
Hierarchical Graph Generation with K2–trees

Yunhui Jang 1 Dongwoo Kim 1 Sungsoo Ahn 1

Abstract
Generating graphs from a target distribution is a
significant challenge across many domains. In
this work, we introduce a novel graph generation
method leveraging K2–tree representation which
was originally designed for lossless graph com-
pression. Our motivation stems from the ability of
the K2–tree to enable compact generation while
concurrently capturing the inherent hierarchical
structure of a graph. In addition, we make fur-
ther contributions by (1) presenting a sequential
K2–tree representation that incorporates pruning,
flattening, and tokenization processes and (2) in-
troducing a Transformer-based architecture de-
signed to generate the sequence by incorporating
a specialized tree positional encoding scheme. Fi-
nally, we extensively evaluate our algorithm on
four general and two molecular graph datasets to
confirm its superiority for graph generation.

1. Introduction
Generating graph-structured data is a challenging problem
in numerous fields. Recently, deep generative models have
demonstrated significant potential in addressing this chal-
lenge (Maziarka et al., 2020; Simonovsky & Komodakis,
2018; Madhawa et al., 2019; Liu et al., 2021; Jo et al., 2022;
Vignac et al., 2022). The deep graph generative models can
be categorized into three types by their graph representation:
adjacency matrix (Simonovsky & Komodakis, 2018; Mad-
hawa et al., 2019; Liu et al., 2021; Maziarka et al., 2020),
string representation (Ahn et al., 2022; Goyal et al., 2020;
Krenn et al., 2019; Segler et al., 2018), and motif-based
representation (Jin et al., 2018; 2020).

Despite the absence of a consensus on the optimal graph
representation, the evolution of these models is driven by
two primary factors: the need for compactness and the

1Graduate school of Artificial Intelligence, POSTECH, Po-
hang, South Korea. Correspondence to: Sungsoo Ahn <sung-
soo.ahn@postech.ac.kr>.

Accepted to ICML workshop on Structured Probabilistic Inference
& Generative Modeling, Honolulu, Hawaii, USA. PMLR 202,
2023. Copyright 2023 by the author(s).

presence of hierarchy within graphs. Compactness reduces
graph generation complexity and simplifies the search space
over graphs. For example, string and motif representations
provide compact representations compared to adjacency ma-
trices. Otherwise, hierarchy is an inherent characteristic in
many types of graphs. While motif representations address
hierarchy in molecular graphs, their application is restricted
due to the fixed vocabulary of motifs in a specific domain
and their inability to generalize to the hierarchical structure
of general graphs.

Contribution. In this paper, we propose a novel graph gen-
eration framework, coined Hierarchical Graph Generation
with K2–Tree (HGGT), which is compact, hierarchical,
able to represent attributed graphs, and does not require
domain-specific rules.

To this end, We design a sequential representation that is
more compact than the K2–tree, minimizing the number of
decisions the autoregressive model requires. Our method
involves a two-stage procedure: (1) pruning the K2-Tree
to eliminate redundancy from the symmetric adjacency ma-
trix in undirected graphs, (2) flattening and tokenizing the
K2-Tree into a sequence to minimize the decision-making
requirements of graph generation further.

The Transformer architecture (Vaswani et al., 2017) is em-
ployed to generate a K2–tree representation of a graph. To
effectively incorporate positional information of each tree-
node, we devise a new positional encoding scheme tailored
to the K2–tree structure. The positional information of a
tree-node is represented by its pathway from the root node,
enabling full reconstruction of the K2-Tree from just the po-
sitional information. The validity of our algorithm is tested
on popular graph generation benchmarks across six graph
datasets, and HGGT outperformed the baselines.

2. K2–tree Representation of a Graph
We consider the K2–tree representation (Brisaboa et al.,
2009) (T ,X) of an adjacency matrix A as a K2-ary tree
T = (V, E) associated with binary node attributes X =
{xu : u ∈ V}. Every non-root node is uniquely indexed as
(i, j)-th child of its parent node for some i, j ∈ {1, . . . ,K}.
The tree T is ordered so that every (i, j)-th child node is
ranked K(i− 1) + j among its siblings. Then the K2–tree

HGGT

87654321
011000001
100100002
110000003
010000004
000000105
000000016
000011017
000001108

01100000
10010000
11000000
01000000
00000010
00000001
00001101
00000110

0110
1001
1100
0100

0010
0001
1101
0110

0110
1001
11
01

10
01

1101
0110

Level 0 (root) Level 1 Level 2 Level 3

2

1 8

7

6

54

3

Root

1 1 0 1 0 0 1 1 1 1 00 0 1 1 0 1 0 0 1 1 1 1 0

101 11011

0 1 1 0 Level 1

Level 0

Level 2

Level 3
<latexit sha1_base64="IVHIVXjFWEDi3d4P26svj/LYm4Q=">AAACFHicbVDLSsNAFJ3UV62vqAsXbgaL4Kok4mtZdKHuKtgHtKFMppN26OTBzI20hPyGP+BW/8CduHXvD/gdTtosbOuBC4dz7uXee9xIcAWW9W0UlpZXVteK66WNza3tHXN3r6HCWFJWp6EIZcsligkesDpwEKwVSUZ8V7CmO7zJ/OYTk4qHwSOMI+b4pB9wj1MCWuqaBx1gI3C95D6IYsB9SaIBTvFt1yxbFWsCvEjsnJRRjlrX/On0Qhr7LAAqiFJt24rASYgETgVLS51YsYjQIemztqYB8ZlykskDKT7WSg97odQVAJ6ofycS4is19l3d6RMYqHkvE//z2jF4V07Cs99YQKeLvFhgCHGWBu5xySiIsSaESq5vxXRAJKGgM5vZMpqeWtLB2PMxLJLGacW+qJw/nJWr13lERXSIjtAJstElqqI7VEN1RFGKXtArejOejXfjw/icthaMfGYfzcD4+gUwoZ7L</latexit>

Input graph G

<latexit sha1_base64="C6HUx3SvuMIIz2GSNixrYbmxT78=">AAACKnicbVDLSgNBEJz1bXytevQyGAQvhl3xdYx68RjBJEISwuxsr47Ozi4zvZKw5Cv8DX/Aq/6BN/EqfoeTTQ5GLWgoqrrp7gpSKQx63rszNT0zOze/sFhaWl5ZXXPXNxomyTSHOk9koq8DZkAKBXUUKOE61cDiQEIzuD8f+s0H0EYk6gr7KXRidqNEJDhDK3XdvTZCD4MoPw3vGAfF+zRmqEWPMhVSgYaaLCgUDmbQdctexStA/xJ/TMpkjFrX/WqHCc9iUMglM6bleyl2cqZRcAmDUjszkDJ+z26gZaliMZhOXrw1oDtWCWmUaFsKaaH+nMhZbEw/DmynvfDW/PaG4n9eK8PopJMLlWZoPx4tijJJMaHDjGgoNHCUfUsY18LeSvkt04yjTXJiS290askG4/+O4S9p7Ff8o8rh5UG5ejaOaIFskW2yS3xyTKrkgtRInXDySJ7JC3l1npw35935GLVOOeOZTTIB5/Mbxt2omg==</latexit>

Adjacency matrix and its submatrices

<latexit sha1_base64="xFeCwvcBBzYzjVM1mblIwEIuP1g=">AAAEinichVNdb9MwFE27AqMMtsEjLxZTUStllZ206SKEtAEPSLwMaV/SUibHdbsw5wPbGass80v4Wzzwb3DSVlu2lVmKcnSPz70n996EGYuEhPBvrb7SePT4yerT5rO15y/WNzZfHok054QekpSl/CTEgrIooYcykoyeZJziOGT0OLz4WPDHl5SLKE0O5DSjwxhPkmgcESxN6Gyz9rsVpBnlWKY8wTFVWSp0O5D0SpbJVTydcEoTrXLdAW/fgyoXspxq1UY26mgbVChOR9dM2zHvDgiCZqudnan782v7x1JqVrvIUiZ5yPOUMpb+1OryP6Yd23nANDI3lpi+LmAu3rZ9g5yV79tep9malQrHam/0vat/7TW/fFOOXgS3t6X5WqBBEGN5TjBTB/psYwt1YXkA7Hq+N/BdA5Dv+AMEFtSWNT/7Zp5/glFK8pgmkjAsxCmCmRwqzGVEGNXNIBc0w+QCT+ipgUX7xFCVxjVomcgIjFNunkSCMnpToa6EQdUsCsdCTOPQqAvf4jZXBO/jTnM53hmqKMlySRMyKz7OGZApKBYVjCJOiWRTAzDhkfEPyDnmmEizzlVXM/vNYETH5jeojplPQq1My9CO70PbNK/XcxH0CjRwXegO7ujKHZjLfOh7aGDDrgMR9P0CeL7r3RUtRl7qFoOxFzOzFzO7o5tv+Lycg3aQ2ytlbq9XlOv3oUlQWYTl4MjpIq/b/9rb2v0wX4lV67X1xmpbyBpYu9Zna986tEh9pd6pO3W3sdZwGn7j3exqvTbXvLIqp/HpH1vJdY0=</latexit>

K2–tree T

Figure 1. K2–tree with K = 2. The K2–tree describes the hierarchy of the adjacency matrix iteratively being partitioned to K ×K
submatrices. It is compact due to summarizing any zero-filled submatrix with size larger than 1× 1 (shaded in grey) by a non-leaf node u
with label xu = 0.

satisfies the following conditions:

• Each tree-node u is associated with a submatrix A(u)

of the adjacency matrix A.

• If the submatrix A(u) for a tree-node u is filled only
with zeros, xu = 0. Otherwise, xu = 1.

• A tree-node u is a leaf node if and only if xu = 0 or
the matrix A(u) is a 1× 1 matrix.

• Let B1,1, . . . , BK,K denote the K × K partitioning
of the matrix A(u) with i, j corresponding to row-
and column-wise order, respectively. The child nodes
v1,1, . . . , vK,K of the tree-node u are associated with
the submatrices B1,1, . . . , BK,K , respectively.

The illustration of the K2–tree can be found in Figure 1.
The generated K2–tree is a compact description of graph
G as any non-leaf node u with xu = 0 summarizes a large
submatrix filled only with zeros. In the worst-case scenario,
the size of the K2–tree is MK2(logK2(N2/M) + O(1))
(Brisaboa et al., 2009), where N and M denote the number
of nodes and edges in the original graph, respectively. This
constitutes a significant improvement over the N2 size of
the full adjacency matrix.

Additionally, the K2–tree is a hierarchical representation
of the original graph, ensuring that (1) each node within
the tree represents the connectivity between a specific set
of nodes, and (2) nodes closer to the root correspond to a
larger set of nodes. We emphasize that the tree-nodes are
associated with submatrices overlapping with the diagonal

of the original adjacency matrix when they indicate intra-
connectivity within a group of nodes. In contrast, the re-
maining tree-nodes describe the inter-connectivity between
two distinct sets of nodes. We also describe the detailed
algorithms for constructing a K2–tree from a given graph G
and recovering a graph from the K2–tree in Appendices A
and B, respectively.

3. Hierarchical Graph Generation with
K2–trees

3.1. Sequential K2–tree representation

Here, we propose an algorithm to flatten the K2–tree into a
sequence as illustrated in Figure 2.

Pruning the K2–tree. To obtain the pruned K2–tree, we
identify and eliminate redundant tree-nodes due to the sym-
metry of the adjacency matrix for undirected graphs. In
particular, such tree-nodes are associated with submatrices
positioned above the diagonal since they mirror the counter-
parts below it.

We now describe a formula to identify redundant tree-nodes
using the position of a submatrix A(u), tied to a specific
tree-node u, within the adjacency matrix A. To this end,
we consider a downward path v0, v1, . . . , vL from the root
node r = v0 to the tree-node u = vL as description of
the tree-node position. We also let (ivℓ , jvℓ

) denote the or-
der of vℓ among its siblings. Hence, the tree-node position
can be represented as pos(u) = ((iv1 , jv1), . . . , (ivL , jvL)).
Also, the location of the submatrix A(u) is derived as the
(pu, qu) = (

∑L
ℓ=1 K

L−ℓ(ivℓ − 1) + 1,
∑L

ℓ=1 K
L−ℓ(jvℓ

−1)+ 1)-th element with respect to the KL×KL partition

HGGT

4321
01101
10012
10013
01104

Root

1001

1 1 1

1001 01100110

1

Root

1

1001

1

010010

1

<latexit sha1_base64="y9ZFRzkmDuRgDysRJfh2JPjDtSw=">AAACHnicbVDJTgJBEO1xRdxQj15aiYknMmPcjkQvHjHKkgAhPU0NdOhZ7K4xkAlnf8Mf8Kp/4M141R/wO2xgDgJW0umX96pSr54bSaHRtr+thcWl5ZXVzFp2fWNzazu3s1vRYaw4lHkoQ1VzmQYpAiijQAm1SAHzXQlVt3c90quPoLQIg3scRND0WScQnuAMDdXKHTQQ+uh6yR08xBBwoEPacEPZ1gPffMlg2Mrl7YI9LjoPnBTkSVqlVu6n0Q557EOAXDKt644dYTNhCgWXMMw2Yg0R4z3WgbqBAfNBN5PxKUN6ZJg29UJlXoB0zP6dSJivR9ZMp8+wq2e1EfmfVo/Ru2wmIohiNGdOFnmxpBjSUS60LRRwlAMDGFfCeKW8yxTjaNKb2tKfWM2aYJzZGOZB5aTgnBfObk/zxas0ogzZJ4fkmDjkghTJDSmRMuHkibyQV/JmPVvv1of1OWldsNKZPTJV1tcvkgij4w==</latexit>

Sequence y 1 1 1 0 1 0 1 0 0 1 0 1 0

<latexit sha1_base64="6OtXb7Dotm0DfIHTjKn6s5+hwm8=">AAAEU3ichVJNb9NAEHU+CsXQLzhyWREFJZJl7dqJHR+QWrhwLBJpK8VRtN6sU7f+Yr0uiSzz4/gPHDjxQ7iwdhw1aRq6kuXRvHkzT/PGiX0v4RD+rtUbzb1nz/dfyC9fHRweHZ+8vkiilBE6JJEfsSsHJ9T3QjrkHvfpVcwoDhyfXjq3nwr88o6yxIvCr3wR03GAZ6HnegRzkZqc1OZtO4opwzxiIQ5oFkdJ3rE5nfOyeRYsZozSMM/SvAvefwCbmOOnNM86SEHdXAEbEKPTe6SjiX8X2Lbc7sST7PH+ufJtJ7ScXXQpmzyleUF9P/qeZ3f/Ea0p2hOikajYIfp+gCh8KHsNXI7vK0ZXLkscNzub3qj5j7PJcQupsHwAqoZlmJYuAmRplonACmpJ1TsXXv20pxFJAxpy4uMkGSEY83GGGfeIT3PZThMaY3KLZ3QkwmI1yTgrReWgLTJT4EZMfCEHZXadkeEgSRaBIyoDzK+Th1iRfAwbpdwdjDMvjFNOQ7Ic5KY+4BEoDg5MPUYJ9xciwIR5Qisg15hhwsVZbkyZL6XK9pS64pw37WIzJ8/EetDAsqAiFtXr6QgaRWTqOtTNLV7pZUWzoGUgU4GqBhG0rCIwLN3YJq2sK3krE5SVP8rKny1edanVOA0NkN4raXqvV4zr96FokMvrru8OLjQVGWr/S691+rHyf196K72TOhKSTOlU+iydS0OJ1P7U9+qH9aPGr8bfZr3ZXJbWaxXnjbTxmgf/AErJYfA=</latexit>

Adj. A
<latexit sha1_base64="xFeCwvcBBzYzjVM1mblIwEIuP1g=">AAAEinichVNdb9MwFE27AqMMtsEjLxZTUStllZ206SKEtAEPSLwMaV/SUibHdbsw5wPbGass80v4Wzzwb3DSVlu2lVmKcnSPz70n996EGYuEhPBvrb7SePT4yerT5rO15y/WNzZfHok054QekpSl/CTEgrIooYcykoyeZJziOGT0OLz4WPDHl5SLKE0O5DSjwxhPkmgcESxN6Gyz9rsVpBnlWKY8wTFVWSp0O5D0SpbJVTydcEoTrXLdAW/fgyoXspxq1UY26mgbVChOR9dM2zHvDgiCZqudnan782v7x1JqVrvIUiZ5yPOUMpb+1OryP6Yd23nANDI3lpi+LmAu3rZ9g5yV79tep9malQrHam/0vat/7TW/fFOOXgS3t6X5WqBBEGN5TjBTB/psYwt1YXkA7Hq+N/BdA5Dv+AMEFtSWNT/7Zp5/glFK8pgmkjAsxCmCmRwqzGVEGNXNIBc0w+QCT+ipgUX7xFCVxjVomcgIjFNunkSCMnpToa6EQdUsCsdCTOPQqAvf4jZXBO/jTnM53hmqKMlySRMyKz7OGZApKBYVjCJOiWRTAzDhkfEPyDnmmEizzlVXM/vNYETH5jeojplPQq1My9CO70PbNK/XcxH0CjRwXegO7ujKHZjLfOh7aGDDrgMR9P0CeL7r3RUtRl7qFoOxFzOzFzO7o5tv+Lycg3aQ2ytlbq9XlOv3oUlQWYTl4MjpIq/b/9rb2v0wX4lV67X1xmpbyBpYu9Zna986tEh9pd6pO3W3sdZwGn7j3exqvTbXvLIqp/HpH1vJdY0=</latexit>

K2–tree T
<latexit sha1_base64="fJwfVafptJd2GQnsPZZUcJozQMs=">AAAEmnichVNbb9MwFM5KgVEu29gjPFhMRa2UVXbSps0D0i4voL0MaTdpKZPjuF2Yc8FxxirL/CL+Dg/8G5y00ZZdmKUoJ+fzd85nny9+ysJMQPh3qfGk+fTZ8+UXrZevXr9ZWV17e5QlOSf0kCQs4Sc+zigLY3ooQsHoScopjnxGj/2L3QI/vqQ8C5P4QMxSOo7wNA4nIcFCp87Wln63vSSlHIuExziiMk0y1fEEvRJlcRnNppzSWMlcdcHHT6CO+SynSnaQibrKBDWI0+Aa6Vj63QWe12p30jN5f31l/ngQmvcuqpRFHtM8o4wlP5W8/I9oy7QeEY30jgdEXzfQG2/LvgHO2w9Mp9tqz1v5E7kdfO+pX9ut6nuf5zENgNr7Ji1VJTc3hT49UMCLsDgnmMkDdba6gXqwXAD2HNcZurYOkGu5QwQqaMNYrH093z9ekJA8orEgDGfZKYKpGEvMRUgYVS0vz2iKyQWe0lMdFteZjWV5EAXaOhOAScL1EwtQZm8y5FWmo3oViaMsm0W+Zhe6s9tYkbwPO83FZDSWYZzmgsZk3nySMyASUBgXBCGnRLCZDjDhodYPyDnmmAht77qqufyWF9CJ/i3qY+dTX0l9ZWjkutDUl9fv2wg6RTS0bWgP7/BKTyxoLnQdNDRhz4IIum4ROK7t3CVVFih51WDMamZmNbM7vIXjF+0sNEJ2v6TZ/X7RbjCAukDNCA8HR1YPOb3B1/7G1s7CEsvGO+OD0TGQMTS2jM/GvnFokMZ6w23sNHab75s7zS/NvfnWxtKCs27UVvPgH9kjfJw=</latexit>

Pruned K2–tree T

Figure 2. Illustration of the sequential representation for K2–tree. The shaded parts of the adjacency matrix A and the K2–tree
T denote redundant parts, which are further pruned, while the purple-colored parts of A and T denote non-redundant parts. Also,
same-colored tree-nodes of pruned K2–tree are grouped and tokenized into the same colored parts of the sequence y.

of the adjacency matrix A, as described in Appendix B. As a
result, we eliminate any tree-node associated with a subma-
trix above the diagonal, i.e., we remove tree-node u when
pu < qu. Consequently, the pruned K2–tree maintains only
tree-nodes associated with submatrices devoid of redundant
nodes.

Flattening and tokenization of the pruned K2–tree. Next,
we explain how to obtain a sequential representation of the
pruned K2–tree based on flattening and tokenization. Our
idea is to flatten a K2–tree as a sequence of tree-node at-
tributes {xu : u ∈ V} using breadth-first traversal and then
to tokenize the sequence by grouping the tree-nodes that
share the same parent node, i.e., sibling nodes. The detailed
description is described in Appendix C. We also extend
our HGGT to graphs with node and edge-wise features,
e.g., molecular graphs, and the detailed description is in
Appendix D.

3.2. Generating K2–tree with Transformer and K2–tree
positional encoding

Transformer with K2–tree positional encoding. We first
propose the Transformer (Vaswani et al., 2017) architecture
to parameterize the distribution pθ(yt|yt−1, . . . , y1). To this
end, we base our architecture on the Transformer architec-
ture used for the autoregressive generation of sequential data.
We use the tree-positional encodings for each time-step t to
incorporate the structure of K2–tree during generation.

As outlined in Section 3.1, the node attributes in yt
are associated with child nodes of a particular tree-node
u. To enhance the input yt, we incorporate the posi-
tional encoding for u. We update the input feature yt
through the addition of positional encoding, which is rep-
resented as PE(u) =

∑L
ℓ=1 Embeddingℓ(ivℓ , jvℓ), where

((iv1 , jv1), . . . , (ivL , jvL)) are the sequence of orders of a
downward path from the root node r to the tree-node u.

Constructing K2–tree from the sequential representa-
tion. We next explain the algorithm to recover a K2–tree

from its sequential representation y. In particular, we gen-
erate the K2–tree simultaneously with the sequence to in-
corporate the tree information for each step of the autore-
gressive generation. The algorithm begins with an empty
tree containing only a root node and iteratively expands
each “frontier” node based on the sequence of the decisions
made by the generative model. To facilitate a breadth-first
expansion approach, the algorithm utilizes a first-in-first-out
(FIFO) queue, which contains tree-node candidates to be
expanded.

To be specific, our algorithm initializes a K2–tree T =
({r}, ∅) with the root node r associated with the node at-
tribute xr = 1. It also initializes the FIFO queue Q with
the root node r. Then at each t-th iteration, our algorithm
expands the tree-node u popped from the queueQ using the
token yt. To be specific, for each tree-node attribute x in yt,
our algorithm adds a child node v with xv = x. If x = 1
and the size of A(v) is larger than 1× 1, the child node v is
inserted into the queue Q.

4. Experiment
4.1. Generic graph generation

Experimental setup. We first validate the general graph
generation performance of our HGGT on four datasets: (1)
Community-small, (2) Planar, (3) Enzymes (Schomburg
et al., 2004), (4) Grid. We adopt maximum mean discrep-
ancy (MMD) as our evaluation metric to compare three
graph property distributions between generated graphs and
test graphs: degree, clustering coefficient, and 4-node-orbit
counts. The baselines are described in Table 1 and detailed
descriptions of our experimental setup are in Appendix E.

Results. We provide experimental results are in Table 1.
We observe that our HGGT clearly outperforms all the base-
lines on all the datasets. This verifies our model’s ability
to effectively capture the structural information of graphs.
In particular, we observe how the performance of HGGT is

HGGT

Table 1. Generic graph generation performance. For each metric, the best is highlighted in bold and the second-best is underlined.
Community-small Planar Enzymes Grid

12 ≤ |V | ≤ 20 |V | = 64 10 ≤ |V | ≤ 125 100 ≤ |V | ≤ 400

Method Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb.

GraphVAE (Simonovsky & Komodakis, 2018) 0.350 0.980 0.540 - - - 1.369 0.629 0.191 1.619 0.000 0.919
GraphRNN (You et al., 2018) 0.080 0.120 0.040 0.005 0.278 1.254 0.017 0.062 0.046 0.064 0.043 0.021
GNF (Liu et al., 2019) 0.200 0.200 0.110 - - - - - - - - -
GRAN (Liao et al., 2019) - - - 0.001 0.043 0.001 - - - 0.001 0.004 0.002
EDP-GNN (Niu et al., 2020) 0.053 0.144 0.026 - - - 0.023 0.268 0.082 0.455 0.238 0.328
GraphGen (Goyal et al., 2020) 0.075 0.065 0.014 1.762 1.423 1.640 0.146 0.079 0.054 1.550 0.017 0.860
GraphAF (Shi et al., 2020) 0.180 0.200 0.020 - - - 1.669 1.283 0.266 - - -
GraphDF (Luo et al., 2021) 0.060 0.120 0.030 - - - 1.503 1.283 0.266 - - -
SPECTRE (Martinkus et al., 2022) - - - 0.010 0.067 0.010 - - - - - -
GDSS (Jo et al., 2022) 0.045 0.086 0.007 - - - 0.026 0.061 0.009 0.111 0.005 0.070
DiGress (Vignac et al., 2022) 0.012 0.025 0.002 0.000 0.002 0.008 0.011 0.039 0.010 0.016 0.000 0.004
GDSM (Luo et al., 2022) 0.011 0.015 0.001 - - - 0.013 0.088 0.010 0.002 0.000 0.000

HGGT (ours) 0.001 0.006 0.003 0.000 0.001 0.000 0.005 0.017 0.000 0.000 0.000 0.000

(a) Train (b) GraphGen (Goyal
et al., 2020)

(c) GDSS (Jo et al., 2022) (d) DiGress (Vignac et al.,
2022)

(e) HGGT (ours)

Figure 3. Generated samples for Community-small (top), and Grid (bottom) datasets.

extraordinary for Grid. We hypothesize that HGGT achieves
high performance due to capturing the coarse-grained struc-
ture of grid graphs. In Figure 3, we also present examples of
generated graphs to demonstrate the efficacy of our proposed
algorithm, HGGT, in capturing the structural information of
training graphs more accurately compared to existing graph
generative models. We additionally provide visualizations
of generated samples in Appendix G.

4.2. Molecular graph generation

Experimental setup. We use two molecular datasets: QM9
(Ramakrishnan et al., 2014) and ZINC250k (Irwin et al.,
2012). We evaluate 10,000 generated molecules using six
metrics: (a) validity (Val.), (b) neighborhood subgraph pair-
wise distance kernel (NSPDK), and (c) Frechet ChemNet
Distance (FCD) (Preuer et al., 2018). The baselines are
described in Table 2 and we provide additional details for
the experimental setup in Appendix E.

Results. The experimental results are reported in Table 2.
We observe that our HGGT showed competitive results on

Table 2. Molecular graph generation performance. The best is
highlighted in bold and the second-best is underlined.

QM9 ZINC250k

Method Val. ↑ NSPDK ↓ FCD ↓ Val. ↑ NSPDK ↓ FCD ↓
EDP-GNN (Niu et al., 2020) 47.52 0.005 2.68 82.97 0.049 16.74
MoFlow (Zang & Wang, 2020) 91.36 0.017 4.47 63.11 0.046 20.93
GraphAF (Shi et al., 2020) 74.43 0.020 5.27 68.47 0.044 16.02
GraphDF (Luo et al., 2021) 93.88 0.064 10.93 90.61 0.177 33.55
GraphEBM (Liu et al., 2021) 8.22 0.030 6.14 5.29 0.212 35.47
GDSS (Jo et al., 2022) 95.72 0.003 2.90 97.01 0.019 14.66
DiGress (Vignac et al., 2022) 99.01 0.001 0.25 100 0.042 16.54
GDSM (Luo et al., 2022) 99.90 0.003 2.65 92.70 0.017 12.96

HGGT (ours) 99.22 0.000 0.40 92.87 0.001 1.93

all the baselines on most of the metrics. This also confirms
the effectiveness of our modification of HGGT to generate
the featured graph. In particular, for the ZINC250k dataset,
we observe a large gap between our method and the base-
lines for NSPDK and FCD scores. This verifies the ability
of our model to be trained on large molecular graphs. We
additionally provide visualizations of generated molecules
in Appendix G and additional metrics in Appendix H.

HGGT

5. Acknowledgements
This work was partly supported by Basic Science Re-
search Program through the National Research Founda-
tion of Korea(NRF) funded by the Ministry of Educa-
tion(2022R1A6A1A03052954, NRF-2021R1C1C1011375)
and Institute of Information & communications Technol-
ogy Planning & Evaluation (IITP) grant funded by the Ko-
rea government(MSIT) (No.2019-0-01906, Artificial Intelli-
gence Graduate School Program(POSTECH)).

References
Ahn, S., Chen, B., Wang, T., and Song, L. Span-

ning tree-based graph generation for molecules. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=w60btE_8T2m.

Besta, M. and Hoefler, T. Survey and taxonomy of lossless
graph compression and space-efficient graph representa-
tions. arXiv preprint arXiv:1806.01799, 2018.

Bouritsas, G., Loukas, A., Karalias, N., and Bronstein, M.
Partition and code: learning how to compress graphs.
Advances in Neural Information Processing Systems, 34:
18603–18619, 2021.

Brisaboa, N. R., Ladra, S., and Navarro, G. k2-trees for
compact web graph representation. In SPIRE, volume 9,
pp. 18–30. Springer, 2009.

Cuthill, E. and McKee, J. Reducing the bandwidth of sparse
symmetric matrices. In Proceedings of the 1969 24th
national conference, pp. 157–172, 1969.

Goyal, N., Jain, H. V., and Ranu, S. Graphgen: a scalable
approach to domain-agnostic labeled graph generation.
In Proceedings of The Web Conference 2020, pp. 1253–
1263, 2020.

Guo, M., Thost, V., Li, B., Das, P., Chen, J., and Matusik,
W. Data-efficient graph grammar learning for molecular
generation. arXiv preprint arXiv:2203.08031, 2022.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., and
Coleman, R. G. Zinc: a free tool to discover chemistry for
biology. Journal of chemical information and modeling,
52(7):1757–1768, 2012.

Jin, W., Barzilay, R., and Jaakkola, T. Junction tree vari-
ational autoencoder for molecular graph generation. In
International conference on machine learning, pp. 2323–
2332. PMLR, 2018.

Jin, W., Barzilay, R., and Jaakkola, T. Hierarchical gen-
eration of molecular graphs using structural motifs. In
International conference on machine learning, pp. 4839–
4848. PMLR, 2020.

Jo, J., Lee, S., and Hwang, S. J. Score-based generative
modeling of graphs via the system of stochastic differen-
tial equations. In International Conference on Machine
Learning, pp. 10362–10383. PMLR, 2022.

Krenn, M., Häse, F., Nigam, A., Friederich, P., and Aspuru-
Guzik, A. SELFIES: a robust representation of semanti-
cally constrained graphs with an example application in
chemistry. arXiv preprint arXiv:1905.13741, 2019.

Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W., Du-
venaud, D. K., Urtasun, R., and Zemel, R. Efficient
graph generation with graph recurrent attention networks.
Advances in neural information processing systems, 32,
2019.

Liu, J., Kumar, A., Ba, J., Kiros, J., and Swersky, K. Graph
normalizing flows. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

Liu, M., Yan, K., Oztekin, B., and Ji, S. Graphebm: Molec-
ular graph generation with energy-based models. arXiv
preprint arXiv:2102.00546, 2021.

Luo, T., Mo, Z., and Pan, S. J. Fast graph generative model
via spectral diffusion. arXiv preprint arXiv:2211.08892,
2022.

Luo, Y., Yan, K., and Ji, S. Graphdf: A discrete flow model
for molecular graph generation. In International Con-
ference on Machine Learning, pp. 7192–7203. PMLR,
2021.

Madhawa, K., Ishiguro, K., Nakago, K., and Abe, M. Graph-
nvp: An invertible flow model for generating molecular
graphs. arXiv preprint arXiv:1905.11600, 2019.

Martinkus, K., Loukas, A., Perraudin, N., and Wattenhofer,
R. Spectre: Spectral conditioning helps to overcome the
expressivity limits of one-shot graph generators. In In-
ternational Conference on Machine Learning, pp. 15159–
15179. PMLR, 2022.

Maziarka, Ł., Pocha, A., Kaczmarczyk, J., Rataj, K., Danel,
T., and Warchoł, M. Mol-cyclegan: a generative model
for molecular optimization. Journal of Cheminformatics,
12(1):1–18, 2020.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,
S. Permutation invariant graph generation via score-based
generative modeling. In International Conference on Ar-
tificial Intelligence and Statistics, pp. 4474–4484. PMLR,
2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

https://openreview.net/forum?id=w60btE_8T2m
https://openreview.net/forum?id=w60btE_8T2m

HGGT

Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., and
Klambauer, G. Fréchet chemnet distance: a metric for
generative models for molecules in drug discovery. Jour-
nal of chemical information and modeling, 58(9):1736–
1741, 2018.

Raghavan, S. and Garcia-Molina, H. Representing web
graphs. In Proceedings 19th International Conference on
Data Engineering (Cat. No. 03CH37405), pp. 405–416.
IEEE, 2003.

Ramakrishnan, R., Dral, P. O., Rupp, M., and Von Lilienfeld,
O. A. Quantum chemistry structures and properties of
134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt,
C., Huhn, G., and Schomburg, D. Brenda, the enzyme
database: updates and major new developments. Nucleic
acids research, 32(suppl_1):D431–D433, 2004.

Segler, M. H., Kogej, T., Tyrchan, C., and Waller, M. P.
Generating focused molecule libraries for drug discovery
with recurrent neural networks. ACS central science, 4
(1):120–131, 2018.

Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., and Tang,
J. Graphaf: a flow-based autoregressive model for molec-
ular graph generation. arXiv preprint arXiv:2001.09382,
2020.

Simonovsky, M. and Komodakis, N. Graphvae: Towards
generation of small graphs using variational autoencoders.
In Artificial Neural Networks and Machine Learning–
ICANN 2018: 27th International Conference on Artificial
Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I 27, pp. 412–422. Springer, 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher,
V., and Frossard, P. Digress: Discrete denoising diffusion
for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Weininger, D. Smiles, a chemical language and information
system. 1. introduction to methodology and encoding
rules. Journal of chemical information and computer
sciences, 28(1):31–36, 1988.

Yang, S., Hwang, D., Lee, S., Ryu, S., and Hwang, S. J. Hit
and lead discovery with explorative rl and fragment-based
molecule generation. Advances in Neural Information
Processing Systems, 34:7924–7936, 2021.

You, J., Ying, R., Ren, X., Hamilton, W., and Leskovec,
J. Graphrnn: Generating realistic graphs with deep auto-
regressive models. In International conference on ma-
chine learning, pp. 5708–5717. PMLR, 2018.

Zang, C. and Wang, F. Moflow: an invertible flow model for
generating molecular graphs. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 617–626, 2020.

HGGT

A. Construction of a K2–tree from the graph

Algorithm 1 K2–tree construction

Input:Adjacency matrix A and partitioning factor K.
1: Initialize the tree T ← (V, E) with V = ∅, E = ∅. ▷ K2–tree.
2: Initialize an empty queue Q. ▷ Candidates to be expanded into child nodes.
3: Set V ← V ∪ {r}, xr ← 1 and let A(r) ← A. Insert r into the queue Q. ▷ Add root node r.
4: while Q ̸= ∅ do
5: Pop u from Q.
6: if xu = 0 then ▷ Condition for not expanding the node u.
7: Go to line 4.
8: end if
9: Update s← dim(A(u))/K

10: for i = 1, . . . ,K do ▷ Row-wise indices.
11: for j = 1, . . . ,K do ▷ Column-wise indices.
12: Set Bi,j ← A(u)[(i− 1)s : is, (j − 1)s : js].

▷ Operation to obtain s× s submatrix Bi,j of A(u).
13: If Bi,j is filled with zeros, set xv ← 1. Otherwise, set xv ← 0.

▷ Update tree-node attribute.
14: If dim(vi,j) > 1, update Q ← vi,j .
15: end for
16: end for
17: Set V ← V ∪ {v1,1, . . . , vK,K}. ▷ Update tree nodes.
18: Set E ← E ∪ {(u, v1,1), . . . , (u, vK,K)}. ▷ Update tree edges.
19: end while

Output: K2–tree (T ,X) where X = {xu : u ∈ V}.

In this section, we explain our algorithm to construct a K2–tree (T ,X) from a given graph G = A where G is a symmetric
non-featured graph and A is an adjacency matrix. Note that he K2-ary tree T = (V, E) is associated with binary node
attributes X = {xu : u ∈ V}. In addition, let dim(A) to denote the number of rows(or columns) n of the square matrix
A ∈ {0, 1}n×n. We describe the full procedure in Algorithm 1.

HGGT

B. Constructing a graph from the K2–tree

Algorithm 2 Graph G construction

Input: K2–tree (T ,X) and partitioning factor K.
Set m← KDT . ▷ Full adjacency matrix size.
Initialize A ∈ {0, 1}m×m with zeros.
for u ∈ L do ▷ For each leaf node with xu = 1.

pos(u) = ((iv1 , jv1), . . . , (ivL , jvL)). ▷ Position of node u.
(pu, qu) = (

∑L
ℓ=1 K

L−ℓ(ivℓ − 1) + 1,
∑L

ℓ=1 K
L−ℓ(jvℓ − 1) + 1). ▷ Location of node u.

Set Apu,qu ← 1.
end for
Output: Adjacency matrix A.

87654321
011000001
100100002
100000003
010000004
001000105
000100016
000010017
000001108

1

1

1

0

1 1

(1,1)

(1,1) … …
… …
(2,1)

(2,2)

(1,1)

(1,2)

Root

<latexit sha1_base64="zqKYOD+ubrSlyt18BEFoFMuZ7eU=">AAAC63icdVHLjtMwFHXDayivFpZsIiokFlVlN2lS70awYVkkOjNSW1WOc9OJxnnIdpiJonwFOwRL4D/4C/4GJ21HMxSuZOn4XB9f+5wgF7HSGP/uWHfu3rv/4Ohh99HjJ0+f9frPT1RWSA5znolMngVMgYhTmOtYCzjLJbAkEHAaXLxr+qefQKo4Sz/qModVwjZpHMWcaUOte/2lhisdRNUsU3FD1evegIxwWzYeedTzqWMAoWPqE3vfGqBdzdb9zq9lmPEigVRzwZRaEJzrVcWkjrmAurssFOSMX7ANLAxMWQJqVbVvr+3XhgntKJNmpdpu2ZuKiiVKlUlgTiZMn6u/ew35r96i0NF0VcVpXmhI+XZQVAhbZ3ZjhB3GErgWpQGMS/N3bvNzJhnXxq5bU662T+0uQ4iMze2uSspAFFBXchPUlbGHTCnFQ2OU6zoEew3yHQc7/oFOQngto5h6xB/i0RgTTGkDPOp4h6IShMgud7p9CMN9PsN9Pge6jQRIr8eNyZQ4bitzXLcZN5lgc0HdvZn6/8HJeES80eSDOzh+u8v/CL1Er9AbRJCPjtF7NENzxNEl+oZ+oJ9WYn22vlhft0etzk7zAt0q6/sf5qPgyA==</latexit>

Position

<latexit sha1_base64="M3Mo8lcy4gebK+bLEMYz2LqF2hg=">AAAEP3ichVJNb9NAEF3XfJTw0RaOXFZEoESyol3bseMDUgUXjkUibaU4itbrTWrVX6zXpZHlHwdXfgG/gBuCI3Bh7Thq0qR0JcujefNmnuaNl4ZBJhD6puyod+7eu7/7oPXw0eMne/sHT4+zJOeUDWkSJvzUIxkLg5gNRSBCdppyRiIvZCfe+dsKP7lgPAuS+IOYp2wckVkcTANKhExNDhTfTVLGiUh4TCJWpElWdlzBLkXdu4jmM85YXBZ52YWvXsN1zAtzVhYdrOFuqcE1iDP/Cuno8t+FrtvqpJNie/tS+3gjtBhdNal63KZ4zsIw+VQWF/+RrGv6LZKxrNgu+aq/rLsuegVcTO9rVney38Y9VD+IepZj2Y4hA+zojo3hEmqD5h1JX764fkLziMWChiTLRhilYlwQLgIasrLl5hlLCT0nMzaSYbWJbFzUIkr4UmZ8OE24/GIB6+wqoyBRls0jT1ZGRJxl17EquQ0b5WI6GBdBnOaCxXQxaJqHUCSwOi7oB5xREc5lQCgPpFZIzwgnVMgTXJtyuZDacn02lae77g6feWUh14MHjoM0uSjTNDCyqsg2DGTYG7zauobmIMfCtoZ6OsLIcarAcgxrk7S0quYtTdCW/mhLfzZ4zV0243Q8wIZZ0wzTrMb1+0g2KFurrt8cHOs9bPX678324ZvG/13wHLwAHYCBDQ7BO3AEhoAqX5Vfyh/lr/pZ/a7+UH8uSneUhvMMrD319z9IUGCn</latexit>

pos(u) = ((1, 1), (1, 1), (2, 1))

(pu, qu) = (2, 1)

pos(v) = ((2, 2), (1, 1), (1, 2))

(pv, qv) = (5, 6)

<latexit sha1_base64="6OtXb7Dotm0DfIHTjKn6s5+hwm8=">AAAEU3ichVJNb9NAEHU+CsXQLzhyWREFJZJl7dqJHR+QWrhwLBJpK8VRtN6sU7f+Yr0uiSzz4/gPHDjxQ7iwdhw1aRq6kuXRvHkzT/PGiX0v4RD+rtUbzb1nz/dfyC9fHRweHZ+8vkiilBE6JJEfsSsHJ9T3QjrkHvfpVcwoDhyfXjq3nwr88o6yxIvCr3wR03GAZ6HnegRzkZqc1OZtO4opwzxiIQ5oFkdJ3rE5nfOyeRYsZozSMM/SvAvefwCbmOOnNM86SEHdXAEbEKPTe6SjiX8X2Lbc7sST7PH+ufJtJ7ScXXQpmzyleUF9P/qeZ3f/Ea0p2hOikajYIfp+gCh8KHsNXI7vK0ZXLkscNzub3qj5j7PJcQupsHwAqoZlmJYuAmRplonACmpJ1TsXXv20pxFJAxpy4uMkGSEY83GGGfeIT3PZThMaY3KLZ3QkwmI1yTgrReWgLTJT4EZMfCEHZXadkeEgSRaBIyoDzK+Th1iRfAwbpdwdjDMvjFNOQ7Ic5KY+4BEoDg5MPUYJ9xciwIR5Qisg15hhwsVZbkyZL6XK9pS64pw37WIzJ8/EetDAsqAiFtXr6QgaRWTqOtTNLV7pZUWzoGUgU4GqBhG0rCIwLN3YJq2sK3krE5SVP8rKny1edanVOA0NkN4raXqvV4zr96FokMvrru8OLjQVGWr/S691+rHyf196K72TOhKSTOlU+iydS0OJ1P7U9+qH9aPGr8bfZr3ZXJbWaxXnjbTxmgf/AErJYfA=</latexit>

Adj. A
<latexit sha1_base64="xFeCwvcBBzYzjVM1mblIwEIuP1g=">AAAEinichVNdb9MwFE27AqMMtsEjLxZTUStllZ206SKEtAEPSLwMaV/SUibHdbsw5wPbGass80v4Wzzwb3DSVlu2lVmKcnSPz70n996EGYuEhPBvrb7SePT4yerT5rO15y/WNzZfHok054QekpSl/CTEgrIooYcykoyeZJziOGT0OLz4WPDHl5SLKE0O5DSjwxhPkmgcESxN6Gyz9rsVpBnlWKY8wTFVWSp0O5D0SpbJVTydcEoTrXLdAW/fgyoXspxq1UY26mgbVChOR9dM2zHvDgiCZqudnan782v7x1JqVrvIUiZ5yPOUMpb+1OryP6Yd23nANDI3lpi+LmAu3rZ9g5yV79tep9malQrHam/0vat/7TW/fFOOXgS3t6X5WqBBEGN5TjBTB/psYwt1YXkA7Hq+N/BdA5Dv+AMEFtSWNT/7Zp5/glFK8pgmkjAsxCmCmRwqzGVEGNXNIBc0w+QCT+ipgUX7xFCVxjVomcgIjFNunkSCMnpToa6EQdUsCsdCTOPQqAvf4jZXBO/jTnM53hmqKMlySRMyKz7OGZApKBYVjCJOiWRTAzDhkfEPyDnmmEizzlVXM/vNYETH5jeojplPQq1My9CO70PbNK/XcxH0CjRwXegO7ujKHZjLfOh7aGDDrgMR9P0CeL7r3RUtRl7qFoOxFzOzFzO7o5tv+Lycg3aQ2ytlbq9XlOv3oUlQWYTl4MjpIq/b/9rb2v0wX4lV67X1xmpbyBpYu9Zna986tEh9pd6pO3W3sdZwGn7j3exqvTbXvLIqp/HpH1vJdY0=</latexit>

K2–tree T

Figure 4. Illustration of the tree-node positions of K2–tree. The shaded parts of the adjacency matrix denote redundant parts, e.g.,
pu < qu. Additionally, colored elements correspond to tree-nodes of the same color and the same-colored tree-edges signify the
root-to-target downward path. Blue and red tuples denote the order in the first and second levels, respectively. The tree node u is
non-redundant as pu > qu while v is redundant as pv < qv .

We next describe the algorithm to generate a graph G = A given the K2–tree (T ,X) with tree depth DT . Let
L ⊂ V be the set of leaf nodes in K2–tree with node attributes 1. Note that we represent the tree-node posi-
tion of u ∈ V as pos(u) = ((iv1 , jv1), . . . , (ivL , jvL)) based on a downward path v0, v1, . . . , vL from the root
node r = v0 to the tree-node u = vL. In addition, the location of corresponding submatrix A(u) is denoted as
(pu, qu) = (

∑L
ℓ=1 K

L−ℓ(ivℓ − 1) + 1,
∑L

ℓ=1 K
L−ℓ(jvℓ − 1) + 1) in as described in Section 3.1. The position and lo-

cation of tree-nodes are illustrated in Figure 4 and we describe the full procedure as in Algorithm 2.

HGGT

C. Details of flattening and tokenization
In this section, we describe details of HGGT in flattening and tokenization of the pruned K2–tree.

To flatten a K2–tree as a sequence, we denote the sequence of tree-nodes obtained from a breadth-first traversal of non-root
tree-nodes in the K2–tree as u1, . . . , u|V|−1, and the corresponding sequence of node attributes as x = (x1, . . . , x|V|−1).
It’s important to note that sibling nodes sharing the same parent appear sequentially in the breadth-first traversal.

Next, by grouping the sibling nodes, we tokenize the sequence x. As a result, we obtain a sequence y = (y1, . . . , yT)
where each element is a token representing a group of attributes associated with sibling nodes. For example, the t-th token
corresponding to a group of K2 sibling nodes is represented by yt = (xv1,1 , . . . , xvK,K

) where v1,1, . . . , vK,K share the
same parent node u. Such tokenization allows representing the whole K2–tree using M(logK2(N2/M) + O(1)) space,
where N and M denote the number of nodes and edges in the original graph, respectively.

HGGT

D. Generalizing K2–tree to Attributed Graphs

Algorithm 3 Featured K2–tree construction

Input: Modified adjacency matrix A and partitioning factor K.
1: Initialize the tree T ← (V, E) with V = ∅, E = ∅. ▷ Featured K2–tree.
2: Initialize an empty queue Q. ▷ Candidates to be expanded into child nodes.
3: Set V ← V ∪ {r}, xr ← 1 and let A(r) ← A. Insert r into the queue Q. ▷ Add root node r.
4: while Q ̸= ∅ do
5: Pop u from Q.
6: if xu = 0 then ▷ Condition for not expanding the node u.
7: Go to line 4.
8: end if
9: Update s← dim(A(u))/K

10: for i = 1, . . . ,K do ▷ Row-wise indices.
11: for j = 1, . . . ,K do ▷ Column-wise indices.
12: Set Bi,j ← A(u)[(i− 1)s : is, (j − 1)s : js].

▷ Operation to obtain s× s submatrix Bi,j of A(u).
13: if Bi,j is filled with zeros then ▷ Update tree-node attribute.
14: Set xv ← 0.
15: else if |Bi,j | > 1 then ▷ Non-leaf tree-nodes with attribute 1.
16: Set xv ← 1.
17: else ▷ Leaf tree-nodes with node features and edge features.
18: Set xv ← Bi,j . ▷ We treat 1× 1 matrix Bi,j as a scalar.
19: end if
20: if dim(Bi,j) > 1 then Q ← vi,j .
21: end if
22: end for
23: end for
24: Set V ← V ∪ {v1,1, . . . , vK,K}. ▷ Update tree nodes.
25: Set E ← E ∪ {(u, v1,1), . . . , (u, vK,K)}. ▷ Update tree edges.
26: end while

Output: Featured K2–tree (T ,X) where X = {xu : u ∈ V}.

Algorithm 4 Featured graph G construction

1: Input: Featured K2–tree (T ,X) and partitioning factor K.
2: m← KDT ▷ Full adjacency matrix size.
3: Initialize A ∈ {0, 1}m×m with zeros.
4: for u ∈ L do ▷ For each leaf node with xu ̸= 0.
5: pos(u) = ((iv1 , jv1), . . . , (ivL , jvL)). ▷ Position of node u.
6: (pu, qu) = (

∑L
ℓ=1 K

L−ℓ(ivℓ
− 1) + 1,

∑L
ℓ=1 K

L−ℓ(jvℓ
− 1) + 1). ▷ Location of node u.

7: Set Apu,qu ← xu.
8: end for
9: Output: Modified adjacency matrix A.

In this section, we describe a detailed process to construct a K2–tree for featured graphs with node features and edge features
(e.g., molecular graphs), which is described briefly in Section 3.1. We modify the original adjacency matrix by incorporating
categorical features into each element, thereby enabling the derivation of the featured K2–tree from the modified adjacency
matrix.

Edge features. Integrating edge features into the adjacency matrix is straightforward. It can be accomplished by simply
replacing the ones with the appropriate categorical edge features.

Node features. Integrating node features into the adjacency matrix is more complex than that of edge features since the

HGGT

1 2
3
N

CC

C
4

4321
0−0C1

0−C02

−N−−3

C−004

<latexit sha1_base64="CycE+j8IfxzQpuPcBNxUKg7hkGA=">AAACEXicbVBJSgNBFK12jHGKw85NYRBchW5xWkYFcRnBDJCEUF35nRSpHqj6LYlNTuEF3OoN3IlbT+AFPIeVpBcm8cGHx3v/8x/PjaTQaNvf1sLi0vLKamYtu76xubWd29mt6DBWHMo8lKGquUyDFAGUUaCEWqSA+a6Eqtu7GfnVR1BahMEDDiJo+qwTCE9whkZq5fYbCH10veQWGMYK2nRIr1q5vF2wx6DzxElJnqQotXI/jXbIYx8C5JJpXXfsCJsJUyi4hGG2EWuIGO+xDtQNDZgPupmM0w/pkVHa1AuVmQDpWP17kTBf64Hvmk2fYVfPeiPxP68eo3fZTEQQxQgBnzzyYkkxpKMqaFso4CgHhjCuhMlKeZcpxtEUNvWlP4maNcU4szXMk8pJwTkvnN2f5ovXaUUZckAOyTFxyAUpkjtSImXCyRN5Ia/kzXq23q0P63OyumClN3tkCtbXL+nBnZU=</latexit>

Featured A

Root

0-0-

1 1 1

00-- C--NC00C

1

<latexit sha1_base64="Zid2Xfb3vQsoiL4kBlPkrf/Zr4k=">AAACDXicbVDLTsJAFJ3iC/FVdelmIjFxRVrja0l0gUtM5JFAQ6bDFCZMp83MLYE0fIM/4Fb/wJ1x6zf4A36HA3Qh4ElucnLOvbknx48F1+A431ZubX1jcyu/XdjZ3ds/sA+P6jpKFGU1GolINX2imeCS1YCDYM1YMRL6gjX8wf3UbwyZ0jySTzCOmReSnuQBpwSM1LHtNrAR+EFaUSTu40mlYxedkjMDXiVuRoooQ7Vj/7S7EU1CJoEKonXLdWLwUqKAU8EmhXaiWUzogPRYy1BJQqa9dJZ8gs+M0sVBpMxIwDP170VKQq3HoW82QwJ9vexNxf+8VgLBrZdyGSfAJJ0/ChKBIcLTGnCXK0ZBjA0hVHGTFdM+UYSCKWvhy2getWCKcZdrWCX1i5J7Xbp6vCyW77KK8ugEnaJz5KIbVEYPqIpqiKIhekGv6M16tt6tD+tzvpqzsptjtADr6xcUS5wV</latexit>

Graph G

<latexit sha1_base64="y9ZFRzkmDuRgDysRJfh2JPjDtSw=">AAACHnicbVDJTgJBEO1xRdxQj15aiYknMmPcjkQvHjHKkgAhPU0NdOhZ7K4xkAlnf8Mf8Kp/4M141R/wO2xgDgJW0umX96pSr54bSaHRtr+thcWl5ZXVzFp2fWNzazu3s1vRYaw4lHkoQ1VzmQYpAiijQAm1SAHzXQlVt3c90quPoLQIg3scRND0WScQnuAMDdXKHTQQ+uh6yR08xBBwoEPacEPZ1gPffMlg2Mrl7YI9LjoPnBTkSVqlVu6n0Q557EOAXDKt644dYTNhCgWXMMw2Yg0R4z3WgbqBAfNBN5PxKUN6ZJg29UJlXoB0zP6dSJivR9ZMp8+wq2e1EfmfVo/Ru2wmIohiNGdOFnmxpBjSUS60LRRwlAMDGFfCeKW8yxTjaNKb2tKfWM2aYJzZGOZB5aTgnBfObk/zxas0ogzZJ4fkmDjkghTJDSmRMuHkibyQV/JmPVvv1of1OWldsNKZPTJV1tcvkgij4w==</latexit>

Sequence y 1 1 1 C 0 C −− 0 0 N − C

<latexit sha1_base64="q1NcZ2Fd+EipNAlChK93w+qCbxo=">AAAEnHichVNrb9MwFE1LgVFeG4hPSMhiKmqlrLKTNl2EkDYYCGlCGtJe0lImx3W7MOeB44xVlvlJ/Bs+8G9w0kZb1o1ZinJzj889x743fsKCVED4t1a/07h77/7Sg+bDR4+fPF1eebafxhkndI/ELOaHPk4pCyK6JwLB6GHCKQ59Rg/80w85fnBGeRrE0a6YJnQY4kkUjAOChU4dr9R+t7w4oRyLmEc4pDKJU9X2BD0XRXEZTiec0kjJTHXAm3egivkso0q2kYk6ygQViNPRBdK29LsDPK/ZaifH8vr6yvxxIzTTzqsURW7zPKWMxT+VPPuPacu0bjGN9I4bTF8I6I1XbV8CZ/J90+k0WzMpfyw3R9+76tdms/z+RLHItDRQ29+kpcr02prQ5wcKeCEWJwQzuauOl1dRFxYLwK7jOgPX1gFyLXeAQAmtGvO1ozv8xxvFJAtpJAjDaXqEYCKGEnMREEZV08tSmmByiif0SIf5haZDWRxFgZbOjMA45vqJBCiylxnyPNVRtYrEYZpOQ1+zc9/pVSxPXocdZWK8PpRBlGSCRmQmPs4YEDHIRxeMAk6JYFMdYMID7R+QE8wxEXrAq65m9pveiI71j1FtPJ/4SuorQ+uuC019eb2ejaCTRwPbhvZggVdMxZzmQtdBAxN2LYig6+aB49rOIqkcgoJXNsYse2aWPVvgzWd+LmehdWT3Cprd6+Vy/T7UBSqDcHOwb3WR0+1/7a1uvJ+PxJLx0nhttA1kDIwN47OxY+wZpP6i/ra+Vf/YeNXYamw3vsy21mtzznOjshr7/wBQJn1y</latexit>

Featured K2–tree T<latexit sha1_base64="ZHnIxFZvn86Xpp1WzGr+fV2jxYw=">AAAEwXichVNra9swFHWzbOuyV7t93BexkJGAGyQ7ceLBoF1hFAajg76gzjJZUVK38mOy3DUI7U+Ofdi/mezEtO5jFRgf7tG55+rqyk9YkAoI/67UHtQfPnq8+qTx9NnzFy/X1l8dpHHGCd0nMYv5kY9TyoKI7otAMHqUcIpDn9FD/2w75w/PKU+DONoT84SOQjyLgmlAsNCh8frK75YXJ5RjEfMIh1QmcaranqAXokguw/mMUxopmakOePcBVDmfZVTJNjJRR5mgQnE6uWTalv53gOc1Wu1kLG/Pr8wfd1IL7zxLkeS+mueUsfinkuf/KdoyrXuKRnrHHUVfGuiN18u+Qi7s+6bTabQWVv5Ubk1Ou+rX1pXIJ4pFps2B+vxNWqoMb2wI3QGggBdicUIwk3uqUZLbamyXeEeN3RJ/UeO1JurCYgHYdVxn4NoaINdyBwiUVNNYrl09Bn+8SUyykEaCMJymxwgmYiQxFwFhVHtmKU0wOcMzeqxh3vV0JIvzKtDSkQmYxlx/kQBF9KpCXqQaVbNIHKbpPPS1Oj9aep3Lg7dxx5mYDkcyiJJM0IgszKcZAyIG+XyDScApEWyuASY80PUDcoI5JkK/gmpVi/Ib3oRO9eupTgef+UrqlqGh60JTN6/XsxF0cjSwbWgPbuiK0VnKXOg6aGDCrgURdN0cOK7t3BSVk1Loyosxyzszyzu7oVs+jKWdhYbI7hUyu9fL7fp9qBNUBuFucGB1kdPtf+01Nz8uR2LVeGO8NdoGMgbGprFj7Br7Bqm9r32vBbXT+nY9qCd1vthaW1lqXhuVVZf/ADI4jNk=</latexit>

C3H9N

Figure 5. An example of featured K2–tree representation. The shaded parts of the adjacency matrix and K2–tree denote the redundant
parts. The black-colored tree-nodes denote the normal tree-nodes with binary attributes while other-colored feature elements in the
adjacency matrix A denote the same-colored featured tree-nodes and sequence elements. The node features (i.e., C and N) and edge
feature (i.e., single bond −) of the molecule are represented within the leaf nodes.

adjacency matrix only describes the connectivity between node pairs. To address this issue, we assume that all graph
nodes possess self-loops, which leads to filling ones to the diagonal elements. Then we replace ones on the diagonal with
categorical node features that correspond to the respective node positions.

Let xu ∈ X be the non-binary tree-node attributes that include node features and edge features and L be the set of leaf nodes
in K2–tree with non-zero node attributes. Then we can construct a featured K2–tree with a modified adjacency matrix and
construct a graph G from the featured K2–tree as described in Algorithm 3 and Algorithm 4, respectively. In addition, we
provide the illustration of the construction of K2–tree in Appendix D.

HGGT

E. Experimental Details
In this section, we provide the details of the experiments. Note that we chose k = 2 in all experiments and provide additional
experimental results for k = 3 in Appendix H.

E.1. Generic graph generation

Table 3. Hyperparameters of HGGT in generic graph generation.
Hyperparameter Community-small Planar Enzymes Grid

Transformer

Dim. of feedforward network 512 512 512 512
Transformer dropout rate 0.1 0 0.1 0.1
of attention heads 8 8 8 8
of layers 3 3 3 3

Train

Batch size 128 32 32 8
of epochs 500 500 500 500
Dim. of token embedding 512 512 512 512
Gradient clipping norm 1 1 1 1
Input dropout rate 0 0 0 0
Learning rate 1× 10−3 1× 10−3 2× 10−4 5× 10−4

We used the same split with GDSS (Jo et al., 2022) for Community-small, Enzymes, and Grid datasets. Otherwise, we
used the same split with SPECTRE (Luo et al., 2022) for the Planar dataset. We fix k = 2 and perform the hyperparameter
search to choose the best learning rate in {0.0001, 0.0002, 0.0005, 0.001} and the best dropout rate in {0, 0.1}. We select
the model with the best MMD with the lowest average of three graph statistics: degree, clustering coefficient, and orbit
count. Finally, we provide the hyperparameters used in the experiment in Table 5.

E.2. Molecular graph generation

Table 4. Statstics of molecular datasets: QM9 and ZINC250k.

Dataset # of graphs # of nodes # of node types # of edge types

QM9 133,885 1 ≤ |V | ≤ 9 4 3
ZINC250k 249,455 6 ≤ |V | ≤ 38 9 3

Table 5. Hyperparameters of HGGT in molecular graph generation.
Hyperparameter QM9 ZINC250k

Transformer

Dim. of feedforward network 512 512
Transformer dropout rate 0.1 0.1
of attention heads 8 8
of layers 2 3

Train

Batch size 1024 256
of epochs 500 500
Dim. of token embedding 512 512
Gradient clipping norm 1 1
Input dropout rate 0.5 0
Learning rate 5× 10−4 5× 10−4

The statistics of training molecular graphs (i.e., QM9 and ZINC250k datasets) are summarized in Table 4 and we used the
same split with GDSS (Jo et al., 2022) for a fair evaluation. We fix k = 2 and perform the hyperparameter search to choose
the best number of layers in {2, 3} and select the model with the best validity. In addition, we provide the hyperparameters
used in the experiment in Table 5.

HGGT

F. Implementation Details
F.1. Computing resources

We used PyTorch (Paszke et al., 2019) to implement HGGT and train the Transformer (Vaswani et al., 2017) models on
GeForce RTX 3090 GPU.

F.2. Model architecture

<latexit sha1_base64="y9ZFRzkmDuRgDysRJfh2JPjDtSw=">AAACHnicbVDJTgJBEO1xRdxQj15aiYknMmPcjkQvHjHKkgAhPU0NdOhZ7K4xkAlnf8Mf8Kp/4M141R/wO2xgDgJW0umX96pSr54bSaHRtr+thcWl5ZXVzFp2fWNzazu3s1vRYaw4lHkoQ1VzmQYpAiijQAm1SAHzXQlVt3c90quPoLQIg3scRND0WScQnuAMDdXKHTQQ+uh6yR08xBBwoEPacEPZ1gPffMlg2Mrl7YI9LjoPnBTkSVqlVu6n0Q557EOAXDKt644dYTNhCgWXMMw2Yg0R4z3WgbqBAfNBN5PxKUN6ZJg29UJlXoB0zP6dSJivR9ZMp8+wq2e1EfmfVo/Ru2wmIohiNGdOFnmxpBjSUS60LRRwlAMDGFfCeKW8yxTjaNKb2tKfWM2aYJzZGOZB5aTgnBfObk/zxas0ogzZJ4fkmDjkghTJDSmRMuHkibyQV/JmPVvv1of1OWldsNKZPTJV1tcvkgij4w==</latexit>

Sequence y 1 1 1 0 1 0 1 0 0 1

Token embedding

Tree positional encoding

Transformer encoder

+

Multilayer perceptron

0.01 0.34 0.05 0.08 …
<latexit sha1_base64="gLNcLchgROJuul+8ZSb/5Fig48g=">AAACG3icbVDJSgNBFOyJW4xb1KMgjUHwFGbE7Rj04s0IZoEkhJ7Om6RJz0L3G0kYcvM3/AGv+gfexKsHf8DvsCfJwSQWNBRV7/G6yo2k0Gjb31ZmaXlldS27ntvY3Nreye/uVXUYKw4VHspQ1V2mQYoAKihQQj1SwHxXQs3t36R+7RGUFmHwgMMIWj7rBsITnKGR2vnDJsIAXS+5izGKkUYqdJkrpEABepRr5wt20R6DLhJnSgpkinI7/9PshDz2IUAumdYNx46wlTCFgksY5ZqxhojxPutCw9CA+aBbyTjHiB4bpUO9UJkXIB2rfzcS5ms99F0z6TPs6XkvFf/zGjF6V61EBCYhBHxyyIslxZCmpdCOUMBRDg1hXJnsnPIeU4yjqW7mymDy1bQYZ76GRVI9LToXxfP7s0LpelpRlhyQI3JCHHJJSuSWlEmFcPJEXsgrebOerXfrw/qcjGas6c4+mYH19QvcEaJs</latexit>

Output probabilities

Figure 6. The architecture of the transformer generator of
HGGT.

We describe the architecture of the proposed transformer gen-
erator of HGGT in Figure 6. The generator takes a sequential
representation of K2–tree as input and generates the output
probability of each token as described in Section 3.2. The model
consists of a token embedding layer, transformer encoder(s),
and multilayer perceptron layer with tree positional encoding.

F.3. Details for baseline implementation

Generic graph generation. The baseline results from prior
works are as follows. Results for GraphVAE (Simonovsky &
Komodakis, 2018), GraphRNN (You et al., 2018), GNF (Liu
et al., 2019), EDP-GNN (Niu et al., 2020), GraphAF (Shi et al.,
2020), GraphDF (Luo et al., 2021), and GDSS (Jo et al., 2022)
are obtained from GDSS, while the results for GRAN (Liao
et al., 2019), SPECTRE (Martinkus et al., 2022), and GDSM
(Luo et al., 2022) are derived from their respective paper. Ad-
ditionally, we reproduced DiGress (Vignac et al., 2022) and
GraphGen (Goyal et al., 2020) using their open-source codes.
We used original hyperparameters when the original work pro-
vided them. DiGress takes more than three days for the Planar,
Enzymes, and Grid datasets, so we report the results from fewer epochs after convergence.

Molecular graph generation. The baseline results from prior works are as follows. The results for EDP-GNN (Niu
et al., 2020), MoFlow (Zang & Wang, 2020), GraphAF (Shi et al., 2020), GraphDF (Luo et al., 2021), GraphEBM (Liu
et al., 2021), and GDSS (Jo et al., 2022) are from GDSS, and the GDSM (Luo et al., 2022) result is extracted from the
corresponding paper. Moreover, we reproduced DiGress (Vignac et al., 2022) using their open-source codes.

HGGT

G. Generated samples
In this section, we provide the visualizations of the generated graphs for generic and molecular graph generation.

G.1. Generic graph generation

Community-small

(a) Train (b) GraphGen (c) GDSS

(d) DiGress (e) Ours (HGGT)

Figure 7. Visualization of the graphs from the Community-small dataset and the generated graphs.

Planar

(a) Train (b) GraphGen

(d) DiGress (e) Ours (HGGT)

Figure 8. Visualization of the graphs from the Planar dataset and the generated graphs.

We present visualizations of graphs from the training dataset and generated samples from GraphGen, DiGress, GDSS, and
HGGT in Figure 7, Figure 8, Figure 9, and Figure 10. Note that we reproduced GraphGen and DiGress using open-source
codes while utilizing the provided checkpoints for GDSS. However, given that the checkpoints provided for GDSS do not
include the Planar dataset, we have omitted GDSS samples for this dataset. We additionally give the number of nodes and
edges of each graph.

HGGT

Enzymes

(a) Train (b) GraphGen (c) GDSS

(d) DiGress (e) Ours (HGGT)

Figure 9. Visualization of the graphs from the enzymes dataset and the generated graphs.

Grid

(a) Train (b) GraphGen (c) GDSS

(d) DiGress (e) Ours (HGGT)

Figure 10. Visualization of the graphs from the Grid dataset and the generated graphs.

HGGT

G.2. Molecular graph generation

Figure 11. Visualization of the molecules generated from the QM9 dataset.

Figure 12. Visualization of the molecules generated from the ZINC250k dataset.

We present visualizations of generated molecules from HGGT in Figure 11 and Figure 12. Note that the 24 molecules are
non-cherry-picked and randomly sampled.

HGGT

H. Additional Experimental Results
In this section, we report additional experimental results.

H.1. Generic graph generation

Table 6. Generation results of HGGT with k = 3.
Community-small Planar

Degree Cluster. Orbit Degree Cluster. Orbit

k = 2 0.001 0.006 0.003 0.000 0.001 0.000
k = 3 0.007 0.050 0.001 0.001 0.003 0.000

We provide generic graph generation results for k =
3. Increasing k decreases the sequence length, while
vocabulary size increases to 23

2

+ 26 = 578.

We used Community-small and Planar datasets and mea-
sured MMD between the test graphs and generated graphs.
We perform the same hyperparameter search for a fair
evaluation as k = 2. The results are in Table 6. We can
observe that HGGT still outperforms the baselines even
with different k.

H.2. Molecular graph generation

Table 7. Additional molecular graph generation performance.
QM9

Method Frag. ↑ Intdiv. ↑ QED ↓ SA ↓ SNN ↑ Scaf. ↑ Weight ↓ Uniq. ↑ Nov. ↑
DiGress 0.9737 0.9189 0.0015 0.0189 0.5216 0.9063 0.1746 96.34 35.46

HGGT (Ours) 0.9874 0.9150 0.0012 0.0304 0.5156 0.9368 0.2430 95.65 24.01

ZINC250k

Method Frag. ↑ Intdiv. ↑ QED ↓ SA ↓ SNN ↑ Scaf. ↑ Weight ↓ Uniq. ↑ Nov. ↑
DiGress 0.7702 0.9061 0.1284 1.9290 0.2491 0.0001 62.9923 99.97 100

HGGT (Ours) 0.9877 0.8644 0.0164 0.2407 0.4383 0.5298 1.8592 99.97 99.83

We additionally report nine metrics of the generated molecules: (a) fragment similarity (Frag.), which measures the BRICS
fragment frequency similarity between generated molecules and test molecules, (b) internal diversity (Intdiv.), which
measures the chemical diversity in generated molecules, (c) quantitative estimation of drug-likeness (QED), which measures
the drug-likeness similarity between generated molecules and test molecules, (d) synthetic accessibility score (SA), which
compares the synthetic accessibility between generated molecules and test molecules, (e) similarity to the nearest neighbor
(SNN), an average of Tanimoto similarity between the fingerprint of a generated molecule and test molecule, (f) scaffold
similarity (Scaf.), the Bemis-Murcko scaffold frequency similarity between generated molecules and test molecules, (g)
weight, the atom weight similarity between generated molecules and test molecules, (h) the ratio of unique molecules
(Uniq.), and (i) the ratio of novel molecules that did not appear in training molecules (Nov.). The results are in Table 7.

HGGT

I. Ablation studies

Table 8. Ablation study for algorithmic components of HGGT.
Community-small Planar Enzymes

Group PE Prune Degree Cluster. Orbit Degree Cluster. Orbit Degree Cluster. Orbit

✗ ✗ ✗ 0.072 0.199 0.080 0.346 1.824 1.403 0.050 0.060 0.021
✓ ✗ ✗ 0.009 0.105 0.001 0.003 0.001 0.002 0.005 0.022 0.007
✓ ✓ ✗ 0.002 0.028 0.001 0.003 0.001 0.002 0.002 0.020 0.002
✓ ✓ ✓ 0.001 0.006 0.003 0.000 0.001 0.000 0.005 0.017 0.000

Table 9. Average graph compression ratio for different matrix
orderings on generic graphs.

Method Comm. Planar Enzymes Grid

BFS 0.534 0.201 0.432 0.048
DFS 0.619 0.204 0.523 0.064
C-M 0.508 0.195 0.404 0.045

We conduct three ablation studies to verify (1) the effectiveness
of each component of sequential representation of K2–tree, (2)
the necessity of proper choice of positional encoding, and (3)
the effect of node orderings on the compression ratio.

Ablation of algorithmic components. We introduced three
components to enhance the performance of HGGT: grouping
into tokens (Group), incorporating tree positional encoding (PE),
and pruning the K2–tree (Prune). To verify the effectiveness
of each component, we present the experimental results for our method with incremental inclusion of these components.
The experimental results are reported in Table 8. The results demonstrate the importance of each component in improving
graph generation performance, with grouping being particularly crucial, thereby validating the significance of our additional
components to the sequential K2–tree representation.

Figure 13. Training curve for different positional
encodings on Planar.

Positional encoding. In this experiment, we assess the impact of various po-
sitional encodings in our method. We compare our tree positional encoding
(TPE) to absolute positional encoding (APE) and relative positional encod-
ing (RPE). Our findings, as presented in Figure 13, demonstrate that TPE
outperforms other positional encodings with faster convergence of training
loss. These observations highlight the importance of an appropriate choice
of positional encoding for generating high-quality graphs.

Adjacency matrix orderings. It is clear that the choice of node order in the
adjacency matrix A influences the size of K2–tree. We verify our design
choice to use of Cuthill-McKee (C-M) ordering (Cuthill & McKee, 1969)
by comparing its compression ratio to two other common node orderings:
breadth-first search (BFS) and depth-first search (DFS). The compression
ratio is defined as the number of elements in K2–tree divided by the number
of cells in the adjacency matrix. In Table 9, we present the compression
ratio results for each node ordering. Here, one can observe that C-M ordering shows the best compression ratio in most of
the datasets compared to other orderings. Notably, K2–tree demonstrates a good compression rate even after adding dummy
nodes to construct a proper K2–tree as claimed in Section 2.

HGGT

J. Related Work
Adjacency matrix-based graph generation. The choice of graph representation is a crucial aspect of graph generation, as
it can significantly impact the efficiency and expressiveness of the generative model. The most widely used representation is
the adjacency matrix, which explicitly encodes the simple pairwise relationship between nodes (Simonovsky & Komodakis,
2018; Jo et al., 2022; Vignac et al., 2022; You et al., 2018; Liao et al., 2019; Niu et al., 2020; Shi et al., 2020; Luo et al.,
2021). However, these methods suffer from high complexity in generating the adjacency matrix, especially for large graphs.

String-based graph generation. Researchers have developed string-based representations (Ahn et al., 2022; Krenn et al.,
2019; Segler et al., 2018). In particular, for the molecular graph generation, Segler et al. (Segler et al., 2018) considered
generating the SMILES representation (Weininger, 1988). Since the SMILES representation may be invalid, Krenn et
al. (Krenn et al., 2019) designed a robust string-based representation of molecules. Finally, Ahn et al. (Ahn et al., 2022)
designed a new representation to exploit the tree-like structure of molecules. For general graph generation, Goyal et
al. (Goyal et al., 2020) designed a string representation using a graph canonicalization algorithm.

Motif-based graph generation. Researchers have investigated motif-based graph representations (Jin et al., 2018; 2020;
Yang et al., 2021) that capture hierarchical graph structures with lower computational costs. Specifically, Jin et al. (Jin et al.,
2018; 2020) considered extracting common fragments from data. Yang et al. (Yang et al., 2021) considered chemically
reasonable fragments defined by domain experts. Finally, Guo et al. (Guo et al., 2022) considered learning motif-based
grammar by running a reinforcement learning algorithm on the dataset. However, these methods rely on domain-specific
knowledge to define or extract the motifs from data.

Lossless graph compression. Similar to the representations used for graph generation, lossless graph compression (Besta
& Hoefler, 2018) aims to reduce the size and complexity of graphs while preserving their underlying structures. Specifically,
several works (Brisaboa et al., 2009; Raghavan & Garcia-Molina, 2003) have introduced hierarchical graph compression
methods that efficiently compress graphs by leveraging their hierarchical structure. In addition, Bouritsas et al. (Bouritsas
et al., 2021) derived the compressed representation using a learning-based objective.

