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Abstract

The p-Wasserstein distance measures the cost of
optimally transporting one distribution to another,
where the cost of moving a unit mass from a to
b is the pth power of the ground distance d(a, b)
between them. Despite its strong theoretical prop-
erties, its use in practice – especially for p ≥ 2 –
is limited due to two key challenges: sensitivity to
noise and a lack of scalable algorithms. We iden-
tify noise sensitivity as a key reason why some
existing approximation algorithms for p = 1 fail
to generalize to p ≥ 2 and then present new algo-
rithms for approximating the p-Wasserstein dis-
tance and its variant. First, when d(·, ·) is a metric,
for any constant p ≥ 2, we present a novel relative
O(log n)- approximation algorithm to compute
the p-Wasserstein distance between any two dis-
crete distributions of size n. The algorithm runs
in O(n2 logU log∆ log n) time, where logU is
the bit-length of the input probabilities and ∆ is
the ratio of the largest to the smallest pairwise
distance. We use p hierarchically well-separated
trees to define a distance that approximates the p-
Wasserstein cost within a factor of O(log n) and
then present a simple primal-dual algorithm to
compute the p-Wasserstein cost with respect to
this distance. Second, due to the noise sensitivity
of the p-Wasserstein distance, we show that exist-
ing combinatorial approaches require Ω(n2/δp)
time to approximate the p-Wasserstein distance
within an additive error of δ. In contrast, we show
that, for any arbitrary distance d(·, ·), a recent
noise-resistant variant of the p-Wasserstein dis-
tance, called the p-RPW distance, can be approxi-
mated in O(n2/δ3) time.
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1. Introduction
Let µ and ν be discrete probability distributions supported
on sets A and B, respectively, with |A| + |B| = n. For
each pair (a, b) ∈ A × B, let d(a, b) denote the distance
between a and b. For simplicity, assume that the diameter
of A ∪B is 1, i.e., max(a,b)∈A×B d(a, b) = 1. A transport
plan is a function σ : A × B → R≥0 that assigns a mass
to each pair (a, b) such that

∑
b∈B σ(a, b) ≤ µ(a) and∑

a∈A σ(a, b) ≤ ν(b). Given a parameter p ≥ 1, suppose
the cost of moving a unit of mass from a point a ∈ A to a
point b ∈ B is given by d(a, b)p. The p-Wasserstein cost of
any transport plan σ between µ and ν is defined as

wp(σ) :=

 ∑
a∈A,b∈B

σ(a, b)× d(a, b)p

1/p

.

In the α-partial p-Wasserstein problem, we wish to compute
the transport plan σ∗

α that transports α fraction of the mass
and has the smallest p-Wasserstein cost. We refer to this
cost as the α-partial p-Wasserstein distance and denote it
by Wp,α(µ, ν) = wp(σ

∗
α). The p-Wasserstein distance,

denoted by Wp(µ, ν), is equal to the cost wp(σ
∗
1).

A standard approach to estimating the p-Wasserstein dis-
tance between µ and ν is to draw n samples from both and
construct empirical distributions µn and νn by assigning
a mass of 1/n to each sampled point. Computing the p-
Wasserstein distance between these empirical distributions
corresponds to a well-known problem in combinatorial op-
timization: the assignment problem. In this setting, the
optimal transport plan is a matching – a set of n vertex-
disjoint edges, each carrying a mass of 1/n.

The p-Wasserstein distance is effective in capturing geo-
metric similarity between distributions, especially when
p ≥ 2. When the ground distance d(·, ·) is a metric, the
p-Wasserstein distance is also a metric. Furthermore, when
the diameter of the supports is bounded, the empirical p-
Wasserstein distance converges to the true distance as the
sample size increases (Fournier and Guillin, 2015). These
favorable theoretical properties have led to its widespread
adoption in applications across machine learning (Chang
et al., 2023; Chuang et al., 2022), computer vision (Backurs
et al., 2020; Lai et al., 2022), and natural language process-
ing (Alvarez-Melis and Jaakkola, 2018; Yurochkin et al.,
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2019). However, despite its strengths, the p-Wasserstein
distance (for p ≥ 2) faces two significant limitations in prac-
tice: sensitivity to noise and lack of scalable algorithms.

Noise sensitivity: A major drawback of the p-Wasserstein
distance is its sensitivity to small amounts of noise. Specif-
ically, a noise mass of δ can increase the p-Wasserstein
distance by as much as δ1/p. For example, a 1% noise
(δ = 0.01) can increase the 2-Wasserstein distance by more
than 10% (or 0.1) (Raghvendra et al., 2024). This makes the
p-Wasserstein distance less reliable for real-world datasets
which often contain noise or outliers. To address this limita-
tion, Raghvendra et al. (2024) introduced the (p, k)-Robust
Partial Wasserstein ((p, k)-RPW) distance. It is defined
as the smallest ε such that Wp,(1−ε)(µ, ν) ≤ kε. This
formulation generalizes several classical metrics including
total variation, the p-Wasserstein, and the well-known Lèvy-
Prokhorov distance (Prokhorov, 1956). Importantly, the
(p, k)-RPW distance is provably more robust: modifying a δ
mass in the distribution alters the (p, k)-RPW distance by at
most δ, in contrast to the potentially much larger distortion
in the standard p-Wasserstein case.

Exact Algorithms: Exact algorithms for computing the
p-Wasserstein distance take Õ(n3) time (Orlin, 1988)1. For
the case where the precision of costs and probabilities are
bounded, one can use interior point methods to improve
the execution time to O(n2+o(1)) (Chen et al., 2022); how-
ever, these algorithms are complex and, without significant
simplifications, it is unlikely that these methods will lead
to a usable implementation for machine learning applica-
tions. Similarly, for distances that admit a dynamic weighted
bichromatic closest pair (BCP) data structure with a query
and update time of Φ(n), one can improve the execution
time of exact algorithms to Õ(n2Φ(n)). Unfortunately, the
only known BCP data structures are in the two-dimensional
setting and the data structures are based on sophisticated
techniques that do not have an implementation (Eppstein,
1995; Chan, 2020). Due to a lack of efficient, usable exact
algorithms, researchers have focused on designing relative
and additive approximation algorithms.

Relative Approximations: An α-relative approximation
algorithm (or simply an α-approximation) returns a trans-
port plan whose p-Wasserstein cost is at most α times the
optimal value. When the ground distance d(·, ·) is a met-
ric and p = 1, Charikar (2002) presented an O(n2) time
O(log n log log n)-approximation algorithm. The key idea
is to approximate the original metric with a tree metric that
preserves the 1-Wasserstein distance within a multiplica-
tive factor of O(log n log log n). Once embedded into the
tree, the 1-Wasserstein distance under the tree metric can be
computed efficiently using a simple greedy algorithm. How-
ever, this approach does not generalize to p ≥ 2, since the

1Õ(·) hides poly logn factors in the running time

tree metric cannot approximate the 2-Wasserstein distance
within a bounded factor.

Subsequent work by Agarwal and Sharathkumar (2014) pre-
sented an algorithm to find an O(1/δ0.631)-approximation
of the 1-Wasserstein distance in O(n2+δ) time, which was
later improved by Sherman (2017) to a (1 + ε) approxima-
tion algorithm in Õ(n2/ε2) time. These algorithms rely on
the assumption that the cost function is a metric – a property
that holds when p = 1, but fails for p ≥ 2 since the costs
are d(·, ·)p, which do not satisfy the triangle inequality. As
a result, these methods do not extend to higher values of p.

For p = 1, significantly faster algorithms exist in geometric
settings (e.g., low-dimensional Euclidean space); see, for
instance, (Agarwal et al., 2022; Indyk, 2007; Sharathku-
mar and Agarwal, 2012a;b; Agarwal and Varadarajan, 2004;
Fox and Lu, 2020). Owing to their simplicity, some of
these algorithms have since been adapted to the design of
data structures and algorithms for more complex tasks in
the Wasserstein space; see, for instance, nearest neighbor
searching (Backurs et al., 2020; Andoni et al., 2018) and
barycenter computation (Agarwal et al., 2025). In contrast,
for p ≥ 2, there are no fast approximation algorithms known
that work for any metric space. The only existing fast ap-
proximation algorithms are restricted to specific settings,
for instance two-dimensional Euclidean settings (Lahn and
Raghvendra, 2019; 2021). In this paper, we address the
following major open challenge:

For any integer p ≥ 2 and any metric d(·, ·), can we design
an Õ(n2) time O(log n)-relative approximation algorithm
to compute the p-Wasserstein distance between two discrete
distributions?

Additive Approximations: A transport plan σ is a δ-
additive approximation, or simply δ-close, if wp(σ) ≤
wp(σ

∗) + δ. There are several simple and highly paral-
lelizable quadratic algorithms for computing additive ap-
proximations for any cost matrix (Cuturi, 2013; Altschuler
et al., 2017; 2019; Lin et al., 2019; Dvurechensky et al.,
2018; Jambulapati et al., 2019; Lahn et al., 2019; 2023).
However, the best-known algorithms run in Õ(n2/δp) time,
which we show is likely difficult to improve upon. Note that
the execution times of these algorithms increase with p and
do not converge for p =∞.

1.1. Our Results

In this paper, we identify noise sensitivity as a key barrier
preventing the extension of scalable relative and additive
approximation algorithm for the 1-Wasserstein distance to
the case where p ≥ 2, and we present new algorithms that
overcome this challenge.

Relative Approximation: First, for any finite integer p ≥ 2,
we present an Õ(n2) time O(log n)-relative approxima-
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tion algorithm for the p-Wasserstein distance. We are not
aware of any sub-linear approximation algorithm for the
p-Wasserstein problem that runs in near-quadratic time.
Theorem 1.1. Given two discrete distributions µ and ν
defined over point sets A and B, respectively, where |A|+
|B| = n, a metric d(·, ·), and a parameter p ≥ 1, there
exists an O(log n)-approximation algorithm to compute the
p-Wasserstein distance that runs in O(n2 logU log∆ log n)
time, where logU is the number of bits required to represent
the probability values and ∆ is the spread of A ∪B.

Previous relative approximation algorithms for the 1-
Wasserstein distance rely on embedding the ground met-
ric d(·, ·) into a tree metric by using a hierarchically well-
separated tree (HST) (Charikar, 2002; Kleinberg and Tardos,
2002). Embedding a metric into a tree metric introduces
distortion – a form of noise in the edge costs – which is
tolerable for p = 1 but problematic for p ≥ 2 due to the
increased sensitivity of the p-Wasserstein distance to such
perturbations. As a result, the p-Wasserstein cost computed
over the tree metric can deviate significantly from the true
cost, yielding unbounded approximation guarantees. To
overcome this limitation, we propose a new approach that
reduces the impact of distortion by considering multiple
tree embeddings. Specifically, we construct p different HST
embeddings and, for each pair of points, use the minimum
edge cost across these embeddings. We show that this strat-
egy yields a more stable distance, and prove that the opti-
mal p-Wasserstein distance computed using these modified
edge costs provides an O(log n)-approximation to the true
p-Wasserstein distance.

Unlike the case of the 1-Wasserstein distance, a simple
greedy algorithm does not yield an optimal solution under
our new distance. Instead, we adopt a primal-dual frame-
work to compute the optimal transport plan. In general,
primal-dual algorithms perform O(n) graph search steps
to identify so-called augmenting paths, with each search
typically taking O(n2) time—resulting in an overall time
complexity of O(n3). To improve efficiency, we leverage
the structure of the p tree embeddings and design a dynamic
BCP data structure to accelerate the search process. Us-
ing this data structure, we conduct each graph search in
O(n log∆ log n) time, where ∆ is the spread, which is the
ratio between the largest and smallest nonzero edge costs.
This results in a total runtime of O(n2 log∆ log n) for com-
puting the optimal solution.

We also provide an implementation of our algorithm and em-
pirically analyze the efficiency and accuracy of the solution
produced by our algorithm on stochastic data sets.

Additive Approximation: Using the sensitivity of p-
Wasserstein distance to noise, we show that any algorithm
that approximates the p-Wasserstein distance within an ad-
ditive factor of δ and runs in better than O(n2/δp) time

can be used to determine whether an unweighted bipartite
graph has a perfect matching in faster than n2.5 time. While
there are several theoretically almost-quadratic algorithms
(e.g. (Chen et al., 2022)) for finding a perfect matching,
the fastest practical algorithm remains the classic Hopcroft-
Karp algorithm Hopcroft and Karp (1973), which runs in
O(n2.5) time. This reduction suggests a barrier to design-
ing efficient and implementable algorithms for computing
the p-Wasserstein distance faster than O(n2/δp) time. This
computational hardness extends to robust variants as well,
including the α-partial p-Wasserstein distance (Chapel et al.,
2020) and the λ-ROBOT distance (Mukherjee et al., 2021).

Interestingly, we show that the (p, k)-RPW distance can be
approximated in O(n2/δ3) time, for any p ≥ 1 and fixed
constant k, and this runtime is independent of p. Thus, the
approximate (p, k)-RPW distance overcomes both major
limitations of the p-Wasserstein distance: it is robust to
noise and supports significantly more scalable algorithms.

Theorem 1.2. Given two discrete distributions µ and ν
defined over point sets A and B, respectively, where |A|+
|B| = n, a metric d(·, ·), and parameters p ≥ 1, δ > 0,
and any fixed constant k > 0, there exists a δ-additive
approximation algorithm for the (p, k)-RPW distance that
runs in O(n2/δ3) time.

Our improved algorithm for approximating the (p, k)-RPW
distance is motivated by a key observation: augmenting-
path-based optimal transport algorithms tend to transport
most of the mass quickly, with the majority of the run-
time spent on routing a small residual fraction (Hopcroft
and Karp, 1973; Lahn et al., 2019; Lahn and Raghvendra,
2019). For example, using the classical Hopcroft-Karp al-
gorithm (Hopcroft and Karp, 1973) for bipartite perfect
matching, a matching of size (1− δ)n can be computed in
O(n2/δ) time for any constant δ > 0, whereas completing
the remaining δn edges requires n2.5 time. A similar be-
havior also holds for several combinatorial algorithms that
approximate the optimal transport cost.

In contrast, to approximate the (p, k)-RPW distance ε be-
tween distributions µ and ν up to an additive error of δ,
it suffices to compute a transport plan that moves at least
(1− ε− δ) mass with a total cost at most ε+ δ. We leverage
this relaxation to design a faster approximation algorithm
by adapting the LMR algorithm (Lahn et al., 2019). Specifi-
cally, we find a transport plan that deviates from the optimal
in both cost and transported mass by at most δ, thereby ap-
proximating the RPW distance efficiently. We also provide
an implementation of our algorithm. Experiments (included
in Appendix C) suggest that our algorithm outperforms the
algorithm by Raghvendra et al. (2024), especially for larger
values of p and smaller values of δ.
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2. A Tree Based Distance
In this section, we present a novel distance function based on
p independently constructed hierarchically well-separated
trees (HSTs) that approximates the ground metric d(·, ·).
We prove that the p-Wasserstein distance with respect to
our tree-based distance is, in expectation, an O(log n) ap-
proximation of the p-Wasserstein distance with respect to
d(·, ·).

We begin by reviewing HSTs and their key properties as
established by Fakcharoenphol et al. (2003) in Section 2.1.
In Section 2.2, we formally define our new distance function
and demonstrate its approximation guarantees. Then, in
Section 2.3, we present a dynamic weighted bichromatic
closest pair (BCP) data structure for our tree-based distance.
Finally, in Section 3, we use this BCP data structure to
design a near-quadratic time algorithm for computing the p-
Wasserstein distance with respect to our tree-based distance.

2.1. Hierarchically Well-Separated Trees

Let (X,d) be a metric space. Consider a partition P =
{C1, . . . , Ct} of X into clusters, where each point in X
belongs to exactly one cluster in P . For each cluster C ∈ P ,
let Diam(C) denote the diameter of C, and let XC denote
the subset of X contained in C. For each point x ∈ X
and radius δ > 0, define a ball centered at x and radius δ,
denoted by B(x, δ), as the points of X that are at a distance
no more than δ from x, i.e., B(x, δ) := {u ∈ X | d(x, u) ≤
δ}. For any integer j ≥ 0, define kxj := |B(x, 2−j)| as the
number of points of X that are at a distance at most 2−j

from x.

Fakcharoenphol et al. (2003) presented a randomized algo-
rithm that, given a metric space (X,d) with unit diameter
and spread ∆, constructs a hierarchically well-separated tree
(HST) T over the points in X in O(n2) time. The root of
the tree corresponds to all points in X , the children of each
cluster C form a partition of the subset XC , and every point
in X forms a leaf cluster in the tree. The level of a cluster C
is defined as its distance (in number of edges) from the root:
the root is at level 0, and the levels increase as we descend
the tree. Their construction guarantees two properties:

(H1) For any cluster C at level j, Diam(XC) ≤ 2−j .

(H2) For any pair of points u, v ∈ X , the probability that
the least common ancestor of the pair (u, v) is at a
level at most j is at most d(u,v)

2−j−1 × Γ(u, v, j), where
Γ(u, v, j) := Hku

j
+Hkv

j
−Hku

j+2
−Hkv

j+2
; here, Hk

is the kth Harmonic number.

The tree T has a height O(log∆). Moreover, every point
x ∈ X participates in each of the O(log∆) clusters that are
ancestors of x in T .

2.2. Distance Function

Let µ and ν be two discrete distributions supported on point
sets A and B, with |A| + |B| = n, and let d(·, ·) be the
ground metric. In this section, we introduce an HST-based
distance function dT (·, ·) and show that the p-Wasserstein
distance with dT (·, ·) as the ground distance would be an
O(log n)-approximation of the p-Wasserstein distance with
d(·, ·) as the ground distance.

Let T = {T1, . . . , Tp} be a set of p independently con-
structed HSTs over the metric space (A ∪ B, d). For any
pair of points (a, b) ∈ A×B and each tree index i ∈ [1, p],
let cluster Ci(a, b) denote the least common ancestor of a
and b in the tree Ti and let levi(a, b) denote the level of the
cluster Ci(a, b) in the tree. Recall that the diameter of the
cluster at level j is at most 2−j ; hence, 2−levi(a,b) is an up-
per bound on d(a, b). We define the tree distance between
a and b as

dT (a, b) := min
i∈[1,p]

{2−levi(a,b)}.

This definition takes the best (i.e., tightest) estimate among
all the p trees as an upper bound for d(a, b). The next lemma
relates dT (a, b) to the ground distance d(a, b).

Lemma 2.1. For any pair of points (a, b) ∈ A ×
B, dT (a, b)

p ≥ d(a, b)p and E[dT (a, b)p] =
O((4 log n)pd(a, b)p).

Proof. Let j = argmini∈[1,p]{2−levi(a,b)}, i.e. dT (a, b) =
2−levj(a,b). Recall that Cj(a, b) denotes the least common
ancestor of a and b in Tj . Then,

dT (a, b)
p = (2−levj(a,b))p ≥ Diam(Cj(a, b))

p ≥ d(a, b)p,

where the second inequality holds from (H1) and the last
inequality holds since a, b ∈ Cj(a, b). Let h denote the
maximum height of the HSTs in T . For any level j ∈ [0, h],

Pr[lev(a, b) = j] ≤ Pr
[
levi(a, b) ≤ j,∀i ∈ [1, p]

]
=

p∏
i=1

Pr
[
levi(a, b) ≤ j

]
≤ d(a, b)p · Γ(a, b, j)p

(2−j−1)p

≤ d(a, b)p · (2Hn)
p−1 · Γ(a, b, j)

2−p(j+1)
,

where the last inequality holds since kuj ∈ [1, n] and
Γ(a, b, j) ≤ 2Hn. We can bound the expected distortion of
the tree distance dT (a, b) by summing over all levels from
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0 to h as follows.

E [dT (a, b)
p] =

h∑
j=0

Pr
[
lev(a, b) = j

]
· (2−j)p

≤
h∑

j=0

d(a, b)p · (2Hn)
p−1 · Γ(a, b, j)

2−p(j+1)
· 2−pj

= 2p · (2Hn)
p−1 · d(a, b)p

h∑
j=0

Γ(a, b, j)

≤ 2p · (2Hn)
p−1 · d(a, b)p × 4Hn (1)

= O((4 log n)p × d(a, b)p),

where Inequality (1) holds since

h∑
j=0

Γ(a, b, j) =

h∑
j=0

Hka
j
+Hkb

j
−Hka

j+2
−Hkb

j+2

= Hka
0
+Hkb

0
+Hka

1
+Hkb

1

−Hka
h+1
−Hkb

h+1
−Hka

h+2
−Hkb

h+2

≤ 4Hn.

Let σ∗ (resp. σ∗
T ) be the transport plan between µ and

ν that minimizes the p-Wasserstein cost with respect to
the distances d(·, ·) (resp. dT (·, ·)). For any transport
plan σ′, let wT ,p(σ

′) denote the p-Wasserstein cost of σ′

under the tree distances dT (·, ·). Using linearity of ex-
pectation, we bound the expected value E[wT ,p(σ

∗
T )

p] by
O((4 log n)pwp(σ

∗)p). Combining it with Jensen’s inequal-
ity, we have the following lemma.

Lemma 2.2. E[wT ,p(σ
∗
T )] = O((log n)wp(σ

∗)).

Next, we describe a simple dynamic data structure for main-
taining a weighted bichromatic closest pair between two
subsets U ⊆ B and V ⊆ A. In Section 3, we use this
data structure in a primal-dual algorithm for computing an
approximation of the p-Wasserstein distance.

2.3. Dynamic Bichromatic Closest Pair Data Structure

Let w(u) denote the weight associated with point u. For
any pair of points a ∈ A and b ∈ B, define the weighted
distance between them as:

dT ,w(a, b) := dT (a, b)
p − w(a)− w(b).

Given two sets of points U ⊆ B and V ⊆ A, the weighted
bichromatic closest pair between U and V is the pair mini-
mizing the weighted distance, i.e.,

argminu∈U,v∈V {dT (u, v)p − w(u)− w(v)}.

We present a dynamic data structure that maintains this
pair and supports insertions and deletions in U and V in
O(p log n log∆) time. For each tree Ti ∈ T and each
cluster C ∈ Ti, let UC (resp. VC) denote the subset of U
(resp. V ) that participates in C. Let lev(C) denote the level
of C in tree Ti. The following key lemma is instrumental in
the design of our data structure.
Lemma 2.3. Suppose (a∗, b∗) ∈ V × U is the weighted
bichromatic closest pair between V and U . Then,

dT ,w(a
∗, b∗)

= min
Ti∈T ,C∈Ti

{
2−lev(C)·p − max

b∈UC

w(b)− max
a∈VC

w(a)

}
.

Data Structure: For each tree Ti ∈ T and each cluster
C ∈ Ti, define the candidate closest pair for cluster C as
the pair (aC , bC) ∈ VC × UC that minimizes 2lev(C)·p −
maxb∈UC

w(b)−maxa∈VC
w(a). To maintain the candidate

closest pair of C, our data structure stores two max-heaps
for each cluster C: HeapVC for points in VC and HeapUC for
points in UC , with weights as keys. The candidate closest
pair for C is simply given by the roots of these heaps.

We maintain a global min-heap GlobalHeap that stores
the candidate pair for each cluster C, with their weighted
distance as key. From Lemma 2.3, the weighted bichro-
matic closest pair corresponds to the minimum entry in
GlobalHeap.

To insert (resp. delete) a point b ∈ B into (resp. from) the
set U , we proceed as follows: for each tree Ti ∈ T and every
cluster C along the path from the leaf containing b to the
root of Ti, we insert b into (resp. remove b from) the heap
HeapUC . If the operation alters the candidate closest pair for
any such cluster, we update its entry in the global min-heap
GlobalHeap. An identical procedure is used to insert or
delete a point in the set V by updating the corresponding
heaps HeapVC .

Analysis: Building all p HSTs takes O(pn2) time. The
current bichromatic closest pair is always at the root of
GlobalHeap and can be queried in O(1) time. Each
point v ∈ A ∪ B belongs in O(log∆) clusters per HST,
or O(p log∆) clusters overall. Inserting or deleting a
point in either U or V requires updating the corresponding
heaps in all these O(p log∆) affected clusters, recomput-
ing candidate pairs, and updating GlobalHeap. This takes
O(p log n log∆) time per update.
Lemma 2.4. We can build a data structure D in O(pn2)
time that stores weighted point sets U and V , returns the
bichromatic closest pair in O(1) time, and allows for in-
sertion and deletion of points to U ∪ V in O(p log n log∆)
time.

Remark: The space complexity of the data structure is
O(pn log∆). This can be reduced to O(pn) by optimizing
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the heap storage: instead of storing all points in UC and VC ,
we store only one representative per child cluster (the point
with the maximum weight) in the non-leaf clusters.

3. An O(log n)-Approximation Algorithm for
the Optimal Transport

Given a dynamic weighted bichromatic closest pair (BCP)
data structure with a query/update time of Φ(n), the opti-
mal p-Wasserstein distance between two distributions can
be computed in O(n2Φ(n) logU) time; here U is the num-
ber of bits required to store the probability associated with
each point. For completeness, we briefly describe the clas-
sical BCP-based algorithm for the assignment problem as
introduced by (Vaidya, 1989).

3.1. Primal-Dual Framework

Consider a complete bipartite graph G(A ∪B,A×B) de-
fined on sets A and B. A matching M ⊆ A×B is a set of
vertex-disjoint edges. The size of a matching is the number
of edges it contains. A vertex v is called free (with respect to
M ) if no edges of M are incident on v. Let AM

F and BM
F be

the set of free vertices in A and B, respectively; we drop the
superscript M when the matching is clear from the context.
An alternating path is a path that alternates between edges
in M and those that are not in M , and an augmenting path
is one that starts and ends at a free vertex. We augment
M along such a path P by setting M ← M ⊕ P , where
edges in P ∩M are removed and those in P \M are added,
increasing the size of matching M by 1.

We associate a dual weight y(v) with each vertex v ∈ A∪B,
and say that the matching M and dual weights y(·) is dual
feasible if:

y(a) + y(b) ≤ d(a, b)p for all (a, b) ̸∈M, (2)
y(a) + y(b) = d(a, b)p for all (a, b) ∈M. (3)

These are the classical feasibility conditions for the assign-
ment problem.

Lemma 3.1. If a perfect matching M along with a set of
dual weights is dual feasible, then M is a minimum-cost
perfect matching.

We now describe how a dynamic bichromatic closest pair
data structure can be used to implement the Hungarian algo-
rithm in O(n2Φ(n)) time and how it applies to computing
the p-Wasserstein distance.

3.2. Hungarian Algorithm

To find augmenting paths, the Hungarian algorithm con-
structs a residual graph GM . The vertex set for GM is
A ∪B, a source vertex s and a sink vertex t. The edge set

of GM is defined as follows: For each (a, b) ∈ A × B, if
(a, b) ̸∈M , add a directed edge from b to a; if (a, b) ∈M ,
add a directed edge from a to b. We set the cost of any
edge between a and b, regardless of direction, to be its slack,
which is given by d(a, b)p − y(a) − y(b). We also add
a zero-cost edge directed from the source vertex to every
vertex in BF and add a zero-cost edge directed from every
vertex in AF to t.

The algorithm starts with an empty matching M and ini-
tializes all dual weights y(v) ← 0 for all v ∈ A ∪ B. It
performs a sequence of Hungarian Search procedures each
of which augments the matching while maintaining dual
feasibility.Each Hungarian Search increases the size of M
by 1, and after n such steps, we obtain a minimum-cost
perfect matching.

Hungarian Search Procedure: The Hungarian search pro-
cedure consists of the following steps:

• Execute Dijkstra’s shortest path algorithm with s as
the source on GM . For any vertex v, let Pv denote the
shortest path from s to v, and let ℓv be the total cost of
Pv , using slacks as edge costs.

• For any b ∈ B, if ℓb < ℓt, set y(b)← y(b)− ℓb + ℓt

• For any a ∈ A, if ℓa < ℓt, set y(a)← y(a)− ℓt + ℓa

• Let P be a path obtained by removing s and t from Pt.
Augment M along P .

Note that all steps in the Hungarian search except the execu-
tion of Dijkstra’s algorithm take O(n) time. We present an
efficient O(nΦ(n)) implementation of Dijkstra’s shortest
path algorithm on GM .

Efficient Dijkstra’s shortest path algorithm: Recollect,
that Dijkstra’s algorithm incrementally builds a shortest path
tree rooted at the source s. Let U ⊆ B be the points already
added to the shortest path tree, and let V ⊆ A be those
not yet added. Initially, U = BF and V = A the points in
BF . For each b ∈ U , ℓb = 0 and w(b) = y(b) − ℓb. For
each a ∈ V , assign w(a) = y(a). Build a BCP structure
on (U, V ) using these weights. In each iteration of the
algorithm, select

(a, b) = argmina′∈V,b′∈U{s(a′, b′) + ℓb′}. (4)

This is equivalent to

s(a′, b′) + ℓb′ = d(a′, b′)p − y(a′)− (y(b′)− ℓb′)

= d(a′, b′)p − w(a′)− w(b′).

Thus, the pair minimizing equation 4 is exactly the BCP
between U and V and can be found in O(1) time.

6



Scalable Approximation Algorithms for p-Wasserstein Distance and Its Variants

Once the pair (a, b) is selected, the algorithm will remove
a from V , add it to the shortest path tree, and set ℓa =
ℓb + s(a, b). If a is free, we have found an augmenting path.
Otherwise, let b′ be the vertex matched with a in M . Set
ℓb′ = ℓa, w(b′) = y(b′)− ℓb′ , and add b′ to U .

Each iteration of Dijkstra’s deletes one vertex from V and
adds at most one vertex to U . The algorithm terminates with
an augmenting path in at most n iterations.

Time Complexity: Each iteration of Dijkstra’s algorithm
during the Hungarian Search adds at most one vertex to U
and removes one vertex from V . Since there are at most n
such iterations, the total number of insertions and deletions
to the BCP data structure is O(n). Given that each insertion
and deletion takes O(p log∆ log n) time, the total execu-
tion time for the Hungarian search is O(pn log∆ log n).
As the assignment problem requires n such searches to
compute a perfect matching, the overall complexity is
O(pn2 log∆ log n).

For the optimal transport problem, when the probabilities as-
sociated with each node can be represented using O(logU)
bits, (Atkinson and Vaidya, 1995) showed that O(n logU)
Hungarian searches are sufficient to find the optimal trans-
port. Therefore the p-Wasserstein distance between two
distributions µ and ν under the distance d(·, ·) can be found
in O(pn2 logU log∆ log n) time, where logU is the num-
ber of bits required to represent the probability at every
point in the support of the distributions.

Remark: Sharathkumar and Agarwal (2012a) demonstrated
that the optimal solution for the assignment problem can be
computed efficiently by combining the BCP data structure
with the cost-scaling framework. Their algorithm performs
Õ(n3/2 log(nC)) BCP queries, where logC is the number
of bits needed to represent the edge costs. This approach
can be integrated with our BCP data structure in a straight-
forward way to compute an O(log n)-approximation to the
p-Wasserstein distance. The overall execution time of this
algorithm is dominated by the construction of p HSTs and
is Õ(pn2 + pn3/2 log2 ∆).

4. Additive Approximation for Wasserstein
Distance and Its Variants

In this section, we show that designing fast additive approx-
imation algorithms for the p-Wasserstein distance is chal-
lenging due to its sensitivity to noise. In contrast, we show
that a robust variant of the p-Wasserstein distance called the
(p, k)-RPW distance can be approximated efficiently.

Consider the problem of determining if an unweighted bi-
partite graph G(A ∪ B,E) has a perfect matching. All
sub-n2.5 time algorithms for this problem are either matrix-
multiplication-based approaches or sophisticated interior

point methods. Thus, the best-known simple, implementable
algorithm to determine if there is a perfect matching in G
is by Hopcroft and Karp (1973) and takes Θ(n2.5) time.
Obtaining a simple, implementable algorithm with a sub-
n2.5 execution time remains a major open question. In
Section 4.1, we present a reduction (similar to the one pre-
sented by (Blanchet et al., 2018)) demonstrating that any
algorithm A that produces a δ-additive approximation of the
p-Wasserstein distance in sub-n2/δp time can be adapted to
achieve a sub-n2.5 algorithm for finding a perfect matching,
given a clever selection for the error parameter δ.

4.1. Reduction

Given an instance of the perfect matching problem on the
dense graph G(A∪B,E), with |A| = |B| = n, we convert
G to an instance of the p-Wasserstein problem as follows:
Create distributions µ and ν by assigning a mass of 1/n for
each point of A and B. For each pair (a, b) ∈ A×B, assign
a distance d(a, b) = 0 if (a, b) ∈ E and a distance d(a, b) =
1 otherwise. Now, given this instance of p-Wasserstein
problem, we use any δ-additive approximation algorithm
A with running time expressed as T (n, δ, p) to compute a
transport plan σ and p-Wasserstein cost wp(σ) such that
wp(σ) ≤ wp(σ

∗) + δ, where σ∗ is an optimal transport
plan. The optimal p-Wasserstein cost is equal to ((n −
|M∗|)/n)1/p, where M∗ is the max-cardinality matching
from our original graph G. Therefore, A returns a plan with
p-Wasserstein cost at most ((n − |M∗|)/n)1/p + δ. Note
that if a perfect matching exists in G, then our total transport
cost must be (wp(σ))

p ≤ δp.

We convert the transport plan σ into a matching by first
scaling all vertex masses and transported masses by a fac-
tor of n and then ensuring that the plan is integral using
the cycle canceling method introduced by Kang and Payor
(2015) in near-linear time. This produces a perfect match-
ing M ′ of points in A and B. We then remove all edges
from the matching with d(a, b) = 1 (those not originally
present in G), which removes at most δp · n edges (i.e.,
|M ′| ≥ |M∗| − δp · n), as all removed edges have a cost of
1. We then match the remaining δp · n unmatched vertices
using an augmenting path per unmatched vertex, with each
path being found in O(n2) time. Thus, the final running time
for the reduction is the sum of the time for our algorithm A
and the time for remaining augmentations. Explicitly, we
have a running time of T (n, δ, p) + n3 · δp.

For any additive approximate solver with T (n, δ, p) =

n2/δ(1−ϵ)p, we can select δ = 1/n
1+ϵ
2p and obtain an

n2.5−(ϵ2/2) time algorithm for finding a perfect matching.
Our reduction shows that it is unlikely that the existing tech-
niques can be adapted to obtain a δ-additive approximation
algorithm for p-Wasserstein distance with an execution time
of O(n2/δp(1−ε)) for any constant ε > 0.
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4.2. Algorithm for RPW distance

In this section, we present an additive approximation al-
gorithm for the (p, k)-RPW distance, for any p ≥ 1. For
simplicity in presentation, we describe our algorithm assum-
ing k = 1 and refer to the distance as the p-RPW distance,
noting that a similar approach easily extends to any constant
k > 0. For two distributions µ and ν, let w∗ be the p-RPW
distance between them, i.e., w∗ is the smallest value such
that Wp,1−w∗(µ, ν) ≤ w∗. Any value w is δ-close to the
p-RPW distance if |w − w∗| ≤ δ.

At a high level, given any guess value g of w∗, our algorithm
computes a partial transport plan σg and uses the cost and
the amount of transported mass in σg to obtain an estimate
wg, which is an upper bound (up to an additive error δ)
on the p-RPW distance. We show that, interestingly, when
g ∈ [w∗, w∗+ δ

4 ), the computed transport plan σg transports
at least 1−w∗− δ mass with a cost at most w∗ + δ. We use
this observation to show that the returned estimate wg would
be a δ-close p-RPW distance. Consider the series gi = iδ

4
for i = 1, . . . , 4

δ . Note that at least one of the gi values is at
most δ

4 away from w∗. We execute our algorithm for all gi’s
and return the smallest upper bound as a δ-close p-RPW
distance.

Our algorithm executes a modified version of the LMR al-
gorithm (Lahn et al., 2019). Given a parameter ε > 0, the
LMR algorithm computes, for each value α ∈ [0, 1], an
ε-close α-partial transport plan by first scaling the problem
instance to integer supplies, demands, and costs, and then
executing a number of phases of Gabow and Tarjan’s in-
teger transportation algorithm (Gabow and Tarjan, 1989)
(from now on referred to as the GT algorithm). We present
an algorithm that, in a similar fashion, first transforms the
problem instance to a scaled space, where all supplies, de-
mands, and costs are integral, then executes several phases
of the GT algorithm with a modified stopping condition,
and finally projects the transport plan back to the original
problem space. Next, we describe our algorithm in detail.

Given a guess value g, our algorithm lifts the problem in-
stance to a scaled space as follows: Let s1 = 2pn

δ and
s2 = gpδ

2p . For any point a ∈ A (resp. b ∈ B), define the
scaled mass µ̂(a) := ⌈s1 ·µ(a)⌉ (resp. ν̂(b) := ⌊s1 · ν(b)⌋).
For any pair of points (a, b) ∈ A×B, we set their distance
to be d̂(a, b) =

⌈
d(a,b)p

s2

⌉
. For any transport plan σ̂ in the

lifted space, let ŵ(σ̂) denote the 1-Wasserstein cost of σ̂
under d̂(·, ·) distances.

At any point in the algorithm, we can also project our cur-
rent transport plan back to our original problem space as
follows: given a lifted transport plan σ̂, we project it to
the original problem space by defining a transport plan σg,
where σg(a, b) = σ̂(a, b)/s1 for all pairs (a, b) ∈ A × B.

Note that the rounding of masses might create extra mass on
the points of A. Thus, when projecting back to the original
space, our algorithm removes such excess mass as described
in (Lahn et al., 2019).

Our algorithm initializes σ̂ to an empty transport plan and
executes j∗ := 8p

δ2 phases of the GT algorithm on the scaled
space, which builds a partial transport plan incrementally in
each phase using a primal-dual Hungarian-based approach.
In each phase, the GT algorithm computes a set of aug-
menting paths and augments σ̂ along those paths. For each
phase 1 ≤ j ≤ j∗, let σ̂j denote the partial transport plan
σ̂ maintained after the execution of the jth phase. Define
ŵj := ŵ(σ̂j), define αj as the amount of mass transported

by σ̂j , and let m̂j = max
{
1− αj

s1
, (

ŵj ·s2
s1

)1/p
}

; here, the
first term is an estimate of the untransported mass when we
project σ̂j back to the original space, and the second term
is an estimate of projected cost. Note that as our algorithm
executes the phases (i.e., j increases), the value m̂j will
decrease until the estimated projected cost surpasses the
estimated projected untransported mass.

If (
ŵj ·s2
s1

)1/p ≤ 1 − αj

s1
for all phases j ≤ j∗, then our

algorithm projects the transport plan σ̂j∗ to a transport plan
σg on the original space and returns m̂g := m̂j∗ as an
estimate of the p-RPW distance.

Otherwise, suppose at an intermediate phase j ≤ j∗,
the cost ( ŵj ·s2

s1
)1/p exceeds the mass 1 − αj

s1
for the first

time, i.e., (
ŵj ·s2
s1

)1/p ≥ 1 − αj

s1
, and, for all k < j,

( ŵk·s2
s1

)1/p < 1−αk

s1
. For any α ∈ (αj−1, αj ], let σ̂α denote

the α-partial transport plan computed during the execution
of the jth phase of the GT algorithm, i.e., the transport plan
obtained after augmenting σ̂j−1 by α − αj−1 mass. Let

α∗ be the value in (αj−1, αj ] such that ( ŵ(σ̂α∗
)·s2

s1
)1/p =

1− α∗

s1
. As discussed by Phatak et al. (2022) and Raghven-

dra et al. (2024), the value α∗ can be computed by tak-
ing the intersection point of a line segment and with the
curve y = (1 − x

s1
)p in constant time. Our algorithm

then projects the transport plan σ̂α∗
to a transport plan σg

in the original space and returns σg as well as the value

m̂g = max
{
1− α∗

s1
, ( ŵ(σ̂α∗

)·s2
s1

)1/p
}

= 1 − α∗

s1
as an

estimate of the p-RPW distance given the guess g. This
completes the description of our algorithm.

Efficiency: For each guess value g, our algorithm executes
at most j∗ = 8p

δ2 phases of the GT algorithm, each in O(n2)
time. Projecting the input instance to the lifted space and
converting the computed transport plan back to the origi-
nal space also takes O(n2) time. Consequently, our algo-
rithm processes each guess value g in O(n

2

δ2 ) time; summing
across all O(1/δ) guess values, the running time of our al-
gorithm would be O(n

2

δ3 ).
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(a) Approx. factor (Uniform) (b) Data structure operations (Uniform) (c) Effect of the number of HSTs (Uniform)

(d) Approx. factor (Normal) (e) Data structure operations (Normal) (f) Expected tree distance distortion

Figure 1. Our experimental results, (a) and (d): the approximation factor of our computed matching as a function of n, (b), (e): the number
of calls to the data structure operations by the Hungarian algorithm, in log-log scale, (c): the approximation factor of our computed
matching for p = 4 as varying the number of HSTs, and (f) the average distortion of the tree distances as a function of n, in log-log scale.

Correctness: For each guess gi, we show that our algorithm
returns a value that is guaranteed to be at least w∗ − δ/16;
here w∗ is the optimal (p, 1)-RPW distance. Furthermore,
we show that for any guess g∗ ∈ [w∗, w∗ + δ/4), our algo-
rithm returns a value that is at most w∗+δ. See Appendix B
for a detailed analysis.

5. Experiments
In this section, we present the empirical analysis of both our
tree-based distance from Section 2.2 as well as the algorithm
from (Section 3). All computations are performed on a com-
puter with a 2.6 GHz 6-Core Intel Core i7 CPU and 16 GB
RAM, using a single calculation thread. The code is avail-
able at https://github.com/pouyansh/Faster-pWasserstein.

Datasets: We perform experiments on two datasets, namely
(i) samples drawn from the uniform distribution inside the
10-dimensional unit hypercube (Uniform dataset), and (ii)
samples drawn from a truncated normal distribution inside
the 10-dimensional unit hypercube (Normal dataset).

Results: We present our results in three parts:

Tree Distances Accuracy: For two sets of n points from
the Uniform dataset, we compute the average distortion of
the tree distance across all pairs of points. As depicted in
Figure 1(f), the average distortion does not significantly

change as a function of n, while it increases exponentially
as p increases, which is in line with our result in Lemma 2.1.

Algorithm’s Accuracy: For a given value of n and p and both
datasets, we executed our algorithm on n samples A and
B from the dataset and computed the ratio of our matching
cost to the optimal matching cost. For each value of n and p,
we report the average ratio over 15 executions. As shown in
Figure 1(a) and (d), as n grows, the approximation factors
slightly increase; however, the approximation factors do not
change as a function of p. We also measured the accuracy
of our algorithm by varying the number of HSTs used in
our construction. For p = 4, we varied the number of HSTs
m from 1 to 6 and measured the approximation ratio of the
computed matching. As shown in Figure 1(c), introducing
more than 4 HSTs seems to have an insignificant effect on
the algorithm’s accuracy.

Algorithm’s Efficiency: We analyze the complexity of our
algorithm by counting the number of calls made to the data
structure. As we can see in Figure 1(b) and (e), our experi-
ments suggest that the number of data structure operations
grows faster than linear but sub-n1.5, which is significantly
better than the worst-case upper bound of O(n2). Inter-
estingly, this empirical behavior is reminiscent of the per-
formance guarantees established for the scaling algorithm
of (Sharathkumar and Agarwal, 2012a).
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A. Missing Proofs and Details of Section 2
Lemma 2.2. E[wT ,p(σ

∗
T )] = O((log n)wp(σ

∗)).

Proof. From the definition of the p-Wasserstein distance and since σ∗
T is an optimal transport plan with respect to the tree

distances,

E [wT ,p(σ
∗
T )] = E


 ∑

(a,b)∈A×B

σ∗
T (a, b)dT (a, b)

p

1/p
 ≤ E


 ∑

(a,b)∈A×B

σ∗(a, b)dT (a, b)
p

1/p


≤

E

 ∑
(a,b)∈A×B

σ∗(a, b)dT (a, b)
p

1/p

, (5)

where the last inequality holds by Jensen’s inequality (Dekking et al., 2006). Using the linearity of expectation and
Lemma 2.1, from Equation (5) and for some constants c1, c2 > 0,

E [wT ,p(σ
∗
T )] ≤

E

 ∑
(a,b)∈A×B

σ∗(a, b)dT (a, b)
p

1/p

=

 ∑
(a,b)∈A×B

σ∗(a, b)E
[
dT (a, b)

p
]1/p

≤

 ∑
(a,b)∈A×B

σ∗(a, b)× c1(4 log n)
pd(a, b)p

1/p

= (c2 log n)

 ∑
(a,b)∈A×B

σ∗(a, b)× d(a, b)p

1/p

= (c2 log n)wp(σ
∗).

Lemma 2.3. Suppose (a∗, b∗) ∈ V × U is the weighted bichromatic closest pair between V and U . Then,

dT ,w(a
∗, b∗)

= min
Ti∈T ,C∈Ti

{
2−lev(C)·p − max

b∈UC

w(b)− max
a∈VC

w(a)

}
.

Proof. For any cluster C at a level j of a tree Ti ∈ T , define d(C) := 2−lev(C) = 2−j . Define the weighted C-distance of
a and b as dC,w(a, b) := d(C)p−w(a)−w(b) and the weighted C-closest pair as the pair (a∗, b∗) ∈ VC ×UC minimizing
the weighted C-distance. Consider any tree Ti ∈ T , any cluster C ∈ Ti at a level j, and any pair (a, b) ∈ VC × UC . From
the definition of the tree distances,

dT ,w(a, b) = dT (a, b)
p − w(a)− w(b) ≤

(
2−levi(a,b)

)p
− w(a)− w(b) ≤ d(C)p − w(a)− w(b).

Furthermore, if C is the cluster determining the tree distance of a and b (i.e., the tree distance of a and b is determined by
the tree Ti and C is the least common ancestor of a and b in Ti), then

dT ,w(a, b) = d(C)p − w(a)− w(b).

Therefore, for any pair of points (a, b) ∈ V × U , if Cia,b denotes the set of all clusters of Ti containing both a and b,

dT ,w(a, b) = min
i∈[1,p],C∈Ci

a,b

{d(C)p − w(a)− w(b)}. (6)

Consequently, if (a∗, b∗) ∈ V × U is the weighted bichromatic closest pair, then

dT ,w(a
∗, b∗) = min

(a,b)∈V×U
dT ,w(a, b) = min

(a,b)∈V×U, Ti∈T , C∈Ci
a,b

dC,w(a, b)

= min
Ti∈T , C∈Ti, (a,b)∈VC×UC

dC,w(a, b) = min
Ti∈T , C∈Ti

{
min

(a,b)∈VC×UC

dC,w(a, b)

}
. (7)
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In other words, to find the weighted bichromatic closest pair, one can compute the weighted closest pair inside each cluster
in all trees in T and find the closest one among such pairs. Finally, from Equation (6),

min
(a,b)∈VC×UC

dC,w(a, b) = min
(a,b)∈VC×UC

{d(C)p − w(a)− w(b)} = d(C)p − max
a∈VC

w(a)− max
b∈UC

w(b). (8)

Therefore, the weighted bichromatic closest pair for the cluster C would be the pair (a, b) ∈ VC × UC where a (resp. b) has
the largest dual weight among all points in VC (resp. UC). Combining Equations (7) and (8),

dT ,w(a
∗, b∗) = min

Ti∈T , C∈Ti

{
min

(a,b)∈VC×UC

dC,w(a, b)

}
= min

Ti∈T ,C∈Ti

{
d(C)p − max

a∈VC

w(a)− max
b∈UC

w(b)

}
,

as claimed.

B. Missing Proofs and Details of Section 4.2
In this section, we show that the value w returned by our algorithm from Section 4.2 is a δ-additive approximation of the
p-RPW distance. Recall that our algorithm computed an estimate m̂gi for any guess value gi =

iδ
4 for all i ∈ [1, δ/4]. In

our proof, we first show that for any guess value g, the computed estimate m̂g is at least w∗ − δ
2p , where w∗ is the p-RPW

distance (Lemma B.1). We then show that for a guess value g∗ ∈ [w∗, w∗ + δ/4), the computed estimate m̂g∗ is at most
w∗ + δ (Lemma B.3). Combining the two lemmas, by picking the minimum value among all values in {m̂1, . . . , m̂4/δ},
our algorithm correctly returns a δ-additive approximation of the p-RPW distance.

Lemma B.1. For any value g ∈ (0, 1), let m̂g denote the value returned by our algorithm given the guess value g. Then,
m̂g ≥ w∗ − δ

2p .

Proof of Lemma B.1. We begin by bounding the change in the cost and the transported mass of a transport plan σ̂ when
projecting to the original space.

Lemma B.2. For any value g ∈ (0, 1), let σ̂ denote an α-partial transport plan in the scaled space, and let σ denote its

projection to the original space. Then, σ transports at least α
s1
− δ

2p mass and has a cost wp(σ) ≤
(

ŵ(σ̂)s2
s1

)1/p
.

Proof. Recall that our algorithm constructs the scaled space by defining µ̂(a) = ⌈s1 · µ(a)⌉ (resp. ν̂(b) = ⌊s1 · ν(b)⌋) for
each point a ∈ A (resp. b ∈ B), where s1 = 2pn

δ . Therefore, for any point a ∈ A, the transport plan σ̂ transports at most
µ̂(a) ≤ s1 · µ(a) + 1 mass from a to the points of B, i.e., for any point a ∈ A,∑

b∈B

σ̂(a, b)

s1
≤ µ̂(a)

s1
≤ µ(a) +

1

s1
, (9)

where the first inequality holds since σ̂ is a partial transport plan. Recall that our algorithm projects σ̂ back to the original
space by first defining a transport plan σ transporting σ(a, b) = σ̂(a, b)/s1 mass between each pair (a, b) ∈ A×B. From
Equation (9), for any point a ∈ A, the transport plan σ transports up to 1

s1
= δ

2pn excess mass, which our algorithm then
adjusts by arbitrarily removing masses on the edges incident on a. Therefore,

∑
a∈A

∑
b∈B

σ(a, b) ≥
∑
a∈A

((∑
b∈B

σ̂(a, b)

s1

)
− 1

s1

)
=

∑
(a,b)∈A×B σ̂(a, b)

s1
− n

s1
=

α

s1
− δ

2p
. (10)

Next, we show that the cost of σ is at most ŵ(σ̂)·s2
s1

. Recall that our algorithm defines the scaled distance of each pair

(a, b) ∈ A×B as d̂(a, b) =
⌈
d(a,b)p

s2

⌉
for s2 = gpδ

2p . Since d(a,b)p

s2
≤ d̂(a, b) and σ(a, b) ≤ σ̂(a, b)/s1,

(wp(σ))
p =

∑
(a,b)∈A×B

σ(a, b) · d(a, b)p ≤
∑

(a,b)∈A×B

σ̂(a, b)

s1
· s2d̂(a, b) =

ŵ(σ̂) · s2
s1

.
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For any transport plan σ (in the original space), let α(σ) denote the amount of mass transported by σ. As shown in Lemma
2.2 in (Raghvendra et al., 2024), if w∗ denotes the p-RPW distance between µ and ν, then w∗ ≤ max{1− α(σ), wp(σ)}.
Given a guess value g ∈ [0, 1], recall that our algorithm computes an α̂-partial transport plan σ̂ in the scaled space and
returns a value m̂g = max{1− α̂

s1
, ( ŵ(σ̂)·s2

s1
)1/p} and a projected transport plan σg. From Lemma B.2, α(σg) ≥ α̂

s1
− δ

2p

and wp(σg) ≤ ( ŵ(σ̂)·s2
s1

)1/p. Hence,

m̂g = max

{
1− α̂

s1
,

(
ŵ(σ̂) · s2

s1

)1/p
}
≥ max

{
1− α(σg)−

δ

2p
, wp(σg)

}
≥ w∗ − δ

2p
.

This completes the proof of Lemma B.1.

Lemma B.3. For any value g∗ with g∗ ∈ [w∗, w∗ + δ
4 ), suppose m̂g∗ denotes the returned estimate of the p-RPW for the

guess g∗. Then, m̂g∗ ≤ w∗ + δ.

Proof of Lemma B.3. Let σ̂g∗ denote the transport plan in the scaled space computed by our algorithm for the guess value
g∗, and let σg∗ denote the projection of σ̂g∗ to the original space. To prove Lemma B.3, we first show in Lemma B.5 that the
transport plan σ̂g∗ transports at least s1(1− w∗ − δ) mass, i.e., if α̂ denotes the amount of mass transported by σ̂g∗ , then

1− α̂

s1
≤ w∗ + δ. (11)

We then show in Lemma B.6 that in the scaled space,(
s2ŵ(σ̂g∗)

s1

)1/p

≤ w∗ + δ. (12)

Combining Equations (11) and (12), m̂g∗ ≤ w∗ + δ, as claimed.

The following lemma helps in proving Lemmas B.5 and B.6.

Lemma B.4. Let σ∗ denote an optimal (1−w∗)-partial transport plan on the original space, and let σ̂∗ denote its projection
to the scaled space. Then, ŵ(σ̂∗) ≤ s1(w

∗)p

s2
+ s1. Furthermore, the total amount of mass transported by σ̂∗ is at least

s1(1− w∗ − δ
2p ).

Proof. From the definition of the scaled distances as well as the projection of transport plans to the scaled space,

ŵ(σ̂∗) =
∑

(a,b)∈A×B

σ̂∗(a, b) · d̂(a, b) ≤
∑

(a,b)∈A×B

s1σ
∗(a, b) ·

(
d(a, b)p

s2
+ 1

)
=

s1(wp(σ
∗))p

s2
+ s1(1− w∗)

≤ s1(w
∗)p

s2
+ s1.

For any point b ∈ B, the transport plan σ transports at most ν(b) ≤ ν̂(b)+1
s1

mass from b to the points of A, i.e., for any point
b ∈ B, ∑

a∈A

s1σ(a, b) ≤ s1ν(b) ≤ ν̂(b) + 1. (13)

After defining a scaled transport plan σ̂ transporting σ̂(a, b) = s1σ(a, b) mass between each pair (a, b) ∈ A × B, from
Equation (13), for any point b ∈ B, the transport plan σ̂ transports up to 1 unit of excess mass, which our algorithm then
adjusts by arbitrarily removing masses on the edges incident on b. Therefore,

∑
b∈B

∑
a∈A

σ̂(a, b) ≥
∑
b∈B

((∑
a∈A

s1σ(a, b)

)
− 1

)
= s1

∑
(a,b)∈A×B

σ̂(a, b)− n = s1(1− w∗)− n ≥ s1(1− w∗ − δ

2p
).
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Lemma B.5. For the guess g∗ with 0 ≤ g∗ − w∗ ≤ δ
4 , let α̂j∗ denote the amount of mass transported by the transport plan

σ̂j∗ at the end of phase j∗. Then, 1− α̂j∗

s1
≤ w∗ + δ.

Proof. We begin by introducing the notations necessary to prove this lemma. For any augmenting path P , let the net-cost
of P , denoted by ϕ(P ), be the rate of change in the cost of the transport plan when augmented along P , i.e., augmenting
the transport plan σ along the path P by β mass would increase the cost of σ by β × ϕ(P ). Each phase j of Gabow and
Tarjan’s algorithm is associated with a net-cost ϕj , and in phase j, it finds and augments the maintained transport plan along
a set of augmenting paths, each with a net-cost ϕj . It is shown that

(P1) in each phase j, the net-cost value ϕj increases by at least one, i.e., ϕj ≥ ϕj−1 + 1 (Gabow and Tarjan, 1991).

For a transport plan σ in the original space, we project σ to the scaled space as follows. We first set σ̂(a, b) = s1σ(a, b) for
all pairs (a, b) ∈ A×B, and, for each point b ∈ B such that the amount of mass transported out of b according to σ̂ is more
than ν̂(b), we arbitrarily remove mass transportation on the edges incident to it.

Recall that our algorithm stops after executing j∗ = 8p
δ2 phases of the Gabow and Tarjan’s algorithm. We show that the

transport plan σ̂j∗ computed at the end of phase j∗ transports at least s1(1−w∗− δ) mass to conclude the lemma statement.

Suppose σ̂j∗ transports s1(1 − w∗ − δ
2p ) − β mass, for some β > 0 (otherwise, the lemma statement holds trivially).

Suppose, instead of stopping early, our algorithm would have continued executing the phases until transporting a total
of s1(1 − w∗ − δ

2p ) mass, and let P = ⟨P1, P2, . . . , Pk⟩ denote the sequence of augmenting paths computed by the
phases to transport the remaining β mass. Note that by property (P1), all augmenting paths in P have net-costs more than
j∗ = 8p

δ2 . Therefore, if βi denotes the amount of mass augmented along each augmenting path Pi and σ̂w∗ denotes the
s1(1− w∗ − δ

2p )-partial transport plan obtained after augmenting σ̂j∗ along the paths in P , then

ŵ(σ̂w∗)− ŵ(σ̂j∗) =

k∑
i=1

ϕ(Pi)βi ≥
k∑

i=1

8p

δ2
βi =

8pβ

δ2
. (14)

Combined with Lemma B.4 and the property that each intermediate transport plan is s1-close as shown in (Phatak et al.,
2022),

8pβ

δ2
≤ ŵ(σ̂w∗)− ŵ(σ̂j∗) ≤ ŵ(σ̂w∗) ≤ ŵ(σ̂∗) + s1 ≤

s1(w
∗)p

s2
+ 2s1, (15)

where the first inequality holds from Equation (14), the third inequality holds since σ̂j∗ is a s1-close s1(1−w∗− δ
2p )-partial

transport plan and σ̂∗ is a transport plan that transports at least s1(1− w∗ − δ
2p ) mass, and the last inequality holds from

Lemma B.4. Recall that g∗ ≥ w∗. Plugging in the value s2 = δ(g∗)p

2p into Equation (15),

β ≤ s1δ
2

8p

(
2p(w∗)p

δ(g∗)p
+ 2

)
≤ s1δ ×

(
1

4
+

δ

4p

)
≤ s1δ ×

1

2
. (16)

In other words, the transport plan σ̂j∗ computed at the end of phase j∗ transports at least αj∗ ≥ s1(1− w∗ − δ
2p )−

s1δ
2

mass, and 1− αj∗

s1
≤ w∗ + δ.

Lemma B.6. For the guess g∗ with 0 ≤ g∗ − w∗ ≤ δ
4 , any transport plan σ̂ computed by our algorithm in the scaled space

that transports a mass α ∈ [s1(1− w∗ − δ), s1(1− w∗ − δ
2p )] satisfies

(
s2ŵ(σ̂)

s1

)1/p
≤ w∗ + δ.

Proof. Recall that, by the properties of Gabow and Tarjan’s algorithm, the transport plan σ̂ would be a s1-close α-partial
transport plan. If σ̂∗

α denotes the α-partial OT plan in the scaled space, then using Lemma B.4,

ŵ(σ̂) ≤ ŵ(σ̂∗
α) + s1 ≤ ŵ(σ̂∗) + s1 ≤

s1(w
∗)p

s2
+ 2s1.
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Figure 2. Comparing the running time of our RPW algorithm (blue lines) with the algorithm of (Raghvendra et al., 2024) (orange lines) as
p increases.

Therefore,

s2
s1

ŵ(σ̂) ≤ s2
s1

(
s1(w

∗)p

s2
+ 2s1

)
≤ (w∗)p + 2s2 = (w∗)p +

δ(g∗)p

p
≤ (w∗)p +

δ(w∗ + δ/4)p

p
≤ (w∗ + δ)p,

where the last inequality holds since

(w∗ + δ)p = (w∗)p +

(
p

1

)
w∗p−1δ +

(
p

2

)
w∗p−2δ2 + . . .+ δp

≥ (w∗)p +

(
w∗

p
+

p

4p

)
w∗p−1δ +

1

p
×
((

p

2

)
w∗p−2δ2 + . . .+ δp

)
≥ (w∗)p +

1

p
×
(
w∗pδ +

(
p

1

)
w∗p−1 δ

4
+ . . .+

(
δ

4

)p)
≥ (w∗)p +

δ(w∗ + δ/4)p

p
.

C. Additional Experimental Results
In this section, we present an empirical comparison between our RPW algorithm presented in Section 4.2 and the current
state-of-the-art RPW algorithm presented in (Raghvendra et al., 2024)(LMR-RPW). We demonstrate that the algorithm is
both implementable and efficient. All experiments were performed on North Carolina State University’s computing cluster
(ARC), on a single calculation CPU thread. Implementation can be found at https://github.com/saarinenemma/
FasterRPW.

Results: We perform experiments on samples drawn from the uniform distribution inside the unit square. For two sets of
n points, one sampled from the left half of the unit square and the second drawn from the right, we execute both LMR-RPW
and our RPW algorithms to find the p-RPW distance between the datasets. We measure efficiency by comparing runtime in
seconds. We present two strengths of our algorithm:

Dependence on p: For δ = 0.1 and any n ∈ {1000, 2000, 5000}, we compute the p-RPW distance between n samples from
the left half and n samples from the right half of the unit square for increasing values of p. As shown in Figure 2, for each
sample size, the running time of our algorithm grows much slower as p increases compared to LMR-RPW, and we observe
that for p = 4, our algorithm computes an approximate p-RPW significantly faster than LMR-RPW.

Dependence on δ: For n = 1000 and p = 3, we compute the p-RPW distance between two sets of n samples drawn from
each half of the unit square for δ ∈ {0.1, 0.08, 0.06, 0.04}. As shown in Figure 3, as the additive error δ decreases (i.e., the
accuracy increases), the runtime of the LMR-RPW algorithm increases at a greater rate, and our algorithm outperforms the
LMR-RPW for all values of δ.

17

https://github.com/saarinenemma/FasterRPW
https://github.com/saarinenemma/FasterRPW


Scalable Approximation Algorithms for p-Wasserstein Distance and Its Variants

Figure 3. Comparing the running time of our RPW algorithm (blue lines) with the algorithm of (Raghvendra et al., 2024) (orange lines) as
δ increases.
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