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ABSTRACT

Meta-reinforcement learning requires utilizing prior task distribution information
obtained during exploration to rapidly adapt to unknown tasks. The efficiency of
an agent’s exploration hinges on accurately identifying the current task. Recent
Bayes-Adaptive Deep RL approaches often rely on reconstructing the environ-
ment’s reward signal, which is challenging in sparse reward settings, leading to
suboptimal exploitation. Inspired by bisimulation metrics, which robustly extracts
behavioral similarity in continuous MDPs, we propose SimBelief—a novel meta-
RL framework via measuring similarity of task belief in Bayes-Adaptive MDP
(BAMDP). SimBelief effectively extracts common features of similar task dis-
tributions, enabling efficient task identification and exploration in sparse reward
environments. We introduce latent task belief metric to learn the common struc-
ture of similar tasks and incorporate it into the specific task belief. By learning
the latent dynamics across task distributions, we connect shared latent task be-
lief features with specific task features, facilitating rapid task identification and
adaptation. Our method outperforms state-of-the-art baselines on sparse reward
MuJoCo and panda-gym tasks.

1 INTRODUCTION

Task i

Task j

Task k

MDP

MDP i MDP j

MDP k

Latent Space

Real Environment

Figure 1: Learning shared
structures among tasks in the
latent space as task beliefs
enables the agent to rapidly
adapt to new tasks.

In meta-reinforcement learning, an agent is required to efficiently
explore the environment to gather information relevant to the current
task and use that information to adapt to new, unseen tasks (Duan
et al., 2016; Finn et al., 2017; Gupta et al., 2018b; Humplik et al.,
2019). However, in real-world scenarios, there are many distrac-
tions, and irrelevant information can cause the agent to engage in
erroneous exploration behaviors, leading to the learning of a sub-
optimal policy. This challenge is exacerbated when the exploration
space is vast, and rewards are sparse. Humans, on the other hand,
have the ability to generalize across similar tasks by quickly identi-
fying common patterns, such as recognizing that both opening a win-
dow and a drawer involve a pulling action. These shared structures
can be abstracted and applied to new tasks through certain transfor-
mations, enabling rapid adaptation by leveraging prior knowledge.
This process involves identifying similar features and relationships
between tasks, with the underlying task belief facilitating effective
knowledge transfer (Figure 1).

Common approaches to task belief modeling include posterior sam-
pling (Thompson, 1933; Osband et al., 2013; Rakelly et al., 2019)
and Bayes-Adaptive Markov Decision Processes (BAMDPs) (Duff, 2002; Ghavamzadeh et al.,
2015), where BAMDPs provide a structured framework for learning and adapting to new tasks
by integrating prior information (Zintgraf et al., 2019). Previous works have addressed the issue of
uninformative rewards in meta-RL by using intrinsic rewards (Zhang et al., 2021c) to extract task-
relevant information or exploration bonuses (Zintgraf et al., 2021) to enhance performance in hard
exploration tasks. However, they often neglect the potential common structures shared across tasks.
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To efficiently learn the structural relationships embedded within task belief and address the chal-
lenges of effective task identification and rapid adaptation, it is necessary to develop methods
that can efficiently recognize tasks with similar structures. This requires exploring strategies be-
yond BAMDP-based approaches, which may involve leveraging hierarchical reinforcement learning
(Frans et al., 2018), or task embeddings (Liu et al., 2021; Lan et al., 2019) that can capture the
underlying structure of tasks and facilitate transfer learning across related tasks.

In this work, we propose SimBelief (Learning Similarity of Task Belief for meta-RL) as a meta-RL
framework under BAMDP to measure the difference of tasks in similar distributions by learning the
dynamics and transferring capability in latent space. This results in a task belief similarity, which
quantifies the representational relationships between any two random tasks in the learned latent
space. However, directly reconstructing and exploring the environment in the latent space may
lose crucial detailed information (Yarats et al., 2021; Kemertas & Aumentado-Armstrong, 2021;
Hafner et al., 2019), which is important for accurately reconstructing the specific task and ensuring
convergence to the Bayesian optimal policy(Zintgraf et al., 2019; Choshen & Tamar, 2023).

Therefore, we combine the task belief similarity learned in the latent space, which provides an
overall understanding of the task distribution and the relationships between tasks, with the belief of
the specific task currently being learned, significantly enhancing the agent’s adaptability to unknown
environments. Compared to related meta-RL methods, our approach effectively learns dynamics in
the latent space and leverages the learned latent representations to quickly discern relationships
between tasks. This enables the agent to utilize prior knowledge from tasks, recognize the current
environment, and accelerate exploration and adaptation to unseen tasks.

Our main contributions are as follows:

• We propose a task representation method for context-based meta-reinforcement learning al-
gorithms in BAMDP, which enhances the agent’s ability to recognize and adapt to unknown
tasks by learning task belief similarity through latent reward model, transition model, and
inverse dynamics model.

• In scenarios with sparse or uninformative reward signals, our algorithm more effectively
extracts latent task space representations compared to other baselines and achieves state-
of-the-art performance on sparse reward MuJoCo and panda-gym tasks.

• Our algorithm demonstrates stronger adaptability and generalization capabilities to out-of-
distribution (OOD) tasks.

• We theoretically validate the effectiveness of the latent task belief metric in Bayes-Adaptive
Markov Decision Processes (BAMDPs).

2 BACKGROUND

2.1 PROBLEM FORMULATION

In meta-reinforcement learning (meta-RL), we consider a distribution p(T ) over a space of tasks T ,
where each task is modeled as a partially observable Markov decision process (POMDP; (Cassandra
et al., 1994)) defined as T = (S,A,O, P,R, ρ0, γ,H). Here, S and A represent the shared state and
action spaces across all tasks, while O denotes the task-specific observation space. The transition
function P (s′ | s, a), reward function R(r | s, a), and initial state distribution ρ0 define the task-
specific dynamics.

For context-based methods, the agent interacts with the environment over a horizon of H time steps
in each episode of each task and utilizes a task-specific context τt = (o1:t, a1:t−1, r1:t−1) to infer
the hidden task dynamics. The objective is to learn a policy π(at | τt) that can rapidly adapt to
new tasks by leveraging the learned task belief encoded in the context. The full horizon comprises
N task episodes, referred to as a meta-episode, each with its own set of T time steps, and the task
context is updated as the agent gathers more observations. The objective in meta-RL is to maximize
the expected return:

J(π) = ET ∼p(T )

[
H∑
t=1

E(ot,at,rt)∼π[rt]

]
. (1)
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To address the multi-task adaptation problem in POMDPs, it is essential to avoid local optima and
balance exploration with exploitation. Utilizing the framework of Bayes-Adaptive Markov Decision
Processes (BAMDPs; (Duff, 2002)), we can represent uncertainty over task-relevant information in
a belief space. By leveraging the current belief, we can reconstruct the dynamics model to better
handle uncertainty, enabling more effective adaptation to the current task. The BAMDP is defined
as M+ = (S+,A, ρ+0 , P+, R+, H+), where the hyper-state space S+ = S × B combines the
state space S with the task belief space B, representing the posterior over MDPs based on past
experiences. P+ is the transition function, ρ+0 is the initial hyper-state distribution, and R+ is the
reward function. The total decision horizon is H+ = N × H . The goal is to learn a meta-policy
π+(at | s+t ) that maximizes cumulative reward by balancing exploration of task uncertainty and
exploitation of the current belief.

2.2 BISIMULATION METRICS IN RL

Bisimulation metrics provide a way to measure state similarity in reinforcement learning (RL) based
on behavioral equivalence, focusing on transitions and rewards rather than raw state features. The
concept originated in model checking (Givan et al., 2003). In RL, bisimulation aggregates states that
lead to similar future outcomes. This allows for more efficient learning. Approximate bisimulation
metrics (Ferns et al., 2004; Castro, 2020) extended this idea to high-dimensional environments,
allowing RL agents to better generalize, reduce state space complexity, and improve exploration.
These metrics are particularly useful in tasks with sparse rewards or partial observability (Guo et al.,
2022).
Definition 1 (π-Bisimulation Metric (Castro, 2020)). Given two states si and sj from the state space
S, the distance between these states can be evaluated using the π-bisimulation metric dπ(si, sj),
which measures behavioral similarity. We define the metric dπ(si, sj) as:

dπ(si, sj) = |Rπsi −Rπsj |+ γW1(dπ)(P
π
si , P

π
sj ) (2)

where Rπsi and Rπsj represent the reward functions under policy , Pπ denotes the transition distribu-
tions, and W1 is the Wasserstein distance between the distributions.

2.3 UNINFORMATIVE REWARDS IN META-REINFORCEMENT LEARNING

Uninformative rewards provide insufficient feedback for agents to quickly learn effective strategies
(Andrychowicz et al., 2017; Dulac-Arnold et al., 2019). This issue can impede exploration, slow
convergence, and lead to suboptimal policies. To address this challenge, methods such as intrinsic
motivation and curiosity-driven exploration have been employed to encourage agents to explore state
spaces even when extrinsic rewards are minimal (Pathak et al., 2017; Burda et al., 2018). Reward
shaping techniques modify the reward function to offer more informative feedback, thereby accel-
erating learning (Ng et al., 1999). Balancing the exploration-exploitation trade-off is also crucial
for efficient learning (Sutton, 2018). Enhancing meta-RL agents’ ability to learn from uninforma-
tive rewards can significantly improve their performance across complex, real-world environments
by incorporating advanced exploration strategies and reward augmentation methods (Gupta et al.,
2018b).

In this work, we learn the dynamics of multiple tasks in a latent space and use a task belief metric
to measure the differences between similar tasks. By extracting similar structures within the latent
space and representing these structures as task belief similarity, we map them to the current real
and unknown environment to assist the agent in exploration. This approach aims to achieve rapid
adaptation to multiple tasks in environments with uninformative rewards.

3 METHOD

In this section, we provide a detailed introduction to SimBelief (Figure 2), an effective off-policy
meta-RL approach for online adaptation within the BAMDP framework. First, we propose a latent
task belief metric to quantify the relationships between different tasks in the latent space in section
3.1. Then, we explain how task belief similarity is learned within the learned latent dynamics in
section 3.2. We also describe the overall algorithmic process of SimBelief in detail in section 3.3.
Finally, we theoretically prove the conditions under which the policy can transfer between tasks in
the latent space in section 3.4.
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3.1 LATENT TASK BELIEF METRIC

Previous work (Zhang et al., 2021b) learns an environment encoder to capture the relationships
between Block MDPs (Du et al., 2019) for multi-task generalization. In (Zhang et al., 2021c), in-
formation gain is used as an intrinsic reward for exploration. However, in these approaches, the
agent needs to know the current task information (i.e., task ID) during training. In contrast, in
context-based meta-RL, these approaches limit adaptability to out-of-distribution tasks, as the agent
must infer the task being executed from historical information and reason about the current task
distribution during adaptation. Including task ID during training can partially constrain the agent’s
reasoning capabilities. In real-world scenarios, relying solely on the environment’s inherent reward
signal or manually designed intrinsic rewards often fails to effectively capture the common struc-
ture of tasks (Zheng et al., 2020). Therefore, learning the structural similarities between tasks and
leveraging belief to facilitate rapid transfer across similar tasks is more advantageous in complex
environments, especially those with sparse reward signals. To measure the relationships between
tasks and make it applicable within the BAMDP, we define the latent task belief metric.

Definition 2 (Latent Task Belief Metric). Given two latent task beliefs bi and bj , with corresponding
samples zi and zj identified by their latent representations, let dπ denote the metric that evaluates
the distance between these two task beliefs. We define dπ(zi, zj) as follows:

dπ(zi, zj) =
∣∣Rπi (s+i , ai)−Rπj (s

+
j , aj)

∣∣+W2(dπ)
(
Tπi (s

+
i , ai), T

π
j (s

+
j , aj)

)
+
∥∥Iπi (s+i , s′i+)− Iπj (s

+
j , s

′
j
+)

∥∥
1

(3)

where s+i = (g(si), zi) is the augmented state corresponding to the task i, ri = Rπi (s
+
i , ai) is

the reward model, s′i
+ = Tπi (s

+
i , ai) is the transition model, and ai = Iπi (s

+
i , s

′
i
+) is the inverse

dynamics model.

Here, we map s to a latent compressed space as g(s), and learn the task dynamics in the compressed
space. Latent dynamic space can be defined as S+ = G(S)×Z . In Figure 2, zl represents the sam-
ple from latent task belief bl in the latent space and captures the similarity between different tasks.1
All task distributions share a common latent dynamic space, with different tasks distinguished by
different zl, where zl contains the dynamic similarity information between any two tasks. We em-
ploy the inverse dynamics model to predict a, as it not only helps retain information relevant to
what the agent can control but also enhances the agent’s reasoning capability (see Appendix G.2).
Unlike in Definition 1, here we use the dynamic model to measure task belief similarity to enhance
exploration efficiency in unknown environments, while preserving the agent’s control information
in sparse reward settings. This approach is more effective for identifying similar tasks.

3.2 LEARNING TASK BELIEF SIMILARITY IN LATENT SPACE

Our goal is to use the latent task belief metric to capture the similarity information between any
two tasks, which is embedded within the task belief. This enables SimBelief to achieve rapid task
reasoning and adaptation. From the replay buffer D, we randomly sample trajectories τ from two
tasks (i.e., task i and task j) in the task set M . The trajectory is then fed into the context encoder qϕ
to obtain historical information hi and hj , which serve as prior knowledge for the tasks and are input
into the latent space. The latent space primarily consists of three components: (1) a state encoder gθ
that maps the original state space to the latent state space S+, (2) a belief similarity learner ψl that
maps h to the latent task belief bl, and (3) a latent dynamics model pθ conditioned on the learned
latent task belief (Figure 2).

To obtain the latent dynamic representation of all tasks conditioned on zl, we reconstruct the latent
dynamics pθ((s′+, r, a) | zl), which includes the reward model Rl, the transition model Tl, and
the inverse dynamics model Il through one-step predictions. The learning objective for the latent
dynamics can be expressed as:

Ep(M)

[
Eψl(zl|h)

[
log pθ((s

′+, r, a) | zl)
]]
. (4)

1For simplicity, in the latent task belief metric, zi, zj and zil , z
j
l are used interchangeably to represent the

same meaning.
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Figure 2: SimBelief architecture. Our framework consists of three components: learning latent task
belief similarity, reconstructing the specific task, and the policy. In the compressed state space, ψl
learns the latent task belief bil through latent dynamics shared among all tasks in the distribution. In
the real environment, we reconstruct the dynamics of the specific task using ψr to obtain the specific
task belief bir. The policy π is conditioned on the state and the combined belief bi, which integrates
bir and bil . In this paper, we use l and r to denote the latent space and real space, respectively, and i
and j to represent task i and task j, respectively.

This objective enables the model to capture task-specific latent dynamics by maximizing the likeli-
hood of predicting the next augmented state s′+, reward r, and action a given the latent task belief
zl.

We aim to learn the similarity relationship between any two tasks using the latent task belief metric
and the latent dynamics learned through Equation 4. This similarity relationship is obtained by
optimizing the belief similarity learner ψl. The learning objective for task belief similarity using ψl
is defined as follows:

Lbisim(ψl) =∥ψl(hi)− ψl(hj)∥1 −
∣∣∣R̂(s+i , ai)− R̂(s+j , aj)

∣∣∣−W2

(
T̂ (· | s+i , ai), T̂ (· | s

+
j , aj)

)
−
∥∥∥Î(· | s+i , s′+i )− Î(· | s+j , s

′+
j )

∥∥∥
1
, (5)

where the gradients of dynamics model are stopped, and bil = ψl(hi). We use the 2-Wasserstein
metric because the W2 metric has a convenient closed-form solution (Zhang et al., 2021a). During
training, through Equation 4 and 5, zil , sampled from bil , is optimized to encode both the latent
dynamic information required to reconstruct task i and the similarity information between task i and
any other task in the task set M . Through this approach, we can utilize ψl to identify contextual
information at the current timestep and represent the similarity between any tasks through its output
bl.

3.3 SIMBELIEF ALGORITHM

We now proceed to describe how the learned task belief similarity (Section 3.2) can be leveraged
to enhance the exploration capability and convergence efficiency of meta-RL. The algorithm pseu-
docode can be found in Appendix C.

Reconstructing the specific task. In the BAMDP framework (Ghavamzadeh et al., 2015; Zintgraf
et al., 2019), even with extremely sparse rewards, it is necessary to construct the specific task’s
reward model in the original state space using a variational auto-encoder (VAE, (Kingma, 2013))
. This is because reconstructing the specific task in the latent state space may result in the loss of
crucial information, as the latent space is solely used for learning task belief similarity. Additionally,
along the temporal dimension, we only reconstruct the past history, as we use a one-step prediction
approach in the latent space. This approach effectively captures local information about the task
distribution, enhancing the agent’s reasoning ability for future predictions (see the upper part of
Figure 2). The objective is to maximise

LVAE(ϕ) = Eqϕ(zr|τ:t) [log pϕ(τ:t | zr)]−DKL (qϕ(zr | τ:t) ∥ p(zr)) , (6)
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where qϕ generates the specific task belief zr for the current timestep using only the information
from the historical trajectory τ:t. We consider qϕ as the forward reasoning process to infer the task
belief zr, corresponding to zr ∼ ψr(br | h)qϕ(h | τ:t) in the Algorithm 1.

Integrating latent task belief for effective online exploration. The learned latent task belief zl ∼
bl enables the agent to quickly recall the similarities between different tasks during interactions with
the environment, enhancing the efficiency of reasoning and exploration. This is the primary reason
why SimBelief achieves robust adaptation to OOD tasks (Figure 4). Since the latent state space is
an abstraction of the original task, the latent task belief may overlook the specific task information
required by the agent during exploration in the real environment. Therefore, we choose to project the
two distributions into a joint space B, and then use a Gaussian mixture of the two distributions br =
(µψr

(h), σψr
(h)) and bl = (µψl

(h), σψl
(h)), combined with the real environment’s augmented state

derived from st, as the input to the policy π. The formulation of the Gaussian mixture distribution b
is given by:

b = wr · N (zr | µr, σ2
r) + wl · N (zl | µl, σ2

l ), (7)

where N (z | µr, σ2
r) and N (z | µl, σ2

l ) are Gaussian distributions with means µr and µl, and
variances σ2

r and σ2
l , respectively. The weights wr and wl satisfy wr +wl = 1 and are non-negative

(see Appendix G.3).

In the early stages of training, the latent task belief enhances the agent’s ability to identify tasks
and explore efficiently in the real environment, providing a high-level understanding of the overall
task distribution (see Appendix F.2). However, for the algorithm to converge stably, it need to
incorporate finer-grained information about specific tasks, which is captured in the specific task
belief br. Therefore, we minimize the discrepancy between the latent belief bl and the specific task
belief br when training ψl. This is achieved by introducing a KL divergence term between the two
beliefs, serving as a regularization for the latent task belief. Combined with Equation 5, the overall
optimization objective of ψl can be written as:

J (ψl) = Ep(M) [Lbisim(ψl) +DKL (q̂ϕ(zr | τ:t) ∥ p(zl))] , (8)

SimBelief utilizes Soft Actor-Critic (SAC) (Haarnoja et al., 2018) to optimize the policy, where
the optimization of latent dynamics and latent task similarity is conducted jointly with policy opti-
mization to ensure convergence to near Bayes-optimal policy. To enhance the consistency between
latent dynamics and real environment exploration, without introducing perturbations that could dis-
rupt belief similarity in the latent space, we use the loss of Q-function as the objective to train the
offset (∆µ,∆σ) of bl = (µψl

(h) + ∆µ, σψl
(h) + ∆σ) (see Appendix G.4). The loss of SAC after

integrating latent dynamic information is
J (π) = E(s,a)∼D [α log (π(a | (s, b)))−Qθ((s, b), a)] , (9)

where (s, b) is the augmented state in the real environment under the BAMDP framework.

3.4 THEORETICAL ANALYSIS

Based on the latent task belief metric dπ(zi, zj) defined in Definition 2, we can establish the follow-
ing theorems regarding the difference in task dynamics between two tasks in the latent space within
BAMDP.
Theorem 1 (Value difference bound). Given two tasks Mzi and Mzj in the latent space with states
s+i , s

+
j ∈ S+, and let V π be the value function of policy π, the value difference bound between the

tasks can be given by:
|V π(s+i )− V π(s+j )| ≤ dπ(zi, zj), (10)

where dπ(zi, zj) is the task dynamics difference metric.

This theorem demonstrates that tasks with similar latent task beliefs zi and zj will have similar value
function under the same policy π.
Theorem 2 (Latent transfer bound). LetQ∗

Mj
be the optimal Q-function for task Mj . The difference

between Q∗
Mj

and the Q-function of the policy π learned from task Mi, applied to task Mj , is
bounded as follows:∥∥∥Q∗

Mj
− [QπMi

]Mj

∥∥∥
∞

≤ ϵR + γ (ϵT + ϵI + ∥zi − zj∥1)
Rmax

2(1− γ)
. (11)
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SimBelief (Ours) PEARL MetaCURE VariBAD HyperX RL2

Figure 3: Meta-testing performance on sparse reward MuJoCo and panda-gym tasks over 3 random
seeds. Our algorithm, SimBelief, demonstrates superior online adaptation capabilities compared to
other algorithms.

This extended transfer bound theorem provides a formal bound on how well a policy π trained on
task Mi will transfer to task Mj . ϵR, ϵT , and ϵI are approximation errors for rewards, transitions,
and inverse dynamics. All proofs are provided in Appendix B.

4 EXPERIMENTS

In this section, we evaluate SimBelief on sparse-reward tasks in MuJoCo (Finn et al., 2017; Rakelly
et al., 2019) and the more challenging panda-gym (Gallouédec et al., 2021) environment. We aim to
address the following questions: 1. Can SimBelief achieve fast online adaptation in sparse reward
tasks? 2. Can SimBelief leverage learned latent belief similarity representations to enhance out-of-
distribution generalization? 3. What is the impact of latent task representations on rapid exploration?
4. How does the latent space correspond to the real environment?

Environments and baselines: We conducted experiments on six complex sparse reward tasks, in-
cluding Point-Robot-Sparse, Cheetah-Vel-Sparse, Walker-Rand-Params, Panda-Reach, Panda-Push,
and Panda-Pick-And-Place (see Appendix E). While MuJoCo tasks are commonly used by current
meta-learning algorithms, panda-gym simulates real-world robotic arm movements with extremely
sparse rewards, making it a better benchmark for evaluating an algorithm’s ability to handle real-
world tasks. We compared SimBelief against PEARL (Rakelly et al., 2019), which is based on
posterior sampling, and MetaCURE (Zhang et al., 2021c), which learns a separate policy, as well as
VariBAD (Zintgraf et al., 2019), HyperX (Zintgraf et al., 2021), and RL2 (Duan et al., 2016), which
are based on the BAMDP framework (see Appendix D).

Online Adaptation Performance. During the training phase, we performed meta-testing by calcu-
lating the meta-episode average return and success rate across different tasks to evaluate the algo-
rithm’s online performance. As shown in Figure 3, SimBelief consistently performed well across all
tasks and exhibited superior adaptation capabilities compared to other algorithms. BAMDP-based
algorithms often require more interactions with the environment to converge to a Bayes-optimal
policy, whereas our algorithm, by integrating task belief similarity in the latent space, significantly
improved the agent’s ability to effectively extract task-relevant information in sparse reward envi-
ronments, thus accelerating convergence. In sparse reward tasks like those in panda-gym, the per-
formance of Varibad, HyperX, and RL2 illustrates that overly relying on the environment’s reward
signal while neglecting task similarity information makes it difficult to achieve online adaptation in
more complex scenarios. Additionally, SimBelief demonstrated more stable performance compared
to posterior sampling-based algorithms like PEARL and MetaCURE, indicating that SimBelief ac-
curately learned the common structure of the task distribution.
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SimBelief (Ours) PEARL MetaCURE VariBAD HyperX RL2

Figure 4: Average test performance for the first 5 rollouts on out-of-distribution tasks (Cheetah-
Vel-Sparse and Point-Robot-Sparse) shows that as the task distribution gradually deviates from the
training distribution, SimBelief demonstrates more efficient and robust adaptation compared to other
algorithms, while still maintaining a high return.

Out-of-distribution Task Inference and Adaptation. We evaluated the algorithm’s reasoning and
generalization capabilities on out-of-distribution (OOD) tasks. In Figure 4, we show the agent’s out-
of-domain adaptation and generalization performance on the Cheetah-Vel-Sparse (top) and Point-
Robot-Sparse (bottom) tasks. The leftmost column represents the task range used during the training
phase, where the agent was trained by generating task goals within this range. During the testing
phase, we adjusted the velocity range for Cheetah-Vel-Sparse and the semi-circle radius for Point-
Robot-Sparse to assess the agent’s robustness and task inference capabilities within five episodes.
The results indicate that SimBelief exhibits stable out-of-distribution generalization, demonstrating
that learned latent belief similarity representations can be leveraged to enhance out-of-distribution
task inference ability. The latent task belief similarity we proposed also equips the agent with strong
task transferability.

Exploration Performance. We visualized the exploration and adaptation process of the agent in
the Point-Robot-Sparse environment over two episodes, as shown in Figure 5. The test target ap-
peared within a semicircle with a radius of 1.2, and five positions on the semicircle were randomly
selected as the agent’s targets. Compared to other algorithms, SimBelief successfully identified the
randomly appearing target location within the semicircle and controlled the robot to reach the tar-
get point within two episodes. Moreover, in the out-of-distribution setting, SimBelief demonstrated
more efficient learning of a near Bayes-optimal policy compared to BAMDP-based algorithms like
HyperX. The latent task belief enabled the agent to efficiently analogize and identify tasks, leading
to more effective exploration.

Task Belief Visualization. We use t-SNE (Van der Maaten & Hinton, 2008) to visualize SimBelief’s
latent task belief and specific task belief (Figure 6), aim to illustrate how the task common structure
learned in the latent space contributes to effective reconstruction of the real environment. This vi-
sualization reveals the underlying reason for SimBelief’s ability to achieve rapid out-of-distribution
generalization. The latent space, as an abstraction and holistic representation of the task distri-
bution, enables efficient transfer of essential task information. This, in turn, allows the agent to
leverage prior knowledge for identifying and reasoning quickly about unknown environments.

The mechanism of SimBelief for rapid adaptation. SimBelief, through the latent task belief,
essentially learns the transfer relationships between knowledge across different tasks. In extremely
sparse reward scenarios, once the agent succeeds in one task, this prior knowledge of success can
be quickly propagated to other similar tasks via the latent task belief, enabling the agent to rapidly
adapt to similar types of tasks. A more detailed discussion is provided in Appendix F.
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Figure 5: Exploration and adaptation performance in the 5 random out-of-distribution (radius =
1.2) tasks of Point-Robot-Sparse. SimBelief is capable of robustly learning a near Bayes-optimal
policy.
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Figure 6: t-SNE visualization of task beliefs learned by the algorithm on 10 randomly sampled
OOD tasks. The velocity range for Cheetah-Vel-Sparse is set to 3-4, and the semicircle radius for
Point-Robot-Sparse is 1.1. SimBelief demonstrates a more distinct representation in the latent space,
enhancing the specific task belief to represent similar tasks in the real environment.

5 RELATED WORK

Task representation in reinforcement learning focuses on how agents encode and utilize task in-
formation to enhance learning efficiency and generalization. Meta-reinforcement learning enables
agents to quickly adapt to new tasks by learning task priors; for instance, (Finn et al., 2017) intro-
duced Model-Agnostic Meta-Learning (MAML) for rapid adaptation with minimal updates, while
(Rakelly et al., 2019) proposed PEARL to learn latent task representations for fast probabilistic adap-
tation. (Zintgraf et al., 2019; Dorfman et al., 2021) learn a latent variable model of task distribution
for efficient Bayes-adaptive RL, and (Gupta et al., 2018a) explored unsupervised meta-learning with-
out explicit task labels. Yuan & Lu (2022); Choshen & Tamar (2023) apply contrastive learning to
enhance encoder representation. (Lee et al., 2023) decomposes complex tasks into subtasks to han-
dle non-parametric task variability. In multi-task RL, (Teh et al., 2017) introduced Distral to learn
shared policies across tasks with task-specific adaptations. Contextual task representations have
also been explored: (Sodhani et al., 2021) use metadata to learn interpretable representations, and
(Hausman et al., 2018) learned embedding spaces for transferable skills. These studies underscore
the importance of efficient task representation to improve RL performance and generalization.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Exploration with task inference. Integrating exploration with task inference in reinforce-
ment learning (RL) enables agents to learn efficient policies by understanding task structures.
Information-theoretic approaches encourage exploration by maximizing the entropy of state visi-
tation distributions, promoting diverse behaviors (Liu & Abbeel, 2021). (Raileanu & Rocktäschel)
propose a type of intrinsic reward which encourages the agent to take actions that lead to signifi-
cant changes in its learned state representation. (Yang et al., 2023) propose an unsupervised skill
discovery method through contrastive learning among behaviors. (Rana et al., 2023) propose a low-
level residual policy for skill adaptation enabling downstream RL agents to adapt to unseen tasks
Planning-based methods enable agents to plan exploratory actions that maximize information gain
by learning world models (Sekar et al., 2020). (Xie et al., 2020) leverage the idea of partial amorti-
zation for fast adaptation at test time.

Bisimulation for control. Bisimulation has been effectively applied in various control tasks,
demonstrating its value in reducing computational burdens without sacrificing policy perfor-
mance(Zhang et al., 2021a). (Gelada et al., 2019) has leveraged bisimulation for efficient explo-
ration by ensuring the agent treats bisimilar states similarly, reducing sample complexity. (Hansen-
Estruch et al., 2022)propose a form of state abstraction that captures functional equivariance for
goal-conditioned RL. (Kemertas & Aumentado-Armstrong, 2021) generalize value function approx-
imation bounds for on-policy bisimulation metrics to non-optimal policies.

6 CONCLUSION

We present SimBelief, a meta-RL framework aimed at improving the agent’s ability to quickly adapt
and generalize in real-world sparse reward tasks. We first introduce the latent task belief metric,
which learns the similarity between the dynamics of different tasks in the latent space and repre-
sents this similarity as task belief similarity. This helps the agent efficiently capture the common
structure of the task distribution, facilitating the recognition and reasoning about unknown tasks. By
combining the latent task belief with the specific task belief learned in the real environment, SimBe-
lief demonstrates strong adaptation and generalization capabilities during exploration, particularly
on out-of-distribution tasks. It overcomes the slow convergence and inefficiency issues inherent in
BAMDP. We believe that SimBelief will inspire future research on agent generalization, enabling
agents to adapt more efficiently to the challenges and complexities of real-world environments.

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Anthony R Cassandra, Leslie Pack Kaelbling, and Michael L Littman. Acting optimally in partially
observable stochastic domains. In Aaai, volume 94, pp. 1023–1028, 1994.

Pablo Samuel Castro. Scalable methods for computing state similarity in deterministic markov
decision processes. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp. 10069–10076, 2020.

Era Choshen and Aviv Tamar. Contrabar: Contrastive bayes-adaptive deep rl. In International
Conference on Machine Learning, pp. 6005–6027. PMLR, 2023.

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta reinforcement learning–identifiability
challenges and effective data collection strategies. Advances in Neural Information Processing
Systems, 34:4607–4618, 2021.

Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John Langford.
Provably efficient rl with rich observations via latent state decoding. In International Conference
on Machine Learning, pp. 1665–1674. PMLR, 2019.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl 2̂: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Michael O’Gordon Duff. Optimal Learning: Computational procedures for Bayes-adaptive Markov
decision processes. University of Massachusetts Amherst, 2002.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement
learning. arXiv preprint arXiv:1904.12901, 2019.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes.
In UAI, volume 4, pp. 162–169, 2004.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learning shared
hierarchies. In International Conference on Learning Representations, 2018.
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A THEORETICAL BACKGROUND AND ANALYSIS

In this section, we introduce the theoretical background and the rationale behind the design of the
latent task belief metric.
Definition 3 (Bisimulation Relation (Givan et al., 2003)). Given an MDP M, an equivalence re-
lation E ⊆ S × S is a bisimulation relation if whenever (s, t) ∈ E, the following properties hold,
where SE is the state space S partitioned into equivalence classes defined by E:

∀a ∈ A,R(s, a) = R(t, a) (12)

∀a ∈ A,∀c ∈ SE ,P(s, a)(c) = P(t, a)(c), whereP(s, a)(c) =
∑
s′∈c

P(s, a)(s′) (13)

Definition 4 (Diffuse Metric). A diffuse metric measures the distance between two points by consid-
ering not only the shortest path but also the distribution of multiple paths between the points. The
diffuse metric satisfies the following properties:

1. Non-negativity: For any two points x and y, d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y.
2. Symmetry: For any two points x and y, d(x, y) = d(y, x).
3. Triangle inequality: For any three points x, y, and z, d(x, z) ≤ d(x, y) + d(y, z).

These properties ensure that the diffuse metric behaves as a valid distance measure across the space.

To prove that the metric dπ(zi, zj) in Defination 2 is valid, we show it satisfies three key properties:
non-negativity, symmetry, and the triangle inequality.

Proof. Each term in the metric dπ(zi, zj) is non-negative: |Rπi (s
+
i , ai) − Rπj (s

+
j , aj)| is the abso-

lute difference in rewards, which is non-negative. W2(T
π
i (s

+
i , ai), T

π
j (s

+
j , aj)) is the Wasserstein

distance, which is non-negative. ∥Iπi (s
+
i , s

+
i+1) − Iπj (s

+
j , s

+
j+1)∥1 is an L1-norm, which is non-

negative. Thus, dπ(zi, zj) ≥ 0. Additionally, all three types of distances satisfy symmetry, hence
dπ(zi, zj) = dπ(zj , zi).

To derive the triangle inequality for latent task belief metric, we need to verify that for any three task
beliefs zi, zj , and zk, the following holds:

dπ(zi, zk) ≤ dπ(zi, zj) + dπ(zj , zk)

Expand the distance dπ(zi, zj) and dπ(zj , zk)

dπ(zi, zj) = |Rπi (s+i , ai)−R
π
j (s

+
j , aj)|+W2(dπ)(T

π
i (s

+
i , ai), T

π
j (s

+
j , aj))+∥Iπi (s+i , s

′+
i )−Iπj (s+j , s

′+
j )∥1

and similarly,

dπ(zj , zk) = |Rπj (s+j , aj)−R
π
k (s

+
k , ak)|+W2(dπ)(T

π
j (s

+
j , aj), T

π
k (s

+
k , ak))+∥Iπj (s+j , s

′+
j )−Iπk (s+k , s

′+
k )∥1

Expand the distance dπ(zi, zk)

dπ(zi, zk) = |Rπi (s+i , ai)−R
π
k (s

+
k , ak)|+W2(dπ)(T

π
i (s

+
i , ai), T

π
k (s

+
k , ak))+∥Iπi (s+i , s

′+
i )−Iπk (s+k , s

′+
k )∥1

To prove the triangle inequality, we need to show that:

|Rπi (s+i , ai)−Rπk (s
+
k , ak)| ≤ |Rπi (s+i , ai)−Rπj (s

+
j , aj)|+ |Rπj (s+j , aj)−Rπk (s

+
k , ak)|

This follows directly from the standard triangle inequality for absolute values. Similarly, for the
Wasserstein distance term:

W2(dπ)(T
π
i (s

+
i , ai), T

π
k (s

+
k , ak)) ≤W2(dπ)(T

π
i (s

+
i , ai), T

π
j (s

+
j , aj))+W2(dπ)(T

π
j (s

+
j , aj), T

π
k (s

+
k , ak))

This holds due to the triangle inequality for the Wasserstein distance (Villani et al., 2009). Finally,
for the inverse dynamics term:

∥Iπi (s+i , s
′+
i )− Iπk (s

+
k , s

′+
k )∥1 ≤ ∥Iπi (s+i , s

′+
i )− Iπj (s

+
j , s

′+
j )∥1 + ∥Iπj (s+j , s

′+
j )− Iπk (s

+
k , s

′+
k )∥1

This also follows directly from the standard triangle inequality for norms. Since each of the three
components satisfies the triangle inequality, we can conclude that the latent task belief metricdπ also
satisfies the triangle inequality:

dπ(zi, zk) ≤ dπ(zi, zj) + dπ(zj , zk)
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B THEOREMS AND PROOFS

Theorem 1 (Value difference bound). Given two tasks Mzi and Mzj in the latent space with states
s+i , s

+
j ∈ S+, and let V π be the value function of policy π, the value difference bound between the

tasks can be given by:

|V π(s+i )− V π(s+j )| ≤ dπ(zi, zj), (14)

where dπ(zi, zj) is the task dynamics difference metric.

Proof. We will use the standard value function update:

V πn (s) = Rπ(s, a) + γ
∑
s′∈S

Pπ(s′ | s, a)V πn−1(s
′)

with V π0 (s) = 0, and our task difference metric dπ(zi, zj), and prove this by induction, showing
that for all n ∈ N and states s+i , s

+
j ∈ S+:

|V πn (s+i )− V πn (s+j )| ≤ dnπ(zi, zj).

The base case holds trivially:

0 = V π0 (s+i )− V π0 (s+j ) = 0, so assume this holds forn.

Now, for n+ 1:

|V πn+1(s
+
i )−V

π
n+1(s

+
j )| = |Rπi (s+i , ai)+γ

∑
s′∈S+

Pπi (s
′
i
+ | s+i , ai)V

π
n (s′i

+)−Rπj (s+j , aj)−γ
∑
s′∈S+

Pπj (s
′
j
+ | s+j , aj)V

π
n (s′j

+)|.

We decompose this into rewards and transition dynamics:

≤ |Rπi (s+i , ai)−R
π
j (s

+
j , aj)|+γ

∣∣∣∣∣ ∑
s′∈S+

(
Pπi (s

′
i
+ | s+i , ai)V

π
n (s′i

+)− Pπj (s
′
j
+ | s+j , aj)V

π
n (s′j

+)
)∣∣∣∣∣ .

Using the Lipschitz property of the value function, we can bound the transition dynamics difference:

≤ |Rπi (s+i , ai)−R
π
j (s

+
j , aj)|+γW2

(
Pπi (s

+
i , ai), P

π
j (s

+
j , aj)

)
+γ

∥∥Iπi (s+i , s′i+)− Iπj (s
+
j , s

′
j
+)

∥∥
1
.

By the definition of the latent task belief metric dπ(zi, zj), we know:

dπ(zi, zj) = |Rπi (s+i , ai)−R
π
j (s

+
j , aj)|+W2

(
Pπi (s

+
i , ai), P

π
j (s

+
j , aj)

)
+
∥∥Iπi (s+i , s′i+)− Iπj (s

+
j , s

′
j
+)

∥∥
1
.

Thus, we have:
|V πn+1(s

+
i )− V πn+1(s

+
j )| ≤ dn+1

π (zi, zj),

Theorem 2 (Latent transfer bound). LetQ∗
Mj

be the optimal Q-function for task Mj . The difference
between Q∗

Mj
and the Q-function of the policy π learned from task Mi, applied to task Mj , is

bounded as follows:∥∥∥Q∗
Mj

− [QπMi
]Mj

∥∥∥
∞

≤ ϵR + γ (ϵT + ϵI + ∥zi − zj∥1)
Rmax

2(1− γ)
. (15)
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Proof. ϵR: the maximum reward difference between tasks, ϵT : the maximum transition model dif-
ference, ϵI : the inverse dynamic model difference, ∥zi − zj∥1: the distance between the latent task
beliefs of task Mi and task Mj . In the real state space, the augmented state is still conditioned on
zl (Section 3.3 ).

We aim to bound the difference between the Q-function Q∗
Mj

(the optimal Q-function for task Mj)
and [QπMi

]Mj (the Q-function for policy π learned on task Mi, but applied to task Mj). This
difference is given by:

∥Q∗
Mj

− [QπMi
]Mj∥∞.

The Q-function for any task satisfies the Bellman equation:

Q(s, a) = R(s, a) + γEs′∼T (s,a)

[
max
a′

Q(s′, a′)
]
.

Using this, we decompose the Q-function difference:
∥Q∗

Mj
− [QπMi

]Mj∥∞ ≤ ∥Q∗
Mj

− TπMj
QπMi

∥∞.
Here, TπMj

QπMi
= RMj

(s+, a) + γEs′∼TMj
(s+,a),a∼IMj

(s+,s′+)[Q
π
Mi

(s+′, a′)].

We now break down the error in the Bellman operator TπMj
into:

The reward function discrepancy between task Mi and task Mj :
∥RMj

(s+, a)−RMi
(s+, a)∥∞ ≤ ϵR.

The difference in transition probabilities between tasks Mi and Mj :
∥TMj

(s+, a)− TMi
(s+, a)∥ ≤ ϵT .

The difference in latent task beliefs ∥zi − zj∥1 reflects the similarity between tasks Mi and Mj .

The discrepancy in inverse dynamics for tasks Mi and Mj :
∥IπMi

(s+i , s
′+
i )− IπMj

(s+j , s
′+
j )∥1 ≤ ϵI .

Substituting these differences into the Bellman operator TπMj
, the total error becomes:

∥Q∗
Mj

− TπMj
QπMi

∥∞ ≤ ϵR + γ(ϵT + ϵI + ∥zi − zj∥1).

The Bellman operator is a contraction with respect to the Q-function:
∥TπQ1 − TπQ2∥∞ ≤ γ∥Q1 −Q2∥∞.

After n iterations, the error propagation accumulates as:

∥Q∗
Mj

− [QπMi
]Mj∥∞ ≤ ϵR + γ(ϵT + ϵI + ∥zi − zj∥1)

1− γ
.

The Q-function scales with the maximum possible reward Rmax:

R(s, a) ≤ Rmax.

Qπ(s, a) ≤ Rmax
(
1 + γ + γ2 + γ3 + . . .

)
.

∞∑
k=0

γk =
1

1− γ
.

Therefore, the Q-function is bounded as:

Qπ(s, a) ≤ Rmax

1− γ
.

We get the final bound:∥∥∥Q∗
Mj

− [QπMi
]Mj

∥∥∥
∞

≤ ϵR + γ (ϵT + ϵI + ∥zi − zj∥1)
Rmax

2(1− γ)
.
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C SIMBELIEF PSEUDO-CODE

Algorithm 1 SimBelief algorithm
Input:Task distribution p(M)
Initialise: context encoder qϕ, real envs dynamics pϕ, actor πθ, critic Qω , replay buffer D, belief
similarity learner ψl, latent dynamics pθ, state encoder g, distribution offset (∆µ,∆σ)

1: while not done do
2: Sample tasks Mtrain = {Mi}Ni=1 from p(M)
3: Collect trajectories with πθ and add to buffer D ▷ Data collection
4: for step in SAC training steps do ▷ Training step
5: Sample training tasks Mtrain from p(M)
6: Sample batches from D
7: Infer specific task beliefs zr ∼ ψr(br | h)qϕ(h | τ:t)
8: Infer latent task beliefs zl ∼ ψl(bl | h)qϕ(h | τ:t)
9: Permute zil to get zjl

10: s+i = (g(s), zi), s+j = (g(s), zj)
11: Update latent dynamics pθ and state encoder g using Eq. 4
12: Update belief similarity learner ψl using Eq. 8
13: Update distribution offset (∆µ,∆σ) using Eq. 9
14: Integrate bil with bir to obtain bi
15: Update (θ, ω) with SAC algorithm ▷ SAC update
16: end for
17: for step in VAE training steps do
18: Sample τ:T ∼ B with trajectory length T
19: Decode only the past trajectories and update qϕ, ψr and pϕ using Eq. 6 ▷ VAE update
20: end for
21: end while

D CONTEXT-BASED META-RL BASELINES

In this section, we provide a detailed overview of the baseline methods compared in our experiments,
highlighting their core methodologies and design principles.

PEARL (Rakelly et al., 2019) (Probabilistic Embeddings for Actor-Critic RL) is an off-policy meta-
reinforcement learning algorithm designed to enhance both meta-training sample efficiency and
rapid adaptation to new tasks. By disentangling task inference from control, PEARL employs a
probabilistic latent context variable that enables structured exploration and efficient posterior sam-
pling. This design allows the policy to reason about task uncertainty and adapt quickly in sparse
reward or dynamic environments. Built upon the Soft Actor-Critic framework, PEARL achieves
better sample efficiency compared to on-policy meta-RL methods.

MetaCURE (Zhang et al., 2021c) (Meta-RL with Efficient Uncertainty Reduction Exploration) is an
off-policy meta-RL framework designed to address the challenges of sparse-reward environments. It
explicitly separates exploration and exploitation by learning distinct policies for each, enhancing the
efficiency of task inference and adaptation. The exploration policy is driven by an empowerment-
based intrinsic reward that maximizes information gain about the task, enabling efficient collection
of task-relevant experiences. MetaCURE leverages a shared probabilistic task inference mechanism,
which improves sample efficiency by integrating exploration and exploitation processes. Compared
to MetaCURE, SimBelief does not require knowledge of task IDs during the training phase. Instead,
it learns the common structure of tasks to enable reasoning, resulting in stronger online adaptation
capabilities.

VariBAD (Zintgraf et al., 2019) (Variational Bayes-Adaptive Deep RL) is a meta-reinforcement
learning framework that approximates Bayes-optimal policies by leveraging variational inference
and latent task embeddings. The algorithm learns a posterior belief over tasks using a variational
auto-encoder and conditions its policy on this belief to balance exploration and exploitation in un-
certain environments. VariBAD is notable for its ability to perform structured online exploration by
integrating task uncertainty directly into action selection. Unlike traditional methods that rely on

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Panda-Reach Panda-Push Panda-Pick-And-Place

Figure 7: Panda-gym tasks. The Panda-Reach task involves controlling the Panda robotic arm to
move its gripper to a randomly generated target position within a defined workspace, the Panda-
Push task requires pushing a cube from its initial position to a randomly generated target position on
a table, and the Panda-Pick-And-Place task focuses on picking up a cube and placing it at a randomly
generated target location above the table.

computationally intractable posterior sampling or explicit planning, VariBAD offers a tractable and
flexible approach to Bayes-adaptive policies.

HyperX (Zintgraf et al., 2021) (Hyper-State Exploration) is a meta-reinforcement learning method
that addresses sparse reward environments by leveraging exploration bonuses to meta-learn approxi-
mately Bayes-optimal task-adaptation strategies. It integrates two exploration bonuses during meta-
training: (1) a bonus based on hyper-states (combining environment states and task beliefs) to en-
courage diverse task-exploration strategies, and (2) a reconstruction error bonus to incentivize the
agent to collect data where task beliefs are inaccurate. By exploring hyper-states, HyperX efficiently
gathers data for belief inference and optimally trades off exploration and exploitation in sparse or
complex environments.

RL2 (Duan et al., 2016) reformulates the reinforcement learning process as a meta-learning problem,
embedding task-specific learning within the hidden state of a recurrent neural network (RNN). By
leveraging a “slow” reinforcement learning algorithm to optimize the RNN’s weights, RL2 enables
the network to store and process information about task dynamics across episodes. This design al-
lows the agent to efficiently adapt to unseen tasks by utilizing its historical trajectory data, including
observations, actions, rewards, and termination flags. RL2 demonstrates competitive performance
in solving multi-armed bandits and tabular MDPs, achieving results comparable to theoretically op-
timal algorithms. Additionally, its scalability to high-dimensional tasks, such as visual navigation in
dynamic environments, highlights its potential as a versatile and efficient meta-RL framework.

E ENVIRONMENTS AND IMPLEMENTATION DETAILS

Table 1: Adaptation length and goal settings for environments used for evaluation

Environment # of adaptation Max steps Goal type Goal range Goal radiusepisodes per episode
Cheetah-Vel-Sparse 2 200 Velocity [0,3] 0.5
Point-Robot-Sparse 2 60 Position Semicircle with radius 1 0.3
Walker-Rand-Params 2 200 Velocity 1.5 0.5
Panda-Reach 3 50 Position / 0.05
Panda-Push 3 50 Position / 0.05
Panda-Pick-And-Place 3 50 Position / 0.05

Table 1 summarizes key settings for the environments used in this work, including the number of
adaptation episodes, the maximum number of steps allowed per episode, the type of goal (whether
velocity or position-based), the goal range, and the goal radius. The specific environments are
described as follows:

Cheetah-Vel-Sparse. The Cheetah-Vel-Sparse environment involves controlling a half-cheetah
robot to achieve and maintain a target velocity, which is randomly sampled from a uniform distribu-
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tion over the range [0, 3]. At each time step, the robot receives a reward based on how closely its
current velocity matches the target velocity, with a sparse reward system in place. Specifically, if the
difference between the current velocity and the target velocity is within a specified tolerance (goal
radius of 0.5), the robot receives a reward; otherwise, the reward is zero. Additionally, a control
cost is applied to penalize large actions. The observation space includes the robot’s joint positions,
velocities, and body orientation, while the action space consists of motor torques controlling the
robot’s movements. The sparse reward encourages the agent to achieve the target velocity while
minimizing control effort.

Point-Robot-Sparse. The Point-Robot-Sparse environment requires a point robot to navigate to-
wards a goal randomly placed along a unit half-circle. The goal position is sampled at the beginning
of each episode, and the robot receives rewards only when it reaches within a goal radius of 0.3 units
from the target. The observation space consists of the robot’s current position, and the action space
allows movement in both x and y directions. The reward system is sparse, meaning that rewards are
only given when the robot is within the specified goal radius, encouraging the robot to explore and
move efficiently towards the target. The sparse reward structure makes the task more challenging, as
the robot receives feedback only when it approaches the target, requiring it to learn how to navigate
effectively with limited guidance.

Walker-Rand-Params. The Walker-Rand-Params environment involves controlling a bipedal
walker robot, with the added complexity of randomized physical parameters such as body mass, leg
strength, and joint properties. These parameters are randomized at the start of each episode, requir-
ing the robot to adapt to various physical configurations in order to move forward. The observation
space includes the walker’s joint angles, positions, and velocities, while the action space consists
of motor commands applied to the walker’s joints. The reward system is primarily based on how
closely the walker’s velocity matches a target velocity of 1.5 units per time step. If the deviation
from the target velocity exceeds 0.5 units, the reward is set to 0. For smaller deviations, the reward
is given as 0.8 - distance from the target velocity. Additionally, a small control cost proportional to
the sum of the squared motor actions is subtracted from the reward to penalize large actions.

Panda-Reach. The Panda-Reach task involves controlling the Panda robotic arm’s gripper to
reach a target position, randomly generated within a 30cm × 30cm × 30cm workspace. The task
is considered successful when the distance between the gripper and the target is less than 5 cm.
The observation space for this task includes the position and velocity of the gripper (6 coordinates),
augmented by two additional vectors representing the desired goal (target position) and the achieved
goal (current gripper position). The action space comprises three movement coordinates (x, y, z)
for controlling the gripper. The gripper remains closed throughout the task, and its movement along
these axes determines the success of the task. A sparse reward function is used, with a reward of 0
if the target is reached, and -1 otherwise.

Panda-Push. The Panda-Push task requires the robot to push a cube (side length of 4 cm) placed
on a table to a target position. Both the target position and the initial position of the cube are
randomly generated within a 20cm×20cm area around the neutral position of the robot. The gripper
remains closed during the task, and the objective is to move the cube to within 5 cm of the target
position. The observation space includes the gripper’s position and velocity (6 coordinates), along
with the cube’s position, orientation, and velocity (12 coordinates). The action space consists of
three movement coordinates (x, y, z) for controlling the gripper’s movement. As in the Panda-Reach
task, a sparse reward function is used, providing a reward of 0 if the task is completed successfully,
and -1 otherwise.

Panda-Pick-And-Place. The Panda-Pick-And-Place task involves the robot picking up a cube
(side length of 4 cm) and placing it at a target location, which is randomly generated within a
20cm × 20cm × 10cm volume above the table. The task is completed when the cube is placed
within 5 cm of the target position. The observation space for this task includes the gripper’s position
and velocity (6 coordinates), the cube’s position, orientation, and velocity (12 coordinates), and the
opening state of the gripper (1 coordinate). The action space is expanded to include three movement
coordinates (x, y, z) for controlling the gripper and an additional coordinate for controlling the
gripper’s opening and closing. A sparse reward function is employed, rewarding the robot with 0 for
completing the task and -1 otherwise (Figure 7).
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Table 2: Hyperparameter settings for SimBelief in different environments

Parameter Cheetah-Vel-Sparse Point-Robot-Sparse Panda-Reach Panda-Push
Name Walker-Rand-Params Panda-Pick-And-Place
Number of Tasks 120 100 100 60
Number of Training Tasks 100 80 80 50
Number of Evaluation Tasks 20 20 20 10
Number of Episodes 2 2 3 3
Number of Iterations 1000 2000 1000 4000
RL Updates per Iteration 2000 1000 1000 1000
Batch Size 256 256 256 256
Policy Buffer Size 1e6 1e6 1e6 1e6
VAE Buffer Size 1e5 5e4 5e4 5e4
Policy Layers [128, 128, 128] [128, 128] [128, 128] [128, 128, 128]
Actor Learning Rate 0.0003 0.00007 0.00007 0.00007
Critic Learning Rate 0.0003 0.00007 0.00007 0.00007
Discount Factor (γ) 0.99 0.9 0.9 0.9
Entropy Alpha 0.2 0.01 0.01 0.01
VAE Updates per Iteration 20 25 25 25
VAE Learning Rate 0.0003 0.001 0.001 0.001
KL Weight 1.0 0.1 0.1 0.1
Task Embedding Size 10 10 5 5

F THE MECHANISM OF SIMBELIEF FOR RAPID ADAPTATION

In this section, we will explain, from the perspective of task belief representation, why SimBelief
can quickly converge to a near Bayes-optimal policy during the training phase and how it enables
adaptation to OOD tasks within a single episode in sparse reward environments.

F.1 THE EVOLUTION OF TASK BELIEF DURING THE TRAINING PHASE

During the training phase, the agent needs to explore complex environments to acquire relevant
information about the current task, which is represented by the specific task belief br. Other meta-
RL algorithms are limited to task-specific information while ignoring the similarities between tasks.
SimBelief’s latent dynamics can capture the unique structure shared among tasks and distinguish
these structures through the latent task belief bl. Specifically, during the learning process, SimBelief
identifies the distribution of similar tasks via bl, and then uses br to fit the agent to the exact specific
task distribution, as illustrated in Figure 1. In Figure 8, we visualize the specific task belief, latent
task belief, and their mixed Gaussian distribution. During the early and middle stages of training,
the agent quickly identifies the distribution of the task being executed. After convergence, it can
accurately fit the specific task distribution.

F.2 THE CORRELATION OF BELIEFS BETWEEN DIFFERENT TASKS DURING THE
ADAPTATION PHASE

We visualize the correlations of task beliefs across different tasks in Point-Robot-Sparse, Panda-
Reach, Panda-Push, and Panda-Pick-Place environments. In each environment, 20 tasks are ran-
domly generated, and the SimBelief agent’s rollouts are used to extract the specific task beliefs and
latent task beliefs. The cosine similarity between task beliefs across tasks is calculated, and the
correlation matrices are visualized. As shown in Figure 9, specific task belief primarily captures
the local information of task distributions (learning weaker correlations between tasks), while latent
task belief emphasizes global information (capturing stronger inter-task correlations). This illus-
trates the principle behind SimBelief’s ability to achieve rapid adaptation to OOD tasks in sparse
reward environments: latent task belief enhances the agent’s reasoning efficiency across tasks and
improves the efficiency of knowledge transfer. Theorem 2 demonstrates the transferability of tasks
in the latent space.
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Figure 8: Visualization of different task beliefs during the training phase.

G ABLATION STUDY

G.1 LATENT DYNAMICS ABLATION

To validate the effectiveness of our algorithm using the learned latent task belief, we froze the
overall latent dynamics and, similar to VariBAD (Zintgraf et al., 2019), only used an external VAE
for environment reconstruction. Our algorithm demonstrated significant improvements across all six
tested tasks, with particularly notable gains in the more exploration-demanding tasks, Panda-Push
and Panda-Pick-And-Place (Figure 10).

G.2 THE IMPACT OF INVERSE DYNAMICS ON ADAPTATION ABILITY

To demonstrate the effectiveness of the inverse dynamics module in facilitating rapid learning of task
similarity, we conducted ablation experiments by removing the inverse dynamics module from the
latent space on Cheetah-Vel-Sparse (velocity range [4.0,5.0]) and Point-Robot-Sparse (radius=1.2)
tasks. The results show that the inverse dynamics module plays a critical role in enabling the agent’s
reasoning and generalization on OOD tasks (Figure 11).
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G.3 ABLATION STUDY ON wr AND wl

When combining bl and br, we apply a mixture of Gaussians to the two beliefs. To evaluate
the impact of different weights, we compared three weighting configurations on the Cheetah-Vel-
Sparse task: [wr, wl] = [0.5, 0.5], [wr, wl] = [0.25, 0.75], and [wr, wl] = [0.75, 0.25]. Among
these, [wr, wl] = [0.5, 0.5] achieved higher exploration efficiency during training and demonstrated
stronger adaptability to OOD tasks (Figure 12).

G.4 ABLATION STUDY ON OFFSET (∆µ,∆σ)

During the training phase, we use the offset (∆µ,∆σ) applied to the latent task belief primarily
to improve the stability of the algorithm’s convergence in continuous control tasks (e.g., Cheetah-
Vel-Sparse). However, this does not have a significant impact on the overall performance of the
algorithm. Even without using the offset during training, SimBelief still outperforms other baselines
(Figure 13).

H ADDITIONAL VISUALIZATIONS

In this section, we provide the task belief representations of SimBelief and other baselines on the
Walker-Rand-Param tasks (Figure 14), the adaptation performance on in-distribution tasks Panda-
Pick-And-Place and Walker-Rand-Params (Figure 15), and the exploration performance on the in-
distribution Point-Robot-Sparse task (Figure 16).
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Figure 9: The correlation matrix of task beliefs across different tasks. Specific task belief focuses
more on local information between tasks, while latent task belief captures the global characteristics
of task distributions.
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SimBelief SimBelief w/o Latent Task Belief

Figure 10: Ablation study on SimBlief’s latent task belief.

SimBelief SimBelief w/o inverse dynamic

Figure 11: Ablation study on SimBlief’s inverse dynamic module in latent space.

Figure 12: The performance of different Gaussian mixture weights on the Cheetah-Vel-Sparse task.

SimBelief SimBelief w/o offset

Figure 13: Ablation study on offset (∆µ,∆σ).
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Figure 14: The task belief representation of all experimental algorithms for 10 random in-
distribution Walker-Rand-Param tasks.

SimBelief (Ours) PEARL MetaCURE VariBAD HyperX RL2

Figure 15: Average test performance for the first 5 rollouts on randomly generated tasks of Panda-
Pick-And-Place and Walker-Rand-Params.
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Figure 16: Exploration and adaptation performance in the 5 random in-distribution (radius = 1.0)
tasks of Point-Robot-Sparse.
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