in each client,
and Θc(r) ∈ E represents the weight parameters of the client c in the round r. Then, for global round
r,

∆Θ(r)
c = Θ(r+1)

c −Θ(r)
c = −η

(
∇ℓc(Θ(r)) + 2λ

(
θsc − θ̂s

))
.

To better calculate the difference between personalized parameters and shared parameters, we let

Θ(r)
c = θ(r)

c + θ(r)
s

, where, θ(r)
c = [m(r) o], θ(r)

s = [o M(r)].
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Specifically, the global aggregation procedure is conducted by taking the average of local updates of
shared parameters θs of all |C| clients. According to

θ(r+1)
s = θ̄(r)

s =
∑
c∈C

|Dc|
N

θ(r)
sc =

∑
c∈C

pcθ
(r)
sc

We make the following standard Assumption commonly used in non-convex optimization (Li et al.,
2020b; Reddi et al., 2020).
Assumption 1 (L-smoothness). ∀c∈Cℓc are L-smooth: for all Θ1 ∈ E and Θ2 ∈ E,

ℓc(Θ1) ≤ ℓc(Θ2) + (Θ1 −Θ2)
T∇ℓc(Θ2) +

L

2
∥Θ1 −Θ2∥22.

Assumption 2 (Bounded Gradients). The function ℓc(Θ) have G-bounded gradients, i.e., for any
c ∈ C, Θ ∈ Rd we have ∥∇ℓc(Θ)∥ ≤ G.
Lemma 1 (Smooth Decent Lemma). Let ℓ : E → R be an L-smooth function. Then for any
Θ(r),Θ(r+1) ∈ E, the following inequality holds:

ℓ(Θ(r+1)) ≤ ℓ(Θ(r)) + ⟨∇ℓ(Θ(r)),∆Θ(r)⟩+ L

2
∥∆Θ(r)∥2.

Let δ(r) = 2λ
∑

c∈C
|Dc|
N

(
θsc − θ̄s

)
. Based on Lemma 1, we have

ℓ(Θ(r+1)) ≤ ℓ(Θ(r)) + ⟨∇ℓ(Θ(r)),∆Θ(r)⟩+ L

2
∥∆Θ(r)∥2

= ℓ(Θ(r)) +
〈
∇ℓ(Θ(r)),−η

(
∇ℓ(Θ(r)) + δ(r)

)〉
+

Lη2

2
∥∇ℓ(Θ(r)) + δ(r)∥2

= ℓ(Θ(r))− η
〈
∇ℓ(Θ(r)),∇ℓ(Θ(r)) + δ(r)

〉
+

Lη2

2
∥∇ℓ(Θ(r)) + δ(r)∥2

= ℓ(Θ(r))− η∥∇ℓ(Θ(r))∥2 − η
〈
∇ℓ(Θ(r)), δ(r)

〉
+

Lη2

2
∥∇ℓ(Θ(r))∥2 + Lη2⟨∇ℓ(Θ(r), δ(r))⟩+ Lη2

2
∥δ(r)∥2

= ℓ(Θ(r)) + (
Lη2

2
− η)∥∇ℓ(Θ(r))∥2 + Lη2

2
∥δ(r)∥2 + (Lη2 − η)

〈
∇ℓ(Θ(r)), δ(r)

〉
= ℓ(Θ(r)) + (

Lη2

2
− η)∥∇ℓ(Θ(r))∥2 + Lη2

2
∥δ(r)∥2 + Lη2 − η

2

(
∥∇ℓ(Θ(r))∥2 + ∥δ(r)∥2 − ∥∇ℓ(Θ(r)) + δ(r)∥2

)
= ℓ(Θ(r)) + (Lη2 − 3η

2
)∥∇ℓ(Θ(r))∥2 + (Lη2 − η

2
)∥δ(r)∥2 − Lη2 − η

2
∥∇ℓ(Θ(r)) + δ(r)∥2

(15)

We select η = 1
L , so we we have

ℓ(Θ(r+1)) ≤ ℓ(Θ(r))− 1

2L
∥∇ℓ(Θ(r))∥2 + 1

2L
∥δ(r)∥2 (16)

Rearrange the above inequality and we have

∥∇ℓ(Θ(r))∥2 ≤ 2L
(
ℓ(Θ(r+1))− ℓ(Θ(r))

)
+ ∥δ(r)∥2 (17)

Then, sum r from 1 to T , we have

min
r∈[T ]

∥∇ℓ(Θ(r))∥ ≤
2L

(
ℓ(Θ(r+1))− ℓ(Θ(r))

)
T

+
1

T

∑
r∈[T ]

∥δ(r)∥2 (18)

Definition 7 (B-local dissimilarity). The local functions ℓc are B-locally dissimilar at Θ if
Ec[∥∇ℓc(Θ)∥2] ≤ ∥∇ℓ(Θ)∥2B2.

We further define B(Θ) =
√

Ec[∥∇ℓc(Θ)∥2]
∥∇ℓ(Θ)∥2 for ∥∇ℓ(Θ)∥ ≠ 0.
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Definition 8 (γ-inexact solution). For a function h(w;w0) = F (w) + λ∥w − w0∥2, and γ ∈
[0, 1], we say w∗ is a γ-inexact solution of minw h(w;w0) if ∥∇h(w∗;w0)∥ ≤ γ∥∇h(w0;w0)∥,
where ∇h(w;w0) = ∇F (w) + µ(w − w0), where, µ = 2λ. Note that smaller γ corresponds to
higher accuracy.

Using the notion of γ-inexactness for each local client, we can define e
(r)
c such that

∇ℓc
(
Θ

(r+1)
c

)
+ µ

(
θ̂
(r)
s − θ

(r)
sc

)
+ µ

(
θ
(r+1)
c − θ

(r)
c

)
− e

(r)
c = 0,

∥e(r)c ∥ ≤ γ∥∇ℓc
(
Θ

(r)
c

)
∥.

(19)

Then we have

θ(r+1)
s − θ(r)

s =
−1
µ

Ec

[
∇ℓc

(
Θ(r)

c

)]
+

1

µ
Ec[e

(r)
c ]− Ec

[
∆θ(r)

c

]
, (20)

According to (Li et al., 2020a) and triangle inequality, when a regularization is incorporated, (λ > 0),
we have

1

4λ2
∥δ(r)∥2 ≤

(
Ec

[
∥θ(r+1)

s − θ(r)
sc ∥

])2

≤
(
1 + γ

µ̄

)2 (
Ec

[
∥∇ℓc

(
Θ(r)

c

)
−∆θ(r)

c ∥
])2

≤
(
1 + γ

µ̄

)2 (
Ec

[
∥∇ℓc

(
Θ(r)

c

)
−∆θ(r)

c ∥2
])

≤ B2(1 + γ)2

µ̄2
E
[
∥∇ℓc

(
Θ(r)

c

)
∥2
]
+ C,

Based on the assumption of the bounded gradients (Assumption 2), we find that the δ(r) is also

bounded. Specifically, C =
(

1+γ
µ̄

)2

Ec[∥∆θc∥2] ≈
(

1+γ
µ̄

)2

E[∥∆Mc∥2]. ∥δ(r)∥2 measures the
degree of data heterogeneity.

Overall, when λ = 0, the term δ(r) = 0, eliminating the impact of data heterogeneity and resulting
in a convergence rate of O

(
1
T

)
, consistent with FedAvg. And when incorporating regularization

(λ > 0), we establish that
∥∥δ(r)∥∥2 is bounded, analogous to the theoretical guarantees provided by

FedProx (Li et al., 2020a)..

B.6 TIME AND SPACE COMPLEXITY COMPARED WITH FEDAVG

We analyze the computational complexity of FlatLand compared to FedAvg, which gives insight for
the scalability.

Local Update The additional operations in FlatLand’s local update phase compared with FedAvg -
curvature estimation (Section 5.1), exponential map (line 4 in Algorithm 2, Equation 7). Notably,
the curvature estimation can be pre-computed since each client’s data distribution corresponds to a
constant curvature value. For exponential map, the transformation only requires a single non-linear
mapping operation based on the norm of input samples with the time complexity of O(1). These
norms can also be pre-computed and cached. Therefore, while FlatLand introduces these additional
steps compared to FedAvg, their practical computational overhead is limited due to pre-computation
opportunities and constant-time operations.

Aggregation FlatLand and FedAvg have the same aggregation time complexity when the hidden
embedding dimension is the same. Though FlatLand introduces extra time-like space parameters,
it only aggregates shared parameters θs while maintaining personalized parameters. The overhead
of the shared parameters is the same. Moreover, FlatLand can perform better in low dimensionality
(Section 7.3), which potentially reduces practical communication costs.

Space Requirements and Storage FlatLand requires extra O(d+ 1) storage per client compared
to FedAvg due to the additional time-like dimension and curvature parameter, where d is the hid-
den dimension. Since typically d is small, the increase in storage is small. Moreover, FlatLand
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Table 4: Statistics of node classification datasets. We report the (average) number of nodes, edges,
classes, clustering coefficient, and heterogeneity for different numbers of clients.

Dataset Cora Citeseer ogbn-arxiv Amazon-Photo

# Clients 1 10 20 1 10 20 1 10 20 1 10 20

# Classes 7 6 40 8
Avg. # Nodes 2,485 249 124 2,120 212 106 169,343 16,934 8,467 7,487 749 374
Avg. # Edges 10,138 891 422 7,358 675 326 2,315,598 182,226 86,755 238,086 19,322 8,547

Avg. Clustering Coefficient 0.238 0.259 0.263 0.170 0.178 0.180 0.226 0.259 0.269 0.410 0.457 0.477
Heterogeneity N/A 0.606 0.665 N/A 0.541 0.568 N/A 0.615 0.637 N/A 0.681 0.751

Table 5: Statistics of graph classification datasets. We report the (average) number of graphs, nodes,
edges, classes, and node features of each dataset.

Dataset CHEM BIO SN

MUTAG BZR COX2 DHFR PTC_MR AIDS NCI1 ENZYMES DD PROTEINS COLLAB IMDB-BINARY IMDB-MULTI

# Graphs 188 405 467 467 344 2000 4110 600 1178 1113 5000 1000 1500
Avg. # Nodes 17.93 35.75 41.22 42.43 14.29 15.69 29.87 32.63 284.32 39.06 74.49 19.77 13.00
Avg. # Edges 19.79 38.36 43.45 44.54 14.69 16.20 32.30 62.14 715.66 72.82 2457.78 96.53 65.94

# Classes 2 2 2 2 2 2 2 6 2 2 3 2 3
Node Features original original original original original original original original original original degree degree degree

demonstrates superior performance even in low-dimensional settings compared with the Euclidean
counterparts, which further limits the practical storage overhead.

This analysis suggests that FlatLand can balance the trade-off between computational overhead and
model effectiveness, showing the scalability for the increase in clients. While it introduces additional
operations in local computations, these overheads are limited and offer significant optimization
opportunities through pre-computation and caching strategies. The method compensates for these
minimal costs through reduced communication overhead and enhanced representation capabilities
in the Lorentz space, making it a practical and efficient choice for personalized federated learning
applications.

C EXPERIMENTAL SUPPLEMENTARY

C.1 DATASETS

For federated node classification, we adopt four benchmark datasets constructed by Baek et al. (2023):
Cora, CiteSeer, ogbn-arxiv, and Photo Sen et al. (2008); Hu et al. (2020); Shchur et al. (2018). Cora,
CiteSeer, and ogbn-arxiv are citation graphs. Photo is a product graph. Each graph dataset is divided
into a certain number of disjoint subgraphs using the METIS graph partitioning algorithm Karypis &
Kumar (1995), where each subgraph belongs to an FL client. Statistics of datasets are summarized in
Table 4.

For federated graph classification, we consider the non-IID settings proposed by Xie et al. (2021).
In total, there are 13 graph classification datasets from three different domains, including small
molecules (MUTAG, BZR, COX2, DHFR, PTC_MR, AIDS, NCI1) denoted as CHEM, bioinformatics
(ENZYMES, DD, PROTEINS) denoted as BIO, and social networks (COLLAB, IMDB-BINARY,
IMDB-MULTI) Morris et al. (2020) denoted as SN. To simulate data heterogeneity, three non-IID
settings are constructed: (1) a cross-dataset setting based on the small molecule datasets (CHEM),
(2) a cross-domain setting based on all datasets (BIO-CHEM-SN). In each setting, one dataset
corresponds to one FL client. Statistics of datasets are summarized in Table 5.

C.2 IMPLEMENTATION DETAILS

Implementation of learnable curvature. K is a learnable scalar parameter. To ensure the curvature
remains negative (as required for hyperbolic space), we implement it as sigmoid(K) + 0.5. This
design also keeps curvature −K within an effective range of [0.5, 1.5], which prior work has shown
to be ideal for hyperbolic models (Chen et al., 2021). Additionally, this approach maintains numerical
stability while satisfying the need for a heterogeneous space.

Implementation of node classification / graph classification task. For the node classification task,
we employ 2-layer GCN Kipf & Welling (2017) for Euclidean models, 2-layer LGCN Chen et al.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

MNIST (Acc%) MNIST (AUC%) MNIST (Acc%) MNIST (AUC%)
# clients (β) 20(0.1) 20(0.1) 100(0.1) 100(0.1)

FedAvg 87.86± 0.0816 97.77± 0.0149 86.14± 0.2066 96.57± 0.0508

FedProx 87.53± 0.0771 98.81± 0.0110 84.50± 0.1658 98.22± 0.0442

Ditto 97.85± 0.0191 99.92± 0.0012 96.45± 0.0415 99.78± 0.0047

GPFL 92.90± 0.0724 99.48± 0.0110 96.52± 0.0462 99.70± 0.0136

FedRep 98.14± 0.0196 99.85± 0.0196 96.54± 0.0750 99.67± 0.0190

FedCAC 97.85± 0.0189 99.92± 0.0012 96.59± 0.0505 99.81± 0.0080

FlatLand 98.35± 0.0136 99.93± 0.0011 96.64± 0.0495 99.70± 0.0116

Table 6: Performance comparison on MNIST dataset.

Figure 7: The convergence curves of our proposed methods and the strong baselines.

(2021) for FlatLand, and HGCN with node selection for FedHGCN Du et al. (2024). LGCN serves
as the backbone for our graph learning framework, combining Lorentz linear layers (Equation 2) with
graph aggregation operations, similar to how Euclidean counterparts like GCN and GIN integrate
linear layers with graph aggregation. Each layer applies a Lorentz transformation followed by
neighbor aggregation using the adjacency matrix to get the node representations. We conduct 100
rounds for Cora/CiteSeer and 200 rounds for larger datasets like Photo/ogbn-arxiv, with 1-3 local
epochs, use 128-dim hidden layers. For graph classification, we use 3-layer GIN Xu et al. (2018) as
the Euclidean encoder, and the same 3-layer hyperbolic encoders as node classification for hyperbolic
models, with 1 local epoch and 200 rounds. The learning rate is chosen from {0.01, 0.001}, and
weight decay uses 1e− 5. We optimize with Adam, and calculate node-level / graph-level accuracy
averaged across clients. All experiments are implemented in Python3.10, PyTorch, and run on an
RTX A6000 GPU, 40G storage. Each client is allocated a worker with one round of around 1 second
for one epoch in the node classification task.

C.3 EXPERIMENTS ON IMAGE DATASETS

In this section, we evaluate the effectiveness of our proposed method, FlatLand, on the MNIST
dataset to demonstrate its performance on image data. We compare our method with several baseline
algorithms in the context of personalized federated learning (PFL). The experiments are designed to
assess the performance under different numbers of clients and to emphasize data heterogeneity.

We conducted experiments on the MNIST dataset to validate the effectiveness of our proposed method,
FlatLand, on image data. The dataset was partitioned among clients using a Dirichlet distribution
with a concentration parameter β = 0.1, introducing high data heterogeneity to simulate non-i.i.d.
scenarios common in federated learning. We compared FlatLand against several baseline methods —
FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020a), Ditto Li et al. (2021a), GPFL (Zhang
et al., 2023a), FedRep (Collins et al., 2021), and FedCAC (Wu et al., 2023) — under two settings
with 20 and 100 clients. All experiments were implemented using PFLib (Zhang et al., 2023c).

These results demonstrate that FlatLand performs competitively on image data. This indicates
that FlatLand effectively handles high data heterogeneity and scales well with different numbers
of clients. Besides, the significant performance gap between FlatLand and traditional federated
learning methods like FedAvg and FedProx highlights the effectiveness of our approach in highly
heterogeneous settings.
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C.4 PARIAL PARTICIPATION RATE

We conducted extensive experiments with an increased number of clients (50 clients) in the Cora
dataset, which represents a large client pool configuration in graph federated learning scenarios
(Du et al., 2024). The results demonstrate that our method maintains its effectiveness even with an
expanded client base. Furthermore, we investigated the impact of partial client participation, where
only a fraction of clients participate in each aggregation round. Figure 8 illustrates the performance
comparison between FedAvg and FlatLand under different participation rates on the Cora dataset
with 50 clients.

10 30 50 70 100
Partial Participation Rate (%)

0

20

40

60

80
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Performance on Cora (50 Clients)
FedAvg
FlatLand

Figure 8: Performance comparison between Fe-
dAvg and FlatLand under different client partic-
ipation rates on Cora dataset with 50 clients.

The experimental results show that FlatLand ex-
hibits remarkable robustness across various partic-
ipation rates. Even with only 10% client partici-
pation (5 clients), FlatLand achieves an accuracy
of 81.82%, while FedAvg only reaches 18.14%.
As the participation rate increases, FlatLand main-
tains consistently high performance. In contrast,
FedAvg shows performance fluctuations.

These findings confirm that FlatLand can main-
tain high performance even under low client par-
ticipation scenarios, demonstrating its practical
value for real-world federated learning applica-
tions where full client participation may not al-
ways be feasible. The robust performance under
partial participation is particularly important for
federated learning systems, where coordinating all
clients simultaneously can be challenging.

C.5 CONVERGENCE CURVES

The convergence curves are shown in Figure 7. As the figures demonstrate, our proposed method can
achieve better convergence speed, highlighting the superiority of our proposed approach.

C.6 BROADER IMPACTS

Our personalized federated learning method is a major advancement for privacy-preserving, trust-
worthy AI. Enabling collaborative training of highly personalized models without compromising
data privacy enhances user privacy protection and fosters broader adoption of ethical personalized
AI technologies. Crucially, it improves personalized user experiences through accurate, tailored
services while actively building transparent, user-centric personalized AI systems to boost public trust.
Potential risks can be mitigated through robust safeguards, vigilance, and stakeholder collaboration.
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