Decentralized Arena: Towards Democratic and Scalable Automatic Evaluation of Language Models

Anonymous ACL submission

Abstract

The recent explosion of large language models (LLMs), each with its own general or specialized strengths, makes scalable, reliable benchmarking more urgent than ever. Standard practices nowadays face fundamental trade-offs: closed-ended question-based benchmarks (e.g., MMLU) struggle with saturation as newer models emerge, while crowd-sourced leaderboards (e.g., Chatbot Arena) rely on costly and slow human judges. Recently, automated methods (e.g., LLM-as-a-judge) shed light on the scalability, but risk bias by relying on one or a few "authority" models. To tackle these issues, we propose Decentralized Arena (DE-ARENA), a fully automated framework leveraging collective intelligence from all LLMs to evaluate each other. It mitigates single-model judge bias by democratic, pairwise evaluation, and remains efficient at scale through two key components: (1) a coarse-to-fine algorithm for fast ranking of new models with sub-quadratic complexity, and (2) an automatic question selection strategy for the construction of new evaluation dimensions. Extensive experiments across 66 LLMs demonstrate that DE-ARENA achieves 97% correlation with human judge, while significantly reducing the cost.

1 Introduction

002

006

017

020

022

024

035

040

042

043

In recent years, the community has developed thousands of large language models (LLMs) (Achiam et al., 2023; Bai et al., 2023; Liu et al., 2024) with ever-stronger general and specialized capabilities. To deploy these models in the real world effectively, we must assess and rank their performance accurately. Concretely, existing work mostly collects a set of related high-quality questions, then judges the outputs of LLM to estimate the corresponding specialized capability (Guha et al., 2024; Xie et al., 2023; Rajkumar et al., 2022). By involving humans to vote on the preference of all LLM pairs (*i.e.*, deciding which LLM's output "wins"), Chatbot Arena (Chiang et al., 2024) provides robust

and reliable leaderboards, yielding one of the most popular LLM benchmarks.

044

045

046

047

051

055

058

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

078

081

Recently, with the increasing usage of LLMs in a variety of applications and real-world tasks (Hou et al., 2024; Taylor et al., 2022; Du et al., 2024), it's crucial to evaluate their capabilities on finegrained dimensions, e.g., math reasoning, physical science, and more specialized branches, such as algebra and astrophysics. However, it is rather costly (both in terms of time and financially) for Chatbot Arena and other human-annotation-based benchmarks to support evaluating thousands of LLMs in thousands of fine-grained dimensions, i.e., millions or even billions of human votes required. Moreover, human judgments also exhibit variability and subtle subjectivity, particularly when frontier models sometimes deploy persuasive "sycophantic" language (Sharma et al., 2023) or other surface cues that may bias annotators toward incorrect but agreeable responses (Schoch et al., 2020). To address them, researchers have studied automatic evaluation methods, typically selecting one (or few) "strongest" LLMs (e.g., GPT-4) as judges to evaluate all model pairs (Dubois et al., 2024; Li et al., 2023c). However, judge models can be biased, e.g., prefer outputs that resemble its own style (Zheng et al., 2023; Panickssery et al., 2024). Optimizing models based on such evaluations could end up with overfitting to the judge biases.

To achieve the goal of reliable and scalable evaluation across various dimensions, we propose Decentralized Arena (De-Arena), an automatic evaluation method based on the "wisdom of the crowds". Table 1 illustrates the main difference between De-Arena and other benchmarks. The core idea behind De-Arena is to use the collective intelligence of all LLMs to evaluate and compare themselves. This forms a democratic system where *all LLMs to be evaluated are also judges to evaluate others*, leading to fairer rankings than the automatic methods relying on a few centralized "authority" judge mod-

Benchmarks	Judges	Auto Eval	Auto Data	Open ended
Compass Arena	Human	Х	Х	✓
Chatbot Arena	Human	X	X	✓
MixEval	-	✓	✓	X
LiveBench	-	✓	X	X
Alpaca Eval	GPT-4	✓	X	✓
WildBench	GPT-4	✓	X	✓
BiGGen Bench	GPT-4	✓	X	✓
PRD	Five LLMs	✓	X	✓
Auto Arena	Five LLMs	✓	✓	✓
De-Arena	All LLMs	✓	✓	✓

Table 1: Comparison of representative LLM benchmarks based on the types of judge models, whether automatically evaluating LLMs, selecting the data, or using open-ended questions.

els (Salminen et al., 2015; Surowiecki, 2004). This should address the single-judge bias or the bias from a similar model family (Goel et al., 2025). Additionally, its automatic benchmarking process also supports *scaling up the number of test LLMs and dimensions* with a lower cost than collecting large-scale human annotations.

094

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

To implement our De-Arena, a naive approach is to utilize all the LLMs to judge all other model pairs (similar to Chatbot Arena), based on manually crafted or selected high-quality questions. However, it would lead to a prohibitively expensive time complexity of $\mathcal{O}(n^3k)^{\perp}$. To make De-Arena a more efficient and fully automatic paradigm, we devised (1) the coarse-to-fine incremental ranking algorithm and (2) the representative question selection strategy. Concretely, in our ranking strategy, the LLMs will be incrementally inserted into the rank list (i.e., one by one), by first finding the rough position via binary search and then fine-grained in-window ranking. Such a way naturally supports gradually growing the rank list by adding the latest LLMs, and the low complexity of binary search (i.e., $\mathcal{O}(kn \log n)$) helps greatly reduce the time cost. We later empirically show that even the coarse-grained step (i.e., binary insertion) can achieve highly capable performance, thanks to the diverse set of judges. Besides efficiency, we introduce an adaptive weight mechanism and ELo system to re-weight judges dynamically (akin to PageRank), making De-Arena more reliable.

For question selection, our De-Arena leverages the above ranking strategy to select a few representative questions that lead to more consistent results, as the majority. In this way, we ensure that the new evaluation dimensions can be automatically built by selecting a few high-value ones from the collected question candidates. Based on the above designs in De-Arena, we automatically construct nine fine-grained dimensions, and efficiently evaluate 66 LLMs on them (as shown in Table 12). Experimental results demonstrate the effectiveness of our method, achieving up to 97% correlation with human-annotation-based Chatbot Arena in the overall dimension (shown in Table 2), with a cost similar to existing benchmarks (shown in Figure 2b). Extensive studies also reveal that our method can significantly reduce the bias from a single-LLM judge (Table 3 and Table 11), and becomes more stable and accurate as the number of models increases (Figure 3), demonstrating its reliability and stability. Ablation study shows that the performance is robust against choices of multijudges (e.g., randomly selected judges), indicating that our De-Arena is robust to potential group bias as well (Goel et al., 2025).

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

160

161

162

163

164

165

166

168

2 Related Work

LLM Evaluation and Benchmark. Early work (Zhao et al., 2019; Zhang et al., 2019; Yuan et al., 2021) on evaluating language models primarily focuses on the quality of the generated text, considering the fluency and relevance. In recent years, large language models (LLMs) that have undergone pre-training on large-scale corpus, have demonstrated expert-level text generation abilities (OpenAI, 2024a; AI@Meta, 2024), and exhibited strong advanced capabilities (Song et al., 2023; OpenAI, 2024b), such as reasoning and planning. Thus, a surge of benchmarks are proposed to assess the multi-aspect capabilities of LLMs, which are either based on closedended (Wang et al., 2024; Rein et al., 2024) or open-ended questions (Chiang et al., 2024). The first type of benchmarks relies on close-ended questions with accurate answers to evaluate LLMs, which simplifies the evaluation process. However, due to the simple formats of the closed-ended questions, they cannot fully estimate the true user preferences of LLMs in applications (Wu et al., 2024), and may also be hacked through training on similar data (Sainz et al., 2023). To address this, Chatbot Arena (Chiang et al., 2024) collects open-ended questions, and invites humans to vote on each pair of LLMs based on their

 $^{^{1}}n$ and k refer to the number of models and questions.

outputs. However, human annotation is costly, and also makes the overall evaluation results difficult to reproduce. Therefore, a surge of automatic evaluation benchmarks has emerged, employing a strong LLM (e.g., GPT-4 (Zheng et al., 2023; Li et al., 2023c)) or a fine-tuned specialized LLM (Li et al., 2023a; Kim et al., 2024b) to replace human judges. Despite the low cost, single-LLM judge-based methods may suffer from the evaluation bias, e.g., self-enhancement bias (Zheng et al., 2023) and verbosity bias (Saito et al., 2023). Recent attempts, such as PRD (Li et al., 2023b) and Auto-Arena (Zhao et al., 2024) have explored multi-LLM judgment to mitigate these issues. However, using more LLMs as judges would significantly increase the computational and resource cost, limiting the scalability for evaluating a large number of LLMs and new dimensions.

169

170

171

172

174

175

176

178

179

180

181

182

183

190

191

192

193

194

196

197

198

200

205

209

210

212

213

214

215

216

217

218

Collective Intelligence. Collective intelligence arises when multiple agents collaborate or compete in decentralized networks, often producing more accurate judgments than any single expert alone (Surowiecki, 2004; Yao et al., 2024). Research in crowd-based systems (Salminen et al., 2015), multi-agent systems (Brigui-Chtioui and Saad, 2011), and swarm intelligence (Chakraborty and Kar, 2017; Gloor, 2006) shows that collecting diverse perspectives can mitigate individual errors and biases, particularly where no centralized controller is present. For instance, natural examples of ant colonies and bird flocks reveal that complex problems can be addressed effectively through simple agent interactions (Gloor, 2006). In this paper, we extend the principles of collective intelligence to LLM evaluation. We design a large-scale decentralized system in which LLMs simultaneously serve as judges and participants. Because each LLM has a distinct training background, aggregating their judgments reduces the influence of single model bias. Our experiments highlight that evaluation reliability consistently improves with the number of involved models, demonstrating the potential of collective intelligence to enable more robust, accurate, and scalable LLM benchmarking.

3 Decentralized Arena

This section introduces the detailed design of our Decentralized Arena (De-Arena). In De-Arena, we focus on the idea of decentralization that uses all LLMs as judges to vote on other model pairs, based on high-quality questions in each dimension. It can

reduce the cost of gathering human annotations, and also avoid the bias that may arise from relying on a single or a small number of judge models. To achieve it, we devise the coarse-to-fine incremental sort algorithm to efficiently rank a large number of LLMs, and the automatic question selection algorithm to select representative data for building new evaluation dimension. The overview of our De-Arena is shown in Figure 1.

219

220

221

222

223

224

225

227

228

229

230

231

232

233

234

235

236

237

238

239

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

267

268

3.1 Coarse-to-fine Incremental Ranking

Given a set of LLMs $\{m_i\}_{i=1}^n$, we aim to sort them into a ranking list $[m_1, \cdots, m_n]$, according to their performance on the collected k questions. Considering that a surge of stronger LLMs will be developed in the near future, we devise an LLM sort algorithm that supports the incremental insertion of new LLMs into the ranking list. Concretely, we begin with a small set of "seed" models (i.e., 6 models), which are ranked using a full-sample pairwise comparison method. In this process, each of the 6 models evaluates and ranks all the other models, excluding itself. Other models are then incrementally inserted into the rank list, one by one, where all models in the list act as judges to help find the position. To efficiently insert a new model into the list, we devise the coarse-grained binary search and fine-grained in-window reranking strategies.

Coarse-grained Ranking with Binary Search.

Given the current ranking list $[m_1, \dots, m_t]$ with t models, we aim to find the rough position of the t+1-th model in an efficient way. As the ranking list is ordered, we utilize the binary search algorithm (Lin, 2019), which can quickly narrow down the search space via the logarithmic time complexity. Concretely, we first compare the new model with the one in the t/2-th position of the ranking list, where all other models in the list serve as judges. Given the collected k questions, all the judge LLMs vote on the outputs of the two models (i.e., deciding whose output "wins"). If the new LLM owns more wins, we repeat the above step to find the position of the new LLM in the first half list $[m_1, \dots, m_{t/2-1}]$. Otherwise, we repeat it in $[m_{t/2+1}, \cdots, m_t]$. This loop will continues until narrowing the search space into a certain position, which is the rough position of the model. The time complexity of this binary search is $O(kn \log n)$.

Fine-grained In-window Reranking. After obtaining the rough position of the new model, we continue to check whether it is suitable and make

Figure 1: The overview of our method, consisting of the automatic question selection strategy (left) and the coarse-to-fine incremental ranking algorithm (right). Here, we show an example that creates a new dimension based on open-source datasets, and one of the insert iterations for adding the model Yi into the previous ranking list.

refinement if necessary. Here, the new model is compared against its adjacent peers within a defined local window (e.g., two models before and after it in the ranking list). The rationale is that these nearby LLMs often own similar capabilities to the new one, whose positions in the ranking list are the hardest to distinguish, warranting closer comparison. Concretely, we first compare the new LLM with other in-window models using the collected k questions and rerank them, where all other models outside this window serve as judges. If the in-window reranking step leads to a change in the new LLM's position, the process will be repeated within the updated window until the ranking list stabilizes. This functions like a sliding window, guiding the LLM crowd to focus on the most ambiguous comparison pairs, thereby ensuring accurate rankings while significantly reducing computational costs.

Score Generation and Style Control. After obtaining the ranking list and pairwise comparison results of all LLM candidates, we follow the methodology used in Chatbot Arena that computes corresponding Elo scores to finalize the ranking results:

$$R'_{\rm A} = R_{\rm A} + K \cdot \left(S_{\rm A} - \frac{1}{1 + 10^{(R_{\rm B} - R_{\rm A})/400}} \right)$$
 (1)

where R_A is the Elo score of model A that is iteratively updated based on the comparison results, R_A' denotes the updated Elo rating of model A after a pairwise comparison. S_A is a bool value that denotes if model A wins the comparison, and K is the coefficient for the score update. As we cannot compare all the model pairs, we follow Chatbot Arena, which uses logistic regression to fit the collected comparison data and estimate the Elo score (Elo,

1967). Here, we consider that the reliability of different LLMs as judges varies. Therefore, we introduce weights in the loss function. Our rationale is that an LLM with a higher Elo score is more likely to be a qualified judge; hence, we utilize the normalized Elo score as the weight in the loss function. Furthermore, whenever the Elo scores are updated, we dynamically adjust each model's weight based on its new score. We also follow Chatbot Arena, which incorporates a style control mechanism to reduce the influence of output style.

3.2 Automatic Questions Selection

To enable scalability in adding arbitrary new evaluation dimensions in De-Arena, we devise an automatic representative question selection algorithm. To build a new dimension, users only need to collect relevant open-ended questions from open-source datasets. Then, we utilize the ranking results of LLMs to identify the most representative questions as high-quality examples for evaluation.

Open-ended Questions Collecting. Thanks to the rich open-source datasets in the community, it is easy to search for and collect various relevant open-source datasets for a certain dimension. However, the collected examples may differ in the formats, *e.g.*,, multi-choice and open-ended questions. In De-Arena, as we can leverage LLMs to compare the outputs of model pairs, we standardize all the data into the open-ended question format by using GPT-4 with an appropriate prompt.

Ranking-based Representative Questions Selection. Considering the diverse quality and large scale of the collected questions, we aim to select a few of the most representative ones for testing

Benchmarks	15 LI	LMs	30 LI	LMs	66 LI	LMs	Avg.
Deficilitat KS	Overall	Math	Overall	Math	Overall	Math	
CompassAcademic	0.660	-	0.674	-	-	-	-
BFCL	0.798	-	0.813	-	-	-	-
OpenLLM	0.892	-	0.800	-	0.797	-	-
Helm Lite	0.725	0.656	0.748	0.660	0.750	0.665	0.701
LiveBench	0.906	0.900	0.920	0.913	0.925	0.916	0.913
EQ Bench	0.911	-	0.860	-	0.865	-	-
MMLU PRO	0.952	-	0.897	-	0.897	-	-
MixEval	0.954	-	0.963	-	0.965	-	-
BigGen Bench (Prometheus 2)	0.908	-	0.924	-	0.924	-	-
BigGen Bench	0.919	_	0.930	-	0.931	_	_
Alpaca Eval 2.0	0.921	-	0.935	-	0.935	-	-
WildBench	0.894	0.917	0.907	0.932	0.910	0.934	0.916
PRD	0.851	0.904	0.892	0.916	-	-	_
Auto Arena	0.938	-	-	-	-	-	-
De-Arena	0.957	0.939	0.967	0.952	0.974	0.959	0.958

Table 2: Results of the automatic evaluation benchmarks with Chatbot Arena (Spearman Correlation). We report the results from the settings of testing 15, 30, and 66 LLMs. Bold indicates the best results in each group.

LLMs. Instead of randomly sampling, we design a ranking-based method to select questions that lead to consistent ranking lists, ensuring high data quality. Concretely, for each question q in the collection, we first utilize our ranking algorithm in Section 3.1 to produce the ranking list of a small set of LLMs, denoted as L. Then, we compute the average ranking list for all questions by simply accumulating the position of all LLMs and then sorting them, denoted as \hat{L} . Next, we compute the Spearman correlation ρ between the ranking list of each question and the average list, and use the scores to select representative questions:

$$\rho(L, \hat{L}) = 1 - \frac{6\sum_{i=1}^{n} (r(L, m_i) - r(\hat{L}, m_i))^2}{n(n^2 - 1)}, \quad (2)$$

where r(L,m) returns the position of model m in the list, n is the model number. Then, questions with higher correlation scores are selected, as they are more capable of representing the "majority" preference by yielding ranking results that are highly consistent with the average model rankings.

4 Experiments

4.1 Main Experiments

Experimental Setup. We compare our approach with three types of automatic evaluation benchmarks: Closed-ended Dataset-based Benchmarks, Single-LLM Judge-based Benchmarks, and Multi-LLM Judge-based Benchmarks. From these categories, we respectively select 8, 4, and 2 representative and recently proposed benchmarks for

comparison. Descriptions of each baseline are provided in Appendix H, while detailed evaluation settings and implementation details are presented in Appendix I and Appendix J.

Main Results Analysis. The comparison results of different benchmarks are shown in Table 2. First, we observe that multi-LLM judge-based benchmarks generally perform better than single-LLM judge-based ones. This indicates that incorporating multiple LLMs as judges improves the consistency between automated evaluation results and human preferences. Such a way can reduce the preference bias from only one judge model. Second, by collecting high-quality questions for evaluation, MixEval and WildBench outperform other closedended and single-LLM judge-based benchmarks, respectively. MixEval carefully controls its query distribution to match with real-world user queries, while WildBench collects massive real-world tasks (i.e., 1024). It demonstrates the importance of selecting proper datasets for evaluation.

Besides, our De-Arena surpasses all baselines in most evaluation settings and the average value. In De-Arena, we extend the multi-LLM judge strategy into a more democratic paradigm where all LLMs are both the judges and are to be evaluated, to further reduce the bias. Furthermore, we devise an automatic question selection strategy that uses the correlation of ranking results to find the most representative questions for evaluation. These strategies greatly improve the reliability and scalability of our method, in contrast to baselines that require human

(a) Benchmark Spearman correlation.

(b) Benchmark cost and performance.

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

Figure 2: (a) Spearman correlation between different LLM benchmarks in the overall dimension. (b) Benchmark cost and performance comparison in the overall dimension, where we show the average judge counts of each model and the correlation with Chatbot Arena.

Methods	MT-	Bench	Ma	ath
1/20110 015	Corr ↑	R-Diff↓	Corr ↑	R-Diff↓
LLaMA-3-70B	0.815	1.71	0.934	1.14
Gemma-2-27B	0.930	1.29	0.932	1.00
Qwen2-70B	0.938	1.00	0.942	1.14
De-Arena	0.956	1.00	0.952	1.00

Table 3: Judge methods vs. Chatbot Arena: Correlation (\uparrow) and Rank Difference (\downarrow) .

involvement or massive data.

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

In addition, with the increasing of test LLM number, the difficulty of accurately ranking all LLMs also increases. As a result, the correlation scores of most baselines with Chatbot Arena have also decreased. Here, we can see that our De-Arena can achieve a stable performance and even perform better in the math dimension. The reason is that the involvement of more LLMs also introduces more judge models, which can reduce the bias caused by a few judges, further improving the reliability. We also report the correlation between our De-Arena and other best-performing six benchmarks in Figure 2a. Our De-Arena always has a high correlation with all the benchmarks, i.e., > 0.85. It indicates the effectiveness of our method for producing reliable ranking results, as existing benchmarks, echoing with the superior performance in Table 2.

4.2 Further Analysis

Reducing Single-Judge Biases. In De-Arena, our major contribution is to utilize all LLMs as judges to democratically vote all the model pairs, reducing the single-judge evaluation bias and im-

proving reliability. To study it, we compare our De-Arena with several of its variations using a single LLM as the judge, including LLaMA-3-70B, Gemma-2-27B, Qwen2-70B-inst, GPT-4o-2024-08-06. Here, we report the Spearman correlation and the difference in the ranked LLMs between all methods with Chatbot Arena. As presented in Table 3, the performance of our De-Arena is consistently better than all other variations, with higher Spearman correlation and lower rank difference. It indicates that our democratic voting strategy can avoid the ranking results being biased by the preference of few LLMs. Also, in our case study, we find that LLaMA-3-70B and Gemma-2-27B are prone to vote for themselves and the same series of LLMs, causing their ranks to rise drastically.

Cost and Scalability Study. In De-Arena, we devise the coarse-to-fine ranking algorithm and question selection strategy to reduce the cost of scaling the LLM number. To evaluate this efficiency, we estimate the cost of our De-Arena with other benchmarks for comparison. As it is hard to compute the detailed cost, we count the average comparison number of each LLM, which is relevant to the number of test questions and voting counts. As shown in Figure 2b, our De-Arena achieves the best performance among all benchmarks, with slightly higher cost than single-LLM judge-based ones. The reason is that we employ the representative question selection strategy to reduce the number of test questions (e.g., 100 instances), and also the ranking algorithm to reduce the voting counts of judge models. The above designs

Figure 3: De-Arena's mean (blue curve) and variance (shaded area) of Chatbot Arena correlation in the MT-bench dimension, with the increase in LLM number.

greatly reduce the cost from both sides. Besides, as De-Arena has the lower cost and higher correlation with Chatbot Arena, it shows strong potential as an effective and scalable automatic counterpart for broader real-world applications.

454

455 456

457

458

459

460

461

462

463

464

465

466

468

469

470

471

473

475

476

478

479

480

481

482

483

484

485

486

487

488

489

490

491

Convergence Study. As our De-Arena adopts the coarse-to-fine incremental ranking strategy, the insertion order of LLMs might affect the stability of the final ranking results. To study it, we run our method five times, using different random seeds to shuffle the insertion order, and compute the mean and variance correlations with Chatbot Arena, in the MT-bench dimension. As shown in Figure 3, we can see that with the involvement of more models, our ranking results become more stable and robust with higher correlation and lower variance. It demonstrates the scalability of our decentralized evaluation strategy with the scaling of LLMs. The more models participate in the evaluation process, the more reliable and trustworthy the final ranking results for all models become.

Robustness against Potential Group Biases. Since De-Arena leverages the collective intelligence of LLMs to judge each other, it effectively mitigates single-judge biases. To further assess its robustness and potential group biases, we varied the number of judge models across three settings: 8, 16, and 26. For the 8 and 16 settings, we randomly sampled five different judge sets to evaluate stability; for 26, we used all suitable open-source models. The final outcomes are presented in Figure 4a. We observe that the performance consistently improves as the number of judge models increases, with the best performance achieved when the number reaches 26. This can be attributed to the fact that a larger number of judge models enables a more democratic and decentralized evaluation process. As the judge pool grows, the collective in-

Figure 4: (a) Spearman correlation with Chatbot Arena across varying judge model number. (b) Spearman correlation for different question selection methods, with AP representing Anchor Point.

Methods	MT-Bench		N	I ath
1120110415	Corr ↑	Judges↓	Corr ↑	Judges↓
Ours	0.957	521495	0.962	808074
w/o Finew/o Coarse	0.952 0.954	320715 352245	0.961 0.959	489741 520580
- Full Sample	0.956	2245874	0.962	3660355

Table 4: Correlations (Corr) and rank differences (R-Diff) between different judge methods and Chatbot Arena. \uparrow and \downarrow denote the higher and the lower the better, respectively.

telligence effect becomes more pronounced, which helps to further mitigate the biases of individual models. Meanwhile, since the group consists of highly diverse models, group biases are minimally introduced. This highlights the strong robustness of using multiple judges in the evaluation process. 492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

4.3 Ablation and Variation Study

Coarse-to-fine Ranking Algorithm. To study the effectiveness of our coarse-to-fine ranking algorithm, we remove the coarse-grained binary search ranking and fine-grained in-window reranking strategies, to build two variations for comparison: (1) w/o Coarse: ours without coarse-grained binary search; (2) w/o Fine: ours without finegrained in-window reranking. Besides, we also built the variation that uses all LLMs to vote all the LLM pairs, namely (3) Full Ranking: ours with full ranking. We conduct the experiments on MT-Bench and Math dimensions, and report the correlation with Chatbot Arena and the number of judges. As shown in Table 4, among all the variations, our De-Arena can well balance the performance and the cost. In De-Arena, both the coarse-grained binary search and the fine-grained in-window reranking algorithms contribute to performance improvement while only slightly increasing the number of judge.

	MT-Bench	Algerba	Geometry	Probability
Avg Corr	0.957	0.942	0.956	0.961
Std	0.0019	0.0021	0.0015	0.0016

Table 5: Stability study of coarse-to-fine ranking algorithm. In each dimension, we conduct five random trials by shuffling the insertion order of models.

	Ours	- w/o Fine	- w/o Coarse
Avg Corr	0.957	0.953	0.955
Std	0.0019	0.0031	0.0029

Table 6: Stability study under variations of the coarseto-fine ranking algorithm. Each dimension, we conduct five random trials by shuffling the insertion order.

Without these strategies, the variation that needs to fully rank all model pairs greatly increases the cost ($\times 4$ judge counts). In Appendix C, we conduct additional experiments to further investigate the accuracy of the binary search step.

518

519

521

524

526

528

533

534

535

538

539

540

543

545

547

549

553

Stability Study of Coarse-to-fine Ranking Al**gorithm** In De-Arena, we adopt an incremental insertion approach, where models are inserted in varying orders and ranked accordingly. To assess the stability of our algorithm, we conduct experiments showing that the insertion order has minimal impact on the final rankings. Specifically, we perform five random shuffles of the insertion order and compute the Spearman correlation with Chatbot Arena rankings. As shown in Table 5, correlation remains consistently high with very low standard deviation, confirming the robustness of the coarse-to-fine ranking algorithm. To further validate stability, we apply the same randomized insertion experiments to our algorithm variations under MT-Bench. As shown in Table 6, although the variations do not perform as well as the full algorithm, their standard deviations remain very low, indicating strong stability. Therefore, the full coarse-to-fine ranking algorithm demonstrates the best performance and is well-suited for scenarios that require highly accurate and stable rankings.

Question Selection Algorithm. To evaluate the effectiveness of our representative question selection algorithm, we compare it with several variations using different strategies: (1) *Random* that randomly selects the questions; (2) *Perplexity* that uses the perplexity of LLaMA-3-8B (AI@Meta, 2024) to rank and select the top ones; (3) *Anchor point* (Vivek et al., 2024) that selects an optimal subset of sub-problems to represent the full dataset;

Dimension	with Elo Weights	No Weights
MT-Bench	0.957	0.949
Math	0.959	0.953

Table 7: Ablation study results about the Elo weight in different dimensions.

554

555

556

557

558

559

560

562

563

564

565

566

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

(4) *GPT-4* that crafts prompts to guide GPT-4 to rank and select the top ones. Here, we utilize them to select 32 questions from the 80 questions in MT-Bench. As shown in Figure 4b, all the variations perform worse than De-Arena, indicating the effectiveness of our question selection algorithm. Here, random is a robust baseline that outperform other variations, while our methods lead to a higher correlation with Chatbot Arena. The reason is that we focus on selecting the most representative questions reflecting the majority based on ranking similarity. This approach effectively identifies the most useful ones for testing.

Weights for Judge Models. In De-Arena, we recognize that models differ in their ability to judge LLMs, so we introduce a weighting mechanism that assigns higher weights to stronger models and lower weights to weaker ones. To study its effectiveness, we remove it and compare the performance changes in the MT-Bench and three math sub-dimensions. As shown in Table 7, removing the weights would lead to decrease in the correlation score. It indicates the effectiveness of the weighting mechanism we implemented.

5 Conclusion

In this paper, we propose De-Arena, a democratic and fully automatic LLM evaluation system where the models to be evaluated can also evaluate each other. To make it a more efficient and automatic system, we devised the coarse-to-fine incremental ranking and representative question selection strategies. These innovations enable De-Arena to scale effectively to a large number of LLMs and support evaluation across fine-grained, diverse dimensions Extensive experiments have verified the reliability and scalability of our De-Arena. In the future, we will extend our De-Arena by including more LLMs and useful evaluation dimensions, supporting fully automatic new dimension discovery and evaluation, and further exploring the evaluation of super-human intelligence.

6 Limitations

Our De-Arena aspires to reshape LLM benchmarking by harnessing collective intelligence rather than relying on few "authority" models or costly human annotation. It may carry several potential limitations:

- By involving every participating LLM as both evaluator and evaluated, De-Arena aims to reduce single-model dominance and mitigate systemic biases. It encourages more equitable participation and transparent performance comparisons, fostering an environment in which models from diverse teams—industry, academia, or open-source communities—can be assessed on a level playing field.
- Traditional benchmarking often depends on extensive human annotation, which can be laborintensive, subjective, and slow. De-Arena's automatic evaluation minimizes human oversight and lowers costs, potentially democratizing access to robust evaluation for smaller research groups or underfunded institutions and easing the ethical burden associated with human annotators' time and well-being.
- In contrast to single-judge approaches, a decentralized, multi-LLM system spreads accountability across many models. When combined with transparency about each model's contributions to a final ranking, the system can better highlight disagreements or harmful biases among models. This collective responsibility promotes more nuanced scrutiny of anomalies or potentially harmful content.
- While distributing decision-making reduces reliance on any single model's biases, emergent group biases can still arise if many models share similar training data or user bases. Continued research is needed to detect and mitigate these collective distortions, especially for underrepresented languages or cultural contexts.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, and 1 others. 2023. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*.

AI@Meta. 2024. Llama 3 model card.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, and 1 others. 2023. Qwen technical report. arXiv preprint arXiv:2309.16609.

Imène Brigui-Chtioui and Inès Saad. 2011. A multiagent approach for collective decision making in knowledge management. *Group Decision and Negotiation*, 20:19–37.

- Amrita Chakraborty and Arpan Kumar Kar. 2017. Swarm intelligence: A review of algorithms. *Nature-inspired computing and optimization: Theory and applications*, pages 475–494.
- Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E Gonzalez, and 1 others. 2024. Chatbot arena: An open platform for evaluating llms by human preference. arXiv preprint arXiv:2403.04132.
- OpenCompass Contributors. 2023. Opencompass: A universal evaluation platform for foundation models. https://github.com/open-compass/ opencompass.
- Mengge Du, Yuntian Chen, Zhongzheng Wang, Longfeng Nie, and Dongxiao Zhang. 2024. Large language models for automatic equation discovery of nonlinear dynamics. *Physics of Fluids*, 36(9).
- Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. 2024. Length-controlled alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475.
- Arpad E Elo. 1967. The proposed usef rating system, its development, theory, and applications. *Chess life*, 22(8):242–247.
- Clémentine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf. 2024. Open llm leaderboard v2. https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard.
- Peter A Gloor. 2006. Swarm creativity: Competitive advantage through collaborative innovation networks. Oxford University Press.
- Shashwat Goel, Joschka Struber, Ilze Amanda Auzina, Karuna K Chandra, Ponnurangam Kumaraguru, Douwe Kiela, Ameya Prabhu, Matthias Bethge, and Jonas Geiping. 2025. Great models think alike and this undermines ai oversight. *arXiv preprint arXiv:2502.04313*.
- Neel Guha, Julian Nyarko, Daniel Ho, Christopher Ré, Adam Chilton, Alex Chohlas-Wood, Austin Peters, Brandon Waldon, Daniel Rockmore, Diego Zambrano, and 1 others. 2024. Legalbench: A collaboratively built benchmark for measuring legal reasoning in large language models. *Advances in Neural Information Processing Systems*, 36.
- Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 2020. Measuring massive multitask language understanding. *arXiv preprint arXiv:2009.03300*.

- Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John Grundy, and Haoyu Wang. 2024. Large language models for software engineering: A systematic literature review. *ACM Transactions on Software Engineering and Methodology*, 33(8):1–79.
- Seungone Kim, Juyoung Suk, Ji Yong Cho, Shayne Longpre, Chaeeun Kim, Dongkeun Yoon, Guijin Son, Yejin Cho, Sheikh Shafayat, Jinheon Baek, and 1 others. 2024a. The biggen bench: A principled benchmark for fine-grained evaluation of language models with language models. *arXiv preprint arXiv:2406.05761*.

- Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. 2024b. Prometheus 2: An open source language model specialized in evaluating other language models. arXiv preprint arXiv:2405.01535.
- Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, Hai Zhao, and Pengfei Liu. 2023a. Generative judge for evaluating alignment. *arXiv preprint arXiv:2310.05470*.
- Ruosen Li, Teerth Patel, and Xinya Du. 2023b. Prd: Peer rank and discussion improve large language model based evaluations. *arXiv preprint arXiv:2307.02762*.
- Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and Tatsunori B Hashimoto. 2023c. Alpacaeval: An automatic evaluator of instruction-following models.
- Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, and 1 others. 2022. Holistic evaluation of language models. *arXiv preprint arXiv:2211.09110*.
- Anthony Lin. 2019. Binary search algorithm. *WikiJournal of Science*, 2(1):1–13.
- Bill Yuchen Lin, Yuntian Deng, Khyathi Chandu, Faeze Brahman, Abhilasha Ravichander, Valentina Pyatkin, Nouha Dziri, Ronan Le Bras, and Yejin Choi. 2024. Wildbench: Benchmarking llms with challenging tasks from real users in the wild. *arXiv preprint arXiv:2406.04770*.
- Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, and 1 others. 2024. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*.
- Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng, Mahir Shah, Kabir Jain, Graham Neubig, and Yang You. 2024. Mixeval: Deriving wisdom of the crowd from llm benchmark mixtures. *arXiv preprint arXiv:2406.06565*.
- OpenAI. 2024a. Gpt-4o system card. *Preprint*, arXiv:2410.21276.

OpenAI. 2024b. Openai o1 system card. *Preprint*, arXiv:2412.16720.

- Samuel J Paech. 2023. Eq-bench: An emotional intelligence benchmark for large language models. *arXiv* preprint arXiv:2312.06281.
- Arjun Panickssery, Samuel Bowman, and Shi Feng. 2024. Llm evaluators recognize and favor their own generations. *Advances in Neural Information Processing Systems*, 37:68772–68802.
- Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. 2022. Evaluating the text-to-sql capabilities of large language models. *arXiv preprint arXiv:2204.00498*.
- David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, and Samuel R. Bowman. 2024. GPQA: A graduate-level google-proof q&a benchmark. In First Conference on Language Modeling.
- Oscar Sainz, Jon Campos, Iker García-Ferrero, Julen Etxaniz, Oier Lopez de Lacalle, and Eneko Agirre. 2023. NLP evaluation in trouble: On the need to measure LLM data contamination for each benchmark. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pages 10776–10787, Singapore. Association for Computational Linguistics.
- Keita Saito, Akifumi Wachi, Koki Wataoka, and Youhei Akimoto. 2023. Verbosity bias in preference labeling by large language models. In *NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following*.
- Juho Salminen and 1 others. 2015. The role of collective intelligence in crowdsourcing innovation.
- Stephanie Schoch, Diyi Yang, and Yangfeng Ji. 2020. "this is a problem, don't you agree?" framing and bias in human evaluation for natural language generation. In *Proceedings of the 1st Workshop on Evaluating NLG Evaluation*, pages 10–16.
- Mrinank Sharma, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell, Samuel R Bowman, Newton Cheng, Esin Durmus, Zac Hatfield-Dodds, Scott R Johnston, and 1 others. 2023. Towards understanding sycophancy in language models. *arXiv preprint arXiv:2310.13548*.
- Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M. Sadler, Wei-Lun Chao, and Yu Su. 2023. Llm-planner: Few-shot grounded planning for embodied agents with large language models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*.
- James Surowiecki. 2004. The Wisdom of Crowds: Why the Many Are Smarter than the Few and How Collective Wisdom Shapes Business, Economies, Societies, and Nations. Doubleday, New York.

1033 14	ylor, Marcin Kardas, Guillem Cucurull, Thomas
	om, Anthony Hartshorn, Elvis Saravia, Andrew
	ton, Viktor Kerkez, and Robert Stojnic. 2022
	ctica: A large language model for science. arXiv
prepr	int arXiv:2211.09085.
Raian V	ivek, Kawin Ethayarajh, Diyi Yang, and Douwe
	a. 2024. Anchor points: Benchmarking models
	much fewer examples. In Proceedings of the
	Conference of the European Chapter of the As
	ation for Computational Linguistics (Volume 1
socia	
	Papers), pages 1576–1601, St. Julian's, Malta

- Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, and 1 others. 2024. Mmlu-pro: A more robust and challenging multi-task language understanding benchmark. *arXiv* preprint arXiv:2406.01574.
- Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, and 1 others. 2024. Livebench: A challenging, contamination-free llm benchmark. *arXiv preprint arXiv:2406.19314*.
- Shengguang Wu, Shusheng Yang, Zhenglun Chen, and Qi Su. 2024. Rethinking pragmatics in large language models: Towards open-ended evaluation and preference tuning. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 22583–22599.
- Qianqian Xie, Weiguang Han, Xiao Zhang, Yanzhao Lai, Min Peng, Alejandro Lopez-Lira, and Jimin Huang. 2023. Pixiu: A large language model, instruction data and evaluation benchmark for finance. arXiv preprint arXiv:2306.05443.
- Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica, and Joseph E. Gonzalez. 2024. Berkeley function calling leaderboard. https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html.
- Peiran Yao, Jerin George Mathew, Shehraj Singh, Donatella Firmani, and Denilson Barbosa. 2024. A bayesian approach towards crowdsourcing the truths from llms. In *NeurIPS 2024 Workshop on Bayesian Decision-making and Uncertainty*.
- Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021. Bartscore: Evaluating generated text as text generation. *Advances in Neural Information Processing Systems*, 34:27263–27277.
- Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. 2019. Bertscore: Evaluating text generation with bert. *arXiv preprint arXiv:1904.09675*.
- Ruochen Zhao, Wenxuan Zhang, Yew Ken Chia, Deli Zhao, and Lidong Bing. 2024. Auto arena of

llms: Automating llm evaluations with agent peerbattles and committee discussions. *arXiv preprint arXiv:2405.20267*.

- Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Christian M Meyer, and Steffen Eger. 2019. Moverscore: Text generation evaluating with contextualized embeddings and earth mover distance. *arXiv preprint arXiv:1909.02622*.
- Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, and 1 others. 2023. Judging llm-as-a-judge with mt-bench and chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623.

Dimension	Length	Header	List	Bold	All
MT-Bench	0.933	0.914	0.911	0.897	0.932
Algebra	0.909	0.909	0.909	0.911	0.906
Probability	0.934	0.930	0.929	0.929	0.935
Geometry	0.932	0.934	0.933	0.932	0.924

Table 8: Style control ablation study results across different dimensions. Each column represents a different style control method applied, and All denotes controlling all of them.

Window size	MT-Bench		N	Iath
William Size	Corr↑	Judges↓	Corr↑	Judges↓
1	0.957	521495	0.962	808074
2	0.953	684460	0.960	1069615
3	0.955	892260	0.960	1284068

Table 9: Hyperparameter tuning results about window size.

A Style Control Study

Due to variations in training data, different models often exhibit distinct output styles. Following the approach of Chatbot Arena, we defined four styles (*i.e.*, Length, Header, List, Bold) and calculated the correlation between these styles and the Chatbot Arena style control. Also, we add the results by controlling all the them.

As the results shown in Table 8, we can see that controlling all of the styles can achieve better performance in all these dimensions. In contrast, only using one of them would have an improvement on a certain dimension, but might also affect the performance in other ones. It indicates that controlling all styles is capable of well balancing the capability in all evaluation aspects.

B Hyper-parameter Tuning

In De-Arena, the window size and base model number are two hyper-parameters that control the cost of in-window reranking and the initial ranking list, respectively. Here, we study their best settings by varying them in [1,2,3] and [3,6,9,12], respectively. As the results shown in Table 9, setting the window size to 1 can lead to the fewest judge counts, and also achieve a good correlation score, which well balances the performance and the cost. As shown in Table 10, we can observe that using 6 base models can achieve the best performance. The reason is that too few or too many models would cause the instability of the ranking list during incrementally inserting new models.

Base Model Number	3	6	9	12
MT-Bench	0.948	0.957	0.952	0.954
Math	0.961	0.962	0.960	0.960

Table 10: Hyperparameter tuning results about base model number.

Figure 5: Binary search ranking differences between binary search and ground truth in four dimensions.

C Accuracy Study of Coarse-grained Binary Search

De-Arena heavily relies on the Coarse-to-Fine Ranking Algorithm, with the accuracy of the binary search in the first step being crucial for identifying the approximate ranking range of models. To better demonstrate the accuracy of the binary search, we monitor the absolute difference between the binary search ranking and the ground truth ranking during the insertion process across four dimensions. Finally, we compute the average ranking difference for all models. As the results shown in Figure 5, the coarse-grained binary search ranking for each model across all dimensions is very close to its ground truth ranking. With the subsequent fine-grained ranking adjustments, the accuracy of the rankings is further improved.

D Comparison-count Distribution.

Our De-Arena adopts the coarse-to-fine ranking algorithm, which can allocate more comparisons on the hard-to-distinguish LLM pairs with neighboring positions in the ranking list. To study it, we visualize the comparison-count distribution for all LLMs in Figure 6. We can observe that the collective LLM intelligence automatically focuses primarily on the neighboring LLM pairs (those

Figure 6: The distribution map of the LLM comparison counts in the MT-Bench dimension.

close to the diagonal), which are also equivalent to those with near 50% win rates in Figure 8. In contrast, comparisons between LLMs with large performance gaps are sparse (or even omitted), reducing the overall computation cost. Such a distribution is all thanks to our ranking algorithm, where the binary search and in-window reranking help reduce the unnecessary comparisons with predictable results and concentrate on the ambiguous pairs.

Questions with the Higher and Lower Scores

Selected Question with Higher Score:

• You have been tasked with designing a solar-powered water heating system for a residential building. Describe the key components and considerations you would include in your design. Design a five-step workflow.

Unselected Ouestion with Lower Score:

• What is the central dogma of molecular biology? What processes are involved? Who named this?

E Case Study for Question Selection

To better show the effectiveness of our representative question selection algorithm, we show the questions with the higher and lower scores using our method in the above example. We can observe that the selected question with the higher score is indeed with higher quality. It contains more detailed task description and requires multiple special knowledge to solve it. In contrast, for the question

Results from De-Arena	Results using LLaMA-3-70B
o1-mini	llama-3-70b-instruct
o1-preview	meta-llama-3.3-70b-instruct
gpt-4o-2024-05-13	o1-mini
meta-llama-3.3-70b-instruct	gpt-4o-2024-08-06
gpt-4o-2024-08-06	o1-preview
qwen2-72b-instruct	gpt-4o-2024-05-13
gemma-2-27b-it	qwen2-72b-instruct
gemma-2-2b-it	gemma-2-27b-it
llama-3-70b-instruct	gemma-2-2b-it
gemma-1.1-7b-it	gemma-1.1-7b-it
gemma-1.1-2b-it	gemma-1.1-2b-it
qwen2.5-1.5b	llama2-7b-chat
llama2-7b-chat	llama2-13b-chat
llama2-13b-chat	qwen2.5-1.5b
qwen1.5-4b-chat	qwen1.5-4b-chat

Table 11: Comparison of the ranking results using LLaMA-3-70B as the judge and our method, respectively.

with the lower score, its required knowledge is relatively limited. As no clear instruction is given, it is not easy to distinguish the quality of the potential outputs from LLMs.

F Case Study for Ranking Results

To study the ranking bias in single-LLM judge based methods and our approach, we show the ranking results using only LLaMA-3-70B as the judge and our De-Arena in Table 11. In the ranking list using LLaMA-3-70B as the judge, LLaMA-3-70B itself and its fine-tuned version Meta-LLaMA-3.3-70B-instruct are both ranked into the first and second positions, respectively. It demonstrates the existence of the evaluation bias for single-LLM judge based methods. In contrast, our De-Arena can produce a more reliable ranking results, which is more consistent as human preference (as shown in Table 3). It demonstrates that using more LLMs as judges is promising to obtain more reliable ranking results than using one or few judge models.

G Fine-grained Dimension Correlation

Our approach achieves high correlations with human judge based Chatbot Arena (95% in the "Overall" dimension). Here, we further report the correlation between each dimension from our De-Arena and the dimensions from Chatbot Arena (*i.e.*, Overall and Math) in Figure 7. We can see that the correlation scores are always high across these dimensions (> 0.85), indicating the consistency of our automatic ranking results and human preference. For the fine-grained sub-dimensions about a certain capability (*i.e.*, math, reasoning, and science), their correlations are also relatively higher.

H Baseline Details

986

987

991

996

997

998

1000

1001

1002

1004

1005

1006

1007

1008

1009

1010

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1028

1030

1031

1032

1033

1034

1036

• Closed-ended Datasets based Benchmarks.

(1) CompassAcademic (Contributors, 2023) selects a set of open-source datasets and benchmarks and integrates them to evaluate LLMs. (2) **BFCL** (Yan et al., 2024) evaluates LLMs' ability to accurately call functions in real-world data. (3) Helm Lite (Liang et al., 2022) is a lightweight benchmark consisting of nine scenarios, including math reasoning, medical QA, and long context QA. (4) LiveBench (White et al., 2024) contains 18 diverse tasks across 6 categories, which minimizes potential contamination by releasing new questions monthly. (5) EQ Bench (Paech, 2023) is an emotional intelligence benchmark for evaluating LLMs' ability to understand complex emotions and social interactions. (6) MMLU PRO (Wang et al., 2024) is an enhanced benchmark based on MMLU (Hendrycks et al., 2020), to evaluate the language understanding abilities across broader and more challenging tasks. (7) MixEval (Ni et al., 2024) collects user queries from the web and matches them with similar queries from existing benchmarks, to bridge the gap between real-world user queries and ground-truth-based evaluation. (8) OpenLLM (Fourrier et al., 2024) consists of commonly used datasets such as IFEval, BBH, MATH, GPQA, and MUSR, which compares LLMs in their own open and reproducible settings.

• Single-LLM Judge based Benchmarks.

(1)BiGGen Bench (Kim et al., 2024a) evaluates 9 core capabilities of LLMs, including instruction following, planning, reasoning, and others, using GPT-4 as the judge model along with instance-specific evaluation criteria. Meanwhile, (2) BiGGen Bench (Prometheus 2) employs Prometheus 2 (Kim et al., 2024b) as the judge model, serving as a complement to the original benchmark. (3) Alpaca Eval 2.0 (Dubois et al., 2024) employs GPT-4-Turbo as the judge and computes the win rates of the LLMs against GPT-4-Turbo for ranking. (4) WildBench (Lin et al., 2024) compares LLMs with three baseline models: GPT-4-Turbo, Claude3-Haiku, and Llama-2-70B on 1024 challenging real-world tasks. GPT-4-turbo is used as a judge to evaluate all the LLM pairs.

- Multi-LLM Judge based Benchmarks.
- (1) **PRD** (Li et al., 2023b) uses peer LLMs for weighted rankings of all LLMs, enabling fairer and more accurate assessments. (2) **Auto Arena** (Zhao et al., 2024) employs a committee of five strongest

LLMs to evaluate other LLMs across 8 task categories.

1037

1038

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1069

1070

1071

1072

1073

1075

1076

1077

1078

1079

1080

1081

1083

I Evaluation Settings

To provide a comprehensive comparison, we design three settings that evaluate 15, 30, and 66 LLMs, respectively, and report the performance on the overall and math dimensions. Following existing work (Ni et al., 2024), we compute the Spearman Correlation between the ranking list from all benchmarks and the latest Chatbot Arena leaderboard. Since Chatbot Arena rankings are based on human annotation, this approach allows us to estimate the correlation between automatic evaluation and human preferences. Considering that the set of evaluated LLMs differs among benchmarks, we select the shared set of LLMs between the benchmark and Chatbot Arena to compute the correlation.

J Implementation Details

For PRD, we re-implement it using the same hyperparameter setting in the original paper. For other baseline methods, we collect the results from their official leaderboards. For our De-Arena, we construct nine fine-grained dimensions using the data selection method in Section 3.2, namely math algebra, math geometry, math probability, logic reasoning, social reasoning, science chemistry, science biology, science physics, and MT-bench. We involve 15 open-source models in the data selection process to reduce the time cost. For evaluation, we test 66 models in total and set the window size for finegrained reranking to 1. In the main experiments, we use the average rank of all nine dimensions as our final Overall rank, and the average rank of the three math sub-dimensions as our final Math rank. In the evaluation stage, for each benchmark, we identify and select the most relevant dimension provided by that benchmark and compare its results with the Chatbot Arena's Overall and Math dimensions, for calculating the correlation.

K De-Arena Leaderboard

We show the detailed ranking results (*i.e.*, Elo scores) of all the evaluation dimensions from our De-Arena leaderboard in Table 12. It consists of the results from the dimensions of MT-Bench, Math (including Algebra, Probability, and Geometry three sub-dimensions), Reasoning (including Social and Logic), Science (including Biology,

Chemistry, and Physics). We also show the average scores for all dimensions as the overall score. With the fine-grained sub-dimensions about math, reasoning, and science, we can have a comprehensive understanding of the detailed capabilities of LLMs, enabling to select the most suitable ones in specific tasks and scenarios.

L Visualization of Win-rate Distribution

To better understand the results of our De-Arena, we also collect the win-rate of all LLM pairs and draw the distribution map in Figure 8. We can see that the neighboring models in the ranking list (close to the diagonal), generally have near 50% win rates. It indicates that they are the more hard-to-distinguish ones than others with long distances, and they need more times of comparisons for determining their position in the ranking list. This echos to the results in Figure 6, where we can see that these neighboring models are also assigned with more comparison counts in our approach.

Figure 7: Correlations between the ranking results from different dimensions in De-Arena and Chatbot Arena.

Figure 8: Win-rate distribution map for the evaluated LLMs using De-Arena.

Mode											
ol-mine 94,996,0511 100 100 93,755,267 97,875,007 72,124116 72,241,007 22,210,959,07 33,235,27 33	Model	Avg	Algebra	Probability	Geometry	Social	Logical	Biology	Chemistry	Physics	MT-Bench
1. 1. 1. 1. 1. 1. 1. 1.										98.62585524	
y-lighning pri-d pulse									75.21644169	-	
glm-4-plm's \$93.814921 \$91.683214 \$1.9845707 \$3.7255418 \$1.09640 \$7.054418 \$9.9254192 \$9.771008 \$8.6220148 \$9.85592014 \$1.8685707 \$8.63659407 \$7.054694 \$8.5540714 \$8.55									01 27700272	- 00 27242652	
Figure 1962-00-0-1-0-1-0-1-0-0-0-1-0-0-0-1-0-0-0-1-0-0-0-1-0-0-0-1-0-0-0-1-0-0-0-1-0-0-0-1-0-0-0-1-0-0-0-1-0-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-0-0-1-0-0-0-1-0-0-1-0-0-1-0-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1											
Cauda-C-1-S-somer CDIA-1002 Sept Sep											
chaude-5-sommer S6053705 84.9742461 81.9555828 81.4765229 28.8939807 87.2755784 79.2645209 91.000283 82.795784 92.000287 92.00							65.5500242				
Pemper-Part							88 7370708				
gpr4-in-D-204-04-09											
Femal-1-Spro-040-16 83-8427445 93-2862347 93.8462845 83-296626 83-296626 83-296626 83-296626 83-296626 83-296626 83-296626 83-296626 83-296626 83-296626 83-29626 83-2											
Part									-		
mars-1-lnubs-3-706 mars-1-									80.41289146		
		81.64213667	88.05191213	81.50070219	76.01034051	93.37347192	80.58107374	80.49115306	72.91567181		
gemin-1.5-flash-001 78.66833523 33.71693 75.8465078 81.1012402 82.1009054 75.7860532 78.7971787 79.85245762 79.8014436 71.29650746 claude-3-opus gmb-1106 77.14331181 82.62125793 74.5972472 74.873327 74.3158687 82.300533 79.0112315 75.8817405 80.43950637 82.54044867 72.9727546 79.0014272 72.975476 79.0014272 72.975476 79.0014272 72.975476 79.0014272 72.975476 79.0014272 72.975476 79.0014272 72.975476 79.0014272 72.975476 79.0014272	gpt-4o-mini-2024-07-18	81.62911065	91.90507855	87.46593196	83.73769897	75.21167553	78.08781194	75.84538799	76.10327227		76.92589247
Seminary	llama-3.1-tulu-3-70b	80.69260189	83.20202637	80.99912888	81.36555176	73.0850881	81.7890594	83.98513871	79.25643379	82.99883141	79.55215858
Samma-2-99-is-is-imporg pp4-1106 Part	gemini-1.5-flash-001	78.66833532	83.971693	75.58450378	81.10124024	82.10090965	75.78605523	78.77971787	79.59254762		71.29650746
genuma-2-9in-i-isimpo 77.31789719 77.0180468 69.27464090 72.17175471 83.4634837 68.0461375 81.5696103 81.7590035 81.1816805 91.291400 91.3431081 22.0212579 73.67561542 72.29412257 73.7586781 77.3868783 73.4919012 74.4943140 30.3000333 73.0801371 73.75867837 74.4914101 73.0800333 73.0801371 73.75867837 73.2841727 73.28567837 73.2841912 73.08567837 73.0861817 73.0868783 73.0861817 73.0867837 73.0861817 73.0861817 73.0867837											
Specimines											72.9279546
											-
Total Tota											
											70.30800333
											-
	•										
Caudica-S-anims											
Case											
owner 1-72b-chat 62,1737731 71,7008733 65,90807303 65,20900712 38,8787049 63,5728462 63,1861567 62,1920704 83,35320203 claude-2.0 60,07907818 53,848688 61,6323255 84,950208 69,9661019 52,24413325 90,3502429 62,66986324 57,815753 55,91787053 60,37518413 qwen1,5-32b-chat 59,0682296 70,7878721 60,3359004 60,9641028 61,09043750 77,0118433 41,2307618 90,202534 48,111145 63,0792003 62,2321871 qwe32b-preview 57,7411793 71,64275784 65,35359041 61,0943475 46,5027027 61,4324525 56,0255392 56,8358200 68,4353878 53,3319815 qwe1,5-1.5b 53,92178189 80,2022034 71,8226283 72,9415308 43,702070 41,1394158 48,1002373 43,00505392 56,838520 68,43538787 53,3319815 qwen1,5-1-4b-chat 51,3545615 51,2929196 48,7727168 41,1394158 58,5947288 48,6310113 58,5345299 41,30524329 41,30524329 41											
ministral-Be-it 59.8488688 61.63/24352 58.752246 69.64691693 52.54413325 90.5682292 62.66986242 78.87817535 55.91787033 60.57618413 gwen1.5-32b-chat 59.06682296 67.8787712 63.5329866 61.69634575 57.70118438 41.23076181 59.04325534 54.81117145 63.0792008 62.32331871 claude-2.1 58.080208878 88.0838378 88.08183868 81.47446488 61.04594773 46.3325043 46.2025034 53.3318815 qwen2.5-1.5b 53.92178189 81.6242374 65.35384041 86.0020578 46.7460704 65.2629997 63.8284413 qwen1.5-14b-chat 52.9372565 46.66264507 40.0142517 41.1394158 51.573505 46.7909022 46.80264909 45.873100115 58.5348304 50.5072399 47.590622 60.4033164 qwen1.5-14b-chat 51.75563155 51.7299191 48.7727168 51.273607 42.919997 46.51709 46.82671709 48.343638 42.8099127 42.9409927 46.94083164 50.9414164 50.941416 50.941414 50.941414											
Part											
meta-lalman-3.1-8b-instruct											
Calune C											
qwq-22b-preview 57,7441793 71,64275748 63,35384041 58,87771141 48,61002573 52,3148211 53,4773478 46,74960749 50,92639997 63,8284413 qwen.2.5-1.5b 53,92178189 80,25022034 71,83262853 72,9413508 36,37502735 58,94572886 60,93646636 57,921191 56,8587925 59,2139992 40,285168 glama3-8b-instruct 52,91726564 46,6624507 40,1133217 41,1394185 51,5703736 58,94572886 60,93646636 57,9221191 56,8879252 59,2139992 40,2815992 52,24656565 50,8736309 44,7306252 50,401111 51,884481 50,950399 43,7314103 50,101111 36,734411 51,884816 51,8821812 52,14750625 52,4486973 52,4466874 30,0128601 52,4464874 30,0128601 52,444130 52,516618 50,960747344 52,4464743 52,012848676 52,536618 50,906747344 42,04571744 42,4562412 52,536618 50,960747344 42,04571744 42,04571744 42,04571744 42,04571744 42,04571744 42,04571744 42,04571744											
Marca S.											
Saminal-ph-rabeta 52.91726564 46.66264507 40.01343217 44.11394158 51.5703736 58.94572886 60.93646636 57.92241191 56.85879525 52.3159592 52.31679502 52.3307152 52.3307152 52.3486786 46.5522985 51.3239206 51.61448852 48.6301151 58.5348304 50.50725399 44.7506252 66.4043164 60.01115											
Sataling-lm-Th-beta 52.3307152 52.84886768 66.552985 51.13239206 51.61448852 48.6310115 58.548360 50.50725399 44.7509625 66.40433164 4.75072161 4.75											
mistral-8x7b-instruct-v0.1 51.55563155 51.29291916 48.27727168 49.19273323 42.54964874 30.00128610 62.82428402 56.2412563 55.53066816 50.0674734 50.18821862 50.18821862 65.17729038 58.53802397 52.240769927 52.40409927 46.55747040 48.62671709 46.83436386 42.80091277 52.40409927 46.35774401 27.95956428 55.60311141 51.79248215 50.9690958 62.9190803 62											
gpt3.5-turbo-0125 50.18821862 65.17729038 58.53802397 62.28075511 41.45152348 25.14406855 45.58509712 51.41965985 50.59440643 50.5014266 command-r-(08-2024) 48.62671709 48.82671709 46.87564068 38.8089853 39.96987681 45.49040200 43.70677816 39.44367439 55.48276235 43.373252958 43.1915575 50.969098 62.9190803 command-r-(04-2024) 45.65347002 33.00394744 37.6909176 48.12266 60.09115358 41.3084584 62.62399225 38.62991027 24.78287364 69.99300579 gemini-1.0-pro-001 45.55337569 51.6275763 37.0959279 50.1952663 29.97602848 27.6915388 43.61318076 55.27507409 60.0074624 54.46028173 gemma-1.1-Ph-it 45.08073221 45.73349545 83.11118608 89.9869370 30.018690 38.8595628 23.1818076 52.57507409 60.0074624 54.46028173 gemma-1.1-Ph-instruct-2 45.096477144 26.08274886 24.4043094 24.84546791 30.0118690 38.6595102 52.6143183 54.5141803	qwen1.5-14b-chat	51.7844422	60.51769951	48.74784967	53.57316657	46.29169097	35.3542195	52.46656265	50.86736939	54.73141043	63.51001115
command-r-(08-2024) 48,62671709 46,8346386 42,80091277 52,40409927 46,3574401 27,95956428 55,60311141 51,79248215 50,9690958 62,9190803 openchat-3,5-0101 46,87564068 38,8089853 39,9687681 45,64812266 60,09115558 41,30384584 62,65299225 53,862991027 24,78287364 69,99300579 command-r-(04-2024) 45,65347002 33,00394744 37,6991763 37,0959279 50,1952653 29,97602848 27,69158385 62,2133898 52,08000978 52,33467243 83,3231751 openchar-3,5 45,532554772 46,43700574 40,73751634 46,11460291 48,03856938 37,8108901 43,51031422 44,62699512 44,5992235 56,0361328 gemma-1,1-7b-it 45,08073221 45,73849545 38,11118608 39,98693207 30,01216809 38,86595628 52,31782605 52,6541139 51,6481830 56,38221413 starling-lm-7b-alpha 42,04507999 44,84993 39,9951744 45,9994677 32,59182068 46,24425706 38,73575836 35,73621299 56,15451622	mistral-8x7b-instruct-v0.1	51.55563155	51.29291916	48.27727168	49.19273323	42.54964874	39.00128601	62.82428402	56.26412563	55.53066816	59.06774734
openchat-3.5-0106 47.43100598 50.5316225 46.18623367 46.49040206 43.70677816 39.44367439 55.48276235 43.37252958 43.15194557 58.51310554 openmar-2-bit 46.87564068 38.8088853 39.99687681 45.64812266 60.09115358 41.30384858 62.65299225 38.6299107 24.78287364 69.9300579 command-r-(04-2024) 45.65347002 45.55337569 51.6275763 37.0959279 50.19526563 29.97602848 27.69158385 43.65118076 55.27507409 60.00746246 54.4028173 openchat-3.5 45.80673221 46.3700574 40.73751634 46.11460291 48.03856983 37.81208901 43.51031422 44.62699512 44.52695123 51.64818303 51.64818303 56.351302 50.916808 38.856595628 52.31878260 52.65411393 51.64818303 56.351622 60.35361328 60.35361328 60.35361328 60.35361328 60.35361328 60.35361328 60.35361328 60.35361328 60.35361328 60.35361328 60.35361328 60.35361328 60.35361328 60.35361328 60.35361328	gpt3.5-turbo-0125	50.18821862	65.17729038	58.53802397	62.28075511	41.45152348	25.14406855	46.55809712	51.41965985	50.59440643	50.53014266
gemma-2-2b-it 46.87564068 38.8089853 39.96987681 45.64812266 60.09115358 41.30384584 62.65299225 38.62991027 24.78287364 69.99300579 command-r-(04-2024) 45.65347001 45.56347002 33.0094744 37.6909176 38.12742778 46.5288232 36.53973546 56.21378898 52.0800078 52.3346724 58.6231751 openchat-3.5 45.32554772 46.43700574 40.73751634 46.11460291 48.03856938 37.8120801 43.51031422 44.6269512 44.5992235 56.05361328 gemma-1.1-7b-it 45.08073221 45.73849545 38.11118608 39.98693207 30.0216809 38.86595628 52.31782605 52.6541139 51.64818503 55.3631389 starling-Im-b-instruct-2 36.96477144 26.08274886 23.40740349 24.48546791 36.65114071 30.10038709 46.41225983 40.51553273 45.39716673 53.63083522 llama-3.2-1b-it 31.50652515 48.1964744 35.5718488 38.409870 22.3788482 42.24956542 22.3788482 24.22985245 24.511712079365 <	command-r-(08-2024)	48.62671709	46.83436386	42.80091277	52.40409927	46.35774401	27.95956428	55.60311141	51.79248215	50.9690958	62.9190803
Command-r-(04-2024)	openchat-3.5-0106	47.43100598									
gemini-1.0-pro-001 45,55337569 51,6275763 37,0959279 50,19526563 29,97602848 27,69158385 43,65118076 55,27507409 60,00746246 54,46028173 openchat-3.5 45,32554772 46,3705747 40,73751634 46,11460229 48,03856938 37,8128080 23,181260 52,25707409 60,00746246 54,6028173 gemma-1.1-7b-it 45,080733221 45,73849545 38,11118608 39,9851744 45,99949677 32,59182068 46,24425706 38,73575836 35,37621299 56,15451622 mistral-7b-instruct-1 36,96477144 26,08274886 24,0740394 24,48546791 36,56114071 30,10038709 46,41225983 40,51553273 45,39716673 53,36083522 Ilama-3,2-3b-it 32,06523383 24,22405867 24,1438950 25,60995953 42,34355432 23,1594552 47,12097365 38,6313401 31,3743235 47,16618346 Ilama-3,2-1b-it 31,50652515 48,1964744 35,35718488 34,098706 22,3784882 24,249564 36,6894644 21,74732464 48,269636 36,6894368 21,273	gemma-2-2b-it	46.87564068	38.8089853	39.96987681		60.09115358	41.30384584	62.65299225	38.62991027	24.78287364	69.99300579
openchat-3.5 45.32554772 46.43700574 40.73751634 46.11460291 48.03856938 37.81208901 43.51031422 44.62699512 44.5992335 56.05361328 gemma-1.1-7b-it 45.08073221 45.73849545 81.1118608 39.98693207 30.0216809 38.865958208 52.31782605 52.65411393 51.64818503 55.8221413 starling-Im-Tb-alpha 42.04507999 42.8439948 40.46448993 39.9981744 45.9994967 32.5918008 46.2425706 \$3.87357836 53.53761299 56.1541632 56.05361328 mistral-7b-instruct-2 36.96477144 26.08274886 32.40740394 24.48546791 36.5114071 30.10038709 46.41225983 40.51553273 45.39716673 53.63083522 lama-3.2-1b-it 31.50652515 48.19647744 35.35718488 38.4098706 22.3788482 14.8296436 30.66596363 28.17342475 45.5366011 47.261818 mistral-7b-instruct-1 29.77883794 41.41094808 34.66543732 22.3185882 22.23162788 48.22989261 19.67247727 34.52179233 23.325790538											
genma-1.1-7b-it starling-lm-7b-alpha mistral-7b-instruct-2 45.08073221 d.2.84399348 d.0.4648993 39.98693207 d.0.0216809 d.9.98595628 83.86595628 d.2.31782605 d.2.613139 d.2.621330 d.5.41818503 d.5.821413 d.2.04507999 d.2.84399348 d.0.46448993 d.9.995174 d.5.99949677 d.2.9859562 d.2.51802546 d.2.425706 d.2.51802546											
starling-lm-7b-alpha 42.04507999 42.84399348 40.46448993 39.9951744 45.99949677 32.59182068 46.24425706 38.7357836 35.37621299 56.15451622 mistral-7b-instruct-2 36.96477144 26.08274886 32.40740394 24.48546791 33.65114071 30.10038709 46.41225983 40.51553273 45.39716673 53.03083522 1lama-3.2-3b-it 36.9637474 27.47528016 29.6760891 25.60995953 42.34355432 23.15924552 47.12097365 33.630390701 34.13729337 50.79340454 gemma-7b-it 32.62523838 24.22405867 24.14389506 28.60141294 36.71945984 27.42936244 34.3566972 35.6124319 35.3764385 47.10618346 llama-3.2-lb-it 31.50652515 48.19647744 35.35718488 38.4098706 22.37884882 14.82696436 30.66596363 28.17342475 35.37642199 47.5039011 47.0618346 mistral-7b-instruct-1 25.18022546 24.28958881 30.91573756 21.30326088 25.0166404 19.58058203 27.3220177 21.1732995 19.77456982											
mistral-7b-instruct-2 36.96477144 26.08274886 32.40740394 24.48546791 33.65114071 30.10038709 46.41225983 40.51553273 45.39716673 53.63083522 18.33335 34.88330747 27.47528016 29.6760829 25.60995953 42.34355342 23.15924552 47.12097365 33.63367071 33.63367071 33.63367071 33.63367071 34.13729373 50.79340474 35.7364851 34.3752842 34.37528525 24.2985244 34.3566972 35.61243194 35.37364385 47.16618346 18.332.1b-it 31.50652515 48.19647744 35.35718488 38.4098706 22.37884882 48.2696436 30.66596363 28.17342475 18.52660051 47.02339137 37.414618346 37.5065215 41.1094804 41.1094808 34.66233542 40.8670393 24.65841731 44.7118588 28.68894368 21.27370007 24.5651071 37.4146814 37.302081 34.566972 34.5020747 34.502074 34.5											
Samplan											
vicuna-33b 34.88330747 27.47528016 29.6760891 25.60995953 42.34355432 23.15924552 47.12097365 33.63396701 34.13729337 50.79340454 gemma-7b-it 32.62523383 24.22405867 24.14389506 28.60141294 36.71945984 27.42936244 34.3566972 35.61243194 35.37364385 47.16618346 Isma-3.2-lb-it 31.50652515 48.19647744 35.35718488 38.4098706 22.3788482 14.82696436 30.66596363 28.17342475 18.52660051 47.02339137 smollm2-1.7b 29.77883794 41.41094808 34.66233542 40.86703593 24.65514733 14.47158568 28.68894368 21.27370007 24.5651071 37.4146812 mistal-7b-instruct-1 25.18022546 24.28958811 17.95905259 22.9815808 25.0166404 19.58058203 27.3220177 21.1732995 19.7456982 36.83614841 vicuna-13b 24.54431725 13.45837587 7.88015666 21.5094176 28.61649971 11.99679124 28.48075179 22.20401391 24.68843409 41.2752145 <t< td=""><td></td><td></td><td></td><td></td><td>24.48546791</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					24.48546791						
gemma-7b-it 32.62523838 24.22405867 24.14389506 28.60141294 36.71945984 27.42936244 34.3566972 35.61243194 35.37364385 47.16618346 Ilama-3.2-lb-it 31.50652515 48.19647744 35.35718488 38.4098706 22.37884881 14.8296436 30.66596363 28.17342475 18.52660051 47.02339137 smollm2-1.7b 29.77883794 41.41094808 34.6633532 40.86730539 24.6581733 14.4718588 28.68884368 21.27370007 24.565171 37.4146818 mistral-7b-instruct-1 25.18022546 24.2895881 30.91573756 21.3032608 25.0166404 19.5805820 27.73220177 21.1732995 19.77456982 36.83614841 ycum-1-1-2b-it 22.23412728 31.45837587 7.88015666 21.5931766 22.29815802 24.22989201 19.67247727 34.52179233 32.3279038 23.32247878 33.93778333 gemma-1-1-2b-it 22.23412728 31.45837587 7.880156666 21.5917575 25.22230824 32.3595181 14.5014010 24.6814310 14.5316813 14.2014030 <td></td> <td></td> <td></td> <td></td> <td>25 60005052</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					25 60005052						
Imama-3.2-lb-it smollm2-1.7b 31.50652515 48.19647744 35.35718488 38.4098706 22.37884882 14.82696436 30.66596363 28.17342475 18.52660051 47.02339137 smollm2-1.7b 29.77883794 41.41094808 34.66233542 40.86703593 24.65541733 14.47158568 28.68894368 21.27370007 24.5651071 37.41446812 mistral-7b-instruct-1 vicuna-13b 24.54431725 23.01589211 17.95905259 22.98168082 24.21989261 19.67247727 34.52179233 23.25790538 23.32247878 31.93778333 gemma-1.1-2b-it qwen1.5-4b-chat 21.64067671 33.87561687 7.880815666 21.50934176 28.61649971 11.99679124 28.48075179 22.2041391 24.68483409 41.27572145 qwen1.5-4b-chat llama2-7b-chat 19.7016256 7.162722477 13.8958347 9.34040711 23.72229041 14.53055119 14.20140305 18.12674831 17.35368952 19.90882249 Ilama2-13b-chat gemma-2b-it 18.70510718 12.73154473 7.39314245 25.55963926 20.0062881 6.432584745 19.03185637 18.14493366 <td></td>											
smollm2-1.7b 29.77883794 41.41094808 3.466233542 40.86703593 24.65541733 14.47158568 28.68894368 21.2737007 24.5651071 37.41446812 mistral-7b-instruct-1 25.18022546 24.28958881 30.9157375 21.30326088 25.0166404 19.58058203 27.73220177 21.1732995 19.77456982 36.8614841 vicuna-13b 24.54431725 23.01589211 17.95905259 22.98158082 24.22898261 19.6724772 34.52179233 23.2279058 33.3224788 31.93778333 gemma-12b-it 22.23412728 13.45837587 7.880815666 21.5094176 28.61649971 11.99679124 24.84075179 22.20401391 24.68483409 41.27572145 qwen1.5-4b-chat 21.64067671 33.87561687 19.1517295 25.22230824 32.3952118 14.53055119 14.20140305 81.2674834 17.35368922 19.90882249 Ilama2-13b-chat 19.7016256 7.162722477 13.8958317 9.4404011 23.72229041 24.8967602 26.80803286 18.33849082 12.95980209 49.9094986											
mistral-7b-instruct-1 25.18022546 24.2895881 30.91573756 21.30326088 25.0166404 19.58058203 27.33220172 21.1732995 19.77456982 36.83614841											
vicuna-13b 24,54431725 23,01589211 17,95905259 22.28158082 24,2289261 19,67247727 34,52179233 32,32579638 23,32247878 31,9378333 gemma-1.1-2b-it qwen1.5-4b-chat 21,64067671 33,87561687 7,880815666 21,5093417 28,61649971 11,99679124 28,48075179 22,240401391 24,6884309 41,25752145 Ilama2-7b-chat 20,37432805 12,45837033 81,24426409 9,546107548 23,3468738 19,83063456 30,18764134 22,86497137 15,31628193 41,68824533 Ilama2-13b-chat gemma-2b-it 18,70510718 12,73154473 7,739314245 25,55963926 20,20062881 6,322548745 19,03185637 18,14493366 20,8822243 37,62297534 vicuna-7b 17,9849131 8,77942567 8,02707561 9,731584621 22,3627091 14,08926915 28,1353075 21,44761184 16,70282166 32,21655842 zephyr-7b-beta 14,57067856 16,3116571 10,09469635 12,35867932 9,0946635 22,337812 20,309205 18,4166841 20,9047603 kola											
gemma-1.1-2bit qwen1.5-4b chat gma-27b-chat 22.23412728 13.45837587 7.880815666 21.50934176 28.61649971 11.99679124 28.48075179 22.20401391 24.68483409 41.27572145 qwen1.5-4b-chat 21.64067671 33.87561687 19.1517295 25.22230824 32.39522118 14.53055119 14.20140305 18.12674834 17.35368952 19.90882249 Ilama2-13b-chat gemma-2b-it 19.7016256 7.162722477 13.8958317 9.340440711 23.72229041 24.8676702 26.80803286 18.33849082 12.95980209 40.90024986 gemma-2b-it vicuna-7b 17.9849131 8.77942567 8.020707561 9.731584621 23.02670901 14.08926915 28.1353075 21.44761184 16.70282166 32.21655842 zephyr-7b-beta 14.57067856 16.3116851 10.0946963 13.258585 0 9.979969635 22.337812 20.3092805 18.4166931 30.708961286 15.2572508 kola-13b 9.409161591 25.31969201 4.68320295 26.5912734 20.5476914 9.81083524 19.26051579 5.95430731 3.08961286<											
qwen1.5-4b-chat llama2-1b-chat 21.64067671 33.87561687 19.1517295 25.22230824 32.39522118 14.53055119 14.20140305 18.12674834 17.35368952 19.90882249 llama2-1b-chat llama2-1b-chat 19.7016256 7.162722477 13.8988347 9.34040711 23.7222904 24.8676702 26.80803286 18.3849082 12.95980209 40.9024986 gemma-2b-it 18.70510718 12.73154473 7.739314245 25.55963926 20.2006281 6.43254874 19.3185637 18.1449366 20.88252343 37.62297534 vicuna-7b 17.9849131 8.77942567 8.020707561 7.31584621 23.20327091 14.08926915 28.51353075 21.44761184 16.70282166 32.21655842 zephyr-7b-beta 14.57067856 16.3116851 10.0469635 13.258855 0 9.79966953 22.337812 20.5992030 18.4166841 20.39047605 15.2572505 kolal-13b 9.409161591 2.531969921 4.683320295 26.912734 20.5476914 9.810835924 19.26051579 5.95430737 3.708961286 15.5257250											
İlama2-7b-chat 20.37432805 12.45837033 8.124426409 9.546107548 23.34687358 19.83603456 30.18764134 22.86497137 15.31628193 41.68824533 İlama2-13b-chat 19.7016256 7.162722477 13.89883417 9.340440711 23.72229041 24.18676702 26.80803286 18.33849082 12.95980209 40.90024986 gemma-2b-it 18.70510718 12.73154473 7.739314245 52.55963926 20.20062881 6.43254874 19.0186285 18.14493366 20.8225734 37.02297534 vicuna-7b 17.98491319 8.77942567 8.020707561 73.1584621 22.36270901 14.08926915 28.1353075 21.44761184 16.70222166 32.2165842 zephyr-7b-beta 14.57067856 16.3116851 10.09469635 13.258558 0 9.79969635 22.337812 20.35092805 18.4166841 20.3097603 kola-13b 9.409161591 2.531969921 4.683320295 2.65912734 20.5476914 9.810835924 19.26051579 5.95430731 3.08961286 15.55272508											
Ilama2-13b-chat germa-2b-it vicuna-7b collab-la 19.7016256 7.62722477 13.8958347 9.340440711 23.72229041 24.1867602 26.80803286 18.33849082 12.95980209 40.90024986 germa-2b-it vicuna-7b 17.9849113 8.77942567 8.02070561 9.2155963926 20.20062881 6.432548745 19.03185637 18.14493366 20.8252343 37.62297534 zephyr-7b-beta 14.57067856 16.3116851 10.09409635 13.2538558 0 9.979969635 22.337812 20.35092805 18.4166941 20.3097603 koala-13b 9.409161591 2.531969921 4.68320295 2.65912734 20.5476914 9.810835924 19.26051579 5.95430731 3.08961286 15.55275258											
gemma-2b-it 18.70510718 12.73154473 7.739314245 25.55963926 20.20062881 6.432548745 19.03185637 18.14493366 20.88252343 37.62297534 vicuna-7b t17.98491319 8.77942567 8.020707561 9.731584621 22.3627091 14.08926915 28.51353075 21.44761184 16.70282166 32.1655842 zephyr-7b-beta 14.57067856 16.3116851 10.09496935 13.258585 0 9.797969635 22.337812 20.35092805 18.4166841 20.39047605 koala-13b 9.409161591 2.53196921 4.68332025 2.65912734 20.5476914 9.810835924 19.26051579 5.95430737 3.08961286 15.5257250											
vicuna-7b 17.98491319 8.77942567 8.020707561 9.731584621 22.3627091 14.08926915 28.51353075 21.44761184 16.70282166 32.21655842 zephyr-7b-beta 14.57067856 16.3116851 10.09469635 13.2538558 0 9.979969635 22.337812 20.35092805 18.4166841 20.39047603 koala-13b 9.409161591 2.531969921 4.683320295 2.659127343 20.54769134 9.810835924 19.26051579 5.954307371 3.708961286 15.52572505											
zephyr-7b-beta 14.57067856 16.3116851 10.09469635 13.2538558 0 9.79969635 22.337812 20.35092805 18.4166841 20.39047603 koala-13b 9.409161591 2.531969921 4.683320295 2.659127343 20.54769134 9.810835924 19.26051579 5.954307371 3.708961286 15.52572505											
koala-13b 9.409161591 2.531969921 4.683320295 2.659127343 20.54769134 9.810835924 19.26051579 5.954307371 3.708961286 15.52572505											

Table 12: De-Arena Leaderboard on nine fine-grained dimensions.