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Abstract

As new knowledge rapidly accumulates, language models (LMs) with pretrained knowledge
quickly become obsolete. A common approach to updating LMs is fine-tuning them directly
on new knowledge. However, recent studies have shown that fine-tuning for memoriza-
tion may be ineffective in storing knowledge or may even exacerbate hallucination—raising
doubts about its reliability when applied repeatedly. To study this, we formalize the prob-
lem of continual memorization, where a model must memorize and retain a set of factoids
through multiple stages of fine-tuning on subsequent datasets. We first characterize the
forgetting patterns through extensive experiments and show that LMs widely suffer from
forgetting, especially when needing to memorize factoids in the second stage. We posit
that forgetting stems from suboptimal training dynamics which fails to: (1) protect the
memorization process when learning factoids or (2) reduce interference from subsequent
training stages. To test this hypothesis, we explore various data mixing strategies to al-
ter the fine-tuning dynamics. Intriguingly, we find that mixing randomly generated word
sequences or generic data sampled from pretraining corpora at different training stages ef-
fectively mitigates forgetting (REMIX: Random and Generic Data Mixing). REMIX can
recover performance from severe forgetting, outperforming replay methods and other con-
tinual learning baselines. We analyze how data mixing can influence the learning process
and find that robust memorization follows a distinct pattern—the model stores factoids in
earlier layers than usual and diversifies the layers that retain them, which results in easier
recall and manipulation of the learned factoids.

1 Introduction

Language models (LMs) have shown a remarkable ability to absorb massive amounts of knowledge through
large-scale pretraining (Petroni et al., 2019; AlKhamissi et al., 2022; Cohen et al., 2023). However, knowledge
is not static—new information accumulates quickly while old knowledge becomes obsolete. This dynamic
nature necessitates frequent model updates, making costly pretraining impractical. A common approach is
to fine-tune the model directly on new knowledge. However, recent studies have shown that fine-tuning is
brittle: training on long-tail knowledge can lead to unintended disruptions, such as decreased factuality and
exacerbated hallucinations (Kang et al., 2024; Gekhman et al., 2024; Zhang et al., 2024). Furthermore, a
fine-tuned model might not properly memorize knowledge, failing to recall or manipulate it effectively (Allen-
Zhu & Li, 2024a;b). This fragility raises the question of whether fine-tuning can be applied repeatedly as a
reliable mechanism for continual knowledge acquisition.

To address this, we investigate the dynamics of memorization in a continual learning setting (McCloskey &
Cohen, 1989; Ratcliff, 1990), in which the model acquires new information incrementally, one set at a time.
While prior research on continual learning in LMs has focused on general capabilities such as reasoning (Luo
et al., 2023a) or broad proxies like language modeling loss over a general corpus (Yildiz et al., 2024), we
use this framework to study the memorization dynamics of LMs through fine-tuning. We formalize this as
continual memorization, in which a model is first trained on a small collection of factoids (factual associations)
and must retain this knowledge after training on additional datasets in a subsequent stage. Specifically, we
train models to memorize factoid datasets (stage 1) and then evaluate how well these factoids are retained
after a second stage of training on a different dataset (Figure 1). We study 2 stages in our main setting, and
provide analysis of more stages in §5.
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Stage 2: training on

No Mixing

REMIX

Generic Pretraining Data 
Processing images allows you to decode […]

Random Word Sequences 
maladministrator revindicate subjectivist […]

Mixing in  
stage 1

Key-Value Recall 
Question: What is the value of  
key “fw2e54ad”? 
Answer: “kc87to2e”

PopQA 
Question: What is Bernard 
Peiffer's occupation? 
Answer: Pianist.

TriviaQA 
Question: What is the nickname 
of […] Maurice Greene? 
Answer: Kansas Cannonball

Factoid (LAMA) 
Question: Where was David 
Diplacido born? 
Answer: Newmarket

Non-Factoid (GSM8K) 
Question: Twenty gallons of tea 
were poured into 80 containers. 
[…] How many pints of tea did 
Geraldo drink? 
Answer: 20 gallons = […] 
Geraldo drank 7 pints of tea.

Stage 1: training on
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Figure 1: The continual memorization setting. In stage 1 (red box), a pretrained model M0 is trained to
convergence on a factoid dataset DA to obtain model MA. In stage 2, model MA is further trained on
either a factoid dataset or a non-factoid dataset (blue box) to obtain model MB . The final model MB is
evaluated on the training examples DA in stage 1. REMIX: mixing random words and pretraining data into
training during stages 1 and 2 alleviates forgetting.

We conduct extensive experiments to characterize forgetting patterns in continual memorization. First, we
find that the most severe forgetting occurs when the second stage of training involves another factoid dataset,
regardless of whether the facts overlap with those from stage 1. For example, accuracy on TriviaQA drops
from 100% (after stage 1) to 39.8% after further training on other factoid datasets, such as LAMA. Forgetting
is less pronounced when fine-tuning on non-factoid datasets, such as those involving coding, math, or chat.
We also find that long-tail data is the hardest to retain—a randomly generated key-value string is most
susceptible to forgetting, with accuracy dropping to 13% after further training on another factoid dataset.
This aligns with recent findings that memorizing knowledge (e.g., factoids) causes greater disruption to other
model capabilities, which, in our setting, results in more severe forgetting (Kang et al., 2024). Finally, we
observe that common experience replay methods, which mix a fraction of data from earlier training stages,
fail to prevent forgetting when the second stage involves a factoid dataset, in contrast to their effectiveness
in general continual learning settings. For instance, even when mixing in 10% of the factoids from stage 1,
the model fails to recover performance beyond 60%.

Next, we investigate whether data mixing strategies can mitigate forgetting. Through theoretical derivations,
we develop intuition that this question may be approached in two ways: 1) teaching the model to protect
learned knowledge better in the first stage, or 2) reducing the interference of the second stage by manipulating
the data distribution. Based on this hypothesis, we examine a range of data mixing strategies at each stage.
Intriguingly, we find that mixing in either generic pretraining data or even random word sequences leads to
a considerable reduction in forgetting. We combine both strategies, and refer to this mitigation as REMIX
(Random and Generic Data Mixing). Our experiments demonstrate that REMIX is highly effective at helping
the model retain learned factoids: in the most severe case, REMIX increases post-phase 2 accuracy from
13.5% to 53.2%. In comparison, replay can only reach 41.6% despite using 10% of the factoids from stage 1.
Other common continual learning methods also fall short, where weight regularization (EWC) Kirkpatrick
et al. (2017) and behavior regularization Sun et al. (2020) both lag behind REMIX. These benefits are seen
consistently across several choices of factoid and non-factoid tasks in stage 2.
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To understand why these mixing strategies help reduce forgetting, we analyze REMIX using Logit Lens (nos-
talgebraist, 2020) and ablation studies. Our analysis suggests that including a broad range of mixed data
encourages the model to store facts in relatively earlier layers (compared to in the baseline setting), as well
as to diversify where it stores the knowledge. This diversification allows it to better protect learned knowl-
edge in subsequent stages of training. In the second stage, jointly learning the mixing data and the stage 2
data helps prevent overfitting to a narrow distribution, alleviating the negative interference on the learned
factoids. Finally, we show that more robustly memorized factoids are not only better retained and recalled,
but are more easily extracted for manipulation.

We summarize our contributions as follows:

• We formalize the continual memorization setting and demonstrate the fragility of the factoid mem-
orization process in LMs; we further show that it cannot be easily addressed with replay.

• We find that mixing random and generic data (REMIX) in different stages can greatly mitigate
forgetting without accessing the factoids from prior stages.

• We find that successful mixing diversifies the layers where the learned knowledge is stored and tend
to store it in earlier layers than the models that suffer from forgetting, shedding light on the patterns
of robust memorization.

2 Continual Memorization of Factoids

2.1 Problem Definition

Factoid vs non-factoid datasets. We define a factoid to be a triplet (subject, relation, object). A
dataset D ∈ D in this paper is a set of (prompt, response) pairs. A factoid dataset D ∈ Dfact ⊂ D is a set of
factoids formatted as pairs (e.g., “prompt = The <relation> of <subject> is” → response = <object>).
If D ∈ D \ Dfact, we call D a non-factoid dataset. A language model M: pθ(y | x) parameterized by θ
defines a distribution over response y given the prompt x. Given a model M and dataset D, we denote by
L(θ; D) ∈ R+ the loss and A(M; D) ∈ [0, 1] the average exact-match accuracy. We define a factoid x to
be familiar to M if A(M; {x}) = 1 and unfamiliar otherwise. An unfamiliar dataset consists entirely of
unfamiliar facts.

Continual memorization. We now describe the setting of continual memorization, which consists of two
or more stages. We describe the setting with two stages below. Let DA ∈ Dfact be a factoid dataset, and
DB ∈ D be another dataset (factoid or non-factoid). In the first stage, a pretrained model M0 is trained
on DA until convergence to obtain the trained model MA with near-zero loss L(θA; DA) ≈ 0 and accuracy
A(MA; DA) ≈ 1. In the second stage, MA is further trained on DB until convergence. The resulting
model MB is evaluated on DA to gauge its retention A(MB , DA). In this paper, we consider the case
where all factoid datasets (in the first as well as second stage—if applicable) are unfamiliar and we refer to
them simply as factoid datasets. Typically, one observes A(MB , DA) ≪ A(MA, DA) due to catastrophic
forgetting. Figure 1 illustrates this setting.

2.2 Constructing Factoid Datasets

We consider a variety of (unfamiliar) factoid datasets in our experiments. These datasets are either 1)
constructed synthetically to ensure that they were not seen by the model M0 during pretraining—such as
by generating random key-value mappings, or 2) by filtering factoid datasets to remove familiar instances
(details in § B.8). We further describe the specific choice of datasets for the two stages below.

Stage 1: Factoid dataset DA. Key-Value Recall (KVR): we generate 2, 000 unique key-value pairs, each
contains 8 characters from the mix of alphabets and number digits. PopQA: we sample 2, 000 unfamiliar
knowledge triplets from a set of diverse questions and relationships about long-tail entities (Mallen et al.,
2023). TriviaQA: we sample 2, 000 unfamiliar question-answer pairs from the dataset (Joshi et al., 2017).
See examples in Figure 1 and §B.9.

3



Under review as submission to TMLR

Stage 2: Dataset DB. We explore a wide range of datasets in stage 2 to reflect real-world application
scenarios. Specifically, we consider two types of datasets: factoid and non-factoid. We chose this split
because we want to see how the effect of stage 2 changes from a knowledge-intensive factoid dataset to, e.g.,
a general instruction tuning dataset. Additionally, domain-specific knowledge and instruction-tuning data
represent two of the most common types of data used for supervised fine-tuning—a fact reflected in our
selection of tasks. We explore:

• Factoid datasets: LAMA (Petroni et al., 2019), Entity Questions (Sciavolino et al., 2021), WebQA
(Berant et al., 2013). In addition, we also explore adding new (and unfamiliar) examples from the
distribution of DA (i.e., the same task as in stage 1) referred to as the “In-Domain” (ID) datasets
in our results.

• Non-factoid datasets: UltraChat (Ding et al., 2023), EvolCode (Luo et al., 2023b), APPS (Hendrycks
et al.), GSM8K (Cobbe et al., 2021), and MATH (Hendrycks et al., 2021b). These datasets exemplify
common non-factoid datasets used for finetuning: chat, code and math.

Training and evaluation. We use Llama-3-8B (Dubey et al., 2024) and Mistral-7B (Jiang et al., 2023)
to initialize M0 in our experiments (both are base models). All of our experiments use the Tulu-v2 prompt
template (Ivison et al., 2023), i.e., "<user>...<assistant>..." for both stages. We provide training
details in §B.8. Our accuracies are computed as Exact String Match and normalized to [0, 100] for all the
experiments, as the tasks only need to generate a few tokens. We report averaged accuracy across 3 runs.

3 How Do Models Forget Factoids?

3.1 Understanding the Forgetting Patterns

DB: Factoid DB: Non-Factoid
DA ID LAMA EQ WQ Avg GSM8K MATH EC APPS UC Avg
KVR 0.5 2.1 17.4 33.8 13.5 24.4 27.3 49.5 26.7 66.6 38.9
PopQA 49.8 7.7 57.8 72.5 47.0 19.0 92.4 77.0 55.1 48.5 58.4
TriviaQA 45.6 4.3 40.5 68.6 39.8 9.4 87.6 54.4 70.4 67.6 57.9

Table 1: Forgetting in continual memorization. Lower accuracies imply more forgetting. All stage 1 datasets
are trained to 100% accuracy before stage 2 training. The lowest accuracy in each row is underlined, and
“ID” signifies that we use unseen examples from DA to form the dataset in the second stage (DB). We
see that factoid datasets cause greater forgetting than non-factoid datasets when used in stage 2. (EQ =
EntityQA, WQ = WebQA, EC = EvolCode, and UC = UltraChat.)

We first establish the forgetting patterns in continual memorization by examining which intervening tasks
affect the final accuracy most severely when trained on in the second stage. Table 1 shows the performance
degradation of stage 1 tasks after training on stage 2 tasks. We observe that forgetting is most severe when
stage 2 is also a factoid dataset, degrading accuracy for KVR to 13.5%, PopQA to 47.0%, and TriviaQA
to 39.8% on average. In fact, with LAMA these accuracies fall to 2.1%, 7.7% and 4.3% respectively—far
below the numbers seen with non-factoid datasets. This corroborates findings from the continual learning
literature which suggest catastrophic forgetting happens when two tasks are similar and therefore causing
interference (Farajtabar et al., 2020; Bennani et al., 2020; Doan et al., 2021). In general, non-factoid datasets
see a lesser effect except GSM8K.

3.2 Replay Does Not Mitigate Forgetting Fully
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Figure 2: Replay results averaged
across all DB for four mixing ratios.

Replay-based methods mitigate forgetting by sampling a small por-
tion of data from earlier stages and mixing it with the subsequent
dataset during training. Replay from past experience has been a
long-established mitigation to prevent forgetting in reinforcement
learning research (e.g. Mnih et al., 2013) and more recently con-
tinual pretraining for LMs. Although replay-based methods have
proven helpful for continual learning, we hypothesize that they will
be less effective for tasks requiring memorization, as the individual
instances are largely unrelated (Feldman, 2020; Yang et al., 2023).
Figure 2 shows that although replay reduces forgetting across the
board, the effectiveness is not uniform. Replay has less success to
avoid forgetting than non-factoid (full results in §B.4). The experi-
ments suggest that manipulating the training dynamics such as exposing the model to different distributions
can affect the model’s ability to recall factoids, even when the replayed factoids are individually independent
from other factoids in the same stage.

4 REMIX: Random and Generic Data Mixing

4.1 Method

No Mixing
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Figure 3: Intuition behind each mixing strategy. In general, forgetting occurs when ∇L(θ; DA)T ∇L(θ; DB) <
0 (angle between red and blue arrows larger than 90 degree). The model goes from θ0 to θA in stage 1 (gray
arrow), and arrives at θB in stage 2 (blue arrow). The translucent blobs represent low-loss region for each
dataset. No Mixing: the opposing angle between the red and blue arrows contributes to forgetting. Mixing
at Stage 1: the mixing data DM protects memorization by shifting the model parameters to reduce the
angle between the red and blue arrows while converging to a low loss on DA. Mixing at Stage 2: mixing
data DM reduces the interference of DB by lowering the angle between blue and red arrows.

Despite the shortcomings of replay, we make one key observation: when mixing only 10% of the factoids used
in stage 1, the accuracy increases after learning non-factoid data in stage 2 from no mixing at 40.1% to 83.9%
(Table 9). This implies the existence of associations that were stored in model weights but could not be
retrieved effectively. It is then prudent to ask if these “hidden” associations can be surfaced with a different
choice of mixing data. To answer this question, we propose Random and Generic Data Mixing (REMIX),
a data mixing strategy that manipulates the memorization dynamics during training to prevent forgetting.
The mixing data is sampled from either random word sequences or generic text such as pretraining corpora,
which has no overlap with the factoids aiming to memorize in stage 1. Figure 3 illustrates the intuition
behind the mixing strategies.

For the purpose of developing intuition, we take the simplification to assume the entire optimization is
captured by the one-step gradient update. The model M0 first progresses to θA at stage 1 with update:
θA = θ0 − η∇L(θ0; DA). Similarly, the model θA progresses to θB at stage 2: θB = θA − η∇L(θA; DB).
In a regular forgetting scenario, the increase in loss after stage 2 is L(θB ; DA) − L(θB ; DA), and can be
expanded into (θB − θA)T ∇L(θA; DA) + R = −η∇L(θ; DA)T ∇L(θ; DB) + R where R is the higher-order
terms. The first term contributes to forgetting when the two gradients ∇L(θ; DA) and ∇L(θ; DB) point
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to opposing directions. With REMIX, DM is mixed into the two stages to prevent forgetting. Specifically,
the model progresses in stage 1: θ′

A = θ0 − η∇L(θ0; DA ∪ DM ) if mixed with DM and progresses to θ′
B =

θ′
A − η∇L(θ0; DB ∪ DM ′) if mixes with DM ′ . REMIX becomes effective when L(θ′

B ; DA) < L(θB ; DA).

At stage 1, the mixing data can teach the model to diversify where to store the knowledge, resulting in a
better starting position in the parameter space for stage 2 training (smaller angle between ∇L(θ; DA) and
∇L(θ; DB)), achieving better protection of the memorized factoids. At stage 2, the mixing data can rotate
the direction of ∇L(θ; DB) to align with ∇L(θ; DA), thus reduces the interference on the memorized factoids
from stage 2 training; if the two gradients are in extreme opposing directions, it becomes easier for the
mixing data to align them. We provide derivations to concretize the intuition in §A.3. Based on the above
insight, we posit: 1) mixing at stage 1 mitigates forgetting most when the mixing data is unrelated to both
DA and DB , and 2) mixing at stage 2 is most effective if the forgetting is severe, and is more effective when
DM aligns with DA.

REMIX datasets DM . We explore three data sources for generic data mixing: 1) Knowledge Pile (Fei
et al., 2024), 3) Arxiv Pile (Gao et al., 2020), and 4) Fineweb (Penedo et al., 2024). We construct the
Random Word Sequence data by collecting a set of uniformly sampled 50 random word sequences from the
NLTK Word Corpus (Bird et al., 2009). We check and ensure no overlap between the factoid data and the
mixing data (see details in §B.10). When applying REMIX, we add the mixing data directly to DA in stage
1 and DB in stage 2. Therefore, the model trains on more data at each stage with mixing. We use Random
Word Sequence and Knowledge Pile as the main datasets in the following experiments and later show that
other mixing datasets show similar trends. We use DA : DM = 1 : 2 and DB : DM = 1 : 2 for the main
experiments.

Factoid Non-Factoid
ID LAMA EQ WQ Avg GSM8K MATH EC APPS UC Avg

Key-Value Recall
No Mixing 0.5 2.1 17.4 33.8 13.5 24.4 27.3 49.5 26.7 66.6 38.9
Random / - 8.9 2.5 42.5 61.4 28.8 64.1 75.9 85.3 75.0 89.1 77.9
K-Pile / - 0.1 0.0 3.2 30.1 8.4 47.3 58.4 62.2 19.0 74.3 52.2
- / Random 0.2 0.1 2.9 5.3 2.1 15.1 11.7 33.8 16.5 66.8 28.8
- / K-Pile 0.8 40.0 36.4 33.9 27.8 12.8 8.8 40.5 16.8 70.2 29.8
Random / K-Pile 10.6 62.4 69.5 70.2 53.2 45.8 45.4 74.7 51.2 86.8 60.8
PopQA
No Mixing 49.8 7.7 57.8 72.5 47.0 19.0 92.4 77.0 55.1 48.5 58.4
Random / - 62.0 17.7 69.3 65.8 53.7 51.4 89.3 82.7 81.8 66.0 72.2
K-Pile / - 24.0 2.8 11.3 31.8 17.5 46.4 92.7 94.0 87.2 90.9 82.2
- / Random 35.7 5.2 38.1 45.9 31.2 16.8 93.5 87.5 59.3 70.7 65.6
- / K-Pile 86.6 90.8 93.9 74.4 86.4 25.9 94.0 92.4 73.9 74.7 72.2
Random / K-Pile 82.6 85.8 90.7 80.5 84.9 38.5 88.7 88.3 79.2 74.4 73.8
TriviaQA
No Mixing 45.6 4.3 40.5 68.6 39.8 9.4 87.6 54.4 70.4 67.6 57.9
Random / - 64.9 8.1 60.0 70.8 51.0 27.1 84.9 71.2 87.3 70.8 68.3
K-Pile / - 9.4 0.9 3.8 21.0 8.8 31.9 82.9 93.5 90.7 90.1 77.8
- / Random 25.0 5.5 19.9 38.8 22.3 4.1 81.0 84.0 62.2 71.6 60.6
- / K-Pile 90.8 90.1 91.5 89.8 90.6 2.8 79.1 75.9 53.7 69.8 56.3
Random / K-Pile 90.2 89.2 89.6 86.5 88.9 12.5 81.8 71.2 74.6 70.0 62.0

Table 2: REMIX results for Llama-3-8B with the combinations of DA, DB , and DM . No Mixing denotes the
original two-stage training without applying REMIX. Each DM1 / DM2 row represents mixing with DM1 in
stage 1 and mixing with DM2 in stage 2. “-” indicates no mixing at that stage. All numbers are in accuracy
and averaged across three runs. (EQ = EntityQA, WQ = WebQA, EC = EvolCode, and UC = UltraChat.)

4.2 Results

Factoid tasks. Table 2 shows the results of factoid tasks with Llama-3-8B. We observe that mixing
Random Word Sequences prevents forgetting across the board, improving average accuracy for all DA,
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improving Key-Value Recall (13.5% → 28.8%), PopQA (47.0% → 53.7%), and TriviaQA (39.8% → 51.0%).
On the other hand, mixing Knowledge Pile at stage 1 hurts the performance. Mixing at stage 2 shows
an opposite trend. We observe drastically better performance with mixing Knowledge Pile, improving
the average accuracy for Key-Value Recall (13.5% → 27.8%), PopQA (47.0% → 86.4%), and TriviaQA
(39.8% → 90.6%). In contrast, mixing Random Word Sequence at stage 2 exacerbates forgetting. The
results align with our prediction that stage 1 mixing relies on data that is unrelated to either DA or DB ,
while stage 2 mixing benefit most when forgetting is severe and the mixing data aligns with DA.

Non-factoid tasks. Figure 2 shows that the model exhibits consistent results after training on non-factoid
data at stage 2. We observe that stage 1 mixing is more beneficial than stage 2 mixing across the board.
However, the best mixing data varies for different DA. KVR benefit most from mixing Random Word
Sequence at stage 1 (38.9% → 77.9%), while Knowledge Pile benefit most on PopQA (58.4% → 82.2%) and
TriviaQA (57.9% → 77.8%).

Applying mixing at both stages. Based on the observation that mixing with Random Word Sequence
at stage 1 and mixing Knowledge Pile at stage 2 individually benefit memorization intensive tasks, we
examine if the two stages can be combined. Figure 2 shows the that the combination outperforms individual
stage mixing, demonstrating the possibility of composing mixing strategies. We also provide stage 2 task
performance in §B.2.

Mistral results. We report REMIX results for Mistral in Table 3 (full results in §B.3). For KVR, REMIX
can successfully prevent forgetting and improve performance after stage 2 training on factoid data (15.0% →
43.5%). REMIX’s advantage are less pronounced since the No Mixing baselines are not affected by forgetting
too severely.

LAMA EntityQA WebQA Avg

KVR No Mixing 0.1 15.4 29.6 15.0
Random / K-Pile 47.5 44.1 39.0 43.5

PopQA No Mixing 66.9 92.3 89.6 82.9
Random / K-Pile 90.5 92.3 89.0 90.6

TriviaQA No Mixing 71.6 86.4 91.5 83.2
Random / K-Pile 77.0 81.5 83.1 80.5

Table 3: REMIX results for Mistral-7B-v0.3 on Factoid benchmarks. We compare the No Mixing baseline
to REMIX that mixes with Random Word Sequence at stage 1 and mixes with Knowledge Pile at stage 2.
(EQ = EntityQA, WQ = WebQA.) We provide the complete results in §B.3

Comparison to other baselines. We compare with three other representative baselines against REMIX
Table 4: 1) weight regularization Kirkpatrick et al. (2017), 2) behavior regularization Sun et al. (2020),
and 3) parameter expansion (von Oswald et al., 2020). We use Elastic Weight Consolidation (EWC) for
weight regularization and calculate the Fisher score using one backward pass using the current mini-batch for
training. For behavior regularization, we add the KL between the training model vs the original reference
model to the loss. We provide the parameter expansion based baseline using LoRA adaptors (Hu et al.,
2022). We randomly select parameters to train and do not explicitly avoid overlapping of the stage 1 and
stage 2 tunable parameters. We observe that the weight regularization baseline and behavior regularization
baselines lags behind REMIX by a large margin (40% on KVR, 30% on PopQA, and 40% on TriviaQA).

5 Analysis

Robust memorization learns factoids in earlier layers. We use Logit Lens (nostalgebraist, 2020) to
decode the top 10 tokens from the representations at each layer using the output embedding. We record
the layer index of the first occurrence of the correct token, referred to as layer of first occurrence (LoF).
LoF is then normalize by the total number of occurrences. This measure indicates how early the correct
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LAMA EntityQA WebQA Avg
KVR
No Mixing 2.1 17.4 33.8 17.8
REMIX (Random / K-Pile) 62.4 69.5 70.2 67.4
Weight Regularization 0.1 4.3 76.7 27.3
Behavior Regularization 0.2 15.6 36.6 17.5
Parameter Expansion 52.3 52.2 68.8 57.8
PopQA
No Mixing 7.7 57.8 72.5 46.0
REMIX (Random / K-Pile) 85.8 90.7 80.5 85.7
Weight Regularization 12.1 67.4 76.7 52.1
Behavior Regularization 7.5 59.3 55.5 40.7
Parameter Expansion 83.0 84.3 80.0 82.4
TriviaQA
No Mixing 4.3 40.5 68.6 37.8
REMIX (Random / K-Pile) 89.2 89.6 86.5 88.4
Weight Regularization 7.9 58.5 80.3 48.9
Behavior Regularization 6.8 39.0 71.0 38.9
Parameter Expansion 80.7 86.6 83.0 83.4

Table 4: Comparison of REMIX to the weight regularization, behavior regularization, and parameter expan-
sion baselines with the factoid datasets at stage 2.
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LoF Mean LoF STD Acc
KVR
No Mixing 26.8 15.9 40.6
REMIX (R/K-Pile) 25.9 21.6 80.0
PopQA
No Mixing 23.5 5.1 73.0
REMIX (R/K-Pile) 22.1 5.0 91.0
TriviaQA
No Mixing 24.2 4.7 68.0
REMIX (R/K-Pile) 22.6 5.0 92.0

Figure 4: Left: probing on Key-Value Recall using Logit Lens. x-axis: layer index. y-axis: the normalized
frequency of the correct token occurring in the top-10 tokens probed at each layer. % following each legend
shows the accuracy on each stage 1 task. Right: layer of first occurence (LoF) aggregated over 100 examples.
The mean, standard deviation and overall accuracy on KVR, PopQA and TriviaQA. Lower mean in LoF
and higher STD correlates with better performance.

token first appears. In Figure 4 (left), we compare 1) No Mixing, 2) Random / K-Pile which successfully
prevents forgetting, and 3) K-Pile / None which suffers from forgetting for KVR. We notice two main
differences between the two runs – first, the successful run moves the knowledge to an earlier layer, whereas
the unsuccessful one does not change where the factoids are stored. The successful run also diversifies the set
of layers that are used. We aggregate the mean and standard deviation of LoF over 100 examples in Figure 4
(right). The results corroborates with our intuition: the model protecting the factoids from interference
when the knowledge is stored earlier (lower mean) and diversified (larger STD) in the layers.

REMIX enables better knowledge manipulation. Recent works have shown that manipulating
learned knowledge is challenging especially during fine-tuning (Allen-Zhu & Li, 2024a;b). We design two
templates to evaluate: 1) Selective Recall and 2) Recall & Manipulate. For selective recall, the model that has
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memorized the factoids “X: A, Y: B” needs to answer the question “Here are two keys: X and Y. What
is the value of the first key?” with A. For recall & manipulate, the model that has memorized the
factoid “XYZ: ABC” needs to answer the question “If the first character in the value of key XYZ
is changed to Q, what is the new value of key?” with “QBC”. We show in Table 5 that even though
knowledge manipulation remains extremely hard for fine-tuning, REMIX still enables better manipulation
of learned knowledge than no mixing, especially on the selective recall template.

Selective Recall Recall & Manipulate
Factoid Non-Factoid Factoid Non-Factoid

No Mixing 0.7 8.6 0.2 1.3
REMIX (R/-) 1.9 29.1 0.8 2.3
REMIX (R/K-Pile) 11.2 8.8 3.4 1.8

Table 5: Knowledge manipulation accuracy on KVR. R = Random Word Sequence. KP = Knowledge Pile.
REMIX improves knowledge manipulation over No Mixing.

Can REMIX go beyond two stages? We test REMIX after more training stages to assess the effec-
tiveness going beyond the main two-stage setting. Figure 5 shows the accuracy of the Key-Value Recall
task when trained on the combination of WebQA, EntityQA, MATH, and UltraChat. We observe a severe
degradation when the two consecutive stages are both memorization-intensive. When the two following data
are both factoid tasks, the No Mixing baseline is able to retain 37.0% accuracy. In contrast, REMIX can
largely enhance the model’s ability to retain knowledge, and is robust after two stages of training, leading
at least 30% accuracy above the baseline across the board.
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B=WebQA / C=EntityQA B=WebQA / C=Math
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Figure 5: 3-stage continual memorization setting. B = ∗ refers to the stage 2 task, and C = ∗ refers to
the stage 3 task. y-axis refers the accuracy (%) on Key-Value Recall. We use Random mixing at stage 1,
K-Pile mixing at stage 2 for WebQA, No Mixing at stage 2 for UltraChat (UC), K-Pile mixing at stage 3
for EntityQA, and No Mixing for MATH at stage 3.

Other ablation and analysis. We provide extensive ablations and analysis on the effects of different
mixing data, mixing data lengths, ablation of mixing ratio, and REMIX’s impact on downstream tasks
in §B.7.

9



Under review as submission to TMLR

6 Related Work

Continual learning. Continual learning has been the subject of investigation since early research on
connectionist models, which identified catastrophic forgetting as a fundamental challenge (McCloskey &
Cohen, 1989; Ratcliff, 1990). Many methods have proposed for mitigating forgetting in continual learning.
The simplest approach involves maintaining a memory of examples from previous tasks and replaying them
during subsequent training (e.g. Robins, 1995; Chaudhry et al., 2019; Shin et al., 2017). Other methods
involve regularization techniques that preserve important weights (e.g. Kirkpatrick et al., 2017; Ke et al.,
2023) or reduce the divergence between model predictions (Li & Hoiem, 2017). One group of methods
project the gradient for a new task to be orthogonal to the gradients from previous tasks, with the aim of
reducing interference between tasks (Lopez-Paz & Ranzato, 2017; Farajtabar et al., 2020). A number of
studies have attempted to characterize the relationship between task similarity and forgetting, empirically
and theoretically (Ramasesh et al., 2021; Lee et al., 2021; Evron et al., 2022). In this paper, we restrict the
class of approaches to those that do not change model weights, e.g., via regularization.

Memorization and forgetting in LMs. In the context of LMs, many prior works have investigated the
factors that influence memorization during pre-training (Tirumala et al., 2022; Carlini et al., 2023; Mallen
et al., 2023; Jagielski et al., 2023). In particular, prior work has observed that instruction tuning can lead to
some degradation on general NLP tasks, which has been called an “alignment tax” (Ouyang et al., 2022; Bai
et al., 2022). Ouyang et al. (2022) find that this alignment tax can be partly mitigated by mixing pre-training
data into the alignment data, and Luo et al. (2023a) find that LMs forget less when the instruction-tuning
data is more diverse. Kotha et al. (2024) find that fine-tuning LMs leads to bigger performance degradation
on tasks that are more similar to the fine-tuning task (as measured by likelihood under the learned fine-tuning
distribution). See Shi et al. (2024) and Wu et al. (2024) for more extensive surveys of continual learning in
the context of LMs.

Fine-tuning on unfamiliar facts. Our work builds on several recent observations about the effect of
fine-tuning an LM on unfamiliar facts. Kang et al. (2024) find that fine-tuning LMs on unfamiliar examples
(questions that the LM cannot answer correctly via few-shot prompting) lead the model to “hallucinate”
plausible-sounding but incorrect answers to unfamiliar test examples. Similarly, Gekhman et al. (2024) find
that unknown examples take longer to learn, and learning unknown examples leads to more hallucination.
These studies highlight the difficulty of encoding new facts into a model during fine-tuning. Instead of
directly learning the facts, Jang et al. (2022) and Seo et al. (2024) study the setting where the facts are
embedding in the corpora and need to be learned continually. Yang et al. (2024) propose to address this
challenge by generating synthetic data for continual pretraining. This approach can be motivated by mecha-
nistic studies (Allen-Zhu & Li, 2024a;b), which have found that knowledge extraction is possibly only when
information appears in diverse forms in the training data (e.g. paraphrases), which leads models to encode
information more effectively for later extraction.

Model editing and unlearning. Our work is also related to a line of research aimed at explicitly modify-
ing facts that are encoded in an LLM—for example, to update information about entities to reflect changes
in the world (e.g. Zhu et al., 2020; Mitchell et al., 2022; Meng et al., 2022; 2023). Studies have shown that
these methods can update individual facts, but do not lead to consistent changes about all of the implications
of these updates (Zhong et al., 2023; Cohen et al., 2024). A related line of work has investigated whether
specific information can be deliberately removed from neural networks (e.g. Graves et al., 2021; Zhang et al.,
2023). Our focus in this paper is on introducing new information while retaining existing knowledge, rather
than modifying or erasing existing knowledge.

7 Conclusion

In this paper, we formalize finetuning a language model with factual knowledge in the continual memorization
framework. In contrast to continual learning, which focuses on general capability, we focus on the specific
challenges inherent to finetuning to memorize knowledge. Through careful experiments, we establish that
finetuning on factoid data causes the most severe forgetting on the memorized factoids from previous stages

10



Under review as submission to TMLR

of finetuning. We then evaluate experience replay methods that are often used in continual learning and
find that they do not satisfactorily revive forgotten factoids. To address the issue of forgetting, we propose
a surprisingly effective strategy REMIX. By mixing random word sequences or generic pretraining data into
different stages of training, REMIX outperforms replay-based methods and other baselines in our experiments
despite not using any factoids from the original set in its mixing process. Finally, we analyze REMIX using
Logit Lens and ablation studies to find that it teaches the model tochange where it stores facts—moving
it to earlier layers or diversifying the knowledge storage location. Studying the continual memorization
problem opens up many new directions for future research. For example, future work may explore REMIX
and similar approaches to ensure that safety-tuning is not easily undone by further finetuning. Its efficacy
poses interesting questions about the dynamics of memorization in language models, which we are excited
to see investigated in future work.
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A Derivations for Forgetting, Replay, and REMIX

A.1 Forgetting in Continual Memorization

We give a formulation of when forgetting happens and how random and generic data mixing (REMIX) can
mitigate forgetting.

We aim to analyze how mixing data during training affects memorization. Assume access to the mixing
dataset DM while learning either DA or DB – training on D′

A = DA ∪ DM at stage 1 and converges to θ′
A

or D′
B = DB ∪ DM at stage 2 and converges to θ′

B . Our goal is to examine under what condition does the
following occur:

L(θB ; DA) > L(θ′
B ; DA),

which means that through mixing, the final model θ′
B achieves a lower loss under DA than θB .

We can track the progression of the model with the following stages:

θA = θ0 − η∇L(θ0; DA) (Stage 1; no mixing)
θB = θA − η∇L(θA; DB) (Stage 2; no mixing)

Note that this is a simplification of the actual optimization process as the local one-step gradient is possible
to point to a different direction as the final parameter difference (θA −θ0). We use ∇L(θ; D) to represent the
conceptual overall direction for model θ to point to the low loss region of data D. The goal can be expressed

15



Under review as submission to TMLR

as the difference:

∆ = L(θB ; DA) − L(θ′
B ; DA)

=
(

L(θA; DA) + (θB − θA)T ∇L(θA; DA) + R1︸ ︷︷ ︸
Higher-Order Terms

)
−

(
L(θ′

A; DA) + (θ′
B − θ′

A)T ∇L(θ′
A; DA) + R2︸ ︷︷ ︸

Higher-Order Terms

)
=

(
L(θA; DA) − η∇L(θA; DB)T ∇L(θA; DA)

)
−

(
L(θ′

A; DA) − η∇L(θ′
A; DB ∪ DM )T ∇L(θ′

A; DA)
)

+ (R1 − R2)

= L(θA; DA) − L(θ′
A; DA)︸ ︷︷ ︸

∆1

+ η
(

∇L(θ′
A; DB ∪ DM )T ∇L(θ′

A; DA) − ∇L(θA; DB)T ∇L(θA; DA)
)

︸ ︷︷ ︸
∆2

+ (R1 − R2)︸ ︷︷ ︸
∆3

We assume that the first two terms ∆1, ∆2 as the main source contributing to forgetting and ignore the
higher-order terms.

A.2 Replay

In the replay scenario, the mixing data DM is a subset of DA. We denote the r% subset of DA as Dr
A. With

DM = Dr
A, we can assert that ∆1 ≈ 0 since the converged model should obtain the same loss under DA and

DA ∪ Dr
A. The second term ∆2 = ∇L(θ′

A; DB ∪ Dr
A)T ∇L(θ′

A; DA) − ∇L(θA; DB)T ∇L(θA; DA) > 0.

∆2 = ∇L(θ′
A; DB ∪ Dr

A)T ∇L(θ′
A; DA) − ∇L(θA; DB)T ∇L(θA; DA)

≈
(

∇L(θ′
A; DB ∪ Dr

A) − ∇L(θA; DB)
)T

∇L(θA; DA)

> 0

A.3 REMIX

Mixing at stage 1: D′
A = DA ∪ DM . ∆1 ≈ 0 due to convergence in either no mixing or mixing training

scenarios. We turn to analyzing ∆2. The term ∇L(θ′
A; DA) ≈ ∇L(θA; DA)+HA(θ′

A−θA) and ∇L(θ′
A; DB) ≈

∇L(θA; DB) + HB(θ′
A − θA), where HA is the Hessian of ∇L(θ; DA) at θ = θA, and HB is the Hessian of

∇L(θ; DB) at θ = θB . With mixing at stage 1, we have θ′
A = θ0 − η∇L(θ0; DA ∪ DM ), which gives us
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θ′
A − θA = η(∇L(θ0; DA) − ∇L(θ0; DA ∪ DM )) = −η∇L(θ0; DM ).

∆2 = η
(

∇L(θ′
A; DB)T ∇L(θ′

A; DA) − ∇L(θA; DB)T ∇L(θA; DA)
)

= η

((
∇L(θA; DB) + HB(θ′

A − θA)
)T (

∇L(θA; DA) + HA(θ′
A − θA)

)
− ∇L(θA; DB)T ∇L(θA; DA)

)
= η

((
∇L(θA; DB) + HB(−η∇L(θ0; DM ))

)T (
∇L(θA; DA) + HA(−η∇L(θ0; DM ))

)
− ∇L(θA; DB)T ∇L(θA; DA)

)
= −η2∇L(θA; DB)T HA∇L(θ0; DM ) − η2∇L(θA; DA)T HB∇L(θ0; DM )

+ η3∇L(θ0; DM )T HBHA∇L(θ0; DM )

We analyze the three terms under the assumption that HA, HB , and HBHA are positive semi-definite. If
the distributions for DM and DB are uncorrelated, then in expectation E[∇L(θA; DB)T HA∇L(θ0; DM )] = 0.
Similar case for DM and DA. And the last term will be positive, contributing to ∆2 and thus mitigate
forgetting. Note that the norm ||∇L(θ0; DM )|| and the eigenvalues of the Hessians HA and HB are not
bounded, which may be large and compensate for the leading η3. If we assume that mixing DM does
not drift the parameters away too far, making ||∇L(θ′

A; DB) − ∇L(θA; DB)||22 < L1, and ||∇L(θ′
A; DA) −

∇L(θA; DA)||22 < L2, where L1, L2 ∈ R, we can expect the contribution to the ∆2 term comes from the
change in the angle.

Mixing at stage 2: D′
B = DB ∪ DM . With no mixing in stage 1, we have A′ = A. Therefore, the first

term ∆1 = L(θA; DA) − L(θ′
A; DA) = 0 since D′

A = DA. We can also express:

∆2 = η
(

∇L(θA; DB ∪ DM )T ∇L(θA; DA) − ∇L(θA; DB)T ∇L(θA; DA)
)

= η
(

β1∇L(θA; DB)T ∇L(θA; DA) + β2∇L(θA; DM )T ∇L(θA; DA)

− ∇L(θA; DB)T ∇L(θA; DA)
)

= η
(

β1∇L(θA; DM ) − (1 − β2)∇L(θA; DB)
)T

∇L(θA; DA),

where β1, β2 ∈ [0, 1].

Consequentially, the condition for forgetting mitigation requires ∇L(θA; DM )T ∇L(θA; DA) >
1−β2

β1
∇L(θA; DB)T ∇L(θA; DA). This condition posits that mixing data can reduce forgetting as long as

it aligns with the original data DA more than DB . When DA and DB are already pointing in drastically
opposite directions, making the term ∇L(θA; DB)T ∇L(θA; DA) negative, the mixing has a higher chance to
lower ∆2. On the other hand, if ∇L(θA; DB)T ∇L(θA; DA) is positive, it is harder for mixing to mitigate
forgetting.

B Supplementary Results

B.1 Main Results with Standard Deviation

We provide our main results with error bars over 3 runs in Figure 6 where stage 2 training uses factoid
datasets and Figure 7 where stage 2 training uses non-factoid datasets.
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Figure 6: Accuracies of different combinations of DA (rows) against DB (columns) over 3 seeds on the factoid
datasets. Legends show different mixing combinations MA/MB where MA is the mixing data used in stage
1 and MB is the mixing data used in stage 2. The performance (y-axis) is measured on DA.

B.2 Stage 2 Performance

For factoid datasets, the goal is full memorization of the trained examples. For non-factoid datasets, we
also train to near perfect training accuracy (the overfitting regime) since we aim to assess the maximum
disruption that training can cause. We show the corresponding accuracy in Table 6 of the main paper (for
non-factoid data, we only show the ones where accuracy can be calculated). We show the representative
strategies: No Mixing and Random / -. Results show near perfect accuracy for DB , indicating that learning
does not hinder performance. The only exception is KVR (No Mixing)— this further highlights the benefit
of REMIX in facilitating learning. With REMIX, all training reaches over 95% accuracy.

We also provide test accuracies in Table 7 for the non-factoid datasets where separate test sets are available.
Note that for factoid datasets, each example is an isolated fact to be memorized exactly, therefore the notion
of generalization does not apply. We observe that for KVR, REMIX improves generalization noticeably
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Figure 7: Accuracies of different combinations of DA (rows) against DB (columns) over 3 seeds on the non-
factoid datasets. Legends show different mixing combinations MA/MB where MA is the mixing data used
in stage 1 and MB is the mixing data used in stage 2. The performance (y-axis) is measured on DA.

across all tasks. For PopQA and TriviaQA, REMIX’s generalization ability is close to No Mixing (within 2
point range).

We use only 2000 examples for all datasets during training and deliberately overfit on to induce maximal
forgetting on, so the test performance level is expected. We would like to emphasize that overfitting on
non-factoid is necessary for the purpose of our goal to induce the forgetting pattern in Table 2, which allows
us to stress test retention of DA, or otherwise the forgetting is much less pronounced for non-factoid to begin
with.

B.3 Mistral Results

We report the complete results of Mistral-7B-v0.3 in Table 8.
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LAMA EntQA WebQA GSM8K MATH APPS
KVR (No Mixing) 95.6 99.8 99.3 87.3 74.1 5.4
KVR (Rand / -) 96.0 98.3 99.3 99.4 99.3 98.1
PopQA (No Mixing) 95.1 98.9 98.9 98.8 97.7 95.7
PopQA (Rand / -) 95.6 99.0 98.9 98.9 98.1 95.8
TriviaQA (No Mixing) 95.8 98.7 98.4 98.8 98.3 95.0
TriviaQA (Rand / -) 95.5 98.8 98.9 98.6 98.2 95.8

Table 6: Training set accuracy of DB datasets after stage 2 training. All datasets are trained to full
convergence to induce maximal forgetting in DA.

GSM8K (train/test) MATH (train/test) APPS (train/test)
KVR (No Mixing) 87.3 / 19.1 74.1 / 5.1 5.4 / 0.5
KVR (Rand / -) 99.4 / 27.1 99.3 / 8.4 98.1 / 4.5
PopQA (No Mixing) 98.8 / 27.6 97.7 / 8.5 95.7 / 2.7
PopQA (Rand / -) 98.9 / 26.5 98.1 / 7.1 95.8 / 0.7
TQA (No Mixing) 98.8 / 27.2 98.3 / 8.6 95.0 / 1.2
TQA (Rand / -) 98.6 / 27.4 98.2 / 8.8 95.8 / 2.7

Table 7: Training and test set accuracy of DB datasets after stage 2 training. All datasets are trained to
full convergence to induce maximal forgetting in DA. For KVR and TQA, REMIX improves generalization
over the no mixing baseline.

B.4 Replay Results

We report the full replay results in Table 9. Even though replay reduces more forgetting across the board,
especially when we increase the ratio r, the replay-based method does not effectively mitigate forgetting in
the factoid knowledge dataset.

B.5 Forgetting in Familiar Factoid Instances

We also investigate whether REMIX can retain the memorization of familiar factoid instances after directly
fine-tuning on both factoid and non-factoid data in stage 2. After fine-tuning in stage 2, we evaluated the
familiar instances from the factoid dataset DA. The evaluation results for Llama-3-8B are shown in Table
10, and the results for Mistral-7B-v0.3 are presented in Table 11. We observe that mixing Knowledge-
Pile, Arxiv-Pile, and FineWeb with factoid data in stage 2 helps mitigate the forgetting of familiar factoid
instances for both Llama-3-8B and Mistral-7B-v0.3, aligning with the results in Figure 6.

B.6 Probing Results

B.7 Ablations

Ablating mixing data length. Figure 10 shows the effect of sequence length when using Random Word
Sequences and Knowledge Pile for mixing. We observe that longer Random Word Sequences hurt the
performance, highlighting the risk of incorporating wildly out of distribution data. On the other hand,
Knowledge Pile also saturates after 50 words, indicating the limits of the generic data. The ablation also
affirms that the role of the mixing data serves as a way to manipulate the memorization dynamics as opposed
to provide extra information.

Effect of mixing ratio. We show in Figure 11 the model’s KVR performance under varying mixing ratio
across all stage 2 tasks. We observe that stage 2 mixing is particularly sensitive to the increase of mixing
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Factoid Non-Factoid
LAMA EQ WQ Avg GSM8K MATH EC APPS UC Avg

Key-Value Recall
No Mixing 0.1 15.4 29.6 15.0 4.8 1.5 12.7 13.1 51.9 16.8
Random / K-Pile 47.5 44.1 39.0 43.5 60.1 39.1 52.9 54.8 81.0 57.0
PopQA
No Mixing 66.9 92.3 89.6 82.9 96.9 96.8 96.9 96.9 96.7 96.8
Random / K-Pile 90.5 92.3 89.0 90.6 91.7 91.6 91.8 91.9 91.3 91.7
TriviaQA
No Mixing 71.6 86.4 91.5 83.2 4.8 99.0 95.9 79.9 97.0 75.3
Random / K-Pile 77.0 81.5 83.1 80.5 1.6 91.1 95.3 97.7 90.7 75.3

Table 8: REMIX results for Mistral-7B-v0.3. We compare the No Mixing baseline to REMIX that mixes
with Random Word Sequence at stage 1 and mixes with Knowledge Pile at stage 2. (EQ = EntityQA, WQ
= WebQA, EC = EvolCode, and UC = UltraChat.)

LAMA EntityQA WebQA GSM8K Math EvolCode Apps UltraChat
Key-Value Recall
Replay (r = 0.00) 2.2 17.5 34.1 26.4 27.5 50.0 30.0 66.7
Replay (r = 0.01) 13.7 37.1 54.2 71.0 69.7 73.2 73.8 81.9
Replay (r = 0.05) 6.3 45.8 72.6 77.0 75.9 76.7 80.1 88.9
Replay (r = 0.1) 13.2 33.3 78.2 80.3 85.0 76.5 86.7 91.1
PopQA
Replay (r = 0.00) 15.7 64.3 78.6 33.6 93.5 80.5 63.2 53.7
Replay (r = 0.01) 12.0 66.0 75.3 94.4 95.1 95.7 90.8 87.6
Replay (r = 0.05) 27.4 64.4 84.5 95.9 95.2 95.4 95.9 95.3
Replay (r = 0.1) 46.6 64.0 83.8 96.1 96.0 95.7 96.3 95.7
TriviaQA
Replay (r = 0.00) 7.8 48.4 76.8 57.6 91.0 59.5 75.6 73.5
Replay (r = 0.01) 7.5 51.8 72.0 66.8 90.6 93.3 74.2 84.0
Replay (r = 0.05) 25.7 57.0 77.8 88.9 94.0 93.7 94.4 92.0
Replay (r = 0.1) 34.9 57.9 80.7 93.0 95.5 95.4 95.2 93.0

Table 9: Replay accuracy on DA (rows) after training on the unfamiliar factoid and non-factoid datasets
DB (columns) at four replay ratios [0.0, 0.01, 0.05, 0.1]. Lowest number among the compared rations are
underlined. The results are based on Llama-3-8B.

ratio. On the other hand, stage 1 mixing enjoys less decrease or even increase in performance as the mixing
ratio go up, suggesting a different memorization dynamics than stage 1.

Impact on downstream performance. Intuitively, adding random word sequences might risk disrupting
capabilities in other domains. We evaluate the model’s performance on MMLU Hendrycks et al. (2021a)
shown in Table 12. We observe REMIX maintains better performance across the board compared to no
mixing.

Effect of different mixing data. We investigate how the choice of the mixing data impacts the results
for factoid-tasks. Figure 12 shows no difference between Knowledge Pile and other generic mixing data such
as ArXiv Pile and FineWeb. This affirms that the effectiveness of REMIX does not rely on Knowledge Pile’s
potential distributional overlap with memorization-intensive tasks.
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LAMA EntityQA WebQA GSM8K Math EvolCode Apps UltraChat
PopQA
No Mixing 27.3 24.4 39.1 13.0 18.3 36.3 7.4 46.9
K-Pile 56.0 52.1 46.6 4.1 4.8 19.5 10.3 15.8
A-Pile 65.1 60.4 52.7 9.2 3.2 26.5 21.8 19.3
Random 24.9 27.9 29.1 7.5 6.0 25.4 2.8 18.4
FineWeb 54.9 54.4 51.3 6.6 5.2 29.1 30.0 18.4
TriviaQA
No Mixing 16.5 20.7 40.4 24.7 26.7 52.9 21.9 56.6
K-Pile 55.9 57.5 50.3 11.0 6.8 28.4 20.9 23.4
A-Pile 66.4 65.9 56.6 13.0 2.8 34.8 33.5 25.8
Random 14.4 26.5 26.5 14.0 7.5 21.8 13.4 27.5
FineWeb 56.6 57.6 52.6 13.0 6.0 38.9 56.9 17.7

Table 10: Accuracy on the familiar factoid datasets (rows) after training on the non-factoid datasets
(columns) with different mixing data (mixed at stage 2). The results are based on Llama-3-8B.

LAMA EntityQA WebQA GSM8K Math EvolCode Apps UltraChat
PopQA
No Mixing 55.5 47.1 68.0 14.5 42.8 25.9 18.4 38.9
K-Pile 75.8 77.1 76.1 28.1 20.9 19.9 18.3 14.2
A-Pile 78.2 79.0 77.6 28.1 20.9 19.9 18.3 14.2
Random 52.7 53.8 62.6 28.1 20.9 19.9 18.3 14.2
FineWeb 75.0 74.4 75.1 28.1 20.9 19.9 18.3 14.2
TriviaQA
No Mixing 61.6 56.9 69.3 19.6 54.3 36.7 21.2 18.6
K-Pile 79.1 79.6 73.9 29.3 20.8 20.6 20.7 18.6
A-Pile 81.3 81.8 76.3 29.3 20.8 20.6 20.7 18.6
Random 60.8 58.0 64.0 29.3 20.8 20.6 20.7 18.6
FineWeb 78.8 80.0 73.7 29.3 20.8 20.6 20.7 18.6

Table 11: Accuracy on the familiar factoid datasets (rows) after training on the non-factoid datasets
(columns) with different mixing data (mixed at stage 2). The results are based on Mistral-7B-v0.3.
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Figure 8: Probing of the Key-Value Recall task. x-axis: layer index. y-axis: the normalized frequency of the
correct token occurring in the top-10 tokens probed at each layer.
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Figure 9: Probing of the TriviaQA task. x-axis: layer index. y-axis: the normalized frequency of the correct
token occurring in the top-10 tokens probed at each layer.

KVR PopQA TriviaQA
No Mixing 18.5 19.0 17.5
REMIX (R / K-Pile) 24.1 27.0 21.5

Table 12: Accuracy on MMLU. We compare the No Mixing baseline to REMIX, which mixes with Random
Word Sequence (R) at stage 1 and with Knowledge Pile (K-Pile) at stage 2.

B.8 Training Details

For all experiments with Llama-3-8B, we average the results over three seeds and use a learning rate of
5e-5. For all experiments with Mistral-7B-v0.3, we use a learning rate of 1e-5. For experiments measuring
forgetting of familiar factoid datasets, we use a batch size of 128. For the rest of the experiments, we set the
batch size to 32. Additionally, different stopping conditions are applied for the different factoid datasets: for
the KVR task, we use a fixed number of epochs (20), while for other factoid tasks, training stops when the
loss drops below 0.0001. We provide our training prompt in §B.9.
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Figure 10: y-axis is the accuracy (%) on Key-Value Recall of varying sequence length with the mixing
datasets. Top: Random Word Sequence (mixed at stage 1). Bottom: Knowledge Pile (mixed at stage 2).
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Figure 11: Mixing ratio ablation. x-axis indicates the ratio of the mixing data against the training data.
y-axis indicates the accuracy (%) on Key-Value Recall. The two left-most plots are both stage 2 mixing (S2)
and the right-most two are both stage 1 mixing (S1).

B.9 Dataset Examples and Prompts

We provide examples of the stage 1 factoid datasets DA and the mixing datasets DM . Since stage 2 non-
factoid datasets are standard instruction tuning datasets, we omit these examples in the following sections.

B.9.1 Factoid dataset (DA) Examples

1. Key-Value Recall
Input: The value of key e6395973 is?
Target: 8219acf2

2. PopQA
Input: Question: What is New Lands’s author? The answer is:
Target: Charles Fort

3. TriviaQA
Input: Question: Which city does David Soul come from? The answer is:
Target: Chicago

B.9.2 Mixing data (DM ) Examples

1. Knowledge-Pile
Input: Complete the following partial passage: Processing hyperspectral images
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FineWeb on KVR. y-axis indicates the accuracy (%) on KVR.

allows you to decode images and recognize objects in the scene on the base of
analysis of spectrums. In some problems, information about the spectra may not
be sufficient. In this case, visualization of data sets may use, for object
recognition, by use additional non-formalized external attributes
Target: (for example, indicating the relative position of objects). Target
visualization is a visualization adapted to a specific task of application.
The method discussed in this chapter uses a way to visualize a measure of
similarity to the sample. As a result of the transformation, the hyperspectral
(multichannel) image is converted [...]

2. Arxiv-Pile
Input: Complete the following partial passage: –- abstract: ’The purpose of
this article is to study the problem of finding sharp lower bounds for the norm of
the product of polynomials in the ultraproducts of Banach spaces (Xi)U. We show
that, under certain hypotheses, there is a strong relation between this problem
and the same
Target: problem for the spaces Xi.’ address: ’IMAS-CONICET’ author: - Jorge
Tomás Rodríguez title: On the norm of products of polynomials on ultraproducts
of Banach spaces –- Introduction ============ In this article we study the factor
problem in the context of ultraproducts of Banach spaces. This problem can be
stated as [...]

3. FineWeb
Input: Complete the following partial passage: *sigh* Fundamentalist community,
let me pass on some advice to you I learned from the atheistic community: If you
have set yourself on fire, do not run. Okay? Okay?? Please? Look, D, you had
two months to say to Harvard in private emails, "I’m sorry, I shouldn’t have been
using
Target: that animation in my paid presentations. I wont use it again. I really
do like ’Inner Life’, though, and would love to use it in classroom presentations,
from the BioVisions site, if that is acceptable." I sat here, for two months,
waiting for that to happen, anything to happen, and [...]
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4. Random Word Sequence
Input: Memorize the following random-string passage: pliosaur bismuth
assertoric decentralization emerse redemonstrate sleepwaker Coracias thirstland
Stercorariinae Cytherean autobolide pergamentaceous ophthalmodynamometer
tensify tarefitch educement wime cockneity holotype spreng justiciary unseparate
ascogonial chirimen Styphelia emotivity heller hystazarin unthinkable Corinth
vicianose incommunicative sorcerous lineograph dochmiacal heresiographer
interrenal anes mercal embryogenic swoon diptote funniness unwreathed contection
rhapsodical infolding colorature multifurcate
Target: pliosaur bismuth assertoric decentralization emerse redemonstrate
sleepwaker Coracias thirstland Stercorariinae Cytherean autobolide pergamentaceous
ophthalmodynamometer tensify tarefitch educement wime cockneity holotype spreng
justiciary unseparate ascogonial chirimen Styphelia emotivity heller hystazarin
unthinkable Corinth vicianose incommunicative sorcerous lineograph dochmiacal
heresiographer interrenal anes mercal embryogenic swoon diptote funniness
unwreathed contection rhapsodical infolding colorature multifurcate

B.10 Dataset Details

We examine the strict overlap of knowledge entities between PopQA, TriviaQA, and the generic data used
for mixing. By extracting knowledge entity pairs from the questions and target answers, we calculate the
exact overlap between these pairs. The overlap percentage among PopQA, TriviaQA, and the generic data
is less than 1.3%.
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