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Abstract001

The recent explosion of large language models002
(LLMs), each with its own general or special-003
ized strengths, makes scalable, reliable bench-004
marking more urgent than ever. Standard prac-005
tices nowadays face fundamental trade-offs:006
closed-ended question-based benchmarks (e.g.,007
MMLU) struggle with saturation as newer mod-008
els emerge, while crowd-sourced leaderboards009
(e.g., Chatbot Arena) rely on costly and slow010
human judges. Recently, automated methods011
(e.g., LLM-as-a-judge) shed light on the scala-012
bility, but risk bias by relying on one or a few013
“authority” models. To tackle these issues, we014
propose Decentralized Arena (DE-ARENA), a015
fully automated framework leveraging collec-016
tive intelligence from all LLMs to evaluate each017
other. It mitigates single-model judge bias by018
democratic, pairwise evaluation, and remains019
efficient at scale through two key components:020
(1) a coarse-to-fine algorithm for fast ranking021
of new models with sub-quadratic complexity,022
and (2) an automatic question selection strategy023
for the construction of new evaluation dimen-024
sions. Extensive experiments across 66 LLMs025
demonstrate that DE-ARENA achieves 97% cor-026
relation with human judge, while significantly027
reducing the cost.028

1 Introduction029

In recent years, the community has developed thou-030

sands of large language models (LLMs) (Achiam031

et al., 2023; Bai et al., 2023; Liu et al., 2024) with032

ever-stronger general and specialized capabilities.033

To deploy these models in the real world effectively,034

we must assess and rank their performance accu-035

rately. Concretely, existing work mostly collects a036

set of related high-quality questions, then judges037

the outputs of LLM to estimate the corresponding038

specialized capability (Guha et al., 2024; Xie et al.,039

2023; Rajkumar et al., 2022). By involving hu-040

mans to vote on the preference of all LLM pairs041

(i.e., deciding which LLM’s output “wins”), Chat-042

bot Arena (Chiang et al., 2024) provides robust043

and reliable leaderboards, yielding one of the most 044

popular LLM benchmarks. 045

Recently, with the increasing usage of LLMs in 046

a variety of applications and real-world tasks (Hou 047

et al., 2024; Taylor et al., 2022; Du et al., 2024), 048

it’s crucial to evaluate their capabilities on fine- 049

grained dimensions, e.g., math reasoning, physical 050

science, and more specialized branches, such as al- 051

gebra and astrophysics. However, it is rather costly 052

(both in terms of time and financially) for Chatbot 053

Arena and other human-annotation-based bench- 054

marks to support evaluating thousands of LLMs in 055

thousands of fine-grained dimensions, i.e., millions 056

or even billions of human votes required. Moreover, 057

human judgments also exhibit variability and sub- 058

tle subjectivity, particularly when frontier models 059

sometimes deploy persuasive “sycophantic” lan- 060

guage (Sharma et al., 2023) or other surface cues 061

that may bias annotators toward incorrect but agree- 062

able responses (Schoch et al., 2020). To address 063

them, researchers have studied automatic evalu- 064

ation methods, typically selecting one (or few) 065

“strongest” LLMs (e.g., GPT-4) as judges to eval- 066

uate all model pairs (Dubois et al., 2024; Li et al., 067

2023c). However, judge models can be biased, e.g., 068

prefer outputs that resemble its own style (Zheng 069

et al., 2023; Panickssery et al., 2024). Optimizing 070

models based on such evaluations could end up 071

with overfitting to the judge biases. 072

To achieve the goal of reliable and scalable eval- 073

uation across various dimensions, we propose De- 074

centralized Arena (De-Arena), an automatic evalu- 075

ation method based on the “wisdom of the crowds”. 076

Table 1 illustrates the main difference between De- 077

Arena and other benchmarks. The core idea behind 078

De-Arena is to use the collective intelligence of all 079

LLMs to evaluate and compare themselves. This 080

forms a democratic system where all LLMs to be 081

evaluated are also judges to evaluate others, lead- 082

ing to fairer rankings than the automatic methods 083

relying on a few centralized “authority” judge mod- 084
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Benchmarks Judges Auto
Eval

Auto
Data

Open
ended

Compass Arena Human ✗ ✗ ✓
Chatbot Arena Human ✗ ✗ ✓
MixEval - ✓ ✓ ✗
LiveBench - ✓ ✗ ✗
Alpaca Eval GPT-4 ✓ ✗ ✓
WildBench GPT-4 ✓ ✗ ✓
BiGGen Bench GPT-4 ✓ ✗ ✓
PRD Five LLMs ✓ ✗ ✓
Auto Arena Five LLMs ✓ ✓ ✓

De-Arena All LLMs ✓ ✓ ✓

Table 1: Comparison of representative LLM bench-
marks based on the types of judge models, whether
automatically evaluating LLMs, selecting the data, or
using open-ended questions.

els (Salminen et al., 2015; Surowiecki, 2004). This085

should address the single-judge bias or the bias086

from a similar model family (Goel et al., 2025).087

Additionally, its automatic benchmarking process088

also supports scaling up the number of test LLMs089

and dimensions with a lower cost than collecting090

large-scale human annotations.091

To implement our De-Arena, a naive approach092

is to utilize all the LLMs to judge all other model093

pairs (similar to Chatbot Arena), based on manually094

crafted or selected high-quality questions. How-095

ever, it would lead to a prohibitively expensive time096

complexity of O(n3k)1. To make De-Arena a more097

efficient and fully automatic paradigm, we devised098

(1) the coarse-to-fine incremental ranking algo-099

rithm and (2) the representative question selection100

strategy. Concretely, in our ranking strategy, the101

LLMs will be incrementally inserted into the rank102

list (i.e., one by one), by first finding the rough103

position via binary search and then fine-grained104

in-window ranking. Such a way naturally sup-105

ports gradually growing the rank list by adding106

the latest LLMs, and the low complexity of binary107

search (i.e., O(kn log n)) helps greatly reduce the108

time cost. We later empirically show that even109

the coarse-grained step (i.e., binary insertion) can110

achieve highly capable performance, thanks to the111

diverse set of judges. Besides efficiency, we in-112

troduce an adaptive weight mechanism and ELo113

system to re-weight judges dynamically (akin to114

PageRank), making De-Arena more reliable.115

For question selection, our De-Arena leverages116

the above ranking strategy to select a few repre-117

sentative questions that lead to more consistent118

1n and k refer to the number of models and questions.

results, as the majority. In this way, we ensure 119

that the new evaluation dimensions can be auto- 120

matically built by selecting a few high-value ones 121

from the collected question candidates. Based on 122

the above designs in De-Arena, we automatically 123

construct nine fine-grained dimensions, and effi- 124

ciently evaluate 66 LLMs on them (as shown in 125

Table 12). Experimental results demonstrate the 126

effectiveness of our method, achieving up to 97% 127

correlation with human-annotation-based Chatbot 128

Arena in the overall dimension (shown in Table 2), 129

with a cost similar to existing benchmarks (shown 130

in Figure 2b). Extensive studies also reveal that 131

our method can significantly reduce the bias from 132

a single-LLM judge (Table 3 and Table 11), and 133

becomes more stable and accurate as the number 134

of models increases (Figure 3), demonstrating its 135

reliability and stability. Ablation study shows that 136

the performance is robust against choices of multi- 137

judges (e.g., randomly selected judges), indicating 138

that our De-Arena is robust to potential group bias 139

as well (Goel et al., 2025). 140

2 Related Work 141

LLM Evaluation and Benchmark. Early 142

work (Zhao et al., 2019; Zhang et al., 2019; 143

Yuan et al., 2021) on evaluating language models 144

primarily focuses on the quality of the generated 145

text, considering the fluency and relevance. In 146

recent years, large language models (LLMs) that 147

have undergone pre-training on large-scale corpus, 148

have demonstrated expert-level text generation 149

abilities (OpenAI, 2024a; AI@Meta, 2024), and 150

exhibited strong advanced capabilities (Song 151

et al., 2023; OpenAI, 2024b), such as reasoning 152

and planning. Thus, a surge of benchmarks are 153

proposed to assess the multi-aspect capabilities 154

of LLMs, which are either based on closed- 155

ended (Wang et al., 2024; Rein et al., 2024) or 156

open-ended questions (Chiang et al., 2024). The 157

first type of benchmarks relies on close-ended 158

questions with accurate answers to evaluate LLMs, 159

which simplifies the evaluation process. However, 160

due to the simple formats of the closed-ended 161

questions, they cannot fully estimate the true 162

user preferences of LLMs in applications (Wu 163

et al., 2024), and may also be hacked through 164

training on similar data (Sainz et al., 2023). To 165

address this, Chatbot Arena (Chiang et al., 2024) 166

collects open-ended questions, and invites humans 167

to vote on each pair of LLMs based on their 168
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outputs. However, human annotation is costly,169

and also makes the overall evaluation results170

difficult to reproduce. Therefore, a surge of171

automatic evaluation benchmarks has emerged,172

employing a strong LLM (e.g., GPT-4 (Zheng173

et al., 2023; Li et al., 2023c)) or a fine-tuned174

specialized LLM (Li et al., 2023a; Kim et al.,175

2024b) to replace human judges. Despite the low176

cost, single-LLM judge-based methods may suffer177

from the evaluation bias, e.g., self-enhancement178

bias (Zheng et al., 2023) and verbosity bias (Saito179

et al., 2023). Recent attempts, such as PRD (Li180

et al., 2023b) and Auto-Arena (Zhao et al., 2024)181

have explored multi-LLM judgment to mitigate182

these issues. However, using more LLMs as judges183

would significantly increase the computational and184

resource cost, limiting the scalability for evaluating185

a large number of LLMs and new dimensions.186

Collective Intelligence. Collective intelligence187

arises when multiple agents collaborate or com-188

pete in decentralized networks, often producing189

more accurate judgments than any single expert190

alone (Surowiecki, 2004; Yao et al., 2024). Re-191

search in crowd-based systems (Salminen et al.,192

2015), multi-agent systems (Brigui-Chtioui and193

Saad, 2011), and swarm intelligence (Chakraborty194

and Kar, 2017; Gloor, 2006) shows that collecting195

diverse perspectives can mitigate individual errors196

and biases, particularly where no centralized con-197

troller is present. For instance, natural examples198

of ant colonies and bird flocks reveal that com-199

plex problems can be addressed effectively through200

simple agent interactions (Gloor, 2006). In this201

paper, we extend the principles of collective intelli-202

gence to LLM evaluation. We design a large-scale203

decentralized system in which LLMs simultane-204

ously serve as judges and participants. Because205

each LLM has a distinct training background, ag-206

gregating their judgments reduces the influence of207

single model bias. Our experiments highlight that208

evaluation reliability consistently improves with209

the number of involved models, demonstrating the210

potential of collective intelligence to enable more211

robust, accurate, and scalable LLM benchmarking.212

3 Decentralized Arena213

This section introduces the detailed design of our214

Decentralized Arena (De-Arena). In De-Arena, we215

focus on the idea of decentralization that uses all216

LLMs as judges to vote on other model pairs, based217

on high-quality questions in each dimension. It can218

reduce the cost of gathering human annotations, 219

and also avoid the bias that may arise from relying 220

on a single or a small number of judge models. To 221

achieve it, we devise the coarse-to-fine incremental 222

sort algorithm to efficiently rank a large number 223

of LLMs, and the automatic question selection al- 224

gorithm to select representative data for building 225

new evaluation dimension. The overview of our 226

De-Arena is shown in Figure 1. 227

3.1 Coarse-to-fine Incremental Ranking 228

Given a set of LLMs {mi}ni=1, we aim to sort them 229

into a ranking list [m1, · · · ,mn], according to their 230

performance on the collected k questions. Consid- 231

ering that a surge of stronger LLMs will be devel- 232

oped in the near future, we devise an LLM sort 233

algorithm that supports the incremental insertion 234

of new LLMs into the ranking list. Concretely, we 235

begin with a small set of “seed” models (i.e., 6 mod- 236

els), which are ranked using a full-sample pairwise 237

comparison method. In this process, each of the 238

6 models evaluates and ranks all the other models, 239

excluding itself. Other models are then incremen- 240

tally inserted into the rank list, one by one, where 241

all models in the list act as judges to help find the 242

position. To efficiently insert a new model into the 243

list, we devise the coarse-grained binary search and 244

fine-grained in-window reranking strategies. 245

Coarse-grained Ranking with Binary Search. 246

Given the current ranking list [m1, · · · ,mt] with 247

t models, we aim to find the rough position of 248

the t + 1-th model in an efficient way. As the 249

ranking list is ordered, we utilize the binary search 250

algorithm (Lin, 2019), which can quickly narrow 251

down the search space via the logarithmic time 252

complexity. Concretely, we first compare the new 253

model with the one in the t/2-th position of the 254

ranking list, where all other models in the list serve 255

as judges. Given the collected k questions, all the 256

judge LLMs vote on the outputs of the two models 257

(i.e., deciding whose output “wins”). If the new 258

LLM owns more wins, we repeat the above step to 259

find the position of the new LLM in the first half 260

list [m1, · · · ,mt/2−1]. Otherwise, we repeat it in 261

[mt/2+1, · · · ,mt]. This loop will continues until 262

narrowing the search space into a certain position, 263

which is the rough position of the model. The time 264

complexity of this binary search is O(kn log n). 265

Fine-grained In-window Reranking. After ob- 266

taining the rough position of the new model, we 267

continue to check whether it is suitable and make 268

3



             

               

               
GSM8K 

MMLU

BBH

...

Dataset Pool

Collect

Question Set

Representative 
Questions

Update        And Start Ranking

Sorting 

Ranking List 
for All Questions

Q1 
Ranking: 
  1. 
  2.
  3.
  4.

... 

Average 
Ranking: 
   1. 
   2.
   3.
   4.

... 

Binary Search
Round-2

Select the 
Window

Small LLM Set

Ranking
Similarity

...

Q3

Q2

Q1

  1. 
  2.
  3.
  4.
  5.
  6.

... 

Base Model
List

Judge All the pairs

...

Q3: 0.5

Q2: 0.7

Q1: 1.0

   1.

   2.

   3.

   4.

   5.

   6.

   7.

  1.

  2.

  3.

  4.

  5.

  6.
…

      
  9.

Slide the Window

Judge All the pairs

Automatic Representative Question Selection

               

Coarse-to-fine Incremental Ranking

Coarse-grained 
Ranking

Window

Result-1

Window

Result-2

   1.

   2.

   3.

   4.

   5.

   6.

   7.

Fine-grained 
Ranking

Binary Search
Round-1

As Judges

Figure 1: The overview of our method, consisting of the automatic question selection strategy (left) and the
coarse-to-fine incremental ranking algorithm (right). Here, we show an example that creates a new dimension based
on open-source datasets, and one of the insert iterations for adding the model Yi into the previous ranking list.

refinement if necessary. Here, the new model is269

compared against its adjacent peers within a de-270

fined local window (e.g., two models before and271

after it in the ranking list). The rationale is that272

these nearby LLMs often own similar capabilities273

to the new one, whose positions in the ranking list274

are the hardest to distinguish, warranting closer275

comparison. Concretely, we first compare the new276

LLM with other in-window models using the col-277

lected k questions and rerank them, where all other278

models outside this window serve as judges. If279

the in-window reranking step leads to a change280

in the new LLM’s position, the process will be281

repeated within the updated window until the rank-282

ing list stabilizes. This functions like a sliding283

window, guiding the LLM crowd to focus on the284

most ambiguous comparison pairs, thereby ensur-285

ing accurate rankings while significantly reducing286

computational costs.287

Score Generation and Style Control. After ob-288

taining the ranking list and pairwise comparison re-289

sults of all LLM candidates, we follow the method-290

ology used in Chatbot Arena that computes corre-291

sponding Elo scores to finalize the ranking results:292

R′
A = RA +K ·

(
SA − 1

1 + 10(RB−RA)/400

)
(1)293

where RA is the Elo score of model A that is itera-294

tively updated based on the comparison results, R′
A295

denotes the updated Elo rating of model A after a296

pairwise comparison. SA is a bool value that de-297

notes if model A wins the comparison, and K is the298

coefficient for the score update. As we cannot com-299

pare all the model pairs, we follow Chatbot Arena,300

which uses logistic regression to fit the collected301

comparison data and estimate the Elo score (Elo,302

1967). Here, we consider that the reliability of 303

different LLMs as judges varies. Therefore, we in- 304

troduce weights in the loss function. Our rationale 305

is that an LLM with a higher Elo score is more 306

likely to be a qualified judge; hence, we utilize 307

the normalized Elo score as the weight in the loss 308

function. Furthermore, whenever the Elo scores 309

are updated, we dynamically adjust each model’s 310

weight based on its new score. We also follow 311

Chatbot Arena, which incorporates a style control 312

mechanism to reduce the influence of output style. 313

3.2 Automatic Questions Selection 314

To enable scalability in adding arbitrary new evalu- 315

ation dimensions in De-Arena, we devise an auto- 316

matic representative question selection algorithm. 317

To build a new dimension, users only need to 318

collect relevant open-ended questions from open- 319

source datasets. Then, we utilize the ranking results 320

of LLMs to identify the most representative ques- 321

tions as high-quality examples for evaluation. 322

Open-ended Questions Collecting. Thanks to 323

the rich open-source datasets in the community, it is 324

easy to search for and collect various relevant open- 325

source datasets for a certain dimension. However, 326

the collected examples may differ in the formats, 327

e.g.,, multi-choice and open-ended questions. In 328

De-Arena, as we can leverage LLMs to compare 329

the outputs of model pairs, we standardize all the 330

data into the open-ended question format by using 331

GPT-4 with an appropriate prompt. 332

Ranking-based Representative Questions Selec- 333

tion. Considering the diverse quality and large 334

scale of the collected questions, we aim to select 335

a few of the most representative ones for testing 336
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Benchmarks
15 LLMs 30 LLMs 66 LLMs Avg.

Overall Math Overall Math Overall Math

CompassAcademic 0.660 - 0.674 - - - -
BFCL 0.798 - 0.813 - - - -
OpenLLM 0.892 - 0.800 - 0.797 - -
Helm Lite 0.725 0.656 0.748 0.660 0.750 0.665 0.701
LiveBench 0.906 0.900 0.920 0.913 0.925 0.916 0.913
EQ Bench 0.911 - 0.860 - 0.865 - -
MMLU PRO 0.952 - 0.897 - 0.897 - -
MixEval 0.954 - 0.963 - 0.965 - -

BigGen Bench (Prometheus 2) 0.908 - 0.924 - 0.924 - -
BigGen Bench 0.919 - 0.930 - 0.931 - -
Alpaca Eval 2.0 0.921 - 0.935 - 0.935 - -
WildBench 0.894 0.917 0.907 0.932 0.910 0.934 0.916

PRD 0.851 0.904 0.892 0.916 - - -
Auto Arena 0.938 - - - - - -

De-Arena 0.957 0.939 0.967 0.952 0.974 0.959 0.958

Table 2: Results of the automatic evaluation benchmarks with Chatbot Arena (Spearman Correlation). We report the
results from the settings of testing 15, 30, and 66 LLMs. Bold indicates the best results in each group.

LLMs. Instead of randomly sampling, we design337

a ranking-based method to select questions that338

lead to consistent ranking lists, ensuring high data339

quality. Concretely, for each question q in the col-340

lection, we first utilize our ranking algorithm in341

Section 3.1 to produce the ranking list of a small342

set of LLMs, denoted as L. Then, we compute343

the average ranking list for all questions by simply344

accumulating the position of all LLMs and then345

sorting them, denoted as L̂. Next, we compute the346

Spearman correlation ρ between the ranking list347

of each question and the average list, and use the348

scores to select representative questions:349

ρ(L, L̂) = 1−
6
∑n

i=1(r(L,mi)− r(L̂,mi))
2

n (n2 − 1)
, (2)350

where r(L,m) returns the position of model m351

in the list, n is the model number. Then, ques-352

tions with higher correlation scores are selected, as353

they are more capable of representing the “major-354

ity” preference by yielding ranking results that are355

highly consistent with the average model rankings.356

4 Experiments357

4.1 Main Experiments358

Experimental Setup. We compare our approach359

with three types of automatic evaluation bench-360

marks: Closed-ended Dataset-based Benchmarks,361

Single-LLM Judge-based Benchmarks, and Multi-362

LLM Judge-based Benchmarks. From these cat-363

egories, we respectively select 8, 4, and 2 repre-364

sentative and recently proposed benchmarks for365

comparison. Descriptions of each baseline are pro- 366

vided in Appendix H, while detailed evaluation 367

settings and implementation details are presented 368

in Appendix I and Appendix J. 369

Main Results Analysis. The comparison results 370

of different benchmarks are shown in Table 2. First, 371

we observe that multi-LLM judge-based bench- 372

marks generally perform better than single-LLM 373

judge-based ones. This indicates that incorporating 374

multiple LLMs as judges improves the consistency 375

between automated evaluation results and human 376

preferences. Such a way can reduce the prefer- 377

ence bias from only one judge model. Second, 378

by collecting high-quality questions for evaluation, 379

MixEval and WildBench outperform other closed- 380

ended and single-LLM judge-based benchmarks, 381

respectively. MixEval carefully controls its query 382

distribution to match with real-world user queries, 383

while WildBench collects massive real-world tasks 384

(i.e., 1024). It demonstrates the importance of se- 385

lecting proper datasets for evaluation. 386

Besides, our De-Arena surpasses all baselines in 387

most evaluation settings and the average value. In 388

De-Arena, we extend the multi-LLM judge strategy 389

into a more democratic paradigm where all LLMs 390

are both the judges and are to be evaluated, to fur- 391

ther reduce the bias. Furthermore, we devise an 392

automatic question selection strategy that uses the 393

correlation of ranking results to find the most repre- 394

sentative questions for evaluation. These strategies 395

greatly improve the reliability and scalability of our 396

method, in contrast to baselines that require human 397
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(a) Benchmark Spearman correlation. (b) Benchmark cost and performance.

Figure 2: (a) Spearman correlation between different LLM benchmarks in the overall dimension. (b) Benchmark
cost and performance comparison in the overall dimension, where we show the average judge counts of each model
and the correlation with Chatbot Arena.

Methods MT-Bench Math

Corr↑ R-Diff↓ Corr↑ R-Diff↓

LLaMA-3-70B 0.815 1.71 0.934 1.14
Gemma-2-27B 0.930 1.29 0.932 1.00
Qwen2-70B 0.938 1.00 0.942 1.14

De-Arena 0.956 1.00 0.952 1.00

Table 3: Judge methods vs. Chatbot Arena: Correlation
(↑) and Rank Difference (↓).

involvement or massive data.398

In addition, with the increasing of test LLM num-399

ber, the difficulty of accurately ranking all LLMs400

also increases. As a result, the correlation scores401

of most baselines with Chatbot Arena have also402

decreased. Here, we can see that our De-Arena403

can achieve a stable performance and even perform404

better in the math dimension. The reason is that the405

involvement of more LLMs also introduces more406

judge models, which can reduce the bias caused by407

a few judges, further improving the reliability. We408

also report the correlation between our De-Arena409

and other best-performing six benchmarks in Fig-410

ure 2a. Our De-Arena always has a high correlation411

with all the benchmarks, i.e., > 0.85. It indicates412

the effectiveness of our method for producing reli-413

able ranking results, as existing benchmarks, echo-414

ing with the superior performance in Table 2.415

4.2 Further Analysis416

Reducing Single-Judge Biases. In De-Arena,417

our major contribution is to utilize all LLMs as418

judges to democratically vote all the model pairs,419

reducing the single-judge evaluation bias and im-420

proving reliability. To study it, we compare our 421

De-Arena with several of its variations using a sin- 422

gle LLM as the judge, including LLaMA-3-70B, 423

Gemma-2-27B, Qwen2-70B-inst, GPT-4o-2024- 424

08-06. Here, we report the Spearman correlation 425

and the difference in the ranked LLMs between 426

all methods with Chatbot Arena. As presented in 427

Table 3, the performance of our De-Arena is consis- 428

tently better than all other variations, with higher 429

Spearman correlation and lower rank difference. It 430

indicates that our democratic voting strategy can 431

avoid the ranking results being biased by the prefer- 432

ence of few LLMs. Also, in our case study, we find 433

that LLaMA-3-70B and Gemma-2-27B are prone 434

to vote for themselves and the same series of LLMs, 435

causing their ranks to rise drastically. 436

Cost and Scalability Study. In De-Arena, we 437

devise the coarse-to-fine ranking algorithm and 438

question selection strategy to reduce the cost of 439

scaling the LLM number. To evaluate this effi- 440

ciency, we estimate the cost of our De-Arena with 441

other benchmarks for comparison. As it is hard 442

to compute the detailed cost, we count the aver- 443

age comparison number of each LLM, which is 444

relevant to the number of test questions and vot- 445

ing counts. As shown in Figure 2b, our De-Arena 446

achieves the best performance among all bench- 447

marks, with slightly higher cost than single-LLM 448

judge-based ones. The reason is that we employ the 449

representative question selection strategy to reduce 450

the number of test questions (e.g., 100 instances), 451

and also the ranking algorithm to reduce the vot- 452

ing counts of judge models. The above designs 453
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Figure 3: De-Arena’s mean (blue curve) and variance
(shaded area) of Chatbot Arena correlation in the MT-
bench dimension, with the increase in LLM number.

greatly reduce the cost from both sides. Besides, as454

De-Arena has the lower cost and higher correlation455

with Chatbot Arena, it shows strong potential as456

an effective and scalable automatic counterpart for457

broader real-world applications.458

Convergence Study. As our De-Arena adopts459

the coarse-to-fine incremental ranking strategy, the460

insertion order of LLMs might affect the stability461

of the final ranking results. To study it, we run our462

method five times, using different random seeds to463

shuffle the insertion order, and compute the mean464

and variance correlations with Chatbot Arena, in465

the MT-bench dimension. As shown in Figure 3,466

we can see that with the involvement of more mod-467

els, our ranking results become more stable and468

robust with higher correlation and lower variance.469

It demonstrates the scalability of our decentralized470

evaluation strategy with the scaling of LLMs. The471

more models participate in the evaluation process,472

the more reliable and trustworthy the final ranking473

results for all models become.474

Robustness against Potential Group Biases.475

Since De-Arena leverages the collective intelli-476

gence of LLMs to judge each other, it effectively477

mitigates single-judge biases. To further assess its478

robustness and potential group biases, we varied479

the number of judge models across three settings:480

8, 16, and 26. For the 8 and 16 settings, we ran-481

domly sampled five different judge sets to evaluate482

stability; for 26, we used all suitable open-source483

models. The final outcomes are presented in Fig-484

ure 4a. We observe that the performance consis-485

tently improves as the number of judge models in-486

creases, with the best performance achieved when487

the number reaches 26. This can be attributed to the488

fact that a larger number of judge models enables489

a more democratic and decentralized evaluation490

process. As the judge pool grows, the collective in-491
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Figure 4: (a) Spearman correlation with Chatbot Arena
across varying judge model number. (b) Spearman cor-
relation for different question selection methods, with
AP representing Anchor Point.

Methods MT-Bench Math

Corr↑ Judges↓ Corr↑ Judges↓

Ours 0.957 521495 0.962 808074
- w/o Fine 0.952 320715 0.961 489741
- w/o Coarse 0.954 352245 0.959 520580
- Full Sample 0.956 2245874 0.962 3660355

Table 4: Correlations (Corr) and rank differences (R-
Diff) between different judge methods and Chatbot
Arena. ↑ and ↓ denote the higher and the lower the
better, respectively.

telligence effect becomes more pronounced, which 492

helps to further mitigate the biases of individual 493

models. Meanwhile, since the group consists of 494

highly diverse models, group biases are minimally 495

introduced. This highlights the strong robustness 496

of using multiple judges in the evaluation process. 497

4.3 Ablation and Variation Study 498

Coarse-to-fine Ranking Algorithm. To study 499

the effectiveness of our coarse-to-fine ranking al- 500

gorithm, we remove the coarse-grained binary 501

search ranking and fine-grained in-window rerank- 502

ing strategies, to build two variations for compari- 503

son: (1) w/o Coarse: ours without coarse-grained 504

binary search; (2) w/o Fine: ours without fine- 505

grained in-window reranking. Besides, we also 506

built the variation that uses all LLMs to vote all 507

the LLM pairs, namely (3) Full Ranking: ours with 508

full ranking. We conduct the experiments on MT- 509

Bench and Math dimensions, and report the correla- 510

tion with Chatbot Arena and the number of judges. 511

As shown in Table 4, among all the variations, our 512

De-Arena can well balance the performance and the 513

cost. In De-Arena, both the coarse-grained binary 514

search and the fine-grained in-window reranking 515

algorithms contribute to performance improvement 516

while only slightly increasing the number of judge. 517
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MT-Bench Algerba Geometry Probability

Avg Corr 0.957 0.942 0.956 0.961
Std 0.0019 0.0021 0.0015 0.0016

Table 5: Stability study of coarse-to-fine ranking algo-
rithm. In each dimension, we conduct five random trials
by shuffling the insertion order of models.

Ours - w/o Fine - w/o Coarse

Avg Corr 0.957 0.953 0.955
Std 0.0019 0.0031 0.0029

Table 6: Stability study under variations of the coarse-
to-fine ranking algorithm. Each dimension, we conduct
five random trials by shuffling the insertion order.

Without these strategies, the variation that needs518

to fully rank all model pairs greatly increases the519

cost (×4 judge counts). In Appendix C, we con-520

duct additional experiments to further investigate521

the accuracy of the binary search step.522

Stability Study of Coarse-to-fine Ranking Al-523

gorithm In De-Arena, we adopt an incremental524

insertion approach, where models are inserted in525

varying orders and ranked accordingly. To assess526

the stability of our algorithm, we conduct exper-527

iments showing that the insertion order has mini-528

mal impact on the final rankings. Specifically, we529

perform five random shuffles of the insertion or-530

der and compute the Spearman correlation with531

Chatbot Arena rankings. As shown in Table 5, cor-532

relation remains consistently high with very low533

standard deviation, confirming the robustness of534

the coarse-to-fine ranking algorithm. To further535

validate stability, we apply the same randomized536

insertion experiments to our algorithm variations537

under MT-Bench. As shown in Table 6, although538

the variations do not perform as well as the full539

algorithm, their standard deviations remain very540

low, indicating strong stability. Therefore, the full541

coarse-to-fine ranking algorithm demonstrates the542

best performance and is well-suited for scenarios543

that require highly accurate and stable rankings.544

Question Selection Algorithm. To evaluate the545

effectiveness of our representative question selec-546

tion algorithm, we compare it with several varia-547

tions using different strategies: (1) Random that548

randomly selects the questions; (2) Perplexity that549

uses the perplexity of LLaMA-3-8B (AI@Meta,550

2024) to rank and select the top ones; (3) Anchor551

point (Vivek et al., 2024) that selects an optimal552

subset of sub-problems to represent the full dataset;553

Dimension with Elo Weights No Weights

MT-Bench 0.957 0.949
Math 0.959 0.953

Table 7: Ablation study results about the Elo weight in
different dimensions.

(4) GPT-4 that crafts prompts to guide GPT-4 to 554

rank and select the top ones. Here, we utilize them 555

to select 32 questions from the 80 questions in MT- 556

Bench. As shown in Figure 4b, all the variations 557

perform worse than De-Arena, indicating the effec- 558

tiveness of our question selection algorithm. Here, 559

random is a robust baseline that outperform other 560

variations, while our methods lead to a higher cor- 561

relation with Chatbot Arena. The reason is that we 562

focus on selecting the most representative questions 563

reflecting the majority based on ranking similarity. 564

This approach effectively identifies the most useful 565

ones for testing. 566

Weights for Judge Models. In De-Arena, we rec- 567

ognize that models differ in their ability to judge 568

LLMs, so we introduce a weighting mechanism 569

that assigns higher weights to stronger models and 570

lower weights to weaker ones. To study its ef- 571

fectiveness, we remove it and compare the perfor- 572

mance changes in the MT-Bench and three math 573

sub-dimensions. As shown in Table 7, removing 574

the weights would lead to decrease in the corre- 575

lation score. It indicates the effectiveness of the 576

weighting mechanism we implemented. 577

5 Conclusion 578

In this paper, we propose De-Arena, a democratic 579

and fully automatic LLM evaluation system where 580

the models to be evaluated can also evaluate each 581

other. To make it a more efficient and automatic 582

system, we devised the coarse-to-fine incremental 583

ranking and representative question selection strate- 584

gies. These innovations enable De-Arena to scale 585

effectively to a large number of LLMs and support 586

evaluation across fine-grained, diverse dimensions 587

Extensive experiments have verified the reliabil- 588

ity and scalability of our De-Arena. In the future, 589

we will extend our De-Arena by including more 590

LLMs and useful evaluation dimensions, support- 591

ing fully automatic new dimension discovery and 592

evaluation, and further exploring the evaluation of 593

super-human intelligence. 594
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6 Limitations595

Our De-Arena aspires to reshape LLM benchmark-596

ing by harnessing collective intelligence rather than597

relying on few “authority” models or costly human598

annotation. It may carry several potential limita-599

tions:600

• By involving every participating LLM as both601

evaluator and evaluated, De-Arena aims to reduce602

single-model dominance and mitigate systemic bi-603

ases. It encourages more equitable participation604

and transparent performance comparisons, foster-605

ing an environment in which models from diverse606

teams—industry, academia, or open-source com-607

munities—can be assessed on a level playing field.608

• Traditional benchmarking often depends on609

extensive human annotation, which can be labor-610

intensive, subjective, and slow. De-Arena’s auto-611

matic evaluation minimizes human oversight and612

lowers costs, potentially democratizing access to613

robust evaluation for smaller research groups or614

underfunded institutions and easing the ethical bur-615

den associated with human annotators’ time and616

well-being.617

• In contrast to single-judge approaches, a de-618

centralized, multi-LLM system spreads account-619

ability across many models. When combined with620

transparency about each model’s contributions to621

a final ranking, the system can better highlight dis-622

agreements or harmful biases among models. This623

collective responsibility promotes more nuanced624

scrutiny of anomalies or potentially harmful con-625

tent.626

• While distributing decision-making reduces627

reliance on any single model’s biases, emergent628

group biases can still arise if many models share629

similar training data or user bases. Continued re-630

search is needed to detect and mitigate these col-631

lective distortions, especially for underrepresented632

languages or cultural contexts.633
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Dimension Length Header List Bold All

MT-Bench 0.933 0.914 0.911 0.897 0.932
Algebra 0.909 0.909 0.909 0.911 0.906
Probability 0.934 0.930 0.929 0.929 0.935
Geometry 0.932 0.934 0.933 0.932 0.924

Table 8: Style control ablation study results across dif-
ferent dimensions. Each column represents a different
style control method applied, and All denotes control-
ling all of them.

Window size
MT-Bench Math

Corr↑ Judges↓ Corr↑ Judges↓

1 0.957 521495 0.962 808074
2 0.953 684460 0.960 1069615
3 0.955 892260 0.960 1284068

Table 9: Hyperparameter tuning results about window
size.

A Style Control Study877

Due to variations in training data, different models878

often exhibit distinct output styles. Following the879

approach of Chatbot Arena, we defined four styles880

(i.e., Length, Header, List, Bold) and calculated the881

correlation between these styles and the Chatbot882

Arena style control. Also, we add the results by883

controlling all the them.884

As the results shown in Table 8, we can see that885

controlling all of the styles can achieve better per-886

formance in all these dimensions. In contrast, only887

using one of them would have an improvement on888

a certain dimension, but might also affect the per-889

formance in other ones. It indicates that controlling890

all styles is capable of well balancing the capability891

in all evaluation aspects.892

B Hyper-parameter Tuning893

In De-Arena, the window size and base model num-894

ber are two hyper-parameters that control the cost895

of in-window reranking and the initial ranking list,896

respectively. Here, we study their best settings by897

varying them in [1, 2, 3] and [3, 6, 9, 12], respec-898

tively. As the results shown in Table 9, setting899

the window size to 1 can lead to the fewest judge900

counts, and also achieve a good correlation score,901

which well balances the performance and the cost.902

As shown in Table 10, we can observe that using 6903

base models can achieve the best performance. The904

reason is that too few or too many models would905

cause the instability of the ranking list during in-906

crementally inserting new models.907

Base Model Number 3 6 9 12

MT-Bench 0.948 0.957 0.952 0.954
Math 0.961 0.962 0.960 0.960

Table 10: Hyperparameter tuning results about base
model number.
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Figure 5: Binary search ranking differences between
binary search and ground truth in four dimensions.

C Accuracy Study of Coarse-grained 908

Binary Search 909

De-Arena heavily relies on the Coarse-to-Fine 910

Ranking Algorithm, with the accuracy of the binary 911

search in the first step being crucial for identifying 912

the approximate ranking range of models. To better 913

demonstrate the accuracy of the binary search, we 914

monitor the absolute difference between the binary 915

search ranking and the ground truth ranking during 916

the insertion process across four dimensions. Fi- 917

nally, we compute the average ranking difference 918

for all models. As the results shown in Figure 5, 919

the coarse-grained binary search ranking for each 920

model across all dimensions is very close to its 921

ground truth ranking. With the subsequent fine- 922

grained ranking adjustments, the accuracy of the 923

rankings is further improved. 924

D Comparison-count Distribution. 925

Our De-Arena adopts the coarse-to-fine ranking 926

algorithm, which can allocate more comparisons 927

on the hard-to-distinguish LLM pairs with neigh- 928

boring positions in the ranking list. To study it, 929

we visualize the comparison-count distribution for 930

all LLMs in Figure 6. We can observe that the 931

collective LLM intelligence automatically focuses 932

primarily on the neighboring LLM pairs (those 933
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Figure 6: The distribution map of the LLM comparison
counts in the MT-Bench dimension.

close to the diagonal), which are also equivalent934

to those with near 50% win rates in Figure 8. In935

contrast, comparisons between LLMs with large936

performance gaps are sparse (or even omitted), re-937

ducing the overall computation cost. Such a distri-938

bution is all thanks to our ranking algorithm, where939

the binary search and in-window reranking help re-940

duce the unnecessary comparisons with predictable941

results and concentrate on the ambiguous pairs.942

Questions with the Higher and Lower
Scores

Selected Question with Higher Score:
• You have been tasked with designing a
solar-powered water heating system for
a residential building. Describe the key
components and considerations you would
include in your design. Design a five-step
workflow.

Unselected Question with Lower Score:
• What is the central dogma of molecular bi-
ology? What processes are involved? Who
named this?

943

E Case Study for Question Selection944

To better show the effectiveness of our represen-945

tative question selection algorithm, we show the946

questions with the higher and lower scores using947

our method in the above example. We can observe948

that the selected question with the higher score is949

indeed with higher quality. It contains more de-950

tailed task description and requires multiple special951

knowledge to solve it. In contrast, for the question952

Results from De-Arena Results using LLaMA-3-70B

o1-mini llama-3-70b-instruct
o1-preview meta-llama-3.3-70b-instruct

gpt-4o-2024-05-13 o1-mini
meta-llama-3.3-70b-instruct gpt-4o-2024-08-06

gpt-4o-2024-08-06 o1-preview
qwen2-72b-instruct gpt-4o-2024-05-13

gemma-2-27b-it qwen2-72b-instruct
gemma-2-2b-it gemma-2-27b-it

llama-3-70b-instruct gemma-2-2b-it
gemma-1.1-7b-it gemma-1.1-7b-it
gemma-1.1-2b-it gemma-1.1-2b-it

qwen2.5-1.5b llama2-7b-chat
llama2-7b-chat llama2-13b-chat
llama2-13b-chat qwen2.5-1.5b
qwen1.5-4b-chat qwen1.5-4b-chat

Table 11: Comparison of the ranking results using
LLaMA-3-70B as the judge and our method, respec-
tively.

with the lower score, its required knowledge is rela- 953

tively limited. As no clear instruction is given, it is 954

not easy to distinguish the quality of the potential 955

outputs from LLMs. 956

F Case Study for Ranking Results 957

To study the ranking bias in single-LLM judge 958

based methods and our approach, we show the rank- 959

ing results using only LLaMA-3-70B as the judge 960

and our De-Arena in Table 11. In the ranking list 961

using LLaMA-3-70B as the judge, LLaMA-3-70B 962

itself and its fine-tuned version Meta-LLaMA-3.3- 963

70B-instruct are both ranked into the first and sec- 964

ond positions, respectively. It demonstrates the 965

existence of the evaluation bias for single-LLM 966

judge based methods. In contrast, our De-Arena 967

can produce a more reliable ranking results, which 968

is more consistent as human preference (as shown 969

in Table 3). It demonstrates that using more LLMs 970

as judges is promising to obtain more reliable rank- 971

ing results than using one or few judge models. 972

G Fine-grained Dimension Correlation 973

Our approach achieves high correlations with hu- 974

man judge based Chatbot Arena (95% in the “Over- 975

all” dimension). Here, we further report the corre- 976

lation between each dimension from our De-Arena 977

and the dimensions from Chatbot Arena (i.e., Over- 978

all and Math) in Figure 7. We can see that the 979

correlation scores are always high across these di- 980

mensions (> 0.85), indicating the consistency of 981

our automatic ranking results and human prefer- 982

ence. For the fine-grained sub-dimensions about 983

a certain capability (i.e., math, reasoning, and sci- 984

ence), their correlations are also relatively higher. 985
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H Baseline Details986

• Closed-ended Datasets based Benchmarks.987

(1) CompassAcademic (Contributors, 2023) se-988

lects a set of open-source datasets and bench-989

marks and integrates them to evaluate LLMs. (2)990

BFCL (Yan et al., 2024) evaluates LLMs’ ability991

to accurately call functions in real-world data. (3)992

Helm Lite (Liang et al., 2022) is a lightweight993

benchmark consisting of nine scenarios, includ-994

ing math reasoning, medical QA, and long context995

QA. (4) LiveBench (White et al., 2024) contains996

18 diverse tasks across 6 categories, which min-997

imizes potential contamination by releasing new998

questions monthly. (5) EQ Bench (Paech, 2023) is999

an emotional intelligence benchmark for evaluat-1000

ing LLMs’ ability to understand complex emotions1001

and social interactions. (6) MMLU PRO (Wang1002

et al., 2024) is an enhanced benchmark based on1003

MMLU (Hendrycks et al., 2020), to evaluate the1004

language understanding abilities across broader1005

and more challenging tasks. (7) MixEval (Ni1006

et al., 2024) collects user queries from the web and1007

matches them with similar queries from existing1008

benchmarks, to bridge the gap between real-world1009

user queries and ground-truth-based evaluation. (8)1010

OpenLLM (Fourrier et al., 2024) consists of com-1011

monly used datasets such as IFEval, BBH, MATH,1012

GPQA, and MUSR, which compares LLMs in their1013

own open and reproducible settings.1014

• Single-LLM Judge based Benchmarks.1015

(1)BiGGen Bench (Kim et al., 2024a) evalu-1016

ates 9 core capabilities of LLMs, including in-1017

struction following, planning, reasoning, and oth-1018

ers, using GPT-4 as the judge model along with1019

instance-specific evaluation criteria. Meanwhile,1020

(2) BiGGen Bench (Prometheus 2) employs1021

Prometheus 2 (Kim et al., 2024b) as the judge1022

model, serving as a complement to the original1023

benchmark. (3) Alpaca Eval 2.0 (Dubois et al.,1024

2024) employs GPT-4-Turbo as the judge and com-1025

putes the win rates of the LLMs against GPT-4-1026

Turbo for ranking. (4) WildBench (Lin et al.,1027

2024) compares LLMs with three baseline models:1028

GPT-4-Turbo, Claude3-Haiku, and Llama-2-70B1029

on 1024 challenging real-world tasks. GPT-4-turbo1030

is used as a judge to evaluate all the LLM pairs.1031

• Multi-LLM Judge based Benchmarks.1032

(1) PRD (Li et al., 2023b) uses peer LLMs for1033

weighted rankings of all LLMs, enabling fairer and1034

more accurate assessments. (2) Auto Arena (Zhao1035

et al., 2024) employs a committee of five strongest1036

LLMs to evaluate other LLMs across 8 task cate- 1037

gories. 1038

I Evaluation Settings 1039

To provide a comprehensive comparison, we de- 1040

sign three settings that evaluate 15, 30, and 66 1041

LLMs, respectively, and report the performance on 1042

the overall and math dimensions. Following exist- 1043

ing work (Ni et al., 2024), we compute the Spear- 1044

man Correlation between the ranking list from all 1045

benchmarks and the latest Chatbot Arena leader- 1046

board. Since Chatbot Arena rankings are based on 1047

human annotation, this approach allows us to esti- 1048

mate the correlation between automatic evaluation 1049

and human preferences. Considering that the set of 1050

evaluated LLMs differs among benchmarks, we se- 1051

lect the shared set of LLMs between the benchmark 1052

and Chatbot Arena to compute the correlation. 1053

J Implementation Details 1054

For PRD, we re-implement it using the same hyper- 1055

parameter setting in the original paper. For other 1056

baseline methods, we collect the results from their 1057

official leaderboards. For our De-Arena, we con- 1058

struct nine fine-grained dimensions using the data 1059

selection method in Section 3.2, namely math alge- 1060

bra, math geometry, math probability, logic reason- 1061

ing, social reasoning, science chemistry, science bi- 1062

ology, science physics, and MT-bench. We involve 1063

15 open-source models in the data selection process 1064

to reduce the time cost. For evaluation, we test 66 1065

models in total and set the window size for fine- 1066

grained reranking to 1. In the main experiments, we 1067

use the average rank of all nine dimensions as our 1068

final Overall rank, and the average rank of the three 1069

math sub-dimensions as our final Math rank. In the 1070

evaluation stage, for each benchmark, we identify 1071

and select the most relevant dimension provided 1072

by that benchmark and compare its results with the 1073

Chatbot Arena’s Overall and Math dimensions, for 1074

calculating the correlation. 1075

K De-Arena Leaderboard 1076

We show the detailed ranking results (i.e., Elo 1077

scores) of all the evaluation dimensions from our 1078

De-Arena leaderboard in Table 12. It consists 1079

of the results from the dimensions of MT-Bench, 1080

Math (including Algebra, Probability, and Geome- 1081

try three sub-dimensions), Reasoning (including 1082

Social and Logic), Science (including Biology, 1083
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Chemistry, and Physics). We also show the av-1084

erage scores for all dimensions as the overall score.1085

With the fine-grained sub-dimensions about math,1086

reasoning, and science, we can have a comprehen-1087

sive understanding of the detailed capabilities of1088

LLMs, enabling to select the most suitable ones in1089

specific tasks and scenarios.1090

L Visualization of Win-rate Distribution1091

To better understand the results of our De-Arena,1092

we also collect the win-rate of all LLM pairs and1093

draw the distribution map in Figure 8. We can1094

see that the neighboring models in the ranking list1095

(close to the diagonal), generally have near 50%1096

win rates. It indicates that they are the more hard-1097

to-distinguish ones than others with long distances,1098

and they need more times of comparisons for deter-1099

mining their position in the ranking list. This echos1100

to the results in Figure 6, where we can see that1101

these neighboring models are also assigned with1102

more comparison counts in our approach.1103
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Figure 7: Correlations between the ranking results from different dimensions in De-Arena and Chatbot Arena.
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Figure 8: Win-rate distribution map for the evaluated LLMs using De-Arena.
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Model Avg Algebra Probability Geometry Social Logical Biology Chemistry Physics MT-Bench
ChatGPT-4o-latest (2024-09-03) 93.97611237 93.25223834 90.8076583 85.98448817 86.71827446 100 100 100 98.62585524 90.39649681
o1-mini 93.49965051 100 100 100 89.87352647 94.97639081 95.62385008 75.21644169 - 92.30699507
o1-preview 91.78818444 93.72198245 94.02361667 89.49116499 89.48962613 93.65959665 94.74772613 - - 87.38357803
yi-lightning 90.39547454 92.29959103 93.09112725 86.21341092 92.57263596 88.97256711 88.06702943 91.27789372 88.37342652 92.69158893
glm-4-plus 89.83614921 89.16383214 81.98647507 83.72554158 100 94.93241923 90.77110696 88.62203483 93.85598831 85.46794477
gpt-4o-2024-05-13 87.24525238 93.62469055 88.55622014 86.39564946 77.75644714 85.5560242 88.41283385 87.05454646 96.41218435 81.43867531
claude-3.5-sonnet-20241022 86.18487078 85.70322602 85.82789712 81.08853546 89.24744502 - 83.01772535 89.50095243 100 75.09318483
claude-3.5-sonnet 86.0533705 84.97424618 80.51555832 81.47663229 92.88930807 88.7379798 85.15229796 87.25551817 91.66450066 81.81429306
nemotron-70b 85.70411922 82.07750032 81.70841233 76.85175181 94.53145012 88.98770368 85.27553532 76.19278843 85.71193093 100
gpt-4-turbo-2024-04-09 85.44134591 88.24008459 87.79500275 83.43704168 82.55003583 86.58929024 87.99407319 79.24268595 90.17692838 82.94697059
gemini-1.5-pro-001 83.84274456 93.28632947 79.80140526 85.73710469 85.13995771 79.22139256 86.46757085 - 87.24190789 73.84628802
gpt-4o-2024-08-06 83.58357517 95.45825213 86.52136129 89.90076493 74.61636352 77.39296389 77.05217011 80.41289146 92.27434298 78.62306627
meta-llama-3.3-70b-instruct 81.64213667 88.05191213 81.50070219 76.01034051 93.37347192 80.58107374 80.49115306 72.91567181 82.81423433 79.04067033
gpt-4o-mini-2024-07-18 81.62911065 91.90507855 87.46593196 83.73769897 75.21167553 78.08781194 75.84538799 76.10327227 89.37924614 76.92589247
llama-3.1-tulu-3-70b 80.69260189 83.20202637 80.99912888 81.36555176 73.0850881 81.7890594 83.98513871 79.25643379 82.99883141 79.55215858
gemini-1.5-flash-001 78.66833532 83.971693 75.58450378 81.10124024 82.10090965 75.78605523 78.77971787 79.59254762 79.80184306 71.29650746
qwen2-72b-instruct 78.48455626 95.56883255 86.58621783 83.69563472 69.74028595 73.75123543 73.12077365 73.36129808 78.81838628 71.71834187
claude-3-opus 78.10866978 77.77044272 77.4873327 74.31586807 82.3069533 79.40132155 75.88174054 80.34596587 82.54044867 72.9279546
gemma-2-9b-it-simpo 77.31789719 77.09186481 69.27464096 72.17173541 83.46348374 68.03070404 86.46613755 81.56961063 80.47500035 -
gpt4-1106 77.14331181 82.62125793 76.45691542 75.25907271 67.72358159 76.19284396 78.53497849 73.3599233 82.95606466 81.18516826
gemma-2-27b-it 74.9744008 79.32429033 74.68913171 72.95412253 75.46769179 75.72526971 77.38686738 74.41991612 74.4943143 70.30800333
meta-llama-3.1-70b-instruct 74.81908103 82.65410121 75.1056567 73.267449 71.7164733 75.28740754 72.90888115 71.61528424 75.99739508 -
yi-1.5-34b-chat 71.26419157 67.61590435 71.75031051 68.92660537 75.57098544 69.26273322 77.29432239 66.96425091 70.395733 73.59687895
google-gemma-2-9b-it 70.77950078 69.24880738 73.41916217 70.79663106 80.30676405 76.08614138 74.7058259 63.4394147 60.1404845 68.87227591
llama-3-70b-instruct 70.20905093 63.68177551 63.49465684 62.46945654 72.63114143 77.9502143 74.4856376 74.30515962 75.03715503 67.82626154
claude-3-sonnet 69.41240667 62.36474989 62.50401897 61.45200594 75.6759593 70.94830758 77.32499969 71.37876596 71.92772412 71.13512857
claude-3-haiku 65.60203719 59.59236589 58.39414152 56.83290624 76.22751044 66.38556042 73.9756324 65.90048762 66.54094904 66.56878114
llama-3.1-tulu-3-8b 64.13924992 74.7934719 69.57294421 72.08700434 49.9473266 42.15176782 68.92413911 62.85180162 70.70292737 66.2218663
qwen1.5-72b-chat 62.17737731 71.70038733 60.5941344 65.90803703 65.20990412 38.87873049 63.5728462 63.18615677 62.19290741 68.35329203
claude-2.0 60.07907816 53.95876732 54.59652028 57.90072173 69.89646107 58.37909426 65.6804687 60.83364251 66.59410047 52.87192713
ministral-8b-it 59.8488688 61.63242352 58.725246 69.64691693 52.54413325 59.03562429 62.66986324 57.89155735 55.91787053 60.57618413
qwen1.5-32b-chat 59.06682296 70.78787721 60.35928986 61.69634576 57.70118438 41.23076181 59.40325534 54.81117145 63.07920208 62.53231871
meta-llama-3.1-8b-instruct 58.47833266 65.33759004 60.96410289 63.03060773 48.09357333 56.38560314 59.60200084 55.86477681 50.78809065 66.23864855
claude-2.1 58.08029878 58.04833618 51.47446438 61.04594773 46.53270297 61.44324545 63.62055392 56.78385236 68.43538787 55.33819815
qwq-32b-preview 57.7441793 71.64275748 65.35384041 58.87771141 48.61002573 54.23148211 53.47734778 46.74960749 56.92639997 63.8284413
qwen2.5-1.5b 53.92178189 80.25022034 71.83262853 72.94135308 43.70205398 36.95513268 44.12989317 43.1067093 52.16952909 40.2085168
llama3-8b-instruct 52.91726564 46.66264507 40.01343217 44.11394158 51.5703736 58.94572886 60.93646636 57.92241191 56.85879525 59.23159592
starling-lm-7b-beta 52.3307152 52.84886768 46.5522985 51.13239206 51.61448852 48.63101151 58.5348304 50.50725399 44.75096252 66.40433164
qwen1.5-14b-chat 51.7844422 60.51769951 48.74784967 53.57316657 46.29169097 35.3542195 52.46656265 50.86736939 54.73141043 63.51001115
mistral-8x7b-instruct-v0.1 51.55563155 51.29291916 48.27727168 49.19273323 42.54964874 39.00128601 62.82428402 56.26412563 55.53066816 59.06774734
gpt3.5-turbo-0125 50.18821862 65.17729038 58.53802397 62.28075511 41.45152348 25.14406855 46.55809712 51.41965985 50.59440643 50.53014266
command-r-(08-2024) 48.62671709 46.83436386 42.80091277 52.40409927 46.35774401 27.95956428 55.60311141 51.79248215 50.9690958 62.9190803
openchat-3.5-0106 47.43100598 50.5316225 46.18623367 46.49040206 43.70677816 39.44367439 55.48276235 43.37252958 43.15194557 58.51310554
gemma-2-2b-it 46.87564068 38.8089853 39.96987681 45.64812266 60.09115358 41.30384584 62.65299225 38.62991027 24.78287364 69.99300579
command-r-(04-2024) 45.65347002 33.00394744 37.6909176 38.12742778 46.5288232 36.53973546 56.21337898 52.08000978 52.33467243 58.36231751
gemini-1.0-pro-001 45.55337569 51.6275763 37.0959279 50.19526563 29.97602848 27.69158385 43.65118076 55.27507409 60.00746246 54.46028173
openchat-3.5 45.32554772 46.43700574 40.73751634 46.11460291 48.03856938 37.81208901 43.51031422 44.62699512 44.5992235 56.05361328
gemma-1.1-7b-it 45.08073221 45.73849545 38.11118608 39.98693207 30.0216809 38.86595628 52.31782605 52.65411393 51.64818503 56.38221413
starling-lm-7b-alpha 42.04507999 42.84399348 40.46448993 39.9951744 45.99949677 32.59182068 46.24425706 38.73575836 35.37621299 56.15451622
mistral-7b-instruct-2 36.96477144 26.08274886 32.40740394 24.48546791 33.65114071 30.10038709 46.41225983 40.51553273 45.39716673 53.63083522
llama-3.2-3b-it 35.00733269 58.69046044 44.10665702 - 16.95381455 12.75038565 28.53090391 37.646318 33.86613149 47.51399047
vicuna-33b 34.88330747 27.47528016 29.6760891 25.60995953 42.34355432 23.15924552 47.12097365 33.63396701 34.13729337 50.79340454
gemma-7b-it 32.62523838 24.22405867 24.14389506 28.60141294 36.71945984 27.42936244 34.3566972 35.61243194 35.37364385 47.16618346
llama-3.2-1b-it 31.50652515 48.19647744 35.35718488 38.4098706 22.37884882 14.82696436 30.66596363 28.17342475 18.52660051 47.02339137
smollm2-1.7b 29.77883794 41.41094808 34.66233542 40.86703593 24.65541733 14.47158568 28.68894368 21.27370007 24.5651071 37.41446812
mistral-7b-instruct-1 25.18022546 24.28958881 30.91573756 21.30326088 25.0166404 19.58058203 27.73220177 21.1732995 19.77456982 36.83614841
vicuna-13b 24.54431725 23.01589211 17.95905259 22.98158082 24.22989261 19.67247727 34.52179233 23.25790538 23.32247878 31.93778333
gemma-1.1-2b-it 22.23412728 13.45837587 7.880815666 21.50934176 28.61649971 11.99679124 28.48075179 22.20401391 24.68483409 41.27572145
qwen1.5-4b-chat 21.64067671 33.87561687 19.1517295 25.22230824 32.39522118 14.53055119 14.20140305 18.12674834 17.35368952 19.90882249
llama2-7b-chat 20.37432805 12.45837033 8.124426409 9.546107548 23.34687358 19.83603456 30.18764134 22.86497137 15.31628193 41.68824533
llama2-13b-chat 19.7016256 7.162722477 13.89583417 9.340440711 23.72229041 24.18676702 26.80803286 18.33849082 12.95980209 40.90024986
gemma-2b-it 18.70510718 12.73154473 7.739314245 25.55963926 20.20062881 6.432548745 19.03185637 18.14493366 20.88252343 37.62297534
vicuna-7b 17.98491319 8.77942567 8.020707561 9.731584621 22.36270901 14.08926915 28.51353075 21.44761184 16.70282166 32.21655842
zephyr-7b-beta 14.57067856 16.3116851 10.09469635 13.2538558 0 9.979969635 22.337812 20.35092805 18.4166841 20.39047603
koala-13b 9.409161591 2.531969921 4.683320295 2.659127343 20.54769134 9.810835924 19.26051579 5.954307371 3.708961286 15.52572505
openassistant-pythia-12b 0.405780038 0 0 0 3.652020346 0 0 0 0 0

Table 12: De-Arena Leaderboard on nine fine-grained dimensions.
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