
Under review as submission to TMLR

Node Feature Forecasting in Temporal Graphs:
an Interpretable Online Algorithm

Anonymous authors
Paper under double-blind review

Abstract

In this paper, we propose an online algorithm mspace for forecasting node features in1

temporal graphs, which captures spatial cross-correlation among different nodes as well as the2

temporal auto-correlation within a node. The algorithm can be used for both probabilistic3

and deterministic multi-step forecasting, making it applicable for estimation and generation4

tasks. Comparative evaluations against various baselines, including temporal graph neural5

network (TGNN) models and classical Kalman filters, demonstrate that mspace performs6

at par with the state-of-the-art and even surpasses them on some datasets. Importantly,7

mspace demonstrates consistent performance across datasets with varying training sizes, a8

notable advantage over TGNN models that require abundant training samples to effectively9

learn the spatiotemporal trends in the data. Therefore, employing mspace is advantageous10

in scenarios where the training sample availability is limited. Additionally, we establish11

theoretical bounds on multi-step forecasting error of mspace and show that it scales linearly12

with the number of forecast steps q as O(q). For an asymptotically large number of nodes n,13

and timesteps T , the computational complexity of mspace grows linearly with both n, and T ,14

i.e., O(nT), while its space complexity remains constant O(1). We compare the performance15

of various mspace variants against ten recent TGNN baselines and two classical baselines,16

ARIMA and the Kalman filter across ten real-world datasets. Lastly, we have investigated the17

interpretability of different mspace variants by analyzing model parameters alongside dataset18

characteristics to jointly derive model-centric and data-centric insights.19

1 Introduction20

Temporal graphs are a powerful tool for modelling real-world data that evolves over time. They are increasingly21

being used in diverse fields, such as recommendation systems (Gao et al., 2022), social networks (Deng et al.,22

2019), and transportation systems (Yu et al., 2018), to name a few. Temporal graph learning (TGL) can be23

viewed as the task of learning on a sequence of graphs that form a time series. The changes in the graph can24

be of several types: changes to the number of nodes, the features of existing nodes, the configuration of edges,25

or the features of existing edges. Moreover, a temporal graph can result from a single or a combination of26

these changes. The TGL methods can be applied to various tasks, such as regression, classification, and27

clustering, at three levels: node, edge, and graph (Longa et al., 2023).28

In this work, we focus on node feature forecasting, also known as node regression, where the previous temporal29

states of a graph are used to predict its future node features. Forecasting is a fundamental problem in various30

domains, such as weather, finance, and traffic, enabling informed decision-making (Petropoulos et al., 2022),31

and the problem still remains relevant today in light of the advances in machine learning. In the context of32

temporal graphs, node feature forecasting exploits the structure of the evolving network assuming that the33

future value of a node is influenced by its neighbours (Huang et al., 2023).34

In most temporal graph neural network (TGNN) models, the previous states are encoded into a super-state35

or dynamic graph embedding (Barros et al., 2021), guided by the graph structure. This dynamic embedding36

is then used to forecast the future node features. Although TGNN models perform well, their interpretability37

is often overlooked, and their performance is not explained through the data. Furthermore, the relationship38

1

Under review as submission to TMLR

between the node features and the node or graph embeddings is not human-understandable. Furthermore,39

most embedding aggregation mechanisms impose a strong assumption that the neighbours influence a node40

in proportion to their edge weight (Wang et al., 2021).41

TGNN methods (Li et al., 2018; Micheli & Tortorella, 2022; Wu et al., 2019; Fang et al., 2021; Liu et al.,42

2023) typically involve a training phase where the model learns from training data and is then deployed on43

test data without further training due to computational costs. If the test data distribution differs from the44

training data, an offline model cannot adapt (Wang et al., 2024). Therefore, when dealing with time-series45

data, it is crucial to use a lightweight online algorithm that can adapt to changes in data distribution while46

also performing forecasts. Moreover, TGNN models are typically trained to forecast a predetermined number47

of future steps. If we want to increase the number of forecast steps, even by one, the model needs to be48

reinitialized and retrained. Alternatively, the output can be fed back as input to the TGNN, extending the49

forecasting scale of the same model without additional training.50

Inspired by the simplicity of Markov models, we define the state of a graph at a given time in an interpretable51

manner and propose a lightweight model that can be deployed without any training. The algorithm is52

designed with a mechanism to prioritize recent trends in the data over historical ones, allowing it to adapt to53

changes in data distribution.54

Contributions The contributions of our work are summarized as follows:55

• We have proposed an online learning algorithm mspace for node feature forecasting in temporal56

graphs, which can sequentially predict the node features for q ∈ N future timesteps after observing57

only two past node features.58

• The algorithm mspace can produce both probabilistic and deterministic forecasts, making it suitable59

for generative and predictive tasks.60

• The root mean square error (RMSE) of q-step iterative forecast scales linearly in the number of steps61

q, i.e. RMSE(q) = O(q).62

• For asymptotically large number of nodes n, and timesteps T , the computational complexity of63

msapce grows linearly with both n, and T , i.e., O(nT), while the space complexity is constant O(1).64

• We have compared the performance of different variants of mspace against ten recent TGNN baselines,65

and two classical baselines ARIMA, and Kalman filter.66

• We have evaluated mspace on four datasets for single-step forecasting and six datasets for multi-step67

forecasting.68

• In addition to the evaluation on ten real-world datasets, we have proposed a technique to generate69

synthetic datasets that can aid in a more thorough evaluation of node feature forecasting methods.70

The synthetic datasets have the potential to serve as benchmark for future research.71

• We have investigated the interpretability of different mspace variants by analyzing the model72

parameters along with the dataset characteristics to jointly derive model-centric and data-centric73

insights.74

• To facilitate the reproducibility of results, the code is made available here.75

Notation We denote vectors with lowercase boldface x, and matrices and tensors with uppercase boldface76

X. Sets are written in calligraphic font such as V,U ,S, C, with the exception of graphs G, and queues Q.77

The operator ≻ is used in two contexts: x ≻ 0 is an element wise positivity check on the vector x, and A ≻ 078

indicates that the matrix A is positive definite. I(·) is the indicator function, and [m] ≜ {1, 2, · · · , m} for any79

m ∈ N. We denote the distributions of continuous variables by p(·), and of discrete variables by P (·). The80

statement x ∼ p means that x is sampled from p. The Hadamard product operator is denoted by ⊙ while81

the Kronecker product operator is denoted by ⊗. The trace of a matrix A is written as tr(A).82

2

https://anonymous.4open.science/r/mspace-TMLR2

Under review as submission to TMLR

We denote the neighbours of a node v for an arbitrary number of hops as Uv. The neighbours of node v up83

to K number of hops is defined as follows. Let N =
∑

k∈[K] Ak, then Uv = {u : Nv,u > 0,∀u ∈ V}. Since84

Av,v = 1, v ∈ Uv. We introduce the operator ⟨·⟩ to arrange the nodes in a set U in ascending numerical85

order of the node IDs. When another set or vector is super-scripted with ⟨U⟩, the elements within that set or86

vector are filtered and arranged as per ⟨U⟩.87

A Markov chain is represented using Z with different subscripts for identification. The transition kernel of a88

Markov chain is denoted as P with Pa,b representing the probability of transitioning from state a to b.89

Organization In Sec. 2 we formulate the problem of node feature forecasting and also a propose a model90

to solve it. In Sec. 3 we expand upon the solution and present it as an algorithm. We discuss the related91

works in Sec. 4 and present the results on single-step and multi-step node feature forecasting in Sec. 5. In92

Sec. 6 we discuss the interpretability of the proposed algorithm and then discuss the limitations in Sec. 7.93

Finally, we conclude in Sec. 8.94

2 Methodology95

Problem Formulation A discrete-time temporal graph is defined as {Gt = (V, E , Xt) : t ∈ [T]}, where96

V = [n] is the set of nodes, E ⊆ V × V is the set of edges, and Xt ∈ Rn×d is the node feature matrix at time97

t. The set of edges E can alternatively be represented by the adjacency matrix denoted as A ∈ {0, 1}n×n.98

The node feature vector is denoted by xt(v) ∈ Rd such that Xt =
[
xt(v)

]⊤
v∈V , and we refer to the first-order99

differencing (Shumway & Stoffer, 2017) of a node feature vector as shock. For a node v ∈ V we define the100

shock at time t as εt(v) ≜ xt(v)− xt−1(v). The shock of the nodes in an ordered set U at time t is denoted101

by ε
⟨U⟩
t ∈ R|U|d. The shock at time t for an arbitrary set of nodes is εt.102

To address the problem, we make certain assumptions. The first is a Markov assumption, stated as follows:103

Assumption 2.1. The shocks {ε1, ε2, ε3 · · · εT } is assumed to be sampled from a continuous-state Markov104

chain defined on Rmd for some m ∈ [n], such that p (εt+1 | εt, εt−1. · · ·) = p (εt+1 | εt).105

Although the Markov assumption can be extended to higher orders, in this work, we consider only a first-order106

Markov chain, which limits the model’s ability to capture long-range dependencies in the data. In theory, a107

continuous-state Markov chain has infinite number of states which makes it impossible to learn the transition108

kernel from limited samples without additional assumptions. To circumvent this, linear dynamical systems109

and autoregressive models are used in the literature (Barber, 2012) where the next state is determined through110

a function of the current state.111

Let p(ε′ | ε) denote the transition probability ε→ ε′ in a continuous-state Markov chain Z0 defined over a112

set C. A discrete-state Markov chain Z1 defined over finite set S with transition probability Ps,s′ can be113

constructed from p(ε′ | ε) through a mapping1 Ψ : C → S as114

Ps,s′ =

∫
C

∫
C

p(ε′ | ε)p(ε) I(Ψ(ε) = s) I(Ψ(ε′) = s′) dε dε′∫
C

∫
C

p(ε′ | ε)p(ε) I(Ψ(ε) = s) dε dε′ . (1)

For a continuous-state Markov chain sample {ε1, ε2, · · · εT }, we can estimate P directly from115

{Ψ(ε1), Ψ(ε2), · · ·Ψ(εT)} without the need of p(ε′ | ε). Now, consider a random function Ω : S → C,116

such that: (a) Ψ(ε) = s, (b) Ψ(ε′) = s′, (c) ε′ = Ω(s), from which follows p(Ω(s)) = p(ε′ | s).117

The approximate transition kernel P̂ due to (Ψ, Ω) can be written as:118

P̂s,s′ =
∫

{ε′∈C:Ψ(ε′)=s′}
p(ε′ | s) dε′ =

∫
C

p(Ω(s)) I(Ψ(ε′) = s′) dε′. (2)

1For example, C is the set Rm for some integer m, and S is the set {1, −1}m or simply {1, 2, · · · , L} for some integer L.

3

Under review as submission to TMLR

Figure 1: (left) state and sampling functions visualized, (right) Markov approximation.

In Fig. 1 (left) we depict the functions Ψ mapping from continuous space in C to a discrete space S. We also119

depict Ω mapping from S to C. In a red patch we show the range of Ω(s), and in the green patch we show120

the domain of Ψ(s). In Fig. 1 (right), we visualize Assumption 2.1 wherein the shocks evolve as a Markov121

chain through the functions Ψ, Ω.122

We refer to Ψ as the state function, and Ω as the sampling function. The approximated Markov chain123

defined over S resulting from (Ψ, Ω) is denoted as Ẑ(Ψ, Ω), with p(ε̂′ | ε) = p(Ω ◦Ψ(ε)). Ideally, the goal is124

to find the pair of functions (Ψ, Ω) such that: (a) Ps,s′ = P̂s,s′ ∀s, s′ ∈ S, (b) p(ε′|ε) = p(Ω ◦Ψ(ε))∀ε ∈ C.125

However, in practice this is quite ambitious as the state and sampling functions will induce some error in the126

encoding and decoding process. Therefore, we frame the problem as follows.127

The sequence of shocks drawn from the original Markov chain Z0 is represented as {εt : t ∈ [T]} ∼ Z0. Then,128

for each εt we generate a sequence of q future shocks using the Markov chain Ẑ(Ψ, Ω) as129

ε̂t+j = (Ω ◦Ψ)j(εt), ∀t ∈ [T − q], j ∈ [q].

The problem is to design Ψ, Ω such that
∥∥∥∑j∈[k] εt+j − ε̂t+j

∥∥∥2
is minimized ∀k ∈ [q], t ∈ [T − q], which can130

be written alternatively as:131

Problem 2.1 (q-step node feature forecasting). Design the state and sampling functions Ψ, Ω such that132

min
∑

t∈[T −q]

∑
k∈[q]

∥∥∥∥∥∥
∑
j∈[k]

εt+j − (Ω ◦Ψ)jεt

∥∥∥∥∥∥
2

. (3)

133

In a deep learning context, both Ψ and Ω would typically be neural networks trained directly using the134

objective in Problem 2.1. In this work, however, we explicitly define Ψ and Ω and learn their parameters135

through the same objective.136

Proposed Model Instead of creating a single model to approximate p
(

ε
⟨V⟩
t+1 | ε

⟨V⟩
t

)
, we create a model for137

each node v ∈ V to approximate p
(

ε
⟨Uv⟩
t+1 | ε

⟨Uv⟩
t

)
where Uv denotes the neighbours of node v within a certain138

number of hops. We present this in the following assumption.139

Assumption 2.2. The shock of node v at time t + 1 can be estimated from the shock of its neighbouring140

nodes in Uv at time t.141

While εt(u′) for any node u′ /∈ Uv may help in estimating εt+1(v), we assume that enough information is142

already conveyed by the nodes in Uv that the impact of considering node u′ would be minimal. It must be143

noted that Uv denotes the neighbours of node v up to an arbitrary number of hops, therefore if we consider144

Uv to mean k hops, then all the nodes that neighbours v with 1, 2, · · · , k hops are all in Uv and their impact145

is considered. Assumption 2.2 is important to create a scalable model, because in a connected graph every146

node will be correlated with every other node which will make the state space prohibitively large.147

4

Under review as submission to TMLR

We propose two variants of the state function, one which captures the characteristics of the shock ΨS, and148

the other which is concerned with the timestamps ΨT and captures seasonality.149

• ΨS : R|U|d → {−1, 1}|U|d, ΨS(ε⟨U⟩) = sign(ε⟨U⟩).150

• ΨT : N→ {0, 1, · · · τ0 − 1}, ΨT(t) = t mod τ0, where τ0 ∈ N is the time period.151

We also define two variants of the sampling function:152

• deterministic Ωµ(s) = µ(s), ∀s ∈ S.153

• probabilistic ΩN (s) ∼ N (ε′; µ(s), Σ(s)), ∀s ∈ S.154

In ΨS, we binarize the shock values of a node and its neighbors, creating a vector that indicates whether each155

value has increased or decreased. This vector serves as the state on which the next shock value is conditioned.156

Similarly, in ΨT, we transform the timestamp into an integer based on a predefined time period, then use this157

integer to condition the next shock value. A comprehensive explanation of the state functions is provided158

in Sec. 6. The proposed model is presented as an online algorithm and discussed in detail in the following159

section.160

3 Algorithm161

We name our algorithm mspace with a suffix specifying the state and sampling functions. For example,162

mspace-SN represents the algorithm with state function ΨS, and sampling function ΩN . For each node v ∈ V ,163

we approximate p(ε⟨Uv⟩
t+1 | ΨS(ε⟨Uv⟩

t) = s) as a Gaussian distribution with mean vector µv(s) ∈ R|Uv|d and164

covariance matrix Σv(s) ∈ R|Uv|d×|Uv|d indexed by the state s ∈ {−1, 1}|Uv|d. The parameters µv(s), Σv(s)165

are learnt through maximum likelihood estimation (MLE). For each node v ∈ V, and state s we maintain a166

queue Qv(s) of maximum size M in which the shocks succeeding a given state s are collected. The MLE167

solution is calculated as µv(s)← mean(Qv(s)), and Σv(s)← covariance(Qv(s)).168

past future

Normal
sampling

shock

state

Figure 2: Operation of a queue.

The use of a fixed-size queue (see Fig. 2) ensures that the model prioritises recent data over historical data,169

thereby allowing the system to adapt to prevailing trends.170

As mspace is an online algorithm, we might encounter unobserved states for which the queue is empty, and171

therefore cannot employ MLE. To facilitate inductive inference, as a state st is encountered, we find the state172

s∗ ∈ Sv which is the closest to st, i.e., s∗ ← arg mins∈Sv
∥s− st∥, where Sv is the set of states observed173

before time t.174

5

Under review as submission to TMLR

Algorithm 1 mspace-SN
Input G = (V, E , X), r ∈ [0, 1), q, M
Output ε̂t(v), ∀v ∈ V, t ∈ [⌊r · T ⌋, T]

1: εt ← xt − xt−1, ∀t ∈ [T]
Offline training (A)

2: for t ∈ [⌊r · T ⌋] do
3: for v ∈ V do
4: st ← ΨS

(
ε

⟨Uv⟩
t

)
5: Sv ← Sv ∪ {st}
6: Qv (st)← enqueue ε

⟨Uv⟩
t+1

7: end for
8: end for
9: for v ∈ V do

10: µv(s)← mean(Qv(s)), ∀s ∈ Sv

11: Σv(s)← covariance(Qv(s)), ∀s ∈ Sv

12: end for

Online learning (B)
13: for t ∈ [⌊r · T ⌋, T − q] do
14: for v ∈ V do
15: st ← ΨS

(
ε

⟨Uv⟩
t

)
16: s∗ ← arg min

s∈Sv

∥s− st∥

17: ε̂
⟨Uv⟩
t+1 ∼ N (ε; µv(s∗), Σv(s∗))

18: for k ∈ [q] \ {1} do
19: s∗ ← arg min

s∈Sv

∥∥∥s−Ψ
(

ε̂
⟨Uv⟩
t+k−1

)∥∥∥
20: ε̂

⟨Uv⟩
t+k ∼ N (ε; µv(s∗), Σv(s∗))

21: end for
22: ε̂t+k(v)← ε̂

⟨Uv⟩
t+k (v), ∀k ∈ [q]

23: Update Sv,Qv; µv(s), Σv(s),∀s ∈ Sv

24: end for
25: end for

Figure 3: Shock Distribution.

Example For the purpose of explaining mspace-SN we175

consider an example with two nodes n = 2, and feature176

dimension d = 1. In Fig. 3 we first show the shock vector177

εt ∈ R2. The state of shock εt, denoted by Ψ(εt) is marked178

in S ∈ {−1, 1}2. Corresponding to this state, we have a179

Gaussian distribution N (ε; µ(Ψ(εt)), Σ(Ψ(εt))) depicted180

as an ellipse. The next shock εt+1 is sampled from this181

distribution. This distribution is updated as we gather182

more information over time. The volume of the Gaussian183

density in a quadrant is equal to the probability of the184

next shock’s state being in that quadrant, i.e., the tran-185

sition kernel P̂s,s′ =
∫

s′⊙ε≻0N (ε; µ(s), Σ(s)) dε. There-186

fore, mspace-SN can be viewed as a Markov chain whose187

transition function is a multivariate Gaussian.188

4 Related Works189

Correlated Time Series Forecasting A set of n time series data denoted as xt(v),∀v ∈ [n], t ∈ [T] is190

assumed to exhibit spatio-temporal correlation (Wu et al., 2021a; Lai et al., 2023). The correlations can then191

be discerned from the observations to perform forecasting. The correlated time series (CTS) data can be192

viewed as a temporal graph G = (Xt, A), with Xt ≜
[
xt(v)

]
v∈[n] where the spatial correlation between xt(u)193

and xt(u) is quantified as the edge weight Au,v, and Au,u signifies the temporal correlation within xt(u).194

The architecture of existing CTS forecasting methods consist of spatial (S) and temporal (T) operators. The195

S-operator can be a graph convolutional network (GCN) (Kipf & Welling, 2017) or a Transformer (Vaswani196

et al., 2017). As for the T-operator, convolutional neural network (CNN), recurrent neural network (RNN)197

(Chung et al., 2014) or Transformer (Zeng et al., 2023) can be used.198

Temporal Graph Neural Network A Graph Neural Network (GNN) is a type of neural network that199

operates on graph-structured data, such as social networks, citation networks, and molecular graphs. GNNs200

aim to learn node and graph representations by aggregating and transforming information from neighbouring201

nodes and edges (Wu et al., 2021b). GNNs have shown promising results in various applications, such as202

node classification, link prediction, and graph classification.203

6

Under review as submission to TMLR

Temporal GNN (TGNN) (Longa et al., 2023) is an extension of GNNs which operates on temporal graphs204

Gt = (Xt, At) where Xt denotes the node features, and At is the evolving adjacency matrix. The TGNN205

architecture can be viewed as a neural network encoder-decoder pair (fθ, gϕ) (see Fig. 4).206

Figure 4: TGNN architecture.

A sequence of m past graph snapshots is first encoded into207

an embedding ht = fθ

(
{Gt−m+1, · · · Gt}

)
, and then a se-208

quence of q future graph snapshots is estimated by the de-209

coder as {Ĝt+1, · · · Ĝt+q} = gϕ(ht). The parameters (θ, ϕ) are210

trained to minimize the difference between the true sequence211

{Gt+1, · · · Gt+q} and the predicted sequence {Ĝt+1, · · · Ĝt+q}.212

In node feature forecasting, the objective is to minimize the213

difference between the node feature matrices {X̂t+1, · · · X̂t+q}214

and {Xt+1, · · ·Xt+q}, while in temporal link prediction, the215

goal is to minimize the difference between the graph structures {Ât+1, · · · Ât+q} and {At+1, · · ·At+q}.216

There are two main approaches to implementing TGNNs: model evolution and embedding evolution. In217

model evolution, the parameters of a static GNN are updated over time to capture the temporal dynamics of218

the graph, e.g., EvolveGCN (Pareja et al., 2020). In embedding evolution, the GNN parameters remain fixed,219

and the node and edge embeddings are updated over time to learn the evolving graph structure and node220

features (Li et al., 2018; Zhao et al., 2019; Micheli & Tortorella, 2022; Wu et al., 2019; Fang et al., 2021; Liu221

et al., 2023). The TGNN methods are described in Appendix D.3.222

Linear Dynamical System In a linear dynamical system (LDS) (Barber, 2012), the observation yt223

is modelled as a linear function of the latent vector ht. The transition model dictates the temporal224

evolution of the latent state ht = Atht−1 + ηt, with ηt ∼ N (η; h̄t, Σt), and the emission model defines225

the relation between the observation and the latent state yt = Btht + ζt, ζt ∼ N (ζt; ȳt, Σ′
t). The LDS226

describes a first-order Markov model p((yt, ht)T
t=1) = p(h1)p(y1 | h1)

∏T
t=2 p(ht | ht−1)p(yt | ht), where227

p(ht | ht−1) = N (ht; Atht−1 + h̄t, Σ), and p(y − t | ht) = N (yt; Btht + ȳt, Σ′
t). Therefore a LDS is defined228

by the parameters (At, Bt, Σt, Σ′
t, h̄t, ȳt) and initial state h1. In simplified models the parameters can229

be considered time-invariant. In the literature, LDS is also referred to as Kalman filter (Welch, 1997), or230

Gaussian state space model (Eleftheriadis et al., 2017).231

Gaussian Mixture Model A Gaussian mixture model (GMM) (McLachlan et al., 2019) is a weighted232

sum of multiple Gaussian distribution components. An M -component GMM is defined as:233

p (x) =
∑

i∈[M] wi · N (x ; µi, Σi),
∑

i∈[M] wi = 1. (4)

where wi denotes the probability of the sample belonging to the ith component. The parameters of the234

GMM {(wi, µi, Σi) : ∀i ∈ [M]} are learnt through expectation-maximisation (EM) algorithm (Barber, 2012),235

maximum a posteriori (MAP) estimation, or maximum likelihood estimation (MLE) (Barber, 2012, Def. 8.30).236

Network Vector Autoregression Network Vector Autoregression (NVAR) builds upon traditional vector237

autoregression models which capture the relationship among multiple time series by incorporating a network238

structure (Zhu et al., 2017). Developments, such as Graph VARMA (Isufi et al., 2019) and Graph GARCH (Hong239

et al., 2023) further refined the NVAR framework by addressing issues related to non-linear dependencies and240

heteroskedasticity. Although in this work, we have not compared our approach with NVAR methods, future241

work can be dedicated to comparing mspace with different variants of NVAR.242

7

Under review as submission to TMLR

5 Results243

Baselines & Datasets We compare the performance of mspace with the following recent TGNN baselines:244

DCRNN (Li et al., 2018), TGCN (Zhao et al., 2019), EGCN-H (Pareja et al., 2020), EGCN-O (Pareja et al., 2020),245

DynGESN (Micheli & Tortorella, 2022), GWNet (Wu et al., 2019), STGODE (Fang et al., 2021), FOGS (Rao et al.,246

2022), GRAM-ODE (Liu et al., 2023), LightCTS (Lai et al., 2023). Additionally, we also evaluate the performance247

of classic autoregressive method ARIMA (Box & Pierce, 1970), and the famous LDS, the Kalman filter (Welch,248

1997). We introduce two variants of the Kalman filter: Kalman-x, which considers the node features as249

observations, and Kalman-ε, which operates on the shocks. For more details, please see Appendix D.

Table 1: We use the datasets tennis, wikimath, pedalme, and cpox for single-step forecasting as they are
relatively smaller in terms of number of nodes n and samples T . For multi-step forecasting we use the larger
traffic datasets PEMS03, PEMS04, PEMS07, PEMS08, PEMSBAY, and METRLA. The datasets PEMS03/04/07/08
report traffic flow, while PEMSBAY, and METRLA report traffic speed.

tennis wikimath pedalme cpox PEMS03 PEMS04 PEMS07 PEMS08 PEMSBAY METRLA

n 1000 1068 15 20 358 307 883 170 325 207
T 120 731 35 520 26K 17K 28K 18K 52K 34K

250

Single-step Forecasting In Table 2, we have single-step forecasting RMSE results for various models with251

training ratio 0.9. The best result is marked bold, and the second-best is underlined.252

Table 2: Single-step forecasting RMSE, (M = 20).

tennis wikimath pedalme cpox

DynGESN 150.41 906.85 1.25 0.95
DCRNN 155.43 1108.87 1.21 1.05
EGCN-H 155.44 1118.55 1.19 1.06
EGCN-O 155.43 1137.68 1.2 1.07
TGCN 155.43 1109.99 1.22 1.04
LightCTS 199.04 319.47 1.58 0.84
GRAM-ODE 206.50 484.90 0.99 0.98
STGODE 172.16 279.87 0.91 0.83
mspace-Sµ 105.32 563.69 0.86 1.58
mspace-SN 117.23 725.42 1.35 2.11
Kalman-x 73.01 792.6 0.66 1.42
Kalman-ε 7.5K 64K 1.79 10.2

The models DCRNN, ECGN, and TGCN exhibit similar253

performance across all datasets, which may be at-254

tributed to their use of convolutional GNNs for spa-255

tial encoding. Kalman-ε performs poorly across all256

datasets, indicating challenges in establishing a state-257

space relation for shocks. In contrast, Kalman-x258

performs notably well, outperforming other meth-259

ods on tennis and pedalme datasets. We did not260

investigate why Kalman filters perform poorly when261

applied to shocks. However, it can be explored in262

future work.263

For wikimath and cpox, STGODE shows the best per-264

formance, followed by LightCTS and GRAM-ODE, po-265

tentially due to a higher number of training samples.266

The light-weight methods such as Kalman-x and mspace exploit the unavailability of enough training samples267

and perform better on tennis and pedalme.268

We notice that mspace-Sµ achieves a balanced performance between TGNN models and Kalman-x across all269

datasets except for cpox. The subpar performance of mspace-S* on the cpox dataset may be attributed to270

the seasonal trend, given that it represents the weekly count of chickenpox cases.271

Multi-step Forecasting For the TGNN models, we use the 6 : 2 : 2 train-validation-test chronological split272

in line with the experiments reported by the baselines. For mspace and Kalman, the train-test chronological273

split is 8 : 2, as they do not require a validation set. In Table 3 we report the multi-step q = 122 forecasting274

RMSE, and mean absolute error (MAE) on the test set. For mspace, the queue size M = 203.275

Figure 5 shows the RMSE of the models, normalized to the minimum RMSE for the dataset, plotted276

against the number of available training samples4. We observe that mspace-Tµ performs competitively277

across all datasets with the exception of METRLA. Moreover, mspace-Tµ demonstrates superior performance278

compared to mspace-Sµ across all the datasets which suggests that temporal auto-correlation dominate279

spatial cross-correlation among the nodes.280

2q = 12 corresponds to one hour in the traffic datasets used.
3a higher value of M might give better estimates at the cost of higher memory usage and lower adaptability.
4We refer to the number of training samples as the training size.

8

Under review as submission to TMLR

Table 3: Multi-step forecasting RMSE and MAE, (M = 20).

PEMS03 PEMS04 PEMS07 PEMS08 PEMSBAY METRLA

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

GRAM-ODE 26.40 15.72 31.05 19.55 34.42 21.75 25.17 16.05 3.34 1.67 6.64 3.44
STGODE 27.84 16.50 32.82 20.84 37.54 22.99 25.97 16.81 4.89 2.30 7.37 3.75
DCRNN 30.31 18.18 38.12 24.70 38.58 25.30 27.83 17.86 4.74 2.07 7.60 3.60
ARIMA 47.59 33.51 48.80 33.73 59.27 38.17 44.32 31.09 6.50 3.38 13.23 6.90
GWNet 32.94 19.85 39.70 25.45 42.78 26.85 31.05 19.13 4.85 1.95 7.81 3.53
LightCTS - - 30.14 18.79 - - 23.49 14.63 4.32 1.89 7.21 3.42
FOGS 24.09 15.06 31.33 19.35 33.96 20.62 24.09 14.92 - - - -
mspace-Sµ 36.51 26.43 18.85 13.25 54.39 38.83 14.61 10.36 4.27 2.47 10.24 6.56
mspace-Tµ 26.53 18.31 13.49 8.70 38.63 24.02 10.35 6.33 3.77 2.19 10.08 6.77
Kalman-x 45.38 33.21 33.75 15.26 64.95 48.01 27.40 12.40 5.71 3.87 13.97 10.7
Kalman-ε 749 619 818 709 2313 1988 460 399 50.2 43.1 127.1 109

2 × 104 3 × 104 4 × 104

samples

1.0

1.5

2.0

2.5

3.0

3.5

4.0

RM
SE

/m
in

(R
M

SE
)

PE
M

S0
3

PE
M

S0
4 PE
M

S0
7

PE
M

S0
8

PE
M

SB
AY

M
ET

RL
A

GRAM-ODE
STGODE
DCRNN
ARIMA
GWNet

LightCTS
FOGS
mspace-S
mspace-T
Kalman-xI

Figure 5: Multi-step forecasting normalized RMSE.

TGNN models, being neural networks, rely heavily on the amount of training data available. With the281

relatively small number of training samples in PEMS04 and PEMS08, these models underperform. In contrast,282

both variants of mspace significantly surpass the state-of-the-art (SoTA), demonstrating their effectiveness283

with smaller datasets5. Furthermore, mspace-Tµ ranks as the second-best model for the largest dataset,284

PEMSBAY. Therefore, we conclude that mspace offers consistent performance across datasets with varying285

sample sizes, and it is particularly advantageous when training data is limited.286

In Fig. 6, we illustrate how the RMSE scales with the number of forecast steps q for different variants287

of mspace. The scaling law for mspace-S* appears linear, while for mspace-T*, it appears sublinear. We288

investigate this theoretically in Appendix A.289

The TGNN baselines perform forecasting for q = 12 future steps, relying on the node features from the290

preceding 12 time steps as input. In contrast, mspace requires only the node features from the two previous291

time steps. Additionally, mspace has the flexibility to forecast for any q ∈ N, whereas TGNN models are292

limited to forecasting up to the specified number of steps they were trained on. Moreover, mspace offers293

both probabilistic (ΩN) and deterministic (Ωµ) forecasts, a capability absent in the baselines. Finally, while294

TGNN baselines exploit the edge weights information for predictions, mspace achieves comparable results295

using only the graph structure.296

5single-step forecasting datasets have prohibitively low number of samples (< 800), likely limiting mspace’s performance
compared to multi-step forecasting with 17k+ samples.

9

Under review as submission to TMLR

12 24 36 48
q

40

80

120
RM

SE

PEMS03

12 24 36 48
q

20

40

60

RM
SE

PEMS04

12 24 36 48
q

50

100

150

RM
SE

PEMS07

12 24 36 48
q

15

30

45

RM
SE

PEMS08

Figure 6: Scaling of error with the number of forecast steps q using different mspace variants: ▼ mspace-SN ,
▲ mspace-TN , ■ mspace-Sµ, • mspace-Tµ.

6 Interpretability297

In this section, we examine mspace in light of the following definition of Interpretability.298

Definition 6.1. Consider data x ∈ D which is processed by a model Fθ to produce the output ŷ ∈ Y, i.e.,299

ŷ = Fθ(x), where θ denotes the model parameters. Moreover, consider a true mapping f : x 7→ y, ∀x ∈ D300

where y is the ground truth associated with the input data x. Then, an interpretable or explainable model301

Fθ fulfils one or more of the following properties (Gilpin et al., 2018; Du et al., 2019):302

• The internals of the model Fθ can be explained in a way that is understandable to humans.303

• The output ŷ can be explained in terms of the properties of the input x, the input data distribution304

D, and the model parameters θ.305

• The failure of a model on a given input data can be explained.306

• For a certain distance metric ∆ : Y × Y → R+, theoretical bounds on the expected error307

Ex∼D[∆(y, Fθ(x))] can be established based on the description of Fθ, supported by the assumptions308

on the input data distribution D.309

• It can be identified whether the model Fθ is susceptible to training bias, and to what extent.310

6.1 Explaining ΨS311

In Fig. 7, we depict two consecutive snapshots of a subgraph, focused on node v. The dashed circle highlights312

the corresponding 1-hop neighbourhood Uv. At any time t, we draw green and red arrows next to the nodes313

to depict whether its node feature value increased or decreased, respectively.314

Figure 7: Consecutive subgraph snapshots.

The design of ΨS was inspired by the correlation dynamics of the stock market (Caraiani, 2014), where the315

inter-connectedness of various stocks exerts mutual influence on their respective prices. For instance, within316

the semiconductor sector, stocks such as NVDA, AMD, and TSMC often exhibit synchronised movements, with317

slight lead or lag. Similarly, the performance of gold mining stocks can offer insights into the future value of318

physical gold and companies engaged in precious metal trade. This concept transcends individual industries319

and encompasses competition across multiple sectors.320

10

Under review as submission to TMLR

Let us record the states at two consecutive time-steps st1 =
[
1 −1 1 −1

]⊤, and st1+1 =321 [
−1 −1 −1 1

]⊤. At the state-level, we iterate through the time-steps, and collect all the states succeeding322

s =
[
1 −1 1 −1

]⊤. If we then draw a random sample from this collection of succeeding states, we can323

predict whether the node feature value is more likely to increase or decrease. However, we are interested in pre-324

dicting the amount of change. Therefore, at every time step when the state st matches s =
[
1 −1 1 −1

]⊤,325

we collect the succeeding shock ε
⟨Uv⟩
t+1 in a queue Qv(s), i.e., at time τ , Qv(s) =

{
ε

⟨Uv⟩
t+1 : st = s,∀t < τ

}
with326

|Qv(s)| ≤M . The queue entries are then used to approximate a distribution from which a random sample is327

drawn during forecast.328

In Fig. 8, we plot the normalized histogram of the trace tr(·) of the covariance matrix Σ(s) of all the states329

s ∈ Sv, v ∈ [n] for all the datasets used in multi-step forecasting. We notice that in both PEMS04 and PEMS08330

the distribution of values is skewed to the left, with a concentration of data points at values close to zero .331

This explains the better-than-SoTA performance of mspace-Sµ on these datasets. In contrast, the histogram332

of METRLA is completely away from zero, while for PEMS03, and PEMS07 there are peaks near zero, but a major333

mass of the histogram is skewed away from zero. This explains the poor performance of mspace-Sµ on these334

datasets.335

0 500 1000 1500 2000 2500
0.000

0.001

0.002 PEMS03

0 500 1000 1500 2000 2500
0.000

0.001

0.002

0.003 PEMS04

0 500 1000 1500 2000 2500
0.0000

0.0005

0.0010

0.0015
PEMS07

0 500 1000 1500 2000 2500
0.000

0.002

0.004
PEMS08

0 2 4 6 8 10
0.0

0.2

0.4
PEMSBAY

0 20 40 60 80 100
0.00

0.01

0.02 METRLA

Figure 8: Normalized histogram of {tr(Σ(s)) : ∀s ∈ Sv,∀v ∈ [n]} for different datasets.

We represent data variance using the trace of the covariance matrix. Thus, if the variance histogram is close336

to zero, it indicates low variance. The error in estimating samples from a distribution is lower if the variance337

of the distribution is lower, and vice versa.338

6.2 Explaining ΨT339

Next, we discuss the rationale behind ΨT, which is designed to identify periodic patterns. For instance, in340

many traffic networks, trends exhibit weekly cycles, with distinct patterns on weekdays compared to weekends.341

Moreover, on an annual basis, the influence of holidays on traffic can be discerned, as people engage in342

shopping and other leisure activities. In Fig. 9, we have shown the traffic flow value of PEMS04 with weekly (a)343

and daily (b) periodicity. For the weekly periodic view (a), the trend is more pronounced with less deviation344

from the mean while for the daily view (b), a scattered trend is visible with high variance across states.345

11

Under review as submission to TMLR

(a) PEMS04: Weekly (b) PEMS04: Daily

Figure 9: Periodic trends in the traffic dataset PEMS04; the black points represent the data-points, and the
red line is the mean estimate for each state t mod τ0.

6.3 Error Bounds346

We present the error bounds of mspace in the following theorem, a detailed proof of which can be found in347

Appendix A.348

Theorem 6.1. The RMSE of mspace for a q-step node feature forecast is upper bounded as RMSE(q) ≤349 √
αq2 + (3α + β)q + (2α + β), where α, β ∈ R+ are constants that depend on the data, as well as the variant350

of the mspace algorithm.351

Corollary 6.1. In the asymptotic case of large q, the RMSE grows linearly with q: RMSE(q) = O(q).352

6.4 Complexity Analysis353

We denote the computational complexity operator as C(·), and the space complexity operator as M(·), where354

the argument of each operator is an algorithm or a portion of an algorithm. The optional offline part of355

mspace is denoted by A, while the online part is denoted by B. In Table 4, we exhibit the computational356

and space complexities of the different mspace variants, where b ≜ maxv∈[n] |Uv| is the maximum degree. For357

more details please refer to Appendix B.

Table 4: Computational and space complexity of different mspace variants.
ΨS ΨT

ΩN

C(A) = O
(
ndb

(
rT + dbM min{rT, 2bd}

))
C(B) = O

(
(1− r)Tnd2b2

(
qdb + M min

{
(1+r)

2 T, 2bd
}))

M(A ∪ B) = O
(
db(M + db) min{T, 2bd}

)
C(A) = O

(
nrT + d2Mnτ0

)
C(B) = O

(
(1− r)Tnd2(qd + Mτ0)

)
M(A ∪ B) = O

(
d(M + d)τ0

)

Ωµ

C(A) = O
(
ndb

(
rT + M min{rT, 2bd}

))
C(B) = O

(
(1− r)Tndb(q + M) min

{
(1+r)

2 T, 2bd
})

M(A ∪ B) = O
(
Mdb min{T, 2bd}

)
C(A) = O (nrT + dMnτ0)
C(B) = O ((1− r)Tnd(q + M)τ0)
M(A ∪ B) = O (Mdτ0)

358

Theorem 6.2. For asymptotically large number of nodes n and timesteps T , the computational complexity359

of mspace is O(nT), and the space complexity is O(1) across all variants.360

The proof is detailed in Appendix B.2.361

12

Under review as submission to TMLR

7 Discussion362

In this section we discuss the limitations of mspace and how they can be overcome. Firstly, mspace only363

considers binary edges, i.e.. A ∈ {0, 1}n×n instead of a weighted adjacency matrix A ∈ Rn×n. This does not364

imply that we have used datasets with binary edges, rather it means that we have used a binarized version of365

the adjacency matrix as input to mspace while the baselines exploited weighted edges. Secondly, we assume366

that the graph structure is fixed throughout, while for a truly dynamic graph, the graph structure should367

also be dynamic. Lastly, we have proposed two state functions: one that focuses on cross-correlation among368

the nodes, and the other that considers seasonality. Therefore, a state function which combines both can be369

studied in an extension of our work in the future.370

On creating a state function which combines ΨS and ΨT We can define ΨST : R|U|d×N→ {−1, 1}|U|d×371

{0, 1, · · · τ0 − 1} as ΨST
(
ε⟨U⟩, t

)
≜
[
sign(ε⟨U⟩)⊤ t mod τ0

]⊤. In essence, the queues Qv(s),∀s ∈ Sv,∀v ∈ [n]372

in mspace-ST would have lesser entries compared to mspace-S which might lead to poor estimates and373

consequently make the algorithm data-intensive. Furthermore, in the step where we find the closest state s∗, the374

spatial and temporal parts can be assigned different weights: s∗ ← arg mins∈Sv

∥∥∥[1d|Uv| γ
]⊤ ⊙ (s− s

⟨Uv⟩
t

)∥∥∥,375

where γ ∈ R+.376

On benchmarking using diverse datasets Experiments on more diverse datasets would help establish377

the performance of the proposed algorithm. In this work, we have used 4 non-traffic datasets for single-step378

forecasting, and 6 traffic datasets for multi-step. The proposed algorithm mspace has a general formulation,379

and is not designed specifically for traffic datasets; mspace can be applued to any graph whose node features380

(of any dimension) evolve with time. We also proposed a synthetic temporal graph generation method in381

Appendix C to alleviate the data scarcity issue in temporal graph learning.382

8 Conclusion383

In conclusion, our proposed algorithm, mspace, performs at par with the SoTA TGNN models across various384

spatio-temporal datasets. As an online learning algorithm, mspace is adaptive to changes in data distribution385

and is suitable for deployment in scenarios where training samples are limited. The interpretability of mspace386

sets it apart from black-box deep learning models, allowing for a clearer understanding of the underlying387

mechanisms driving predictions. This emphasis on interpretability represents a significant step forward in the388

field of temporal graph learning. In Sec. 7, we discussed the potential limitations of mspace.389

In addition to the algorithm, we also introduce a synthetic temporal graph generator (see Appendix C) in390

which the features of the nodes evolve with the influence of their neighbours in a non-linear manner. These391

synthetic datasets can serve as a valuable resource for benchmarking algorithms.392

References393

David Barber. Bayesian reasoning and machine learning. Cambridge University Press, 2012.394

Claudio DT Barros, Matheus RF Mendonça, Alex B Vieira, and Artur Ziviani. A survey on embedding395

dynamic graphs. ACM Computing Surveys (CSUR), 55(1):1–37, 2021.396

Ferenc Béres, Róbert Pálovics, Anna Oláh, and András A Benczúr. Temporal walk based centrality metric397

for graph streams. Applied network science, 3:1–26, 2018.398

G. E. P. Box and David A. Pierce. Distribution of Residual Autocorrelations in Autoregressive-Integrated399

Moving Average Time Series Models. Journal of the American Statistical Association, 65(332):1509–1526,400

December 1970. ISSN 0162-1459. doi: 10.1080/01621459.1970.10481180.401

Petre Caraiani. The predictive power of singular value decomposition entropy for stock market dynamics.402

Physica A: Statistical Mechanics and its Applications, 393:571–578, 2014.403

13

Under review as submission to TMLR

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical Evaluation of Gated404

Recurrent Neural Networks on Sequence Modeling, December 2014. URL http://arxiv.org/abs/1412.405

3555. arXiv:1412.3555 [cs].406

Songgaojun Deng, Huzefa Rangwala, and Yue Ning. Learning dynamic context graphs for predicting social407

events. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &408

Data Mining, pp. 1007–1016, 2019.409

Mengnan Du, Ninghao Liu, and Xia Hu. Techniques for interpretable machine learning. Communications of410

the ACM, 63(1):68–77, 2019.411

Stefanos Eleftheriadis, Tom Nicholson, Marc Deisenroth, and James Hensman. Identification of gaussian412

process state space models. Advances in neural information processing systems, 30, 2017.413

Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. Spatial-Temporal Graph ODE Networks for414

Traffic Flow Forecasting. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &415

Data Mining, pp. 364–373, August 2021. doi: 10.1145/3447548.3467430. URL http://arxiv.org/abs/416

2106.12931. arXiv:2106.12931 [cs].417

Chen Gao, Xiang Wang, Xiangnan He, and Yong Li. Graph neural networks for recommender system. In418

Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 1623–1625,419

2022.420

Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal. Explaining421

explanations: An overview of interpretability of machine learning. In 2018 IEEE 5th International422

Conference on data science and advanced analytics (DSAA), pp. 80–89. IEEE, 2018.423

Junping Hong, Yi Yan, Ercan Engin Kuruoglu, and Wai Kin Chan. Multivariate time series forecasting424

with garch models on graphs. IEEE Transactions on Signal and Information Processing over Networks, 9:425

557–568, 2023.426

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi, Jure427

Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Temporal graph benchmark for428

machine learning on temporal graphs. Advances in Neural Information Processing Systems, 36:2056–2073,429

2023.430

Elvin Isufi, Andreas Loukas, Nathanael Perraudin, and Geert Leus. Forecasting time series with varma431

recursions on graphs. IEEE Transactions on Signal Processing, 67(18):4870–4885, 2019.432

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In433

International Conference on Learning Representations, 2017. URL https://openreview.net/forum?id=434

SJU4ayYgl.435

Zhichen Lai, Dalin Zhang, Huan Li, Christian S Jensen, Hua Lu, and Yan Zhao. LightCTS: A lightweight436

framework for correlated time series forecasting. Proceedings of the ACM on Management of Data, 1(2):437

1–26, 2023.438

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:439

Data-driven traffic forecasting. In International Conference on Learning Representations, 2018. URL440

https://openreview.net/forum?id=SJiHXGWAZ.441

Zibo Liu, Parshin Shojaee, and Chandan K. Reddy. Graph-based multi-ODE neural networks for spatio-442

temporal traffic forecasting. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL443

https://openreview.net/forum?id=Oq5XKRVYpQ.444

Antonio Longa, Veronica Lachi, Gabriele Santin, Monica Bianchini, Bruno Lepri, Pietro Lio, Andrea Passerini,445

et al. Graph neural networks for temporal graphs: State of the art, open challenges, and opportunities.446

Transactions on Machine Learning Research, 2023.447

14

http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/2106.12931
http://arxiv.org/abs/2106.12931
http://arxiv.org/abs/2106.12931
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJiHXGWAZ
https://openreview.net/forum?id=Oq5XKRVYpQ

Under review as submission to TMLR

Geoffrey J McLachlan, Sharon X Lee, and Suren I Rathnayake. Finite Mixture Models. 2019.448

Alessio Micheli and Domenico Tortorella. Discrete-time dynamic graph echo state networks. Neurocomputing,449

496:85–95, 2022. Publisher: Elsevier.450

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim Kaler,451

Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional networks for dynamic graphs.452

In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 5363–5370, 2020. Issue: 04.453

Fotios Petropoulos, Daniele Apiletti, Vassilios Assimakopoulos, Mohamed Zied Babai, Devon K Barrow,454

Souhaib Ben Taieb, Christoph Bergmeir, Ricardo J Bessa, Jakub Bijak, John E Boylan, et al. Forecasting:455

theory and practice. International Journal of forecasting, 38(3):705–871, 2022.456

Xuan Rao, Hao Wang, Liang Zhang, Jing Li, Shuo Shang, and Peng Han. FOGS: First-Order Gradient457

Supervision with Learning-based Graph for Traffic Flow Forecasting. In Proceedings of the Thirty-First458

International Joint Conference on Artificial Intelligence, pp. 3926–3932, Vienna, Austria, July 2022.459

International Joint Conferences on Artificial Intelligence Organization. ISBN 978-1-956792-00-3. doi:460

10.24963/ijcai.2022/545. URL https://www.ijcai.org/proceedings/2022/545.461

Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexander Riedel, Maria Aste-462

fanoaei, Oliver Kiss, Ferenc Beres, Guzman Lopez, Nicolas Collignon, et al. Pytorch geometric temporal:463

Spatiotemporal signal processing with neural machine learning models. In Proceedings of the 30th ACM464

international conference on information & knowledge management, pp. 4564–4573, 2021a.465

Benedek Rozemberczki, Paul Scherer, Oliver Kiss, Rik Sarkar, and Tamas Ferenci. Chickenpox cases in466

hungary: A benchmark dataset for spatiotemporal signal processing with graph neural networks. In467

Workshop on Graph Learning Benchmarks@ TheWebConf 2021, 2021b.468

Robert H. Shumway and David S. Stoffer. Time Series Analysis and Its Applications: With R Exam-469

ples. Springer Texts in Statistics. Springer International Publishing, Cham, 2017. ISBN 978-3-319-470

52451-1 978-3-319-52452-8. doi: 10.1007/978-3-319-52452-8. URL http://link.springer.com/10.1007/471

978-3-319-52452-8.472

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,473

and Illia Polosukhin. Attention is All you Need. Neural Information Processing Systems, 2017.474

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning: Theory,475

method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.476

Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Dissecting the diffusion process in linear477

graph convolutional networks. In NeurIPS, pp. 5758–5769, 2021. URL https://proceedings.neurips.478

cc/paper/2021/hash/2d95666e2649fcfc6e3af75e09f5adb9-Abstract.html.479

Greg Welch. An Introduction to the Kalman Filter. 1997.480

Xinle Wu, Dalin Zhang, Chenjuan Guo, Chaoyang He, Bin Yang, and Christian S Jensen. AutoCTS:481

Automated correlated time series forecasting. Proceedings of the VLDB Endowment, 15(4):971–983, 2021a.482

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep spatial-483

temporal graph modeling. In Proceedings of the 28th International Joint Conference on Artificial Intelligence,484

pp. 1907–1913, 2019.485

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A Comprehensive486

Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems,487

32(1):4–24, January 2021b. ISSN 2162-237X, 2162-2388. doi: 10.1109/TNNLS.2020.2978386. URL488

https://ieeexplore.ieee.org/document/9046288/.489

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: a deep learning490

framework for traffic forecasting. In Proceedings of the 27th International Joint Conference on Artificial491

Intelligence, pp. 3634–3640, 2018.492

15

https://www.ijcai.org/proceedings/2022/545
http://link.springer.com/10.1007/978-3-319-52452-8
http://link.springer.com/10.1007/978-3-319-52452-8
http://link.springer.com/10.1007/978-3-319-52452-8
https://proceedings.neurips.cc/paper/2021/hash/2d95666e2649fcfc6e3af75e09f5adb9-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2d95666e2649fcfc6e3af75e09f5adb9-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2d95666e2649fcfc6e3af75e09f5adb9-Abstract.html
https://ieeexplore.ieee.org/document/9046288/

Under review as submission to TMLR

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting? In493

Proceedings of the AAAI conference on Artificial Intelligence, volume 37, pp. 11121–11128, 2023.494

Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li. T-gcn: A495

temporal graph convolutional network for traffic prediction. IEEE transactions on intelligent transportation496

systems, 21(9):3848–3858, 2019. Publisher: IEEE.497

Xuening Zhu, Rui Pan, Guodong Li, Yuewen Liu, and Hansheng Wang. Network vector autoregression. 2017.498

16

Under review as submission to TMLR

A Error Bounds499

Upper Bound We derive the upper bound on the RMSE for q-step iterative forecast below.500

Proof of Theorem 6.1. For nodes in Uv, v ∈ [n], the shock at time t is sampled from a Gaussian distribution,501

the parameters of which depend on the previous shock ε̂
⟨Uv⟩
t−1 through the state function:502

ε̂
⟨Uv⟩
t ∼ N

(
ε̂; µ

(
ΨS

(
ε̂

⟨Uv⟩
t−1

))
, Σ
(

ΨS

(
ε̂

⟨Uv⟩
t−1

)))
(5)

We denote the shock estimated for node v at time t as:503

ε̂t(v) = ε̂
⟨Uv⟩
t (v) ∼ N

(
ε̂; µv

(
ΨS

(
ε̂

⟨Uv⟩
t−1

))
, Σv

(
ΨS

(
ε̂

⟨Uv⟩
t−1

)))
(6)

The mean square error for q-step iterative node feature forecasting is defined as:504

MSE(q) ≜ 1
ndq

E

∑
v∈[n]

∑
i∈[q]

∥∥∥∥∥∥
∑
j∈[i]

ε̂t+j(v)− εt+j(v)

∥∥∥∥∥∥
2


= 1
ndq

∑
v∈[n]

∑
i∈[q]

E


∥∥∥∥∥∥
∑
j∈[i]

ε̂t+j(v)− εt+j(v)

∥∥∥∥∥∥
2
 . (7)

The shock difference between the true shock and predicted shock also follows a Gaussian distribution:505

ε̂t+j(v)− εt+j(v) ∼ N
(

ε; µv

(
ΨS

(
ε̂

⟨Uv⟩
tj−1

))
− εt+j(v), Σv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

)))
. (8)

Since, the sum of Gaussian r.v.s is also Gaussian, we have:506

∑
j∈[i]

ε̂t+j(v)− εt+j(v) ∼ N

ε;
∑
j∈[i]

µv

(
ΨS

(
ε̂

⟨Uv⟩
tj−1

))
− εt+j(v),

∑
j∈[i]

Σv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

)) . (9)

Moreover, for a Gaussian r.v. x ∼ N (x; µ, Σ), E
[
∥x∥2

]
= ∥µ∥2 + tr(Σ).507

E


∥∥∥∥∥∥
∑
j∈[i]

ε̂t+j(v)− εt+j(v)

∥∥∥∥∥∥
2
 =

∥∥∥∥∥∥
∑
j∈[i]

µv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

))
− εt+j(v)

∥∥∥∥∥∥
2

+
∑
j∈[i]

tr
(

Σv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

)))
. (10)

508 ∥∥∥∥∥∥
∑
j∈[i]

µv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

))
− εt+j(v)

∥∥∥∥∥∥ ≤
∑
j∈[i]

∥∥∥µv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

))
− εt+j(v)

∥∥∥
≤ i ·max

j∈[i]

∥∥∥µv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

))
− εt+j(v)

∥∥∥
≤ i · max

t,j∈N

∥∥∥µv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

))
− εt+j(v)

∥∥∥
= i · √αv,1. (11)

17

Under review as submission to TMLR

509 ∑
j∈[i]

tr
(

Σv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

)))
≤ i ·max

j∈[i]
tr
(

Σv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

)))
≤ i · αv,2. (12)

E


∥∥∥∥∥∥
∑
j∈[i]

ε̂t+j(v)− εt+j(v)

∥∥∥∥∥∥
2
 ≤ αv,1 · i2 + αv,2 · i, αv,1, αv,2 ∈ R+. (13)

MSE(q) ≤ 1
ndq

∑
v∈[n]

∑
i∈[q]

αv,1 · i2 + αv,2 · i

=
∑

v∈[n] αv,1

6nd
(q + 1)(q + 2) +

∑
v∈[n] αv,2

2nd
(q + 1). (14)

Let α ≜ 1
6nd

∑
v∈[n] αv,1, and β ≜ 1

2nd

∑
v∈[n] αv,2, then510

MSE(q) ≤ αq2 + (3α + β)q + (2α + β). (15)

By Jensen’s inequality,511

RMSE(q) ≤
√

MSE(q) ≤
√

αq2 + (3α + β)q + (2α + β). (16)

512

The above proof is for mspace-SN and also applies to mspace-TN . For mspace-Sµ and mspace-Tµ, β = 0.513

Lower Bound Similarly, we can find a lower bound on the MSE for q-step iterative forecast:514

E


∥∥∥∥∥∥
∑
j∈[i]

ε̂t+j(v)− εt+j(v)

∥∥∥∥∥∥
2
 ≥∑

j∈[i]

tr
(

Σv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

)))
≥ i ·min

j∈[i]
tr
(

Σv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

)))
= i · αv,3. (17)

515

MSE(q) ≥ 1
ndq

∑
v∈[n]

∑
i∈[q]

i · αv,3 =
(1

nd

∑
v∈[n]

αv,3︸ ︷︷ ︸
≜β′

)
· (q + 1) = β′q + β′. (18)

18

Under review as submission to TMLR

B Complexity Analysis516

B.1 Computational Complexity517

We denote the computational complexity operator as C(·), the argument of which is an algorithm or part of518

an algorithm. The optional offline part of the algorithm is denoted as A while the online part is denoted as B.519

Algorithm 2 mspace-SN
Input G = (V, E , X), r ∈ [0, 1), q, M
Output ε̂t(v), ∀v ∈ V, t ∈ [⌊r · T ⌋, T]

1: εt(v)← xt(v)− xt−1(v), ∀v ∈ V, t ∈ [T]
Offline training (A):

2: for t ∈ [⌊r · T ⌋] do
3: for v ∈ V do
4: s

⟨Uv⟩
t ← Ψ

(
ε

⟨Uv⟩
t

)
▷
∑

v∈V d|Uv|

5: Sv ← Sv ∪
{

s
⟨Uv⟩
t

}
▷ n

6: Qv

(
s

⟨Uv⟩
t

)
← enqueue ε

⟨Uv⟩
t+1 ▷ n

7: end for
8: end for
9: µv(s)← mean(Qv(s)), ∀s ∈ Sv, v ∈ V ▷

∑
v∈V d|Uv||Sv|M

10: Σv(s)← covariance(Qv(s)), ∀s ∈ Sv, v ∈ V ▷
∑

v∈V(d|Uv|)2|Sv|M
Online learning (B):

11: for t ∈ [⌊r · T ⌋, T − q] do
12: for v ∈ V do
13: s

⟨Uv⟩
t ← Ψ

(
ε

⟨Uv⟩
t

)
▷
∑

v∈V d|Uv|

14: s∗ ← arg min
s∈Sv

∥∥∥s− s
⟨Uv⟩
t

∥∥∥ ▷
∑

v∈V d|Uv||Sv|

15: ε̂
⟨Uv⟩
t+1 ∼ N (ε; µv(s∗), Σv(s∗)) ▷

∑
v∈V(|Uv|d)3

16: for k ∈ [2, q] do
17: s∗ ← arg min

s∈Sv

∥∥∥s−Ψ
(

ε̂
⟨Uv⟩
t+k−1

)∥∥∥ ▷ (q − 1)×
∑

v∈V d|Uv|(1 + |Sv|)

18: ε̂
⟨Uv⟩
t+k ∼ N (ε; µv(s∗), Σv(s∗)) ▷ (q − 1)×

∑
v∈V(|Uv|d)3

19: end for
20: ε̂t+k(v)← ε̂

⟨Uv⟩
t+k (v), ∀k ∈ [q]

21: Update Sv,Qv ▷ 2n
22: Update µv(s), Σv(s), ∀s ∈ Sv ▷

∑
v∈V(d|Uv|+ d2|Uv|2)|Sv|M

23: end for
24: end for

Computational complexity of offline training for mspace-SN can be written as:520

C(A) = O
(
⌊rT ⌋d

∑
v

|Uv|︸ ︷︷ ︸
[4]

+ ⌊rT ⌋2n︸ ︷︷ ︸
[5],[6]

+ dM
∑

v

|Uv||Sv|︸ ︷︷ ︸
[9](mean)

+ d2M
∑

v

|Uv|2|Sv|︸ ︷︷ ︸
[10](covariance)

)
. (19)

19

Under review as submission to TMLR

Computational complexity of online learning for mspace-SN can be written as:521

C(B) = O
(

T −q∑
t=⌈rT ⌉

{
dq
∑

v

|Uv|︸ ︷︷ ︸
[13],[17]

+ dq
∑

v

|Uv||Sv|︸ ︷︷ ︸
[14],[17]

+ d3q
∑

v

|Uv|3︸ ︷︷ ︸
[15],[18](sampling)

+ 2n︸︷︷︸
[21]

+ dM
∑

v

|Uv||Sv|︸ ︷︷ ︸
[22](mean)

+ d2M
∑

v

|Uv|2|Sv|︸ ︷︷ ︸
[22](covariance)

})
. (20)

Lemma B.1. The computational complexity of mspace-SN is:522

C(A) = O
(

dbnrT + d2b2Mn ·min{rT, 2bd}
)

,

C(B) = O
(

(1− r)Tnd2b2
(

qdb + M ·min
{

(1 + r)
2 T, 2bd

}))
,

where b = maxv∈[n] |Uv|.523

Proof. We denote the maximum degree of a node as b ≜ maxv∈[n] |Uv| < n which does not necessarily scale524

with n unless specified by the graph definition. Furthermore, the total number of states observed for a node525

till time step t ∈ N cannot exceed t, i.e., |Sv| ≤ t. We also know the total number of states theoretically526

possible for node v is 2|Uv|d for ΨS(·). Therefore, the number of states observed till time t for node v is upper527

bounded as: |Sv| ≤ min
{

t, 2bd
}

. Based on this, we can simplify equation 19, and equation 20 as follows:528

C(A) = O
(
dbnrT + 2nrT + (dbM + d2b2M) · n min{rT, 2bd}

)
= O

(
dbnrT + d2b2Mn ·min{rT, 2bd}

)
.

C(B) = O

 T −q∑
t=⌈rT ⌉

qdbn + qd3b3n + 2n + db(q + M)n ·min{t, 2bd}+ d2b2Mn ·min{t, 2bd}


= O

 T −q∑
t=⌈rT ⌉

qd3b3n + (db(q + M) + d2b2M)n ·min{t, 2bd}


= O

(
(1− r)T · qd3b3n + d2b2Mn ·min{(1− r2)T 2, 2bd(1− r)T}

)
= O

(
(1− r)Tn

(
qd3b3 + d2b2M ·min

{
(1 + r)

2 T, 2bd

}))
.

529

Lemma B.2. The computational complexity of mspace-Sµ is:530

C(A) = O
(

dbnrT + dbMn ·min{rT, 2bd}
)

,

C(B) = O
(

(1− r)Tndb(q + M) ·min
{

(1 + r)
2 T, 2bd

})
.

531

Proof. The sampling steps [15], and [18] in Algorithm 2 are replaced with ε̂
⟨Uv⟩
t ← µ(s∗) which has a532

computational complexity of O(d|Uv|). Moreover, Ωµ(·) does not require the covariance matrix, therefore we533

20

Under review as submission to TMLR

do not need to compute it. We simplify the computational complexity expressions as:534

C(A) = O
(
⌊rT ⌋d

∑
v

|Uv|+ ⌊rT ⌋2n + dM
∑

v

|Uv||Sv|

)
= O

(
dbnrT + dbMn ·min{rT, 2bd}

)
.

C(B) = O
(

T −q∑
t=⌈rT ⌉

{
dq
∑

v

|Uv|+ dq
∑

v

|Uv||Sv|+ dq
∑

v

|Uv|︸ ︷︷ ︸
(sampling)

+2n + dM
∑

v

|Uv||Sv|
})

= O

 T −q∑
t=⌈rT ⌉

2qdbn + 2n + db(q + M)n ·min{t, 2bd}


= O

(
(1− r)Tndb(q + M) ·min

{
(1 + r)

2 T, 2bd

})
.

535

Lemma B.3. The computational complexity of mspace-TN is:536

C(A) = O
(
nrT + d2Mnτ0

)
,

C(B) = O
(

(1− r)Tnd2 · (Mτ0 + qd)
)

.

537

Proof. For the state function ΨT, the total number of states for any node is the period τ0 ∈ N, i.e., |Sv| ≤ τ0.538

Moreover, the state calculation st ← Ψ(t) has computational complexity of O(1). Most importantly, for ΨT,539

b = 1 as it only focuses on the seasonal trends.540

C(A) = O
(
⌊rT ⌋

∑
v

1 + ⌊rT ⌋2n + dM
∑

v

|Uv||Sv|+ d2M
∑

v

|Uv|2|Sv|

)
= O

(
3nrT + dMnτ0 + d2Mnτ0

)
= O

(
nrT + d2Mnτ0

)
.

C(B) = O
(

T −q∑
t=⌈rT ⌉

{
q
∑

v

1 + dq
∑

v

|Uv||Sv|+ d3q
∑

v

|Uv|3 + 2n

+ dM
∑

v

|Uv||Sv|+ d2M
∑

v

|Uv|2|Sv|
})

= O
(
{q + dqτ0 + qd3 + 2 + dMτ0 + d2Mτ0} · n(1− r)T

)
= O

(
(1− r)Tnd2 · (Mτ0 + qd)

)
.

541

Lemma B.4. The computational complexity of mspace-Tµ is:542

C(A) = O (nrT + dMnτ0) ,

C(B) = O
(

(1− r)Tn · d(q + M)τ0

)
.

543

21

Under review as submission to TMLR

Proof. Based on the explanation provided for mspace-TN , we simplify the computational complexity expres-544

sions for mspace-Tµ as:545

C(A) = O
(
⌊rT ⌋

∑
v

1 + ⌊rT ⌋2n + dM
∑

v

|Sv|

)
= O (3nrT + dMnτ0) = O (nrT + dMnτ0) .

C(B) = O

 T −q∑
t=⌈rT ⌉

{
q
∑

v

1 + dq
∑

v

|Sv|+ 2n + dM
∑

v

|Sv|

}
= O

(
{q + dqτ0 + 2 + dMτ0} · n(1− r)T

)
= O

(
(1− r)Tn · d(q + M)τ0

)
.

546

B.2 Space Complexity547

We denote the space complexity operator as M(·), the argument of which is an algorithm or part of an548

algorithm. The variables in offline training A are re-used in online learning B. Therefore, we can say that549

M(B) = M(A ∪ B).550

In an implementation of mspace where forecasting is sequentially performed for each node v ∈ [n], memory551

space can be efficiently reused, except for storing the outputs. This approach optimises memory usage,552

resulting in a space complexity characterised by:553

M(A ∪ B) = O

max
v∈[n],
t∈[T]

d|Uv||Sv|︸ ︷︷ ︸
Sv

+ cMd|Uv||Sv|︸ ︷︷ ︸
Qv(s) ∀s∈Sv

+ cd|Uv||Sv|︸ ︷︷ ︸
µv(s) ∀s∈Sv

+ c(d|Uv|)2|Sv|︸ ︷︷ ︸
Σv(s) ∀s∈Sv

+ d|Uv|︸ ︷︷ ︸
s∗

 . (21)

Lemma B.5. The space complexity of mspace-SN is M(A ∪ B) = O
(

db(M + db) ·min{T, 2bd}
)

.554

Proof. Simplifying equation 21 results in:555

M(A ∪ B) = O

max
v∈[n],
t∈[T]

(db + cMdb + cdb + cd2b2)|Sv|+ db


= O

(
(cMdb + cd2b2) ·max

t∈[T]
min{t, 2bd}

)
= O

(
db(M + db) ·min{T, 2bd}

)
.

556

Lemma B.6. The space complexity of mspace-Sµ is M(A ∪ B) = O
(

Mdb ·min{T, 2bd}
)

.557

Proof. Some space is saved in mspace-Sµ, as we do not need to store the covariance matrices.558

M(A ∪ B) = O

max
v∈[n],
t∈[T]

(db + cMdb + cdb)|Sv|+ db

 = O
(

Mdb ·min{T, 2bd}
)

.

559

Lemma B.7. The space complexity of mspace-TN is M(A ∪ B) = O
(

d(M + d)τ0

)
.560

22

Under review as submission to TMLR

Proof. As explained earlier, for the state function ΨT, b = 1. Therefore, the queues only store the shock561

vectors for a single node, and not the neighbours. The space complexity expression is simplified as:562

M(A ∪ B) = O

max
v∈[n],
t∈[T]

(d + cMd + cd + cd2)|Sv|+ db

 = O
(

d(M + d)τ0

)
.

563

Lemma B.8. The space complexity of mspace-Tµ is O
(

Mdτ0

)
.564

Proof. M(A ∪ B) = O
(

maxv∈[n],
t∈[T]

(d + cMd + cd)|Sv|+ d

)
= O

(
Mdτ0

)
.565

Asymptotic Analysis Theorem 6.2 states that for asymptotically large number of nodes n and timesteps566

T , the computational complexity of mspace is O(nT), and the space complexity is O(1) across all variants.567

Proof. We analyse the lemmas B.1-B.8 introduced in this section for the asymptotic case of very large n568

and T . For very large T , min
{

(1+r)
2 T, 2bd

}
→ 2bd. Similarly, min{T, 2bd} → 2bd. Considering the terms569

r, d, M, q, τ0, b as constants, the computational complexity for both offline and online parts of all the mspace570

variants becomes O(nT) for asymptotically large n, T .571

Furthermore, the space complexity terms lack n or T for very large T , which allows us to conclude that the572

space complexity of all the variants of mspace is constant, i.e., O(1).573

C Synthetic Datasets & Experiments574

In traffic datasets, seasonality outweighs cross-nodal correlation, making it challenging to assess the efficacy575

of a TGL algorithms on node feature forecasting task. To address this gap, we propose a synthetic dataset576

generation technique in line with the design idea of mspace which is described in Algorithm 3.577

Algorithm 3 Synthetic Data Generation
Input G = (V, E), d, µmin, µmax, σ2

min, σ2
max, µ0, σ2

0 , τ , µτ , σ2
τ .

1: ε0 ∼ Bernoullind
(1

2
)

2: x0 ∼ N (x; µ01, σ2
0I)

3: for t ∈ [T] do
4: st−1 ← ΨS(εt−1)
5: if st−1 /∈ S then
6: S ← S ∪ {st−1}
7: µ(st−1) ∼ Uniformnd(µmin, µmax)
8: Σ̃ ∼ Uniformnd×nd(σ2

min, σ2
max)

9: Σ̂← 1
2
(
Σ̃ + Σ̃⊤)

10: Σ(st−1)← Σ̂⊙ (A⊗ 1d×d)
11: end if
12: εt ∼ N (ε; µ(st−1), Σ(st−1))
13: xt = xt−1 + εt

14: end for
15: if τ > 0 then
16: yt ∼ N (y; µτ 1, σ2

τ I) ∀t ∈ [τ]
17: xt ← xt + yt mod τ ∀t ∈ [T]
18: end if

23

Under review as submission to TMLR

In steps 8-10, we construct a covariance matrix adhering to Assumption 2.2, and in step 12, we sample the578

shock from a multivariate normal distribution. In steps 16-17, a random signal y is tiled with period τ and579

added to the node features to introduce seasonality into the dataset.580

The synthetic datasets can be utilized to analyze how various factors such as graph structure, periodicity,581

connectivity, sample size, and other parameters affect error metrics.582

We generate datasets through Algorithm 3 by supplying the parameters outlined in Table 5. For each dataset,583

we create multiple random instances and report the mean and standard deviation of the metrics in the results.584

Table 5: Parameters for different synthetic dataset packages.
Dataset G ∼ d T µmin µmax σmin σmax µ0 σ0 τ µτ στ

SYN01 GER (20, 0.2) 1 103 −200 200 40 50 2 × 104 5000 100 100 20
SYN02 GER (20, 0.2) 1 103 −200 200 40 50 2 × 104 5000 0
SYN03 GER (40, 0.5) 1 103 −400 400 30 40 104 2000 0
SYN04 GER (40, 0.5) 1 104 −400 400 30 40 104 2000 0

585

0 200 400 600 800 1000
t

10000
12000
14000
16000
18000
20000
22000
24000

x t

(a) SYN01

0 200 400 600 800 1000
t

14000
16000
18000
20000
22000
24000
26000
28000

x t

(b) SYN02

0 200 400 600 800 1000
t

5000

0

5000

10000

15000

x t

(c) SYN03

0 2000 4000 6000 8000 10000
t

10000
0

10000
20000
30000
40000
50000

x t

(d) SYN04

Figure 10: Exemplary synthetic dataset samples shown for 5 nodes.

C.1 Periodicity586

The generator parameters for SYN01 and SYN02 are same except for the periodic component added to SYN01587

which has a period of τ = 100 timesteps consisting of shocks sampled from N (100, 20). An algorithm which588

can exploit the periodic influence in the signal should perform better on SYN01 compared to SYN02. The589

models which perform worse on periodic dataset are marked red.590

24

Under review as submission to TMLR

Table 6: Impact of data periodicity on RMSE achieved by different models.
SYN01 SYN02 % increase

mean std. dev. mean std. dev.
(

SYN02−SYN01
SYN01

)
mspace-Sµ 299.18 ± 6.55 294.99 ± 8.81 −0.63
mspace-SN 400.99 ± 3.74 395.33 ± 3.24 −1.52
STGODE 420.86 ± 103.29 420.25 ± 52.17 −9.87
GRAM-ODE 921.94 ± 537.63 853.77 ± 340.45 −18.18
LightCTS 419.43 ± 176.5 334.59 ± 79.01 −30.6
Kalman-x 781.94 ± 32.35 776.75 ± 30.38 −0.88
Kalman-ε 393.76 ± 4.72 390.45 ± 3.54 −1.13

C.2 Training Samples591

The generator parameters for SYN03 and SYN04 are same except for the total number of samples being ten592

times more in SYN04. If a model perform better on SYN04 compared to SYN03, it would indicate that it is593

training intensive, requiring more samples to infer the trends. On the other hand, if the model performs594

worse on SYN04, it would indicate that there are scalability issues, or the training caused overfitting. An595

ideal model is expected to have similar performance on SYN03 and SYN04. The models with ideal behaviour596

are marked teal, and the models susceptible to overfitting are marked red. Moreover, model(s) that require597

more training samples are marked violet.598

Table 7: Impact of number of training samples on RMSE achieved by different models.
SYN03 SYN04 % increase

mean std. dev. mean std. dev.
(SYN04−SYN03

SYN03

)
mspace-Sµ 793.41 ± 5.86 789.36 ± 3 −0.86
mspace-SN 793.93 ± 5.73 792.61 ± 2.02 −0.63
STGODE 830.63 ± 127 931.33 ± 191.87 +17.29
GRAM-ODE 1382.48 ± 80.78 1423.93 ± 190.13 +10.31
LightCTS 769.34 ± 196.6 998.01 ± 319.72 +36.42
Kalman-x 785.7 ± 8.95 721.88 ± 1.73 −8.94
Kalman-ε 782.6 ± 6.5 783.36 ± 1.45 −0.54

D Evaluation599

D.1 Metrics600

The root mean squared error (RMSE) of q consecutive predictions for all the nodes is:601

RMSE(q) ≜ E

[√
1

ndq

∑
v∈V

∑
i∈[q]

∥∥∥∑j∈[i] εt+j(v)− ε̂t+j(v)
∥∥∥2

2

]
. (22)

The mean absolute error (MAE) of q consecutive predictions for all the nodes is:602

MAE(q) ≜ 1
ndqE

[∑
v∈V

∑
i∈[q]

∥∥∥∑j∈[i] εt+j(v)− ε̂t+j(v)
∥∥∥

1

]
. (23)

D.2 Datasets603

In Table 8, we list the datasets commonly utilised in the literature for single and multi-step node feature604

forecasting.605

25

Under review as submission to TMLR

tennis (Béres et al., 2018) represents a discrete-time dynamic graph showing the hourly changes in the606

interaction network among Twitter users during the 2017 Roland-Garros (RG17) tennis match. The input607

features capture the structural attributes of the vertices, with each vertex symbolizing a different user and608

the edges indicating retweets or mentions within an hour 6.609

wikimath (Rozemberczki et al., 2021a) tracks daily visits to Wikipedia pages related to popular610

mathematical topics over a two-year period. Static edges denote hyperlinks between the pages 7.611

pedalme (Rozemberczki et al., 2021a) reports weekly bicycle package deliveries by Pedal Me in London612

throughout 2020 and 2021. The nodes are different locations, and the edge weight encodes the physical613

proximity. The count of weekly bicycle deliveries in a location forms the node feature footnote 8.614

cpox (Rozemberczki et al., 2021b) tracks the weekly number of chickenpox cases for each county of615

Hungary between 2005 and 2015. Different counties form the nodes, and are connected if any two counties616

share a border 8.617

PEMS03/04/07/08 (Rao et al., 2022) The four datases are collected from four districts in California618

using the California Transportation Agencies (CalTrans) Performance Measurement System (PeMS) and619

aggregated into 5-minutes windows9 . The spatial adjacency matrix for each dataset is constructed using the620

length of the roads. PEMS03 is collected from September 2018 to November 2018. PEMS04 is collected from621

San Francisco Bay area from July 2016 to August 2016. PEMS07 is from Los Angeles and Ventura counties622

between May 2017 and August 2017. PEMS08 is collected from San Bernardino area between July 2016 to623

August 2016.624

Variables: The flow represents the number of vehicles that pass through the loop detector per time interval625

(5 minutes). The occupancy variable represents the proportion of time during the time interval that the626

detector was occupied by a vehicle. It is measured as a percentage. Lastly, the speed variable represents the627

average speed of the vehicles passing through the loop detector during the time interval . It is measured in628

miles per hour (mph).629

PEMSBAY (Li et al., 2018) is a traffic dataset collected by CalTrans PeMS. It is represented by a630

network of 325 traffic sensors in the Bay Area with 6 months of traffic readings ranging from January 2017 to631

May 2017 in 5 minute intervals10.632

METRLA (Li et al., 2018) is a traffic dataset based on Los Angeles Metropolitan traffic conditions.633

The traffic readings are collected from 207 loop detectors on highways in Los Angeles County over 5 minute634

intervals between March 2012 to June 201211.635

D.3 Baselines636

DCRNN (Li et al., 2018) The Diffusion Convolutional Recurrent Neural Network (DCRNN) models the637

node features as a diffusion process on a directed graph, capturing spatial dependencies through bidirectional638

random walks. Additionally, it addresses nonlinear temporal dynamics by employing an encoder-decoder639

architecture with scheduled sampling.640

TGCN (Zhao et al., 2019) Temporal Graph Convolutional Network (TGCN) combines the graph convolu-641

tional network (GCN) with a gated recurrent unit (GRU), where the former learns the spatial patterns, and642

the latter learns the temporal.643

6https://github.com/ferencberes/online-centrality
7wikimath dataset from PyTorch Geometric Temporal
8https://github.com/benedekrozemberczki/spatiotemporal_datasets
9https://github.com/guoshnBJTU/ASTGNN/tree/main/data

10PEMSBAY dataset from PyTorch Geometric Temporal
11METRLA dataset from PyTorch Geometric Temporal

26

https://github.com/ferencberes/online-centrality
https://pytorch-geometric-temporal.readthedocs.io/en/latest/_modules/torch_geometric_temporal/dataset/wikimath.html
https://github.com/benedekrozemberczki/spatiotemporal_datasets
https://github.com/guoshnBJTU/ASTGNN/tree/main/data
https://pytorch-geometric-temporal.readthedocs.io/en/latest/_modules/torch_geometric_temporal/dataset/pems_bay.html
https://pytorch-geometric-temporal.readthedocs.io/en/latest/_modules/torch_geometric_temporal/dataset/metr_la.html

Under review as submission to TMLR

Table 8: Real world datasets for single and multi-step forecasting.
Name n x time-step T

tennis 1,000 # tweets 1 hour 120
wikimath 1,068 # visits 1 day 731
pedalme 15 # deliveries 1 week 35
cpox 20 # cases 1 week 520

PEMS03 358 flow 5 min 26,208
PEMS04 307 flow, occupancy, speed 5 min 16,992
PEMS07 883 flow 5 min 28,224
PEMS08 170 flow, occupancy, speed 5 min 17,856
PEMSBAY 325 speed 5 min 52,116
METRLA 207 speed 5 min 34,272

EGCN (Pareja et al., 2020) EvolveGCN (EGCN) adapts a GCN model without using node embeddings.644

The evolution of the GCN parameters is learnt through an RNN. EGCN has two variants: ECGN-H which uses645

a GRU, and ECGN-O which uses an LSTM.646

DynGESN (Micheli & Tortorella, 2022) Dynamic Graph Echo State Networks (DynGESN) employ echo647

state networks (ESNs) a special type of RNN in which the recurrent weights are conditionally initialized,648

while a memory-less readout layer is trained. The ESN evolves through state transitions wheere the states649

belong to a compact space. For more details please refer to the original text.650

GWNet (Wu et al., 2019) GraphWave Net (GWNet) consists of an adaptive dependency matrix which651

is learnt through node embeddings, which is capable of capturing the hidden spatial relations in the data.652

GWNet can handle long sequences owing to its one-dimensional convolutional component whose receptive field653

grows exponentially with the number of layers.654

STGODE (Fang et al., 2021) Spatial-temporal Graph Ordinary Differential Equation (STGODE) employs655

tensor-based ordinary differential equations (ODEs) to model the temporal evolution of the node features.656

GRAM-ODE (Liu et al., 2023) Graph-based Multi-ODE (GRAM-ODE) improves upon STGODE by con-657

necting multiple ODE-GNN modules to capture different views of the local and global spatiotemporal658

dynamics.659

FOGS (Rao et al., 2022) FOGS utilises first-order gradients to train a predictive model because the traffic660

data distribution is irregular.661

LightCTS (Lai et al., 2023) LightCTS stacks temporal and spatial operators in a computationally-efficient662

manner, and uses lightweight modules L-TCN and GL-Former.663

ARIMA (Box & Pierce, 1970) ARIMA is a multivariate time series forecasting technique that combines664

autoregressive, integrated, and moving average components. It models the relationship between observations665

and their lagged values, adjusts for non-stationarity in the data, and accounts for short-term fluctuations.666

Kalman (Welch, 1997) Since mspace is a state-space algorithm, we also use the Kalman filter as a667

baseline. We introduce two variants of the Kalman filter: Kalman-x, which considers the node features as668

observations, and Kalman-ε, which operates on the shocks.669

27

Under review as submission to TMLR

E Interpretability670

The poor performance of mspace-Tµ on the datasets PEMSBAY and METRLA is explained through Fig. 11. We671

notice that there are many datapoints away from the mean, although the mean trend passed through the672

dense collection of data points, i.e., the variance in the data is high which leads to higher error values reported673

in Table 3 .

(a) PEMSBAY: Weekly (b) METRLA: Weekly

Figure 11: Periodic trends in the traffic dataset PEMSBAY and METRLA; the black points represent the data-
points, and the red line is the mean estimate for each state t mod τ0.

674

28

	Introduction
	Methodology
	Algorithm
	Related Works
	Results
	Interpretability
	Explaining S
	Explaining T
	Error Bounds
	Complexity Analysis

	Discussion
	Conclusion
	Error Bounds
	Complexity Analysis
	Computational Complexity
	Space Complexity

	Synthetic Datasets & Experiments
	Periodicity
	Training Samples

	Evaluation
	Metrics
	Datasets
	Baselines

	Interpretability

