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Abstract— Contrails (condensation trails) are line-shaped ice
clouds caused by aircraft and are a substantial contributor to
aviation-induced climate change. Contrail avoidance is potentially
an inexpensive way to significantly reduce the climate impact of
aviation. An automated contrail detection system is an essential
tool to develop and evaluate contrail avoidance systems. In this
article, we present a human-labeled dataset named OpenContrails
to train and evaluate contrail detection models based on GOES-16
Advanced Baseline Imager (ABI) data. We propose and evaluate
a contrail detection model that incorporates temporal context for
improved detection accuracy. The human labeled dataset and the
contrail detection outputs are publicly available on Google Cloud
Storage at gs://goes_contrails_dataset.

Index Terms— Advanced Baseline Imager (ABI), benchmark
datasets, contrails, geostationary satellites, GOES-16, image seg-
mentation, machine learning, neural network.

I. INTRODUCTION

PERSISTENT contrails are cirrus clouds created by aircraft
when flying through cold and ice supersaturated regions.

Contrails both warm the atmosphere by trapping infrared
radiation which would have otherwise escaped into space, and
cool it by reflecting incoming solar radiation. Recent works
have found that the net effect is warming and comparable to
the historical effect of CO2 emissions from aviation [1], [2].
Studies have suggested that the majority of contrail warming
can be attributed to a small fraction of flights, and their
warming impact can be significantly reduced by using a
different route [3], [4]. However, considerable uncertainties
exist both around the overall impact of contrails [1], and
how well their formation and persistence can be predicted in
advance [5]. More complete knowledge of where contrails are
actually forming is key to reducing this uncertainty, and this
can be obtained by creating an automated contrail detector
with high spatio-temporal coverage.

Detecting contrails from satellite images is challenging
because of their visual similarity to natural cirrus. Contrails
are formed as line-shaped ice clouds and then slowly deform
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over time, becoming difficult to distinguish from natural cirrus.
In this work, we focus on detecting young contrails that
are still linear in shape. While computer vision has made
substantial progress thanks to the rise of large-scale datasets,
like ImageNet [6], and the use of neural networks, recognition
on domain specific problems like infrared satellite images is
still challenging due to the lack of large in-domain datasets
for pre-training. Apart from that, unlike traditional object
recognition tasks where textures and colors are informative,
contrails often look similar to or even indistinguishable from
natural cirrus. In addition to color and texture, human experts
must take into account the overall shape of the contrails
(linear) and their temporal evolution (unlike natural cirrus,
contrails appear very quickly and spread out rapidly over
time).

Challenging computer vision tasks have often benefited
from the existence of high-quality datasets, such as the MNIST
dataset [7] for handwriting recognition. Such datasets lower
the barrier to entry for different research groups to try to
solve the problem, and provide a standard way to compare
new models to prior work to assess whether a given new
technique has led to improvement. In this work, we provide a
public dataset, OpenContrails, to facilitate model comparison
and reproducible research. Examples of images and labels are
shown in Fig. 1.

While previous works have trained contrail detection models
with deep convolutional neural networks [8], [9], the perfor-
mance of those models is still significantly behind that of a
human expert, and therefore improvement in model perfor-
mance is possible. One possible reason why humans can do
better is that during labeling, humans can evaluate the temporal
behavior of the contrails, whereas existing computer models
perform detection based on only one frame. We develop
a model that takes multiple input frames into account for
temporal context. We show that such a model improves the
detection performance when compared to models that only
process a single frame.

In this work, we present a dataset of human-labeled contrail
detections on the geostationary satellite GOES-16, which pro-
vides high spatio-temporal coverage, and we make it publicly
available. The proposed OpenContrails dataset contains per-
pixel human labeled contrail masks for each image in the
dataset. We train a neural network for detecting contrails
and show that the resulting model produces more accurate
contrail detection outputs than the existing models. We run
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Fig. 1. Example images and labels in the dataset. (Left) False color images
from GOES-16 satellite. (Right) Human labeled binary contrail mask.

the contrail detection model on multiple years of available
GOES-16 images and confirm previous findings on contrail
research, such as contrail coverage patterns and diurnal effects.
We hosted a Kaggle contest using an earlier version of the
dataset, which attracted over 900 teams participated [10].
We believe that the OpenContrails dataset will be a valuable
resource for the contrail research community by making
large-scale contrail detection results widely available.

A. Related Work

The effect of contrails on climate change has been widely
studied in previous literature [1], [2], [11], [12]. Simulations
indicate that a small set of flights are responsible for the
majority of contrail warming, which suggests that it is possible
to adjust a small number of flight routes to substantially reduce
aviation’s climate impact [3], [4].

Empirical analyses of contrails from satellite imagery in the
last two decades [13], [14], [15], [16] were typically accom-
plished by the algorithm proposed by Mannstein et al. [13].
Mannstein et al. proposed to detect contrails by applying a set
of filters and thresholds on brightness temperature imagery.

Zhang et al. [9] trained convolutional neural networks to detect
contrails on Himawari-8 satellite images for evaluating contrail
coverage. Meijer et al. [8] also trained a neural network for
contrail detection on GOES-16 images to examine what effects
the reduced flight traffic during the COVID-19 pandemic had
on contrails. None of these works made the dataset or contrail
detections publicly available, and while Meijer et al. only
labeled the contiguous US (CONUS) region, we sample scenes
to be labeled from the majority of the GOES-16 full-disk
viewing extent.

McCloskey et al. [17]released a contrail dataset on Landsat-
8 data. With 100-m pixels in its infrared channels, Landsat-8
images have sufficient spatial resolution to identify even
very young contrails. However, due to its low-earth sun-
synchronous orbit and mission goals, imagery is only available
for scenes that are mostly land, mostly in the daytime, at fixed
local times of day and with a 16-day repeat cycle. Thus,
Landsat-8 imagery has clear limits for conducting large-scale
analysis for contrail research. We construct our dataset on
GOES-16 ABI images [18] taken from geostationary orbit,
which nominally have 2-km pixels in the infrared channels but
have much higher spatio-temporal coverage. Consequently, our
dataset and contrail detection model can be used as a foun-
dation for contrail warming impact assessment and validating
contrail avoidance experiments in the western hemisphere.

Deep neural networks have been extensively used for remote
sensing applications [19], [20]. The task of contrail detection
can be cast as image segmentation, on which deep neural net-
works have shown great success. Here, we employ promising
image segmentation techniques including using the ResNet
backbone [21] and Deeplabv3+ [22], [23] architectures.

II. DATASET

We build our dataset using GOES-16 Advanced Baseline
Imager (ABI) imagery [18], specifically brightness tempera-
tures calculated from the Level 1B radiances using the Planck
constants provided by [24]. GOES-16 views the North and
South American region with a full-disk image taken every
10 min since April 2019 (15 min interval before April 2019).
The nominal pixel size of GOES-16 ABI is 2 × 2 km at nadir.
This relatively coarse resolution means that contrails cannot
be seen when they initially form, instead we must wait some
time for them to spread out enough to be visible. This is not
necessarily a disadvantage: the warming effects of contrails
are dominated by contrails which persist for hours [4], so the
inability to detect shorter-lived contrails may not hinder our
ability to assess and prevent the vast majority of contrail
warming.

Thermal infrared bands are more useful than visible bands
for recognizing contrails, as visible bands do not provide
much information at night. Mannstein et al. [13] suggested
to use 10–12 µm bands for contrail detection, as young
contrails tend to show higher transmissivity at 10–11 µm
than 11–12 µm band due to smaller crystal sizes. Following
Kulik [25], we show imagery to human labelers in an “ash”
false color scheme that combines three longwave GOES-16
brightness temperatures. The red, green, and blue channels
are represented by the difference between 12 and 11 µm, and
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difference between 11 and 8 µm, and 12 µm, respectively.
This color scheme is chosen to help identify contrails by high-
lighting ice clouds as darker colors in a lighter background.
We have qualitatively found that the ash color scheme helps
with spotting more contrails compared to grayscale brightness
temperature difference. An example of the ash color scheme
and the true color RGB image is shown in Fig. 2. Each image
patch in the dataset corresponds to an approximately 500 ×

500 km region and is reprojected to the Universal Transverse
Mercator (UTM) coordinate system (with the zone decided by
the northwest corner of the region) using bilinear resampling.
Labelers are shown image patches with a size of 281 × 281.
As the labels near the boundary are often noisy due to the lack
of spatial context, we center crop to 256 × 256 pixels on the
images and contrail masks for training and evaluation.

We generate the examples by randomly sampling image
patches from the GOES-16 viewable extent from April 2019 to
April 2020.1 We aim to increase the spatial coverage of
automatic contrail detection to a larger GOES-16 region,
so we sample images from both the northern and south-
ern hemispheres. We restrict the sampling of image patches
to be between −50◦ to 50◦ latitude and −135◦ to −30◦

longitude to avoid large viewing angles. We first generate
candidate image patches using a non-overlapping sliding
window to scan the bounding region of a GOES image
every 40 min. Uniform sampling of GOES-16 images would
result in very few positive examples, as contrails occur
infrequently. To increase the number of positive examples
in the dataset, we downsampled regions unlikely to contain
contrails. We did this in three ways. First, we obtained aircraft
flight tracks obtained from terrestrial ADS-B data licensed for
publication from FlightAware, LLC (https://flightaware.com).
We advected these flight tracks according to European Centre
for Medium-Range Weather Forecasts (ECMWF) ERA5 [26]
wind data, using the Runge–Kutta method [27], for 4 h.
We kept only 5% of the images which contained no advected
flight tracks, and only 20% of the images which contained less
than ten tracks. Second, we calculated the relative humidity
over ice from ECMWF ERA5 temperature, pressure, and
specific humidity values. Since contrails can only persist if
this humidity is above 100% [28], we kept only 5% of
images for which no location in the image had relative
humidity >90% for any of the altitudes where contrails
might form (7000 − −12 000 m). Finally, we applied the
Mannstein et al. [13] contrail detection algorithm tuned as in
McCloskey et al. [17] to achieve very high recall, as opposed
to high precision ([17] showed that a similar method applied
to images of contrails in Landsat-8 detected every contrail, but
for every contrail it detected it also detected around 20 false
positives.) We kept all the images in which the high recall
algorithm detected a contrail, as well as 5% of the examples
in which no contrails were detected. Note that the FlightAware
data does not contain all flights and the ECMWF wind and
humidity data are not always accurate. Therefore, the filters are
not expected to be perfectly accurate, and it is still necessary

1We mistakenly sampled about 9000 of the 20 088 examples from October
2019 instead of the full year.

Fig. 2. (Left) True color image. (Right) False color image in ash color
scheme.

to have human labelers annotate the images. We randomly
subsampled the remaining images for human labeling.

To further boost the number of positives in the dataset,
we also included some GOES-16 ABI imagery (in the training
set only) at locations in the US where contrails had been
identified in collocated Google Street View images of the
sky, using an approach similar to Juan et al. [29]. These
additional labeled GOES-16 images are only in the training set
because Street View cars operate in the daytime and mostly on
days with sunnier weather, so it may be easier than usual to
identify contrails in the GOES-16 imagery of those locations.
We found in our experiment that these additional training data
slightly improve the contrail detection model performance on
the validation set. Note that there are no Street View images
in the dataset or used in models reported here: they were
only used to identify contrail-rich GOES-16 scenes for human
labeling.

Temporal context is important for recognizing contrails.
Similar to the labeling procedure in Meijer et al. [8], we show
labelers five images (50 min) before and two images (20 min)
after the image being labeled. An example image sequence
of contrail evolution is shown in Fig. 3, which shows how
contrails appear spontaneously and spread out over time, while
natural cirrus often occur for a longer time and may get sharper
over time instead of spreading out. The advected flight density
is also shown to the labelers to assist labeling. It is generated
from FlightAware flight data and is advected using the same
method as for screening (ECMWF ERA5 wind vector data,
with the Runge–Kutta method). We spread out the advected
flight density of flights which are older (at the time the image
was taken) to reflect how uncertainty in the wind vector data
makes us less certain about where a contrail will ultimately
advect to. We ask the labelers to still label the contrails if
flights are not shown in the flight density only when they are
very confident. An example GOES-16 “ash” image and the
corresponding advected flight density is shown in Fig. 4.

We ask human labelers to draw polygons on the images to
enclose the contrail pixels in a web-based labeling interface.
The labelers are instructed on how to label contrails through
a set of slides containing guidelines, including examples of
contrails and non-contrail cirrus.

We provide detailed instructions for labelers to identify
and label contrails, for example: contrails are typically seen
as dark linear objects in the satellite images using the ash
color scheme; contrails appear as sharp lines and then spread
out over time; and static structures across multiple frames
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Fig. 3. Example sequence showing evolution of contrails. Contrails appear quickly and start as straight lines. They deform and fade over time slowly from
satellite observations. The images correspond to an area centered at coordinates (48.75, −66.50). The first image was taken on July 21, 2018 at 14:10 UTC.
The images were taken at 15-min intervals.

Fig. 4. Example GOES-16 false color image with advected flight density
shown to labelers.

Fig. 5. Distribution of solar zenith angle in the dataset. Orange and blue
bars correspond to daytime and nighttime examples, respectively.

are likely to be ground-based objects such as roads, rivers,
or coastlines. We also provide the following additional labeling
guidelines.

1) Contrail must contain at least 10 pixels to be labeled.
2) At some time in their life, contrails must be at least 3×

longer than their width.
3) Contrails must either appear suddenly or enter from the

sides of the image.
4) Contrails should be visible in at least two images.
Labelers were asked to initially label a small set of images,

and then authors of this work gave feedback on their initial
label quality. The process iterates until a labeler generates
labels with satisfactory accuracy. As we observe variance
across individual labelers, each GOES-16 scene is labeled by
four human labelers, and pixels are considered positive if at
least three labelers considered the pixel a contrail.

Even when instructions and trainings are provided, iden-
tifying and labeling contrails on satellite images are still
challenging. We compared the labeler performance compared
to the groundtruth (labeled by authors of this work) on about
200 examples. Individual labelers give about 64% precision

Fig. 6. Spatial distribution according to the image center in the dataset. The
top and the right histograms correspond to the marginal distributions along
the latitude and longitude axes.

and 76% recall measured per-pixel. The aggregated labels from
4 labelers with majority vote give about 80% precision and
78% recall.

The full dataset contains 20 088 examples in the training
set and 1879 examples in the validation set. The examples
are partitioned by pre-defined time ranges so that the time
difference between any training and validation examples is at
least three hours. Satellite scenes that were identified as likely
to have contrails by Google Street View are only included
in the training set. 9103 of the training examples contain at
least one annotated contrail. About 1.2% of the pixels in the
training set are labeled as contrails. The dataset contains a
wide variety of times and locations, as shown in Figs. 5 and 6.
The examples are not uniformly distributed in space and time
as the images are sampled to include more contrail examples
as described above.

Contrails occur more often in cloudy scenes. We estimate
the cloud cover fraction using the GOES-16 ABI L2 Cloud Top
Phase product and regard all non-clear-sky pixels as clouds.
We show the example counts in our dataset by the cloud
coverage fraction in Fig. 7. Our dataset contains more cloudy
scenes than clear sky images, and the positive examples are
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Fig. 7. Statistics of cloud coverage in the dataset.

Fig. 8. Labeler agreement at different cloud cover fractions.

roughly proportionally distributed at different cloud coverage
fractions. It is possible that contrails are harder to be identified
in cloudy scenes. Fig. 8 shows the labeler agreement at
different cloud cover fractions in the scenes, where agreement
is defined as the number of contrail pixels labeled by the
majority of the labelers divided by the number of contrail
pixels labeled by at least one labelers. Labelers agree slightly
less in scenes with higher cloud cover fractions.

The dataset is provided in TFRecord format. Each example
includes an image with a size of 256 × 256. Each example
is provided with multiple GOES-16 ABI brightness temper-
atures and brightness temperature differences. The dataset is
uploaded to Google Cloud bucket and made publicly available
at gs://goes_contrails_dataset.

A. Evaluation Metrics

The best evaluation metric for contrail detection depends
on the downstream application. A per-pixel metric would
be useful for assessing the energy forcing of contrails as
it captures the area covered by contrails, and a per-contrail
metric would be more useful for associating the contrails to
flights and computing the contrail lengths. Here, we suggest
two evaluation metrics for contrail detection.

Contrail detection can be considered as an image seg-
mentation task which is traditionally evaluated with per-pixel
metrics. Typical semantic segmentation metrics like intersec-
tion over union (IoU) and DICE coefficient are sensitive to the
choice of a single binarization threshold. Since the detection

outputs could be useful at different operating points for differ-
ent applications, we evaluate the per-pixel performance using
area under the precision recall curve (AUC-PR). We use 10 000
thresholds sampled uniformly between 0 and 1 to compute the
precision and recall for each pixel to obtain the AUC-PR.

We also evaluate contrail detections as a line segment
detection task. The contrail detection system should output
a set of line segments for each image. Similar to [17],
we evaluate the resulting linear contrails with a precision recall
curve. The contrail detected is considered a correct detection
if its orientation angle is within 10◦ from the groundtruth and
within 10 km (approximately 5 pixels) mean distance to the
contrail [17].

III. MODELS

We use a convolutional neural network model for contrail
detection. The model outputs a score (between 0 to 1) for each
pixel indicating the confidence that pixel is part of a contrail.
The per-pixel contrail detection outputs are then postprocessed
to produce line segments representing the contrail instances.

To consistently identify contrails including at night, we train
on infrared channels represented as brightness temperatures
as input. Our contrail detection model takes six channels as
input: 8, 10, 11, 12 µm, difference between 12 and 11 µm,
and difference between 11 and 8 µm. Each input channel is
standardized by subtracting the per-channel global mean and
dividing by the per-channel global standard deviation of the
entire training set before feeding it into the network.

A. Single-Frame Model

We first train a binary image segmentation model for
classifying each pixel as contrail or background. We employ
the semantic segmentation architecture Deeplabv3+ [23] and
experimented with different image backbones. Following [23],
we use a dilated ResNet [22] by modifying the last resid-
ual block with dilated convolutions, resulting in an output
stride of 16 in the output feature maps. An Atrous Spatial
Pyramid Pooling (ASPP) module [23] follows to incorporate
information at multiple scales. Low-level feature maps are
then combined with upsampled higher level feature maps
to preserve the resolution of the feature maps. The final
segmentation head consists of three convolutional layers and
a two-channel output representing “background” or “contrail.”
The model is trained with a per-pixel cross-entropy loss.

The performance of the original ResNet, which has been
used previously for contrail detection model [8], can be
improved by various recent techniques [30]. We follow the
best practice documented in [30] and use an improved archi-
tecture with ResNet-D stem [31] and Squeeze-and-Excitation
blocks [32]. We set the squeeze-and-excitation ratio to 0.25.
Stochastic depth [33] was used to regularize the network with
0.2 drop rate.

The output resolution of the segmentation model can be
smaller than the input images by a factor of the output stride
of the backbone. We apply bilinear upsampling to the network
prediction to resize the outputs to the groundtruth image
resolution during both training and evaluation.
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Fig. 9. Network architecture for multiframe detection model. The model takes a sequence of frames as inputs, and take a slice of the feature maps that
correspond to a single timestep, and then run the decoder.

B. Multiframe Model

To incorporate temporal context into our model, we extend
the Deeplabv3+ model to incorporate multiple input frames.
We use a spatio-temporal encoder (based on 3-D convolutions)
to incorporate temporal information.

Inspired by the wide success of convolutional networks in
video classification, we use the inflated 3-D (I3D) convnet as
the backbone of our detection model. Our inflated convnet is
based on the ResNet architecture [21]. Since 3-D convolu-
tion is computationally expensive, we implement the inflated
ResNet block by factoring spatial and temporal convolutions
similar to [34], [35]. A regular ResNet block consists of three
convolution layers with 1 × 1, k × k, and 1 × 1 kernel
sizes. We inflate each ResNet block by expanding the first
convolutional layer with a temporal component, while keeping
the second and third convolutional layers with a temporal
kernel size of 1. The inflated ResNet block thus has kernel
sizes of t × 1 × 1, 1 × k × k, and 1 × 1 × 1. In our
implementation, we apply the temporal convolution with a
kernel size of 3, at every ResNet block in stages 3 and 4.

Differently from video classification (where only a single
label is returned for each example), fine-grained spatio-
temporal information is required for precisely predicting the
contrail detection masks. We augment the backbone network
to have a temporal stride of 1 in the first max pooling and
convolution layers in the stem. Thus, the temporal resolution
is fixed throughout the backbone.

Since the dataset only has one labeled frame available for
each example, we slice one frame of features to pass to the
decoder. Similar to the single-frame model, we use the ASPP
module for the decoder and stacked convolutional layers for
classifier. The overall model architecture is illustrated in Fig. 9.

C. Training

We train the network using stochastic gradient descent with
10 000 iterations, using a batch size of 256 and a momentum
of 0.9. All models are implemented in TensorFlow and trained
on 16 Tensor Processing Unit V3 (TPUv3) chips. The learning
rate is set to 0.2 and gradually decays to zero with half-cycle
cosine learning rate decay. To improve training stability,
we employ a linear warm-up learning rate schedule, increasing
the learning rate linearly from 0 for the first 500 iterations.
L2 weight decay is used with a factor of 0.0001. Input images

are resized to a resolution of 512 × 512 before being fed into
the network for both training and evaluation, unless otherwise
specified. Data augmentation is applied during training to
reduce overfitting: a scale factor is chosen uniformly randomly
at each iteration, and then the image is scaled according to the
scale factor, and a crop of the scaled image is used for training.
We found this significantly helps overall performance.

As our detection dataset is relatively small compared to
natural image datasets like ImageNet [6], pre-training the
neural network on larger datasets can often help—even pre-
training on images which are very different from satellite
images. We initialize the network with ImageNet pre-trained
weights for the single-frame model. We have also exper-
imented with weights pre-trained on image segmentation
datasets like COCO but did not see improvement. For the
multiframe model, we pre-train the backbone model on the
Kinetics-400 dataset [36] which consists of about 2 40 000
videos collected from YouTube: each video clip is 10 s long
and is annotated with an action from 400 classes. Because
our model takes six input channels (instead of three used
by the pre-trained network), we average the convolutional
filters along the channel dimension in the first layer, and then
replicate them to the six channels during initialization.

D. Converting Binary Masks to Line Segments

The network outputs corresponding to pixelwise contrail
probabilities are further postprocessed to produce the line
segment outputs. We first choose a threshold to convert the
pixel probabilities to binary masks, and then use off-the-shelf
OpenCV’s LineSegmentDetector, which is an implementation
of [37], to detect line segments from the binary masks. We then
iteratively merge line segments if one segment is part of
(or a continuation of) another line segment. We found that
this procedure works similarly well compared to a more
complicated algorithm which convolves multiple line kernels
at multiple scales as described in [13] and [17], which requires
tuning about ten hyperparameters for the best performance.

IV. RESULTS

A. Main Results

We compare the single-frame models and multiframe model
with different backbones. The results are summarized in
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TABLE I
DIFFERENT ARCHITECTURES FOR CONTRAIL DETECTION

Fig. 10. Per-contrail precision/recall curves, showing better precision and
recall for the multiframe model compared to the best single-frame model we
explored.

TABLE II
CONTRAIL DETECTION (MULTIFRAME MODEL) WITH

DIFFERENT INPUT RESOLUTIONS

TABLE III
DETECTION PERFORMANCE WITH DIFFERENT

NUMBERS OF INPUT FRAMES

Table I. All models achieve reasonable detection performance,
showing that our dataset is sufficiently large for training
contrail detection models. The multiframe model slightly out-
performs the single-frame-based models, showing the model
is able to use temporal context to improve detection.

Fig. 11. (Top) Detector precision, (middle) recall, and (bottom) number of
positive examples at different spatial locations.

Linear Contrail Detection: To assess model accuracy on lin-
ear contrail objects, we linearize the output prediction mask as
discussed in Section III-D. Before each linearization, we vary



4101414 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Fig. 12. (Left) Detector precision, (middle) recall, and (right) number of examples at different solar zenith angles on the validation set.

Fig. 13. (Left) Detector precision, (middle) recall, and (right) number of examples at different cloud cover fractions on the validation set.

the thresholding value for the model output mask to generate
multiple binary contrail masks at different confidence levels.
Fig. 10 shows the precision recall curves from this process.
Once again our multiframe model shows better performance
compared to the single-frame model.

McCloskey et al. [17] provided a similar precision recall
curve on the contrail dataset based on the Landsat-8 satellite
with the baseline Mannstein et al. algorithm [13]. It is worth
noting that our precision presented here is significantly higher.
At 60% recall, The Mannstein et al. algorithm gave 15%
precision on the Landsat-8 dataset, while our model gives more
than 70% precision on our GOES-16-based dataset. While
the evaluation datasets and models are different, this suggests
that our model detects contrails more accurately for contrail
research.

B. Detailed Analyses

1) Input Image Size: Using a larger input image size
often improves performance on visual recognition tasks [38],
[39]. This is because the network can use more computation
on smaller patches, and the output resolution is increased.
We perform bilinear resampling to enlarge the input image
before feeding it to the network, during both training and
evaluation. The output predictions are resampled to match the
groundtruth resolution when computing the AUC-PR. Table II
shows the results with different resolutions. We see that larger
input image sizes give slightly better results, at the cost of
slower inference and more memory usage during training.

2) Number of Input Frames: Using multiple input frames
improves the performance by providing more temporal con-
text. The results are summarized in Table III. In general,
we observe that the temporal context before the labeled
frames is more important than after the labeled frames. This

Fig. 14. Validation performance (pixelwise AUC-PR) when the multiframe
model is trained with different numbers of labels.

TABLE IV
MODEL COMPARISON WITH MEIJER ET AL.’S DETECTION [8] ON
DIFFERENT DATASETS. THE RELAXED PRECISION AND RECALL

(ρ = 2) OF A FIXED THRESHOLD ARE REPORTED

matches our intuition as contrails dissipate over time and
become harder to recognize. Using frames after the labeled
frames shows diminished model performance. This could be
an artifact of our current model architecture; we plan to further
experiment with other architectures to validate this in the
future.
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Fig. 15. Example detection outputs from our model. Columns from left to right: 1) false color images from GOES; 2) groundtruth contrail labels; 3) pixel
outputs from our model; and 4) binarized detection outputs (with threshold 0.35) and the red line segments correspond to the linearization outputs from the
line segment detector.

3) Performance Across Spatial Locations: We visualize
the precision and recall (with 0.4 detection threshold) at
different spatial locations in Fig. 11 for each 10 × 10 degree
gridbox that contains at least three positive examples in our
validation set. The precision and recall estimates are noisier in
South America due to smaller number of positive examples.
In general, we observe no substantial spatial bias in different

spatial locations, except with slightly worse performance in
the northwest part of South America.

4) Performance at Different Solar Zenith Angles: The
solar zenith angle is how many degrees away from “directly
overhead” the sun is at any given moment; greater than
90◦ indicates night scenes. Fig. 12 shows the precision
and recall of the detector at different solar zenith angles.
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Fig. 16. (Top) Averaged detected contrail mask, 2018–2019. (Bottom) Flight waypoint density above 7000 m, 2018–2019.

We observe relatively uniform performance across differ-
ent solar zenith angles, except in the zenith angle bucket
with small number of examples which may lead to noisy
results. The example distribution is different from Fig. 5
because the training set includes GOES-16 images that were
sourced by virtue of having a contrail in a collocated
Street View picture of the sky, and those are only daytime
images.

5) Performance at Different Cloud Cover Fractions: Con-
trails in cloudy scenes could be more difficult to recognize.
We show the precision and recall (with 0.4 detection threshold)
in Fig. 13. The precision is relatively similar across different
cloud cover levels, while the recall slightly drops in higher
cloud cover levels.

6) Dataset Size: Larger training datasets often improve the
quality of machine learning models. Fig. 14 shows the effect of
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Fig. 17. Linear contrail coverage and flight density by the time of day.
The blue curve shows the linear contrail coverage derived from our contrail
detector and the orange bar shows the flight densities.

training with different amounts of training data. More training
data improves the detection performance, but diminishing
returns are observed at the current scale. This suggests that
it may be more important at this point to improve the model
architectures, input features, or learning algorithms than it is
to collect more labeled data.

C. Comparison of Single-Frame Model With Meijer et al. [8]

Meijer et al. [8] have also trained a contrail detection model
on GOES-16 images. Their model is based on a U-Net [40]
architecture with ResNet-18 backbone, and they trained the
model on their dataset which consists of 103 labeled images
covering the contiguous US (CONUS) region, with each image
having 3000 × 2000 pixels. We obtained the evaluation
set and detection results from [8] and here we provide an
inter-comparison of both models on both datasets. We report
on the images from the year 2018 in the evaluation set
from [8], which contains human labels on the CONUS region
for 12 different GOES-16 scans spread throughout the year.
We have verified that there is no overlap between the evalua-
tion set and OpenContrail’s training set. Since their dataset
uses GOES-16 images from 2018 where full-disk images
are taken every 15 min instead of 10 min, we evaluate our
single-frame model on this dataset instead of the multiframe
model. When evaluating on OpenContrails, we only use exam-
ples located in the CONUS region because Meijer et al.’s
detection only covers the CONUS region.

Due to a discrepancy in our respective implementations of
image projection, during initial comparisons, we observed a
slight misalignment between the Meijer et al. human labels
when compared to our projections of the GOES-16 images.
Therefore, we use a “relaxed” version of precision and recall
as the metric, similar to [41]. We consider that the relaxed
precision represents the fraction of the predicted contrails that
are within ρ pixels of the true contrails, and the relaxed recall
represents the fraction of true contrails that are within ρ pixels
of the predicted contrails. We use ρ = 2 in our evaluation.

We compare the detection results without model retrain-
ing. We select a threshold value of 0.35 to generate binary
detection masks. The results are summarized in Table IV.
Our model gives better accuracy than [8] on our dataset,

which is unsurprising given our model is trained on data
with a similar distribution. Despite the distribution shift of
labels from our training set to the labels from [8], our model
slightly outperforms their model trained on their dataset. This
highlights the good quality and the degree of generalization
of our contrail detection model trained on our new dataset.

D. Visualization

Fig. 15 shows some qualitative results of our detections.
We observe good visual agreement between the model detec-
tions and human label masks, and the line segment detector
appears able to convert the detection mask to linear segments
reasonably well. The model sometimes misses some detections
when there are many contrails in the scene. It is also clear from
qualitative inspections of multitemporal satellite imagery (data
not shown) that the model generally does not assign much
(if any) probability to nonlinear anthropogenic contrail cirrus
clouds that evolved from linear contrails. This is unsurprising
given the instructions we have provided to labelers (to only
mark linear contrails), but it has an important implication for
using the detection model as the basis of contrail warming
assessments: we expect the warming from contrail pixels
detected by the model to comprise a lower bound on the actual
contrail warming impact.

V. CONTRAIL COVERAGE

To compute contrail coverage visuals and statistics, we run
our single-frame contrail detection model as an overlapping
sliding window, and then stitch the detection outputs to obtain
the combined detection masks for the CONUS region in the
year 2018–2019. To give an unbiased contrail coverage esti-
mate, following Meijer et al. [8] we select a per-pixel detection
threshold (for our model, 0.4) which gives a precision rate
and recall rate on our validation set that are approximately
equal. We show the average contrail coverage in 2018–2019
in the CONUS region and the corresponding flight density
(computed from FlightAware data) in Fig. 16. The contrails
cluster along the high traffic flight routes, which confirms
the pattern from [8]. The average linear contrail coverage in
the considered domain is 0.19% which is similar to 0.17%
reported in [8].

Fig. 17 shows our estimated linear contrail coverage and
flight density by the time of day in 2019. The local hour of
the contrails is approximated by hourUTC + longitude/360 ×

24. We observe a similar diurnal pattern as in the previous
work [8]: the contrail coverage is lowest around midnight
with about 0.1% coverage. It peaks at around 8 A.M. with
about 0.28% contrail coverage (as the distance flown goes
up) but then drops in the afternoon despite the flight distance
remaining high.

Fig. 18 shows the contrail coverage versus flight distance by
the day of year from 2018 to 2021. We observe similar trends
to those observed by Meijer et al. [8]. Contrail coverage drops
as the flight distance drops significantly in April 2020, due
to COVID-19. We also observe a seasonal effect of contrail
coverage, where fewer contrails are observed consistently in
the summer months across multiple years, regardless of the
flight distance flown.
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Fig. 18. Linear contrail coverage from our single-frame model with flight distance by the day of year from 2018 to 2021. 15-day rolling means are displayed.

VI. DISCUSSION

While our dataset provides high-quality contrail labels on
GOES-16 satellite images, some contrails may not be observ-
able from geostationary satellites and thus cannot be labeled
by human raters. For example, young contrails may already
be deformed (or dissipated) before they are visible from
geostationary orbit. Also, contrails forming below existing
optically thick cirrus are unlikely to be recognizable by human
labelers; however, it has been suggested that those contrails
do not generate a significant amount of warming [42]. Further
research is needed to empirically determine the fraction of
contrails and their corresponding warming which can be
detected in geostationary satellite images.

Our current system detects contrails at each target frame
independently, and does not provide correspondence of con-
trails between difference frames. Such correspondence could
be useful for identifying the contrail age, and improving flight
attribution (i.e., which flight caused the contrail). It is also
currently estimated that a large fraction of contrail warming
happens after contrails are no longer linear [42]. Our proposed
models and labels only include linear-shaped contrails, and
do not identify deformed contrail-cirrus clouds which are
no longer distinguishable from natural cirrus without tracing
back to when they are formed. To fully assess the warming
impact of contrails, it may be crucial to track contrail pixels
for an extended period of time once they are detected. Such
a contrail tracking system can be built based on the linear
contrail models demonstrated in this work.

Due to the high cost of pixelwise labeling of contrails, our
proposed dataset is relatively small compared to large-scale
natural image datasets like ImageNet (20k versus 1M exam-
ples). Large-scale labeled datasets for geostationary satellite
images are unfortunately not currently available for model
pre-training. Therefore, our proposed models are initialized on
checkpoints trained on natural image or video datasets such

as ImageNet or Kinetics, and their benefits may be limited
by domain mismatch between internet images and satellite
images. Self-supervised and semi-supervised machine learning
techniques that leverage unlabeled data have been shown
to improve machine learning model performance for remote
sensing segmentation tasks [43], and should be explored here
in the future.

Our work here can be extended to cover other geostationary
satellites. We plan to collect labels on other geostation-
ary satellites (e.g., Himawari-8 [44] and Meteosat-11 [45])
to cover other regions including Europe and Asia-Pacific.
We believe that models trained on the proposed OpenContrails
dataset based on GOES-16 can be used for transfer learning to
obtain high-quality contrail detectors on other satellites with
fewer human labels.

VII. CONCLUSION

We present here a large human-labeled contrail detection
benchmark dataset based on GOES-16 ABI imagery. Using
it, we explore several contrail detection model architectures,
and achieve a new state of the art in linear contrail detection
on GOES-16 ABI imagery. We show that leveraging temporal
context improves contrail detection, and confirm previously
reported seasonal and diurnal contrail coverage trends. The
contrail detection dataset and the multiframe detection model
outputs are made publicly available on Google Cloud Storage
at gs://goes_contrails_dataset. We believe that
these contributions will advance contrail empirical studies
including contrail detection, climate impact assessment, and
mitigation.
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