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Abstract
We propose Automatic Feature Explanation us-
ing Contrasting Concepts (FALCON), an inter-
pretability framework to explain features of im-
age representations. For a target feature, FAL-
CON captions its highly activating cropped im-
ages using a large captioning dataset (like LAION-
400m) and a pre-trained vision-language model
like CLIP. Each word among the captions is
scored and ranked leading to a small number
of shared, human-understandable concepts that
closely describe the target feature. FALCON
also applies contrastive interpretation using lowly
activating (counterfactual) images, to eliminate
spurious concepts. Although many existing ap-
proaches interpret features independently, we ob-
serve in state-of-the-art self-supervised and super-
vised models, that less than 20% of the representa-
tion space can be explained by individual features.
We show that features in larger spaces become
more interpretable when studied in groups and
can be explained with high-order scoring concepts
through FALCON. We discuss how extracted con-
cepts can be used to explain and debug failures in
downstream tasks. Finally, we present a technique
to transfer concepts from one (explainable) repre-
sentation space to another unseen representation
space by learning a simple linear transformation.

1. Introduction
Learning generalizable representations has a growing re-
quirement given the considerable cost of pre-training and
inference. More importantly, understanding what is encoded
in representations is a necessity for deployment, particularly
in medical and safety-critical applications (Salahuddin et al.,
2021). Large pre-trained self-supervised models (Caron
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Figure 1. Framework of FALCON: We outline the process of
interpreting any given feature(s) in the representation space of
a pre-trained model using a probe dataset D and a captioning
dataset S. Taking the set of highly activating images (from D) for
the target features we compute their gradient heatmap (Selvaraju
et al., 2019) crops, keeping only the highly activating regions. We
compute CLIP (Oikarinen & Weng, 2022) image representations of
the cropped images and text representations of a large captioning
dataset (in our case, LAION-400m (Schuhmann et al., 2021)).
For contrastive interpretation, we also caption lowly activating
(counterfactual) images. Using cosine similarity, we select the top
5 captions per image and pass them through our concept extraction
module (Described in Figure 3).

et al., 2021; Chen et al., 2020a;b; Chen & He, 2021) have
shown successful generalization capability with frozen rep-
resentations, however, their representation spaces are still
not fully understood. Prior works attempt to understand neu-
ral features through detailed visualization of concepts (Olah
et al., 2020; 2017; Selvaraju et al., 2019; Zhang et al., 2021;
Ghorbani et al., 2019). Visualization (via saliency) helps
discover various attributes that neurons react to, but can be
noisy and greatly ambiguous requiring manual inspection
to achieve any useful explanation. Natural language expla-
nations can complement saliency heatmaps by providing a
small number of conceptual keywords that accurately de-
scribe the salient component. Text-based explanations of
model features can also enable scalable analysis of model
interpretability. We can automatically identify concept fre-
quency and sensitivity, their contribution in downstream
tasks and debug failures modes. We note that such analysis
is not easily possible using traditional interpretation meth-
ods involving saliency (gradient heatmaps). One way to
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Figure 2. Concepts extracted by FALCON for various features in the SimCLR representation space: We explain various features of
the final layer representations of SimCLR (Chen et al., 2020a) pre-trained on ImageNet (Russakovsky et al., 2015) with a ResNet-18 (He
et al., 2016) backbone (512 features). For each feature, we show the top activating images as well as the lowly activating images. We crop
the top activating images to highlight only the activated regions and extract concepts using the approach outlined in Section 2. The lowly
activating images are used to filter spurious concepts using our approach called contrastive interpretation (See Equation 2).

achieve automatic text-explanation is by using supervision
datasets (Bau et al., 2017; Hernandez et al., 2022) with fine-
grained conceptual labels for each sample. Such approaches
can prove to be expensive, requiring expert annotations.
They also may not be generalizable as explanations can be
dataset-specific.

In the first part of this paper, we propose Automatic Feature
Explanation using Contrasting Concepts (FALCON),
a framework to explain neural features, with no densely-
labelled dataset or human intervention. We mainly study
final-layer self-supervised representations as they contain
no label-bias, however, our approach is model-agnostic and
can be extended to any deep neural feature. We are also
particularly interested in understanding final-layer represen-
tations since they alone are accessible to downstream tasks,
and their richness and quality is shown to be essential for
better generalization (Bordes et al., 2021; Kalibhat et al.,
2022; Garrido et al., 2022). Nevertheless, our framework is
general and can be extended to explain any layer neurons.

FALCON is described in Figures 1 and 3. For a target fea-
ture, we first compute crops of highly activating images from
a given dataset (like, ImageNet (Russakovsky et al., 2015))
based on gradient activation. We then caption each cropped
image by matching their CLIP (Radford et al., 2021) image
embeddings to the closest CLIP text embeddings from a
large captioning dataset (like, LAION-400m (Schuhmann
et al., 2021)). We collect illustrative captions for each image
with high CLIP cosine similarity, without having to train

additional captioning models (Hernandez et al., 2022; Wang
et al., 2020; Yu et al., 2022; Wiles et al., 2022). The next
step in FALCON is described in Figure 3, where we show
how a compact set of shared, human-understandable con-
cepts are extracted from image captions using Word Score.
We define concepts as the words which closely relate to
the attributes that are likely to be encoded by the target
feature, based on the set of cropped highly activating im-
ages. Unlike prior methods ((Oikarinen & Weng, 2022)),
FALCON is not restricted to output a single concept since
features can encode complex physical information which
can compose of multiple facets (Mu & Andreas, 2020). We
recognize, however, that top-ranking concepts can relate to
spurious attributes which may not be true descriptors for
the target feature, although the attributes exist in most of
the highly activating images. Current interpretability tech-
niques (Oikarinen & Weng, 2022; Hernandez et al., 2022;
Bau et al., 2017), tend to produce misguided explanations
as they do not account for spuriosity and simply report the
highest scoring concept. FALCON eliminates spurious con-
cepts by applying a contrastive interpretation technique,
where we use lowly activating (counterfactual) images for
the target feature whose concepts can be discarded. We
therefore produce the minimum sufficient set of concepts
that best explain the target. We show the results of success-
fully annotated features of SimCLR (Chen et al., 2020a) in
Figure 2.

In the second part of our paper, we study which features in
the representation space can be explained. We observe that
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individual features that are very strongly activating for an
adequate number of samples can correspond to easily de-
tectable concepts. However, such features constitute a very
small portion of the whole representation space. We observe
that most features activate a diverse set of images where the
hidden concept is not apparent (See Figure 4). We discover
that pairs (or groups) of such features are surprisingly more
interpretable than individual features. The highly activating
images of feature groups are strongly correlated allowing
FALCON to produce high scoring concepts. We can there-
fore explain a much larger portion of the representation
space with descriptive and robust concepts.

We evaluate FALCON through human evaluation on Ama-
zon Mechanical Turk (AMT). We show participants images
and their FALCON concepts to collect ground truths (rel-
evant or not relevant) for each concept of each annotated
feature. The results from our study show a precision of 0.86
and recall of 0.84 for the top-5 concepts, indicating that
FALCON concepts are agreeably explanatory (See Section
4).

Since the extracted concepts are unique physical attributes
for only the portions that a given feature encodes, we can
decompose the content of any given image into a set of
concepts corresponding to different elements (See Figure
5). This helps us understand which physical components
of the image have been encoded in its representation. This
is also not possible with approaches that conceptualize en-
tire images (like (Oikarinen & Weng, 2022)). We further
utilize concepts to explain failures, like mis-classifications
in downstream tasks (See Figure 6). By discovering the
most contributing concepts in classification, we can detect
what the model pays attention to while making its prediction
and communicate these in terms of human-understandable
concepts. This can help practitioners find and debug issues
like hard examples, multi-object scenarios and mis-labelled
examples.

Finally, we propose an approach to transfer concepts from
an explained representation space to a new representation
space by learning a simple, linear transformation. We train a
linear head that maps representations from a target (unseen)
model to the source (interpretable) model. This function
lets us map any interpretable feature (or group of features)
in the source model to the corresponding feature (or group
of features) in the target model, and transfer the extracted
concepts. We show that the top activating images of the
features in the new representation space, exactly match the
transferred concepts from the source representation space
(See Figure 7).

We summarize our contributions below:

• We propose Automatic Feature Explanation using Con-
trasting Concepts (FALCON), an interpretability frame-

work that automatically detects concepts encoded by
any feature of image representations, without any la-
belled datasets or human intervention.

• We show that representation spaces can be largely ex-
plained by interpretable feature groups rather than in-
dependent features.

• We show that concepts can be used to explain failures
in downstream tasks and can be transferred across rep-
resentation spaces with a simple linear transformation.

2. Automatic Feature Explanation using
Contrasting Concepts (FALCON)

2.1. Image Captioning Using CLIP

We discuss the general workflow of FALCON to explain
features of vision model representations. Let us consider
a pre-trained backbone denoted by fθ(·). For a given input
image x, this model outputs a representation vector of size
r, i.e, fθ(x) = h ∈ Rr. Any downstream task only uti-
lizes these representation vectors, therefore, our objective
is to provide human-understandable explanations for these
features.

In order to explain features (different indices in h), we
utilize two datasets ; 1) A probing dataset consisting of a
diverse set of images (D), and 2) A large text dataset to ex-
tract concepts (S). In our experiments, we use ImageNet-1K
(Russakovsky et al., 2015) validation set for D and LAION-
400m (Schuhmann et al., 2021) for S, however, the frame-
work of FALCON is general and can be used with other
datasets as well.

Let us consider the task of explaining the ith(0 ≤ i ≤ r)
feature in the representation space of a pre-trained vision
model fθ(·). From the probing dataset, D of size N , we
first extract the set of highly activating images for feature
i defined by, Ti = {j : hji > α, 1 ≤ j ≤ N}, where
α is a threshold we empirically select (more discussed in
Section 3). As shown in Figure 1, for SimCLR (Chen et al.,
2020a) with a ResNet-18 (He et al., 2016) backbone, the
set of highly activating images for feature 10 are images
of a certain breed of dogs. We next compute the gradient
of feature i with respect to these images using GradCAM
(Selvaraju et al., 2019) as shown. We crop the images keep-
ing only the maximally activating portions by thresholding
the GradCAM mask. This set of cropped images as well as
a large scale text dataset (S) like LAION-400m, serve as
the input to a pre-trained vision-language model, i.e., CLIP
(ViT-B/32) (Radford et al., 2021). LAION-400m is a large,
diverse image captioning dataset which has been used to
pre-train vision-language models like CLIP.

We define the CLIP text encoder as gtx(·) and image encoder
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Figure 3. Concept extraction in FALCON using contrasting concepts: We extract a bag of words (nouns, verbs, adjectives) from the
top 5 captions (from LAION-400M (Schuhmann et al., 2021)) of every image in the set of highly activating images of a given feature. We
use a scoring function (Equation 1) to extract top scoring words and phrases which we refer to as concepts. We also apply contrastive
interpretation where we discard any concept that is extracted from the lowly activating images (mined through Equation 2). In this case,
“dog” and “white” are spurious concepts that exist in both highly and lowly activating images, implying that they are not discriminative
explanations. Therefore, final set of discriminative concepts include “shaggy”, “coat”, “komondor” and “corded” which are all closely
related to the given image set.

as gim(·). Given our captioning dataset (S) of size M , we
extract the text embedding matrix denoted by A ∈ RM×k

where k is the size of the CLIP text embedding space. Since
our captioning dataset is fixed for interpreting any feature,
we only need to compute its embeddings once. In fact,
LAION also provides pre-computed text embeddings on
CLIP which saves compute time significantly. We next
compute the image embeddings of the cropped highly ac-
tivating images of feature i denoted by B ∈ R|Ti|×k. Us-
ing A and B, we compute the CLIP confidence matrix,
which is essentially the cosine similarity matrix, denoted
by C = BAT ∈ R|Ti|×M . Note that both text and image
embeddings are L2-normalized before computing C. Using
C, we extract the top 5 captions for each image in Ti.

2.2. Contrastive Concept Extraction

The second component of FALCON involves extracting
concepts out of the captioned batch of highly activating
images for the given feature. In Figure 3, we show the top-
5 concepts for three highly activating images along with
the CLIP confidence. From each caption, we extract the
noun phrases, nouns, verbs and adjectives to form a bag of
words. Verbs and adjectives are extracted to qualify complex
concepts which cannot be described with nouns alone. We
remove all stop words and words containing digits or special
characters from the bag. We also prepare a discard word
set including general, non-conceptual words like “photo”,
“picture”, “background” etc. Given a word w, the word
confidence for the pth caption in the qth image is given by,
Cw

q,p if the word exists in the caption, otherwise 0. We get

the maximum value of Cw
q,p for each image (q). The Word

Score is defined as,

Word Scorew =
1

|Ti|

|Ti|∑
q=1

max
p

Cw
q,p (1)

Word Score gives a normalized score for every word among
the captions we extract. The best shared concepts describing
a given feature i are the highest ranking words, by applying
a threshold (in practice, 0.08).

Contrastive Interpretation: In practice, the above method
of concept extraction provides a number of high-scoring key-
words, shared between the highly activating images. How-
ever, in many cases, these keywords can be too general
or related to high-level spurious attributes which may be
common to all the activating images but not necessarily
relevant to the feature we want to interpret. Many existing
techniques (Oikarinen & Weng, 2022; Bau et al., 2017; Her-
nandez et al., 2022; Mu & Andreas, 2020), do not account
for such cases and they only report a single best scoring con-
cept. In FALCON, we overcome this issue by discovering
images in D that share all other concepts with the highly
activating images of feature i, except the actual concepts
that feature i encodes. We refer to these images as lowly
activating counterfactual images. The concepts extracted
out of lowly activating images can be regarded as spurious
concepts for feature i and added to the discard set.

Let us define the set of feature indices without the index i as
Vi = {j : 0 ≤ j ≤ r, j ̸= i}. The mean representation of
the highly activating images ignoring the ith feature can be
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Figure 4. Groups of features can be more interpretable than individual features: In the first panel, we show the highly activating
images of some features of DINO (Caron et al., 2021) representations trained on ImageNet (Russakovsky et al., 2015) with a ResNet-50
(He et al., 2016) backbone. We observe that the images are highly diverse with seemingly no shared concept, like “mushrooms” and
“water towers” in feature 188. In the second panel, we observe that images that highly activate pairs of features are significantly more
connected. The concepts that our framework extracts are strongly correlated to each group of images. For each feature group, we use the
lowly activating images (mined from Equation 2) to filter out spurious concepts.

written as hµ = meanTi(hTi,Vi) ∈ R|Vi|. The set of lowly
activating images for the target feature i is given by,

Li = {j : hji < ϵ,hj,Vi
· hµ ≥ β, 0 ≤ j ≤ N} (2)

where β and ϵ are limits we select empirically. In our ex-
periments, ϵ is the mean value of that feature across the
population of normalized representations. Since β is used to
threshold the dot product of representations (excluding the
target feature), a larger value for β would give us true coun-
terfactuals. We therefore select β to be 0.7. This method
of conditional selection gives us lowly activating images
that contain all the concepts in the highly activating im-
age set, except the concept represented by the ith feature.
We apply FALCON (without feature cropping) to extract
concepts out of the lowly activating image set. As shown
in Figure 3, concepts like “dog” and “white” are in lowly
activating images. These keywords can be relevant to the
highly activating image batch as well, however, they are
not discriminative explanations for that feature. Therefore,
we include the concepts of lowly activating images in the
discard set and arrive at the final minimum sufficient set of
concepts “shaggy”, “coat”, “komondor” and “corded”.

In Figure 2, we show the extracted concepts from FAL-
CON for 8 different features of SimCLR on a ResNet-18
backbone. In cases like Feature 337, the lowly activating
images match almost all the object properties i.e, vehicle or
van. However, after extracting concepts, it becomes clear
that the feature concept is the side view of an emergency
vehicle which is explained by - “ambulance” and “side”.
Contrastive interpretation therefore lets us ignore generic
and spurious concepts to derive a compact set of discrimina-
tive explanations. We also compare FALCON with MILAN

(Hernandez et al., 2022), a recent approach that trains a
generative model on a human-annotated fine-grained im-
age region-caption dataset, and uses this model to generate
natural language explanations. We observe that FALCON
produces more feature-specific concepts compared to the
generic high-level explanations of MILAN. We show more
annotated features (including supervised and previous-layer
features) comparing with MILAN in the Appendix (See
Figures A.7, A.8). We also discuss the generalizability of
concepts to an unseen dataset like STL-10 (Coates et al.,
2011) (See Figure A.7).

3. Which Features are Explainable?
So far we discussed our method to explain individual fea-
tures, given the representation space of a pre-trained model.
In this section, we understand which features in the repre-
sentation space can be considered as explainable. Let us
go back to the set of highly activating images for a given
feature i, defined by Ti = {j : hji > α, 1 ≤ j ≤ N}. Note
that the representations are all L2-normalized. In order to
extract meaningful and generalizable shared concepts with
high Word Scores, we require a sufficient number of highly
activating images. In our experiments, we select the features
where |Ti| > 10. If α is large enough, we may expect the set
of highly activating images to be more connected where the
feature concept is clearly detectable (See features in Figure
2).

We choose features with a strong value for α according to
the distribution of the representation space of the selected
model. The features where |Ti| > 10, only comprises of
roughly 20% of the representation space. See Table A.3 for
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this percentage for various pre-trained models. Upon empir-
ical inspection of the activated images, we find that thresh-
olding α alone, may not guarantee explainability. Some of
the features can correspond to human recognizable concepts
(activating correlated images), like the examples shown in
Figure 2. While other features, although strongly activated
for a sufficient number of samples, correspond to very high
level, abstract concepts that are not apparent to humans. We
show examples of such features in the top panel of Figure
4, on DINO (Caron et al., 2021) with a ResNet-50 back-
bone. Although these features are activating with high α,
the images are quite diverse, making it almost impossible to
decipher any shared properties. One possible way to under-
stand such features could be by explaining previous layer
neurons in the network which may perhaps encode higher
level properties (Oikarinen & Weng, 2022; Mu & Andreas,
2020; Hernandez et al., 2022; Bau et al., 2017). This is how-
ever computationally inefficient as previous layer features
may still activate dissimilar image sets or may correspond
to entirely different concepts.

In the second panel of Figure 4, we make a key observa-
tion; images that jointly activate a given pair of features
are significantly more related and explainable than those
of individual features. For example, visually, we cannot
identify any shared property between rockets and morel
mushrooms in feature 1927 and similarly, fly argaric mush-
rooms and underwater coral plants in feature 763. However,
when both feature 763 and 1927 are highly activated, the
shared concepts become more apparent, showing only morel
mushroom textures. When the same feature 763 is jointly
activating with another feature like 1007, it corresponds to
a totally different concept of coral reef patterns. A similar
observation has been made in (Elhage et al., 2022; Fong &
Vedaldi, 2018). Note that the threshold for α is the same
for both individual and groups of features (for fair com-
parison in Figure 4), however, less rigorous α can still be
used for groups of features. By observing highly activat-
ing images for a combination of features, we can explain a
larger portion of the representation space (even by relaxing
α) compared to independent features.

Automatically discovering all interpretable feature
groups: Given a model fθ(.) and a probe dataset D of
N samples, we compute the top activating set of features
(group) for every sample (using α as the threshold). We save
each feature group and the indices of the samples that highly
activate that group. We use the average CLIP cosine simi-
larity of the samples within each group to decide if a group
is interpretable or not (using a threshold, γ). A higher value
for average similarity implies that the top activating sam-
ples are similar with interpretable shared concepts. Other
metrics LPIPS (Zhang et al., 2018) can also be used. In
Algorithm 1, we provide PyTorch-like code highlighting
the steps required for identifying all possible interpretable

feature groups in the representation space of a given model.

FALCON can be used to extract concepts out of groups of
features in the same manner as individual features, with
some modifications. First, the feature crop is calculated
by taking the intersection of the gradient heat map of each
feature individually as shown in Figure 4. Second, the lowly
activating images are mined such that all the features in the
group show low activation and the remaining features are
close to that of the highly activating representations. That
is, Equation 2 is updated to compute LI where I represents
the feature group. As shown in Figure 4, FALCON uses
the lowly activating images to help in finding discriminative
concepts for groups of features that best explain the highly
activating images.

In Appendix Section A.1, we analyze the extracted concepts
across various models (supervised and self-supervised) and
discuss some key insights.

Algorithm 1: Pytorch-like pseudocode for discovering
interpretable feature groups in a given representation
space
Input: H is the set of representations (of the given
model fθ(.)) of N samples in the probing dataset D,

α is a threshold for feature activation,
γ is a threshold for interpretable feature groups.
# Identify all feature groups
groups = {}
for j in range(N):

group = torch.where(h[j] > alpha)
groups[group].append(j) # groups[group] is
a list

# Filter out interpretable groups
int groups = {}
for group in groups:

if len(groups[group]) > 10:
# top activating samples for group
top act idx = groups[group]
clip feat = get clip feat(top act idx)
avg cos = torch.matmul(clip feat,
clip feat.T).mean()

if avg cos > gamma:
int groups[group] = groups[group]

return int groups

4. Evaluating Extracted Concepts
FALCON produces a simple, compact set of concepts to de-
scribe any explainable feature in an automatic fashion with-
out any human intervention, or densely-labelled datasets.
We performed a human study on Amazon Mechanical Turk
(AMT) to evaluate the concepts generated by FALCON and
provide some quantitative metrics. In each task, we showed
the AMT participant the set of highly activating cropped
image set (Group A) and the lowly activating image set
(Group B) for a target feature and, the top 6 concepts ranked
by FALCON. We asked the participant to - identify the con-
cepts that are related to Group A and not Group B. This
lets us assign binary ground-truth labels to each concept as
0 (not related) if it has been chosen by at least 65% of the
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participants and 1 (related) otherwise. We can partition the
six FALCON concepts for each feature based on their rank
such that the first K concepts where 1 ≤ K < 6 can be
predicted as 1 (related), otherwise 0 (not related). In Table
1, we plot the Precision and Recall for each K. Precision
in our case measures how many of the “related” concepts
predicted by FALCON are actually related according to our
human study. Recall measures how many “related” concepts
was FALCON able to predict among the total number of
related concepts (from our human study). We observe that
the Recall improves from the 4th caption, meaning that, the
participants agree that the first 4-5 concepts are related to the
given set of images. 84.23% (precision at top-6) of all FAL-
CON concepts are considered relevant by our participants.
This study confirms that the top ranking concepts generated
by FALCON are considered relevant and explainable among
humans. We collect ground truths for 600 concepts each
from 3 participants. We measure the agreement between
participants for each feature by averaging the % overlap
of the concepts selected by each participant. The average
agreement among the participants is 79%. More details
about our human study can be found in Appendix Section
A.4.

Existing methods (MILAN (Hernandez et al., 2022), Net-
Dissect (Bau et al., 2017)) use human-annotated datasets for
natural language descriptions. Through FALCON, we auto-
matically extract a minimal sufficient set of noise-free con-
cepts with no human intervention. We performed another
user-study on MTurk to provide a quantitative comparison
of FALCON with MILAN and Net-Dissect. We display the
highly (Group A) and lowly (Group B) activating images for
each target feature and requested the participants to select
the concept set which best describes the images in Group
A but not Group B. We tabulate the percentage of times
the concept set of each framework was selected as the best
explanation in Table 2. FALCON performs significantly
better than the baselines in our study of 115 features.

Table 1. Precision and Recall for human evaluation of top K
concepts: Using Amazon Mechanical Turk (AMT), we ask human
participants to choose the un-related captions, among 6 top-ranking
captions for each feature. We use the annotations as ground truth
labels (relevant or not relevant) and compare them to the predic-
tions of FALCON at different levels of K (number of predicted
concepts labelled as relevant).

Top K Precision (%) Recall (%)Concepts

1 94.62 18.72
2 92.47 36.60
3 88.89 52.77
4 86.82 68.72
5 85.60 84.68
6 84.23 100.00

Table 2. Comparing explanations generated by FALCON with
existing baselines: We request participants to select the best ex-
planation generated by the following 3 frameworks for a given
set of highly and lowly activating images. FALCON beats other
baselines by a significant amount.

Framework % of times selected
as best explanation

FALCON 86.40
MILAN (Hernandez et al., 2022) 13.47

Net-Dissect (Bau et al., 2017) 0.12
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Figure 5. Decomposing images into various concepts: We show
some images which highly activate multiple interpretable features.
FALCON extracts concepts from feature crops rather than entire
images, therefore, each image can be broken down into compo-
nents, each describing a different physical attribute.

5. Explaining Failure Modes in Vision Models
An interpretable representation space of a given model, al-
lows us to decompose and label different groups of concepts
in any given image. In the previous sections, we found that
each interpretable feature (or group of features) encodes
only a portion of images that correspond to a unique con-
cept set. Therefore, images with multiple highly activating
features (Kalibhat et al., 2022), can be decomposed into mul-
tiple components, each representing a unique concept. We
illustrate this in Figure 5, where we show the feature crop
of highly activating features (of SimCLR with ResNet-18)
in each image, and their corresponding physical concepts
that our framework has extracted. This is only possible
because FALCON uses feature crops to discover concepts
rather than whole images (unlike CLIP-Dissect (Oikarinen
& Weng, 2022)).

Another advantage of feature specific concepts is the abil-
ity to explain failures in downstream tasks. It is often not
obvious what led to a model’s prediction without some qual-
ifying explanations. Images in the real-world could contain
several spurious attributes interfering with the main content
of the image. In such cases, it can be difficult for even
experts to localize the exact reason for mis-classification.
Moreover, it is often too tedious to have humans make
guesses as to what could be the reason for failures as each
human can interpret images in a unique manner. With our
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Figure 6. Explaining failures in downstream tasks using con-
cepts: Given SimCLR (Chen et al., 2020a) pre-trained on Ima-
geNet (Russakovsky et al., 2015), we show some mis-classified
examples along with the most contributing concepts for their pre-
diction. This allows us to detect and explain concepts which
contributed to a model’s decision and help us debug model fail-
ures.

automatic explanation framework, FALCON, we eliminate
this need for human-in-the-loop and can inspect grounded
explanations directly.

We consider the task of classification using a linear head
defined by the weight matrix U ∈ Ro×r, where o is the
number of classes. The most contributing features (and
corresponding concepts) for a sample xj with prediction
yj , can be given by, argmax(hj ⊙Uyj

). In Figure 6, we
show some mis-classified examples of SimCLR trained on
ImageNet and the most contributing concepts for each pre-
diction. The concepts we find add novel insight into model
behavior apart from the readily available information i.e.,
the image, label and prediction. They help describe the
attributes to which model paid attention while making its
prediction, potentially helping us automatically debug mod-
els at inference time.

For example, the eighth “Goose” image, looked more like
an aircraft to the model, leading to the prediction “Wing”.
This is an example where the model may be spuriously asso-
ciating shape (like an aircraft) and background information
(like the sky) in making its prediction, failing to identify
the subtle features of geese. The texture in the “Perfume”
and Football Helmet” images is also an example of spurious
attributes. The sixth “Green Mamba” image can be regarded
as a hard example, where the core object is largely hidden,
causing the model to focus more on concepts like tree and
branch. Explanations can also help uncover images which
may have multiple ground truths like the eleventh example
of “Cinema” and “Theatre Curtain” (similar to the images in
Figure 5). The “Pillow” and “Hammer” images indicate that

the training paradigm of the model ignored global object
information and made decisions based on local attributes.
One possible approach to improve such models relying on
spurious correlations is by fine-tuning on synthetic images
generated using the relevant FALCON concepts via methods
like Stable Diffusion (Rombach et al., 2021). Explanations
can also help define optimal training augmentations that
could prevent spurious dependencies.

6. Transferring Concepts to New
Representation Spaces

So far, we have discussed the process of feature caption-
ing and concept extraction for a given vision model. We
hypothesize that the representations learned by different
models can be mapped from one to another. This would
allow us to map the features of an explainable representation
space to any unseen representation space, without having
to re-run our explanation framework. Let us consider the
representations of a model that we have extracted concepts
for, denoted by Hsource ∈ RN×r. The representation space
of an unseen model can be denoted by Htarget ∈ RN×r.
Using a linear head, our goal is to learn a transformation
matrix Z ∈ Rr×r, that transforms Htarget to Hsource, by
solving the optimization,

min
Z

∥ZTHtarget −Hsource∥2 (3)

We solve optimization by training a linear head for only 10
epochs with a learning rate of 1, using an SGD optimizer.
Once the mapping is learned, we can take any explainable
feature i in Hsource, and find the features in Htarget with
have the highest weights in Z. Hence, the concepts de-
scribed by feature i in Hsource can be mapped to features
in Htarget efficiently.

We confirm that this transformation works by matching
the concepts of Htarget to the highly activating images of
Htarget. As shown in Figure 7, we successfully map indi-
vidual interpretable features in SimCLR to features in MoCo
(Chen et al., 2020b) which is an unseen representation space.
The highly activating images in MoCo interestingly contain
all of the concepts of the source feature. Note that, features
across representation spaces need not have a 1:1 relationship.
Similarly, concepts can also correspond to compositional
features (as described in Section 3). We do not constrain the
sparsity of Z. In practice, Z is not sparse however, it can be
considered as nearly sparse where most weights are close
to zero. When we discover feature maps, we only extract
the weights in Z if they are large enough (> mean+4× std
based on the weight distribution). If we do so, Z becomes
quite sparse, indicating that some directions in the target
model can be mapped to a dedicated set of features in the
source model.

This observation of transferrability can potentially be ex-
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tended to any pair of pre-trained models (supervised or
unsupervised), preventing the need to interpret the represen-
tations of each specific model. It also gives us an important
insight that various vision models, regardless of their pre-
training regime, learn mostly similar concepts. To the best
of our knowledge, ours is the first approach in the direction
of transferring explanations across model spaces.

Extracted Concepts in SimCLR

Feature 10
shaggy, coat, komondor, corded Feature 139, 417

Top Activating Images in MoCo

Feature 108
glass, bottle cap Feature 405, 493

Feature 8
red curtain, theatre, cinema stage Feature 56, 165

Feature 56
car wheel, tire, hubcap Feature 418, 511

Feature 116
wild dog, brown coat, spotted

Feature 68, 412,
435

Feature 280
stair railing, staircase, install

banister
Feature 24

Feature 499
tenti pineapple, fruit, tropical Feature 139, 246

Figure 7. Transferring concepts from an explained represen-
tation space to an unseen representation space: We show that
representations of self-supervised models can be mapped from one
to another by learning a transformation Z (See Equation 3). We
transfer extracted concepts from SimCLR (source) (Chen et al.,
2020a), to an unseen model, MoCo (target) (Chen et al., 2020b) by
mapping the source features to the target features with the highest
weights in Z. We observe that the top activating images of the
mapped features in the MoCo very closely match the concepts
extracted in SimCLR.

7. Conclusion
We proposed FALCON, an automatic framework to explain
individual neurons in vision models. These explanations
can be utilized for classification tasks (as shown in Figure
6) as well as non-classification tasks like object detection
and segmentation. We show that features become more
interpretable when regarded in groups and propose a simple
algorithm to discover all possible interpretable groups in a
given representation space.

FALCON utilizes three components: 1) A probe image
dataset, 2) A large text vocabulary and 3) An off-the-shelf
pre-trained vision-language encoder. With FALCON we
propose a general-purpose framework, where the above
components can be flexibly customized depending on the
target model we wish to investigate. The concepts learned
by the target model is governed by the data it was trained
on. In order to explain these concepts via FALCON, we
choose the probe image dataset and text vocabulary such
that it is representative of the target model’s training do-
main and encapsulates all the concepts learned by the target
model. In our experiments, we use FALCON with Ima-

geNet, LAION-400M and CLIP to explain deep models
pre-trained on ImageNet-1K. These components could po-
tentially generalize to a range of domains, since CLIP is
already pre-trained on a very large scale and LAION-400M
is diverse and expressive. FALCON can be updated to
use even larger zero-shot vision-language encoders and vo-
cabulary, when developed in future. To deploy FALCON
on target models trained on medical images like chest x-
rays, we can utilize vision-language encoders like ConVIRT
(Zhang et al., 2020) or MedCLIP (Wang et al., 2022), com-
bined with expressive vocabulary from radiology reports
(ex. Mimic-cxr).

Limitations and directions for future work: Understand-
ing how FALCON can be applied to explain vision-language
models can be an extension of our work. Since vision-
language models are trained to align representations in the
vision and language space, we could potentially learn a great
deal about the model’s understanding by applying FALCON
directly on the vision encoder. It would however be interest-
ing to understand what information is represented uniquely
by the text encoder. Understanding the equivalent of local-
ized gradient heatmaps in the language space is still unclear
and requires further research.

Supporting FALCON for non-image domains remains a
topic for further research. Another limitation of FALCON
is the requirement of a pre-trained vision-language model
for the task of matching images to captions. While CLIP is
trained on very diverse data and domain-specific versions of
CLIP exist, there may be target models which are trained for
uncommon tasks and data, that is unknown to CLIP. In our
transferrability example, we show that concepts extracted
from one model may be transferred to another by learning a
simple linear transformation. Another important direction
for future work is to test the limits of transferrability on
multi-domain setups. For example, how do concepts learned
by a model trained on painting images, transfer to a model
trained on sketch images.
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A. Appendix
We use pre-trained models from the solo-learn package
(da Costa et al., 2022) and the official implementation of
CLIP (Radford et al., 2021).

Table A.1. Feature groups and concepts for various models: We
tabulate the number of interpretable groups for each model and
number of unique concepts extracted after explaining each group.
We observe that many frequently occurring concepts are shared
across models.

Model # interpretable groups # unique concepts Most frequent concepts

SimSiam 249 578 ’white’, ’head’, ’brown’, ’eye’, ’face’
SimCLR 293 676 ’white’, ’head’, ’face’, ’brown’, ’blue’

MoCo 271 559 ’white’, ’head’, ’face’, ’eye’, ’black’
SwaV 182 417 ’head’, ’brown’, ’white’, ’hand’, ’black’
BYOL 281 477 ’head’, ’white’, ’brown’, ’eye’, ’face’

ResNet-50 (Sup) 91 183 ’brown’, ’head’, ’red’, ’water’, ’white’
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Figure A.1. Shared concepts between models: Among the unique
concepts extracted using FALCON on the representation space of
various models, we plot the number shared concepts between each
pair of models.

A.1. Analyzing FALCON Explanations Across Various
Models

We have performed a global analysis comparing the FAL-
CON concepts across various supervised and self-supervised
models (ResNet-50 encoder). In Table A.1, we tabulate the
number of interpretable feature groups identified from the
final representation layer, along with the total number of
unique concepts extracted from FALCON for these groups.
Note that each explanation consists of multiple conceptual
words. In the last column, we also list the most frequently
occurring concepts for each model. We observe that among
all the models we study, the supervised ResNet-50 model
has the least number of interpretable groups and unique con-
cepts. The most frequent concepts among all the models are
almost identical, including general attributes like various
colors, face, eye, which frequently occur in the ImageNet
dataset. We also compute the number of shared concepts

between each pair of models in Figure A.1. We observe
that each model shares roughly less than 50% of its total
concepts with any other model. This indicates that although
each model is trained on the same data i.e, ImageNet, their
training paradigms can enable them to encode some unique
properties that are missed by other models. We calculate the
number of concepts in each model that are not shared with
any other model - SimSiam 160, SimCLR 210, MoCo 159,
SwaV 128, BYOL 116, ResNet-50 39. For example, these
are some unshared (truly unique) concepts of ResNet-50 -
‘eel’, ‘disc’, ‘grip’, ‘shooter’, ‘tub’, ‘sink’, ‘weimaraner’,
‘decal’.

Table A.2. Comparing FALCON used with CLIP and LAION-
400M vs BLIP-2 zero-shot captioning: We apply FALCON with
BLIP 2 (Li et al., 2023) generated captions and ask participants to
select the better explanation when compared with CLIP+LAION.
BLIP captions underperform compared to CLIP+LAION.

Framework % of times selected as best explanation

FALCON + CLIP + LAION 58.12
FALCON + BLIP 2 (OPT, caption COCO) 41.8

A.2. Employing a Captioning Model instead of CLIP

BLIP-2’s (Li et al., 2023) zero-shot image captioning is a
powerful tool to extract text captions out of highly activating
images. One advantage of using a separate vocabulary with
a vision-language model is the flexibility of controlling the
expressiveness/specificity of the captioning dataset depend-
ing on the complexity of the target model. For example,
to explain an MNIST-trained model, one may use a much
smaller vocabulary whereas explaining a model like CLIP
may require an equivalently large vocabulary. Moreover,
the set of reference captions can be updated online, even
after deployment without having to re-train any model. The
similarity matrix allows us to extract multiple captions per
image with a confidence score, allowing us to discard un-
reliable captions. Off the shelf captioning models may be
domain-specific and could generate noisy captions with low
expressiveness.

We compared FALCON + BLIP 2 with FALCON + CLIP +
LAION in an MTurk evaluation over 91 features and asked
participants to select the best describing explanation for the
displayed set of images (See Table A.2. Explanations gener-
ated via our CLIP+LAION captioning outperforms BLIPs
captioning, however, BLIP 2 is still a practical alternative
given that it is trained on a large scale on LAION.

A.3. Interpretable Features in Various Models

We discuss in Section 3 that to discover potentially explain-
able features we can apply a strong value for α in Ti, set
of highly activating images. Since the distribution of each
model representation space can be different, to be consis-
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Table A.3. Percentage of highly activating features in the ResNet-50 representation space: For different model representations, we
tabulate the percentage of features that activate at least 10 samples with a magnitude greater than α. We select α according to the mean of
the distribution of the representation space (See Section 3 for more details).

Model ResNet-50 (Supervised) SimCLR MoCo DINO BYOL SimSiam SwaV

% features that highly activate > 10 samples 0.68 21.92 17.70 16.66 25.63 8.00 6.00
α 0.27 0.34 0.34 0.14 0.24 0.32 0.31
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Figure A.2. Distribution of feature groups: For different self-
supervised model representation spaces we compute the feature
groups (from Algorithm 1. On the left we plot group sizes against
the number of groups and on the right, we plot the number of
interpretable groups among the discovered feature groups.

tent we select α = mean(H) + 16× std(H) (where H is
the representation matrix). In Figure A.3, we tabulate the
percentage of highly activating features in the final-layer
representations where |Ti| > 10. ResNet-50 has a partic-
ularly low number of highly activating features compared
to self-supervised baselines. The remaining features in the
representation space (or by relaxing α to be less rigorous),
do not activate a resembling set of images, making such
features harder to explain (Figure 4). Some more examples
of such features are shown in Figure A.3.

Figure A.3. Examples of top activating images of some un-
explainable independent features: We provide more examples
of top activating images of some independent features of DINO
(Caron et al., 2021) (ResNet-50 (He et al., 2016)) representations.
The image sets are not correlated in any sense, making it hard to
discover shared concepts for these features.

We also discussed in Section 3 that simply thresholding
by α does not guarantee explainability as the top activat-
ing images can still be unrelated. A larger portion of the

representation space can be explained with feature groups.
Using the Algorithm 1, we discover feature groups and inter-
pretable feature groups for various self-supervised models.
In Figure A.2, on the left, we show the distribution of fea-
ture groups and their size. All the identified groups contain
at least 10 highly activating images. A large percentage
of feature groups contain 1-2 features per group, however,
there also exist feature groups that contain up to 9 features.
On the right, we compare the feature groups and the in-
terpretable feature groups, according to Algorithm 1. The
interpretable groups activate samples that are more similar
(based on CLIP cosine similarity) and are therefore easy to
explain with shared natural language concepts.

A.4. Human Study to Evaluate Concepts

Eliminating malicious and inadequate responses: In our
studies, we only select participants that have a HIT approval
rate of greater than 90 and the number of HIT approvals
is > 500 in the past. Each task is active for 30 minutes
allowing the participants ample time to make their selections.
We did not explicitly include control questions, however,
we identified a small number of tasks which had low-quality
concept sets which we used to verify the reliability of the
participants. We also approve and pay the participants only
after verifying their annotation quality.
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Figure A.4. Comparing most and least relevant concepts based
on AMT study: We display the concepts with 100% relevancy
agreement on the left and the concepts with 0% relevancy agree-
ment on the right.

In Figure A.5, we show a template of our user study where
we display two groups i.e., highly activated cropped images
(Group A) and lowly activating images (Groups B). In this
example, we compare FALCON concepts to that of MILAN
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Figure A.5. Amazon Mechanical Turk user study template: A template of our user study where we display two groups of images for a
target feature and ask the users to select the best explanation among 3 options.
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Figure A.6. Average agreement between participants for each
feature: We plot the agreement of relevancy for each concept
averaged by the feature for 93 features we perform human study
on.

and Net-Dissect. As discussed in Section 4, we also evaluate
top 6 FALCON concepts on their relevancy. We define the
agreement of relevancy between workers as the percentage
of workers that believe a concept is relevant. This, averaged
for all concepts in a feature, is plotted in Figure A.6. We
observe that, for 93 features, up to 86% of them are agreed
to be relevant among at least 66% of the workers. We also
visualize the concepts where the agreement of relevancy
is 100% (left) and 0% (right) in Figure A.4. We observed
that the irrelevant concepts have a very low average CLIP
score of 0.067. This is likely because there were other,
more specific concepts for that feature or, the concepts were
out-of-context for the displayed images. In contrast, the
concepts with 100% relevancy have a relatively higher aver-
age CLIP score of 0.284 (unsurprisingly) and are strongly
correlated with the displayed images.

A.5. Transferring Concepts to Unseen Data

In Section 6, we study a non-trivial setup of transferring
concepts from one interpretable model to another. In this
Section we study a simpler scenario of transferring concepts
to unseen datasets. Essentially, we evaluate if our extracted
concepts (on ImageNet validation data), generalizes to new
datasets. In Figure A.7, for several DINO features, we
display the highly (cropped) and lowly activating images, as
well as the highly activating images in STL-10 (Coates et al.,

2011) which is an unseen dataset. We extract concepts using
FALCON and MILAN to compare the quality. We observe
that STL-10 images for each feature closely resemble that
of ImageNet and more importantly, correlate with most of
FALCON concepts. FALCON also generally provides more
explicit concepts covering multiple aspects, compared to
MILAN. This confirms that extracted concepts generalize
well to unseen or unknown data.

A.6. Explaining Supervised Representations and
Early-Layer Features

To further confirm the generalizability of our concept ex-
traction framework, FALCON, we extract concepts from
different layers of supervised pre-trained ResNet-50 (using
ImageNet and LAION). Our results are shown in Figure A.8.
We observe the initial layer features, activate very primitive
type concepts like color or geometric patters. FALCON ex-
tracts this information in its concepts based on the cropped
images. As we move closer to the final layer, the feature
crops become larger and concepts become more descriptive.
We thus confirm that FALCON can be applied to explain
any neuron in any vision model, supervised or unsupervised.
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Figure A.7. Generalization of concepts to unseen data: We extract concepts from various features of DINO (Caron et al., 2021)
representations (using ImageNet) and verify if they generalize to STL-10 (Coates et al., 2011), an unseen dataset. In all features, the
STL-10 images closely resemble the ImageNet images and contain the concepts described by FALCON.
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Figure A.8. Concepts for features of various layers of supervised ResNet-50: We extract concepts from random features of layers of
supervised pre-trained ResNet-50. We compare FALCON concepts with MILAN concepts.
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